
A Neural Collapse and simplex ETF

Figure 6: ETF structure.
Stars with different colors
denote features of differ-
ent classes and black ar-
rows denote the classifier
vector for each class.

Neural collapse [26] is an intuitive observation that happens at the ter-
minal phase of a well-trained model on a balanced dataset that last-layer
features converge to within-class mean, and all within-class means and
their corresponding classifier vectors converge to ETF as shown in Fig-
ure 6. The main results can be concluded as follows:

• (NC1) Variability of the last-layer features Σ := Avgi,c{(hi
c −

hc)(h
i
c − hc)

T } collapse within-class: Σ → 0, where hi
c is the

last-layer feature of the i-th sample in the c-th class, and hc is the
within-class mean of c-th class’s features.

• (NC2) Convergence to a simplex ETF. Last-layer features converge to
within-class mean, and all within-class means and their corresponding
classifier vectors converge to a simplex ETF.

• (NC3) Self duality: h̃c = Wc/ ∥Wc∥, where h̃c = (hc −
h)/

∥∥hc − h
∥∥ and Wc is the classifier vector of the c-th class.

• (NC4) Simplification to the nearest class center prediction:
argmaxc ⟨h,Wc⟩ = argminc ∥h− hc∥, where h is the last-layer
feature.

Lemma 1 (ETF). When solving objective defined in Eq (6) in balanced C-class classification tasks
with LPM and CE loss, neural collapse merges, which means ∀1 ⩽ i ⩽ nc, 1 ⩽ c ⩽ C, last layer
features H∗

i and corresponding classifier W∗
j converge as:

hi,∗
c√
EH

=
W∗

c√
EW

= m∗
c ,

where m∗
c forms a simplex equiangular tight frame (ETF) defined as:

M =

√
C

C − 1
U

(
IC − 1

C
1C1

T
C

)
,

where M = [m∗
1, · · · ,m∗

C ] ∈ Rd×C , U ∈ Rd×C allows a rotation and satisfies UTU = IC and 1C

is an all-ones vector.

To analyze this phenomenon, some studies simplify deep neural networks as last-layer features
and classifier (layer-peeled model)[9, 12, 40, 53] with proper constraints or regularizations. In the
view of layer-peeled model (LPM), training W with constraints on the weights can be seen as
training the C-class classification head WL = {W1, ...,WC} and features H = {h1, ..., hN} of all
n samples output by last layer of backbone with constraints EW and EH respectively. Therefore,
∀1 ⩽ c ⩽ C, 1 ⩽ i ⩽ N , the training objective with commonly used cross-entropy loss can be
described as:

min
H,WL

1

n

N∑
i=1

LCE

(
hi,W

)
,

s.t.
∥∥WL

c

∥∥2 ⩽ EW ,
∥∥hi
∥∥2 ⩽ EH .

(6)

In the balanced dataset, as described in Lemma 1, any solutions to this model merge neural collapse
and form a simplex equiangular tight frame (ETF), which means ETF is optimal classifier in the
balanced case of LPM.
Lemma 2 (Fixing classifier as ETF). No matter dataset is balanced or imbalanced, fixing the
classification head as ETF with scaling length of

√
EW in the layer-peeled model and optimizing the

following objective:

min
H

1

n

n∑
i=1

LCE

(
hi,
√
EWM

)
,

s.t.
∥∥hi
∥∥2 ⩽ EH ,∀1 ⩽ i ⩽ n.

Then the same solution in the Lemma 1 is obtained.

15



Table 7: Notations and their corresponding meanings.

Notation Meaning

F global loss function

Fk local loss function of client k

τ local iteration in a curtain round

bτk mini-bath of a certain iteration

H last layer features

Hi last layer feature of i-th sample

Hk last layer features of k-th client

Hi
k,c last layer feature of i-th sample of c-th class in k-th client

M ETF matrix

mj j-th classifier vector in ETF

ϕ set of adjusted matrices

ϕk adjusted matrix of client k

t number of communication rounds

ϕk,c adjusted weight of c-th class in client k

pk sample fraction of client k

N number of clients

W total model

Wk total model of client k

WtE
k model of client k after E-1 aggregation with τ additional iteration

W
tE+ 1

2

k model after aggregation of client k in round t

W
τE+ 1

2ϕk

k model after aggregation and adjusted of client k in round t

Wg global model

WL classifier

W−L backbone

WL
k classifier of k-th client

W−L
k backbone of k-th client

WL
k,c classifier of c-th class in k-th client

W−L
k,c backbone of c-th class in k-th client

g gradient

n number of samples

nk sample number of client k

nk,c sample number of c-th class in client k

As shown in Lemma 2, recent studies prove that no matter dataset is balanced or not, by fixing the
classifier as a randomly ETF with scaling

√
EW and constraining on last layer features, LPM can

reach the optimal structure as described in Lemma 1. We also prove in Theorem 1 that by fixing
the classifier of all clients as ETF, in the strongly convex case, the global model can also reach the
condition as Lemma 1 which meets the requirement of G-FL.

16



B Implementation of Theoretical Analysis

B.1 Notations and Assumptions

Before starting our proof, we pre-define some notations and assumptions used in the following lemmas
and theorems. First, we make the assumptions on loss functions F1, F2, · · · , FN of all clients and
their gradient functions ∇F1,∇F2, · · · ,∇FN . We use tE + τ to denote τ -th local iteration in round
t, tE to denote the state that just finishing local training, tE + 1

2 to denote the stage after aggregation
and tE + 1

2Φ to denote the stage after local adaptation. In Assumption 1 and Assumption 2, we
characterize the smoothness, bound on the variance of stochastic gradients and convexity of each
FN . In Assumption 3, the norm of stochastic gradients is bounded, which is commonly used in
many FL algorithms together with Assumption 2 to prove the global convergence [8, 18]. An
existing study points out that there is a contradiction between them [24, 32]. Therefore, we show the
concrete assumption description in Assumption 5 and convergence guarantee without bounded norm
of stochastic gradients in Theorem 3 and Theorem 4. In Assumption 4, the heterogeneity is reflected
in the distance between local optimum W ∗

k and global optimum W∗ and the loss deviation before
and after aggregation, which is bounded by Γ1 and Γ2 respectively.

Assumption 1 (L-smooth and bounded variance of stochastic gradients). F1, · · · , FN are L-smooth:

∀u,∀v, 1 ≤ k ≤ N,Fk(u) ≤ Fk(v) + (u− v)T∇Fk(v) +
L

2
∥u− v∥22,

and their variance of stochastic gradients is bounded:

∀t ≥ 0, 1 ≤ k ≤ N,
1

2
≤ τ ≤ E,E∥∇Fk(W

tE+τ
k , ξtE+τ

k )−∇Fk(W
tE+τ
k )∥2 ≤ σ2

k.ξ = {x, y}
(7)

Assumption 2 (µ-strongly convex). F1, · · · , FN are µ-strongly convex:

∀u,∀v, 1 ≤ k ≤ N,Fk(u) ≥ Fk(v) + (u− v)T∇Fk(v) +
µ

2
∥u− v∥22 (8)

Assumption 3 (Bounded norm of stochastic gradients). The expected squared norm of stochastic
gradients is bounded:

∀t ≥ 0, 1 ≤ k ≤ N,
1

2
≤ τ ≤ E,E

∥∥∇Fk(W
tE+τ
k , btE+τ

k )
∥∥2 ≤ G2.

Assumption 4 (Bounded heterogeneity). The deviation between local and global optimum and the
deviation between local and global loss before and after aggregation are both bounded:

∀t ≥ 0, 1 ≤ k ≤ N, ∥W∗
k −W∗∥ ≤ Γ1 & ∥∇F tE

k −∇F
tE+ 1

2

k ∥2 ≤ Γ2.

Assumption 5 (Correct bounded norm of stochastic gradients [24, 32]). Let Assumptions 1 and 2
hold. Then the expected squared norm of the stochastic gradient is bounded by:

E||∇Fk(W
tE+τ
k , ξtE+τ

k )||2 ≤ 4Lκ
[
Fk(W

tE+τ
k )− Fk(W

∗
k)
]
+Gk,

where κ =
L

µ
and Gk = 2E||∇Fk(W

∗
k, ξ

tE+τ
k )||2

Lemma 3 (Results of one step SGD [33]). Let Assumption 1 hold. From the beginning of communi-
cation round t+1 to the last local update step, the loss function of an arbitrary client can be bounded
as:

E[F (t+1)E
k ] ≤ F tE+ 1

2ϕk

k − (η − Lη2

2
)

E−1∑
e= 1

2ϕk

∥∇F tE+e
k ∥22 +

LEη2

2
σ2.

17



Lemma 4 (Results of one step SGD [8, 20]). Assume Assumption 1 holds. If ηt ≤ 1
4L , we have

E∥W t+1 −W ⋆∥2 ≤(1− ηtµ)E∥W t −W ⋆∥2 + 6Lη2tΓ

+ η2τE∥gτ − gτ∥2 + 2E
N∑

k=1

pk∥W t −W tE
k ∥2,

where Γ = F ∗ −
∑N

k=1 pkF
⋆
k ≥ 0

Lemma 5 (Math tool from Stich [30]). Assume there are two non-negative sequences {rτ} , {sτ}
that satisfy the relation

rτ+1 ≤ (1− αγτ ) rτ − bγτsτ + cγ2
τ

for all τ ≥ 0 and for parameters b > 0, a > 0, c > 0 and non-negative step sizes {γτ} with γτ ≤ 1
d

for a parameter d ≥ a, d > 0. Then, there exists weights ωτ ≥ 0,WT :=
∑T

τ=0 ωτ , such that:

b

WT

T∑
τ=0

sτωτ + arT+1 ≤ 32dr0 exp

[
−aT

2d

]
+

36c

aT

Lemma 6 (Bounding the variance [8, 20]). Assume Assumption 1 holds. It follows that

E
[
∥gτ − gτ∥

2
]
≤

N∑
k=1

p2kσ
2
k.

Lemma 7. (Bounding the divergence of {W tE
k } [20].). Assume Assumption 3, that ηt is non-

increasing and ηt ≤ 2ηt+E for all t ≥ 0. It follows that:

E

[
N∑

k=1

pk∥Wt −WtE
k ∥2

]
≤ 4η2t (E − 1)2G2 +

N∑
k=1

pk||ΦkW
L −WL||

Proof. Different from the Lemma in [31], we consider the ETF structure in W . Therefore, for any
t > 0 and k = 1, 2, · · · , N , we use the fact that ηt is non-increasing and ηtE ≤ 2ηt, then

E
n∑

k=1

pk∥Wt −WtE
k ∥2 =E

N∑
k=1

pk(∥Wt −WtE
k ∥2 + ||ΦkW

L −WL||2) (9)

≤
SGD

N∑
k=1

pk

(
E

E∑
τ=2

(E − 1)∥ητ∇Fk(W
tτ
k , ξtτk )∥2 + ||ΦkW

L −WL||2
)

(10)

≤
Assumption 3

N∑
k=1

pk
(
η2tE(E − 1)2G2 + ||ΦkW

L −WL||2
)

(11)

≤
ηtE≤2ηt

4η2t (E − 1)2G2 +

N∑
k=1

pk||ΦkW
L −WL||. (12)

B.2 Proof of Theorem 1

Proof. Similar to [20], from Lemma 4, Lemma 7 and Lemma 6, let γ = max{8κ,E} and ηtE ≤ 2ηt,
it follows that

E[F (Wg)]− F (W∗) ≤ κ

γ + T − 1

(
2B

µ
+

µγ

2
E||W1 −W∗||2

)
,

which uses the same proof technique in [20]. And we apply the cross-entropy loss for F , then
F (W) = − log[(WL)Thi

c] for class c on sample i. Then we have

E[F (Wg)]− F (W∗) = E
[
log

(WL,∗)Thi,∗
c

(WL
g )

Thi
c

]
.

So Theorem 1 is proved.

18



B.3 Proof of Theorem 2

Proof. We start our proof from one step of SGD defined in Lemma 3:

E[F (t+1)E
k ] ≤ F

tE+ 1
2ϕk

k − (η − Lη2

2
)

E−1∑
e= 1

2ϕk

∥∇F tE+e
k ∥22 +

LEη2

2
σ2.

We can take apart the F
tE+ 1

2Φk

k and have the fact that:

∥F tE+ 1
2Φk

k ∥ =
∥∥∥F tE

k + F
tE+ 1

2Φk

k − F tE
k

∥∥∥
⩽
∥∥F tE

k

∥∥+ ∥∥∥F tE+ 1
2Φk

k − F tE
k

∥∥∥
⩽ ∥F tE

k ∥+ ∥F tE+ 1
2Φk

k − F
tE+ 1

2

k + F
tE+ 1

2

k − F tE
k ∥

⩽
∥∥F tE

k

∥∥+ ∥∥∥F tE+ 1
2Φk

k − F
tE+ 1

2

k

∥∥∥+ ∥F tE+ 1
2

k − F tE
k ∥

⩽
∥∥F tE

k ∥+ L
∥∥WtE+ 1

2Φk

k −W
tE+ 1

2

k ∥+ Γ1

=
∥∥F tE

k

∥∥+ L
∥∥ΦkW

L −WL
∥∥+ Γ1

Take it back to the original equation, therefore we have the:

E[F (t+1)E
k ] ≤

∥∥F tE
k

∥∥− (η − Lη2

2
)

E−1∑
e= 1

2ϕk

∥∇F tE+e
k ∥22 +

LEη2

2
σ2 + L

∥∥ΦkW
L −WL

∥∥+ Γ,

By applying Assumption 3 that:E ∥∇Fk (u, b
τ
k)∥

2 ≤ G2, results will be:

E[F (t+1)E
k ] ⩽ F tE

k − (η − L

2
η2)EG2 +

LEη2

2
σ2 + L

∥∥ΦkW
L −WL

∥∥+ Γ.

Here we complete our proof.

B.4 Contradictory of the Assumptions and Correction

B.4.1 Contradictory on Assumption 3.

We will prove that if Assumptions 1 and 2 hold, the stochastic gradients cannot be uniformly bounded.

Proof. If Assumptions 1 and 2 hold, which means Fk is both L-smooth and µ-strong convex, we
have:

2µ[Fk(W)− Fk(W
∗)] ≤ ||∇Fk(W)||2 (13)

The proof of (13) will be given below. And under the false stochastic gradients uniformly bounded
assumption 3, we have E[||∇Fk(W

tE+τ
k , ξtE+τ

k )||2] ≤ G2. So we get

2µ[Fk(W)− Fk(W
∗)] ≤ ||∇Fk(W)||2

≤ ||E[∇Fk(W
tE+τ
k , ξtE+τ

k )]||2

≤ E[||∇Fk(W
tE+τ
k , ξtE+τ

k )||2]
≤ G2

(14)

Therefore, we have the result that Fk(W) − Fk(W
∗) ≤ G2

2µ . Using the strong convex in (8) with
W = W∗ that ∇Fk(W

∗) = 0, we will have:

Fk(v)− Fk(W
∗) ≥ (v −W∗)T∇Fk(W

∗) +
µ

2
||v −W∗||2 =

µ

2
||v −W∗||2 (15)

By combining (15) and (14), it follows that
G2

2µ
≥ Fk(W)− Fk(W

∗) ≥ µ

2
||W −W∗||2,

||W −W∗||2 ≤ G2

µ2
. (16)

where (16) is clearly wrong for sufficiently large ||W −W∗||2.

19



B.4.2 Proof of corrected Assumption 5.

Proof. Note that:

||a||2 =||a− b+ b||2 ≤ 2||a− b||2 + 2||b||2 (17)

=⇒ 1

2
||a||2 − ||b||2 ≤ ||a− b||2 (18)

If Assumptions 1 and 2 hold, combined with (18) we have:

1

2
E[||∇Fk(W

tE+τ
k , ξtE+τ

k )||2]−E[||∇Fk(W
∗
k, ξ

tE+τ
k )||2]

= E
[
1

2
||∇Fk(W

tE+τ
k , ξtE+τ

k )||2 − ||∇Fk(W
∗
k, ξ

tE+τ
k )||2

]
≤ E

[
||∇Fk(W

tE+τ
k , ξtE+τ

k )−∇Fk(W
∗
k, ξ

tE+τ
k )||2

]
≤

Eq.(7)
L2||WtE+τ

k −W∗
k||2

≤
Eq.(8)

2L2

µ
[Fk(W

tE+τ
k , ξtE+τ

k )− Fk(W
∗
k, ξ

tE+τ
k )]

= 2Lκ[Fk(W
tE+τ
k , ξtE+τ

k )− Fk(W
∗
k, ξ

tE+τ
k )]

So we get: E[||∇Fk(W
tE+τ
k , ξtE+τ

k )||2] ≤ 4Lκ[Fk(W
tE+τ
k )− Fk(W

∗
k)] +Gk.

B.4.3 Correction.

In this part, we provide convergence results without the bounded norm of stochastic gradient defined
in Assumption 3. In Theorem 3 and Theorem 4, we show the corrected results of global and local
convergence, respectively.

Theorem 3 (Global Convergence). If F1, ..., FN are all L-smooth, µ-strongly convex, and the
variance and norm of ∇F1, ...,∇FN are bounded by σ and G. Choose κ = L/µ and γ =

32
k(µ−k)L

2κ(E − 1)2 − 1, for all classes c and sample i, expected global representation by cross-
entropy loss will converge to:

E
[
log

(WL,∗)Thi,∗
c

(WL
g )

Thi
c

]
≤ κ

γ + T − 1

(
2B

µ
+

µγ

2
E||W1 −W∗||2

)
,

where in FedGELA, B =
∑N

k=1(p
2
kσ

2 + pk||ΦkW
L −WL||) + 6LΓ1 + 8(E − 1)2G2 and G =∑K

k=1 pkGk = 2
∑K

k=1 pkE[||∇Fk(W
∗
k, ξ

tE+τ
k )||2]. Since WL = WL,∗ and (WL,∗)Thi,∗

ci ≥
E[(WL)Thi

ci ], h
i
ci will converge to hi,∗

ci .

Similar to Theorem 1, the variable B in Theorem 3 represents the impact of algorithmic convergence
(p2kσ

2), non-iid data distribution (6LΓ1), and stochastic optimization (8(E − 1)2G2). The only
difference between FedAvg, FedGE, and our FedGELA lies in the value of B while others are kept
the same. FedGE and FedGELA have a smaller G compared to FedAvg because they employ a
fixed ETF classifier that is predefined as optimal. FedGELA introduces a minor additional overhead
(pk||ΦkW

L−WL||) on the global convergence of FedGE due to the incorporation of local adaptation
to ETFs. The cost might be negligible, as σ, G, and Γ1 are defined on the whole model weights while
pk∥ΦkW

L−WL∥ is defined on the classifier. To verify this, we conduct experiments in Figure 3(a),
and as can be seen, FedGE and FedGELA have similar quicker speeds and larger classification angles
than FedAvg.

Theorem 4 (Local Convergence). If F1, ..., FN are L-smooth and the heterogeneity is bounded by
Γ2, clients’ expected local loss satisfies:

FK(W
tE+ 1

2Φ

k )− F ∗
k (W

∗
k) ≤ L∥WtE+ 1

2

k −W∗∥+D,

where in FedGELA, D = Γ2 + ∥ΦkW
L −WL∥Ew, which means the local convergence is highly

related to global convergence and bounded by D.

20



In Theorem 4, only “D” is different on the convergence among FedAvg, FedGE, and FedGELA. The
local convergence is highly related to global convergence and bounded by D. Adapting the local
classifier will introduce additional cost of L

∥∥ΦkW
L −WL

∥∥, which might limit the speed of local
convergence. However, FedGELA might reach better local optimal by adapting the feature structure.
As introduced and verified in Figure 3 (c) in the main pape, the adapted structure expands the decision
boundaries of existing major classes and better utilizes the feature space wasted by missing classes.

Proof. We can prove the theorem by inserting W∗
k and taking apart the local loss function:

Fk(W
tE+ 1

2ϕ

k )− F ∗
k (W

∗
k)

⩽ ∥Fk(W
tE+ 1

2Φ

k )− Fk(W
∗)∥+ ∥Fk(W

∗)− F ∗
k (W

∗
k)∥

≤ L∥WtE+ 1
2Φ

k −W∗∥+ Γ2

= L∥WtE+ 1
2

k −W∗∥+ Γ2 + ∥ΦkW
L −WL∥

Here we complete the proof. The last and the second last inequalities are derived from L-smooth and
bounded heterogeneity defined in Assumption 1 and Assumption 4 respectively.

B.5 Implementation of the Justification Experiments.

To verify the contradiction of the local objective and global objective, we track the angle of classifier
vectors between locally existing classes and locally missing classes in an individual client. We denote
"existing angle" as the angle of classifier vectors belonging to classes that exist in a local client
while "missing angle" is the angle of classifier vectors belonging to non-existing classes. In Sec. 3.2
and shown in Figure 2, the tracking experiment is conducted on CIFAR10 with 10 clients under
Dir (β = 0.1). To verify the effectiveness and convergence of FedGELA, we track the angle between
class means of locally existing classes and all classes in local and global, respectively. In Sec. 4
and illustrated in Figure 3, the tracking experiment is conducted on CIFAR10 with 50 clients under
Dir (β = 0.2). In the experiment, we also provide more results under different situations illustrated
in Figure 5.

C Implementation of the Experiment

C.1 Model

Resnet18 backbone [8, 17, 25, 33, 42, 47, 49] is commonly used in many federated experiments
on CIFAR10 and CIFAR100 datasets, here we also use it as the backbone for SVHN, CIFAR10
and CIFAR100. Since there are many algorithms that are feature-based like MOON and FedProto,
therefore we use one layer of FC as the projection layer (the hidden size is 84 for SVHN and CIFAR10
and 512 for CIFAR100) followed by classification head. For FedGELA and FedGE, the model is a
backbone, projection layer with a simplex ETF or adapted ETF. For Fed-ISIC2019, we follow the
setting of Flambly and use pre-trained Efficientnet b0 with the same projection layer (the hidden size
is 84) as the model.

C.2 Partition Strategy

Dirichlet distribution (Dir (β)) is practical and commonly used in FL settings [3, 8, 17, 21, 25, 33, 47].
As in many recent works, we deploy Dir (β = 10000) to simulate the almost IID situations and
Dir (β = 0.5, 0.2, 0.1) to simulate the different levels of Non-IID situations. As shown in Figure 7,
we provide the data distribution heatmap among clients of SVHN, CIFAR10, and CIFAR100 under
Dirichlet distribution with different β. It can be seen that Dirichlet distribution can also generate
practical PCDD data distribution. We also provide the data distribution heatmap of Fed-ISIC2019
shown in Figure C.2. In Fed-ISIC2019, there exists a true PCDD situation that needs to be solved. To
verify full participating (10,10) and straggler situations when client numbers are increasing, we split
SVHN, CIFAR10, and CIFAR100 into 10 and 50 clients, and in each round, 10 clients are randomly
selected into federated training. In FedISIC2019, there are 6 clients with 8 classes of samples and we

21



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Client ID

0
1

2
3

4
5

6
7

8
9

La
be

l I
D

100

200

300

400

500

(a) CIFAR10 (β = 10000).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Client ID

0
1

2
3

4
5

6
7

8
9

La
be

l I
D

100

200

300

400

500

(b) CIFAR10 (β = 0.5).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Client ID

0
1

2
3

4
5

6
7

8
9

La
be

l I
D

100

200

300

400

500

(c) CIFAR10 (β = 0.2).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Client ID

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

La
be

l I
D

10

20

30

40

50

60

70

80

(d) CIFAR100 (β = 10000).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Client ID

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

La
be

l I
D

10

20

30

40

50

60

70

80

(e) CIFAR100 (β = 0.5).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Client ID

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

La
be

l I
D

10

20

30

40

50

60

70

80

(f) CIFAR100 (β = 0.2).

Figure 7: Heatmap of data distribution under Dirichlet distribution with different β. The empty color
denotes there is no sample of a category in a client, indicating the PCDD situation.

Table 8: Mean and std of averaged personal and generic performance on all settings on the four
datasets of FedAvg, best baselines, and our FedGELA. we run three different seeds and calculate the
mean and std for all methods.

Method SVHN CIFAR10 CIFAR100 Fed-ISIC2019

# Metric PA GA PA GA PA GA PA GA

FedAvg 94.09±0.15 87.39±0.20 77.51±0.29 62.04±0.26 62.78±0.43 58.54±0.39 77.27±0.19 73.59±0.17

Best Baseline 95.18±0.19 88.85±0.21 80.61±0.33 66.07±0.24 64.28±0.46 60.31±0.32 78.91±0.13 74.98±0.21

FedGELA (ours) 96.12±0.13 90.61±0.19 82.28±0.16 67.34±0.15 70.28±0.36 62.43±0.28 79.29±0.19 75.85±0.16

split the 6 clients into 20 clients and in each round randomly select 10 clients to join the federated
training.

C.3 Training and Algorithm-Specific Params

0 1 2 3 4 5 6 7
Client ID

0
1

2
3

4
5

La
be

l I
D

0

100

200

300

400

500

Figure 8: Data distribution of ISIC2019
dataset. The empty color denotes there
is no sample of a category in a client,
indicating the PCDD situation.

Since the aim of our work is not to acquire the best per-
formance on the four datasets, we use stable and almost
the best training parameters in FedAvg and applied on all
other methods. We verify and use SGD as the optimizer
with learning rate lr=0.01, weight decay 1e-4, and mo-
mentum 0.9. The batch size is set to 100 and the local
epoch is 10. We have verified that such learning rates
and local epochs are much more stable and almost the
best. Note that, only training params are equal with Fe-
dAvg, but method-specific parameters like proximal terms
in FedProx and contrastive loss in MOON are carefully
tuned.

C.4 Mean and STD

In all our experiments, we run three different seeds and calculate the mean and std for all methods. In
Table 3 and Figure 4, we report the both mean and std of results while for other experiments, due to

22



Table 9: Communication efficiency of FedGELA compared with FedAvg and a range of state-of-
the-art methods on CIFAR10 under different settings. Communication efficiency is defined as the
communication rounds that need to reach the best global accuracy of FedAvg within curtain rounds.
We use ’-’ to denote the situation that the algorithm can not reach the best accuracy of FedAvg during
limited communication rounds.

Method IID, Full β = 0.5, Full β = 0.1, Full IID, Partial β = 0.5, Partial β = 0.2, Partial

(CIFAR10) Commu. Speedup Commu. Speedup Commu. Speedup Commu. Speedup Commu. Speedup Commu. Speedup

FedAvg 100 1× 100 1× 100 1× 200 1× 200 1× 200 1×
FedProx 42 2.38× 86 1.16× 83 1.20× 105 1.90× 139 1.44× 152 1.32×
MOON 42 2.38× 53 1.89× 79 1.27× 98 2.04× 136 1.47× 145 1.38×
FedRS 39 2.56× 65 1.54× 84 1.19× 103 1.94× 136 1.47× 126 1.59×
FedLC 47 2.13× 45 2.22× 82 1.22× 113 1.77× 118 1.69× 121 1.65×
FedRep − − − − − − − − − − − −

FedProto − − − − − − − − − − − −
FedBABU 63 1.59× 60 1.67× − − − − − − − −

FedRod 55 1.82× 51 1.96× 77 1.30× 80 2.50× 112 1.79× 142 1.41×
FedGELA 42 2.38× 52 1.92× 67 1.49× 80 2.50× 114 1.75× 119 1.68×

the limited space, we only report mean results. Therefore in this part, we additionally provide the
mean with std of averaged performance on all partitions of FedAvg, best baselines, and our FedGELA
in Table 8.

D More Information of FedGELA

D.1 Work Flow of FedGELA

d

Initializing Stage
Server initializes ETF and broadcast
Clients receive ETF and locally adjust by

Global Data

Personal Data

Generic Backbone

Personal Backbone Adapted ETF

Training Stage
Server receives, updates and distributes local backbones
Clients receive, train and submit backbone with adapted ETF

Server Client k
Backbone

Adapted ETF

Personal Data
...

Inference Stage
Server inferences with last round global backbone and ETF
Clients inferences with personal backbone and adapted ETF

ETF

Server Client k

Figure 9: Total framework of FedGELA

Except for the algorithm of our FedGELA
shown in Algorithm 1, we also provide the
workflow of FedGELA. As shown in Figure 9,
the FedGELA can be divided into three stages,
namely the initializing stage, the training stage,
and the inference stage. In the initializing stage,
the server randomly generates a simplex ETF as
the classifier and sends it to all clients. In the
meanwhile, clients adjust it based on the local
distribution as Eq (4). At the training stage, local
clients receive global backbones and train with
adapted ETF in parallel. After E epochs, all
clients submit personal backbones to the server.
In the server, personal backbones are received
and aggregated to a generic backbone, which is
distributed to all clients in the next round. At
the inference stage, on the client side, we obtain
a generic backbone with standard ETF to handle
the global data while on the client side, a per-
sonal backbone with adapted ETF to handle the
personal data.

D.2 Communication Efficiency

Communication cost is a much-watched concern in federated learning. Since our algorithm does not
introduce additional communication overhead, we compare the number of communication rounds
required for all algorithms to reach FedAvg’s best accuracy. Since PA is hard to track and highly
related to GA as shown in Theorem 3, here we only compare the communication rounds that are
required to reach the best GA of FedAvg. As shown in Table 9, we provide communication rounds
and speedup to FedAvg compared with a range of the state of the art methods. It can see that P-FL

23



4x 3x 2x 1x 0 1x 2x 3x 4x

FedAvg
FedProx

MOON
FedRS
FedLC

FedRep
FedProto
FedBABU

FedRod
FedGELA Local Computation

Local Storage

Figure 10: Local computation and storage of FedGELA compared with FedAvg and a range of the
state-of-the-art methods.

Table 10: Averaged performance of FedGELA compared with FedAvg and a range of state-of-the-art
methods on SVHN under all settings with different backbones, namely Simple-CNN, ResNet18, and
ResNet50.

Method Simple-CNN Resnet18 Resnet50
#Metric PA GA PA GA PA GA

FedAvg 93.22 86.99 94.09 87.39 94.28 88.21

Best Baseline 94.51 88.36 95.18 88.85 95.52 89.05

FedGELA (ours) 96.07 90.03 96.12 90.61 96.88 91.23

algorithms are hard to reach the global accuracy of FedAvg since they limit the generic ability of the
local model while our FedGELA achieves almost the best communication efficiency in all settings.

D.3 Local Burden: Storing and Computation

In real-world federated applications, local clients might be mobile phones or other small devices.
Thus, the burden of local training can be the bottleneck for clients. In Figure 10, we compute the
number of parameters that need to be saved in local clients and the average local computation time in
each round. As can be seen, MOON requires triple storing memory than FedAvg, while FedGELA
keeps the same level as FedAvg. In terms of local computation time, FedGELA introduces negligible
computing time to local training, indicating the efficiency of our method on the local burden concerns.

D.4 Other Backbones

For SVHN, CIFAR10, and CIFAR100, we conduct all experiments based on ResNet18 (modified by
32x32 input) [8, 17, 33]. Here we adopt more backbones including Simple-CNN and ResNet50 [8, 17,
18] to verify the robustness of our method on different model structures. The Simple-CNN backbone
has two 5x5 convolution layers followed by 2x2 max pooling (the first with 6 channels and the second
with 16 channels) and two fully connected layers with ReLU activation (the first with 120 units and
the second with 84 units. As shown in Table 10, we provide results of FedAvg, best baselines, and
our FedGELA on SVHN. As can be seen, with the model capacity increasing from Simple-CNN to
ResNet50, the performance is slightly higher. Besides, no matter whether adopting any of the three
backbones, our method FedGELA outperforms FedAvg and the best baselines.

24



Table 11: Performance of FedGELA compared with FedAvg and a range of state-of-the-art methods
on two additional real-world challenges, namely FEMNIST and SHAKESPEARE.

Dataset FedAvg Best Baseline FedGELA (ours)
#Metric PA GA PA GA PA GA

FEMNIST 67.02 59.54 69.54 61.22 71.84 62.08

SHAKESPEARE 49.56 44.53 51.66 47.29 53.63 48.39

D.5 Performance on more real-world datasets

Except for Fed-ISIC2019 used in the main paper, we here additionally test FedGELA on two real-
world federated datasets FEMNIST [5] and SHAKESPEARE [28] (two datasets also satisfy the
PCDD setting) compared with all related approaches in the paper. FEMNIST includes complex
62-class handwriting images from 3500 clients and SHAKESPEARE is a next-word prediction task
with 1129 clients. Most of the clients only have a subset of class samples. With help of LEAF [2], we
choose 50 clients of each dataset into federation and in each round we randomly select 10 clients
into training. The total round is set to 20 and the model structure is a simple CNN for FEMNIST
and a 2-layer LSTM for SHAKESPEARE, respectively. It can be seen in the Table 11, our method
achieves best results of both personal and generic performance on the two real-world challenges.

D.6 Limitations

The design of our method is focused on constraining the classifier in the global server and in the
local client by fixing the global classifier as a simplex ETF and locally adapting it to suit personal
distribution, which means our method is proposed for federated classification tasks. But the spirit that
treating each class or instance equally in global tasks while adapting to personal tasks the local can be
applied to more than federated classification tasks. Fixing the classifier as a simple ETF might reduce
the norm of stochastic gradients G and benefit global convergence as introduced in Theorem 1 and
Theorem 3. However, the limitation is that adapting the local classifier from ETF (WL) to adapted
ETF (ΦkW

L) will introduce additional cost ∥ΦkW
L−WL∥ as illustrated in the Theorem 1, 2, 3, 4.

To verify the influence of the cost and the effectiveness of our method on utilizing waste spaces and
mitigating angle collapse of local classifier vectors, we conduct a range of experiments and record
performance on both personal and generic and the corresponding angles.

25


	Introduction
	Related Work
	Partially Class-Disjoint Data and Federated Learning algorithms
	Simplex Equiangular Tight Frame

	Method
	Preliminaries
	Contradiction and Motivation
	FedGELA

	Theoretical Analysis
	Notations
	Convergence analysis

	Experiments
	Experimental Setup
	Performance of FedGELA
	Further Analysis

	Conclusion
	Neural Collapse and simplex ETF
	Implementation of Theoretical Analysis
	Notations and Assumptions
	Proof of Theorem 1
	Proof of Theorem 2
	Contradictory of the Assumptions and Correction
	Contradictory on Assumption 3.
	Proof of corrected Assumption 5.
	Correction.

	Implementation of the Justification Experiments.

	Implementation of the Experiment
	Model
	Partition Strategy
	Training and Algorithm-Specific Params
	Mean and STD

	More Information of FedGELA
	Work Flow of FedGELA
	Communication Efficiency
	Local Burden: Storing and Computation
	Other Backbones
	Performance on more real-world datasets
	Limitations


