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Abstract

Partially class-disjoint data (PCDD), a common yet under-explored data formation
where each client contributes a part of classes (instead of all classes) of samples,
severely challenges the performance of federated algorithms. Without full classes,
the local objective will contradict the global objective, yielding the angle collapse
problem for locally missing classes and the space waste problem for locally existing
classes. As far as we know, none of the existing methods can intrinsically mitigate
PCDD challenges to achieve holistic improvement in the bilateral views (both
global view and local view) of federated learning. To address this dilemma, we are
inspired by the strong generalization of simplex Equiangular Tight Frame (ETF)
on the imbalanced data, and propose a novel approach called FedGELA where the
classifier is globally fixed as a simplex ETF while locally adapted to the personal
distributions. Globally, FedGELA provides fair and equal discrimination for all
classes and avoids inaccurate updates of the classifier, while locally it utilizes the
space of locally missing classes for locally existing classes. We conduct extensive
experiments on a range of datasets to demonstrate that our FedGELA achieves
promising performance (averaged improvement of 3.9% to FedAvg and 1.5% to
best baselines) and provide both local and global convergence guarantees. Source
code is available at: https://github.com/MediaBrain-SJTU/FedGELA.

1 Introduction

Partially class-disjoint data (PCDD) [13, 18, 21] refers to an emerging situation in federated learn-
ing [14, 22, 43, 46, 50] where each client only possesses information on a subset of categories, but all
clients in the federation provide the information on the whole categories. For instance, in landmark
detection [39] for thousands of categories with data locally preserved, most contributors only have a
subset of categories of landmark photos where they live or traveled before; and in the diagnosis of
Thyroid diseases, due to regional diversity different hospitals may have shared and distinct Thyroid
diseases [10]. It is usually difficult for each party to acquire the full classes of samples, as the
participants may be lack of domain expertise or limited by demographic discrepancy. Therefore, how
to efficiently handle the partially class-disjoint data is a critical (yet under-explored) problem in
real-world federated learning applications for the pursuit of personal and generic interests.

Prevalent studies mainly focus on the general heterogeneity without specially considering the PCDD
challenges: generic federated leaning (G-FL) algorithms adopt a uniform treatment of all classes
and mitigate personal differences by imposing constraints on local training [17, 19], modifying
logits [21, 47] adjusting the weights of submitted gradients [37] or generating synthetic data [54]; in
contrast, personalized federated learning (P-FL) algorithms place relatively less emphasis on locally
missing classes and selectively share either partial network parameters [1, 6] or class prototypes [33]
to minimize the impact of personal characteristics, thereby separating the two topics. Those methods
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Figure 1: Illustration of feature spaces and classifier vectors trained on the global dataset, two partially
class-disjoint datasets (A and B), and restricted by federated algorithms. (a) is trained on the globally
balanced dataset with full classes. (b) and (c) are trained on datasets A and B, respectively, which
suffer from different patterns of classifier angle collapse problems. (d) is averaged in the server or
constrained by some federated algorithms.

might directly or indirectly help mitigate the data shifts caused by PCDD, however, as far as we
know, none of the existing works can mitigate the PCDD challenges to achieve holistic improvement
in the bilateral views (global and local views) of federated learning. Please refer to Table 1 for a
comprehensive comparison among a range of FL methods from different aspects.

Without full classes, the local objective will contradict the global objective, yielding the angle collapse
for locally missing classes and the waste of space for locally existing classes. Ideally, as shown in
Figure 1(a), global features and their corresponding classifier vectors shall maintain a proper structure
to pursue the best separation of all classes. However, the angles of locally missing classes’ classifier
vectors will collapse, when trained on each client with partially class-disjoint data, as depicted in
Figure 1(b), 1(c). FedRS [21] notices the degenerated updates of the classifier and pursues the same
symmetrical structure in the local by restricting logits of missing classes. Other traditional G-FL
algorithms indirectly restrict the classifier by constraining logits, features, or model weights, which
may also make effects on PCDD. However, they cause another problem: space waste for personal
tasks. As shown in Figure 1(d), restricting local structure will waste feature space and limit the
training of the local model on existing classes. P-FL algorithms utilize the wasted space by selectively
sharing part of models but exacerbate the angle collapse of classifier vectors. Recent FedRod [3]
attempts to bridge the gap between P-FL and G-FL by introducing a two-head framework with logit
adjustment in the G-head, but still cannot address the angle collapse caused by PCDD.

To tackle the PCDD dilemma from both P-FL and G-FL perspectives, we are inspired by a promising
classifier structure, namely simplex equiangular tight frame (ETF) [9, 26, 41], which provides each
class the same classification angle and generalizes well on imbalanced data. Motivated by its merits,
we propose a novel approach, called FedGELA, in which the classifier is Globally fixed as a simplex
ETF while Locally Adapted to personal tasks. In the global view, FedGELA merges class features
and their corresponding classifier vectors, which converge to ETF. In the local view, it provides
existing major classes with larger feature spaces and encourages to utilize the spaces wasted by
locally missing classes. With such a bilateral curation, we can explicitly alleviate the impact caused
by PCDD. In a nutshell, our contributions can be summarized as the following three points:

• We study a practical yet under-explored data formation in real-world applications of federated
learning, termed as partially class-disjoint data (PCDD), and identify the angle collapse and space
waste challenges that cannot be efficiently solved by existing prevalent methods (Sec. 3.2).

• We propose a novel method called FedGELA that classifier is globally fixed as a symmetrical
structure ETF while locally adapted by personal distribution (Sec. 3.3), and theoretically show the
local and global convergence analysis for PCDD with the experimental verification (Sec. 4.2).

• We conduct a range of experiments on multiple benchmark datasets under the PCDD case and a
real-world dataset to demonstrate the bilateral advantages of FedGELA over the state-of-the-art
methods from multiple views like the larger scale of clients and straggler situations (Sec. 5.2). We
also provide further analysis like classification angles during training and ablation study. (Sec. 5.3).

2 Related Work

2.1 Partially Class-Disjoint Data and Federated Learning algorithms

Partially class-disjoint data is one common formation among clients that can significantly impede the
convergence, performance, and efficiency of algorithms in FL [18]. It belongs to the data heterogeneity
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Table 1: Key differences between SOTA methods and our FedGELA categorized by targets (P-FL
or G-FL), techniques (improve from the views of features, logits or model), and whether directly
mitigate angle collapse of classifier vectors or save locally wasted feature spaces caused by PCDD.

Target Research work Feature View Logit View Model View Mitigate Collapse Save Space

G-FL

FedProx - - ✓ ✓ -
MOON ✓ - - - -
FedRS - ✓ - ✓ -
FedGen ✓ - - ✓ -
FedLC - ✓ - - -

P-FL

FedRep ✓ - ✓ - ✓

FedProto ✓ - ✓ - ✓
FedBABU ✓ - ✓ - ✓

G&P-FL
FedRod - ✓ ✓ - ✓

FedGELA(ours) ✓ ✓ ✓ ✓ ✓

case, but does have a very unique characteristic different from the ordinary heterogeneity problem.
That is, if only each client only has a subset of classes, it does not share the optimal Bayes classifier
with the global model that considers all classes on the server side. Recently, FedRS [21] has
recognized the PCDD dilemma and directly mitigate the angle collapse issue by constraining the
logits of missing classes. FedProx [19] also can lessen the collapse by constraining local model
weights to stay close to the global model. Other G-FL algorithms try to address data heterogeneity
from a distinct perspective. MOON [17] and FedGen [54] utilizes contrastive learning and generative
learning to restrict local representations. And FedLC [47] introduces logit calibration to adjust the
logits of the local model to match those of the global model, which might indirectly alleviate the
angle collapse in the local. However, they all try to restrict local structure as global, resulting in
the waste space for personal tasks shown in Figure 1(d). P-FL algorithms try to utilize the wasted
space by encouraging the angle collapse of the local classifier. FedRep [6] only shares feature
extractors among clients and FedProto [33] only submits class prototypes to save communication
costs and align the feature spaces. In FedBABU [25], the classifier is randomly initialized and fixed
during federated training while fine-tuned for personalization during the evaluation. However, they all
sacrifice the generic performance on all classes. FedRod [3] attempts to bridge this gap by introducing
a framework with two heads and employing logit adjustment in the global head to estimate generic
distribution but cannot address angle collapse. In Table 1, we categorize these methods by targets
(P-FL or G-FL), skews (feature, logit, or model weight), and whether they directly mitigate the angle
collapse of local classifier or saving personal spaces for personal spaces. It is evident that none of
these methods, except ours, can handle the PCDD problem in both P-FL and G-FL. Furthermore,
FedGELA is the only method that can directly achieve improvements from all views.

2.2 Simplex Equiangular Tight Frame

The simplex equiangular tight frame (ETF) is a phenomenon observed in neural collapse [26],
which occurs in the terminal phase of a well-trained model on a balanced dataset. It is shown that
the last-layer features of the model converge to within-class means, and all within-class means
and their corresponding classifier vectors converge to a symmetrical structure. To analyze this
phenomenon, some studies simplify deep neural networks as last-layer features and classifiers with
proper constraints (layer-peeled model) [9, 12, 40, 53] and prove that ETF emerges under the cross-
entropy loss. However, when the dataset is imbalanced, the symmetrical structure of ETF will
collapse [9]. Some studies try to obtain the symmetrical feature and the classifier structure on the
imbalanced datasets by fixing the classifier as ETF [41, 53]. Inspired by this, we propose a novel
method called FedGELA that bilaterally curates the classifier to leverage ETF or its variants. See
Appendix A for more details about ETF.

3 Method

3.1 Preliminaries

ETF under LPM. A typical L-layer DNN parameterized by W can be divided into the feature
backbone parameterized by W−L and the classifier parameterized by WL. From the view of layer-
peeled model (LPM) [9, 12, 40, 53], training W with constraints on the weights can be considered
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as training the C-class classifier WL = {WL
1 , ...,W

L
C} and features H = {h1, ..., hn} of all n

samples output by last layer of the backbone with constraints EW and EH on them respectively. On
the balanced data, any solutions to this model form a simplex equiangular tight frame (ETF) that all
last layer features hi,∗

c and corresponding classifier WL,∗
c of all classes converge as:

hi,∗
c√
EH

=
WL,∗

c√
EW

= m∗
c , (1)

where m∗
c forms the ETF defined as M =

√
C

C−1U
(
IC − 1

C1C1
T
C

)
. Here M = [m∗

1, · · · ,m∗
C ] ∈

Rd×C ,U ∈ Rd×C allows a rotation and satisfies UTU = IC and 1C is an all-ones vector. ETF is
an optimal classifier and feature structure in the balanced case of LPM.

FedAvg. On the view of LPM, given N clients and each with nk samples, the vanilla federated
learning via FedAvg consists of four steps [22]: 1) In round t, the server broadcasts the global model
Wt = {Ht,WL,t} to clients that participate in the training (Note that here H is actually the global
backbone W−L,t instead of real features); 2) Each local client receives the model and trains it on
the personal dataset. After E epochs, we acquire a new local model Wt

k; 3) The updated models
are collected to the server as {Wt

1,W
t
2, . . . ,W

t
N}; 4) The server averages local models to acquire

a new global model as Wt+1 =
∑N

k=1 pkW
t
k, where pk = nk/

∑N
k′=1 nk′ . When the pre-defined

maximal round T reaches, we will have the final optimized global model WT .

3.2 Contradiction and Motivation

Contradiction. In G-FL, the ideal global objective under LPM of federated learning is described as:

min
H,WL

N∑
k=1

pk
1

nk

∑
c∈Ck

nk,c∑
i=1

LCE

(
hi
k,c,W

L
)
.

Assuming global distribution is balanced among classes, no matter whether local datasets have full
or partial classes, the global objective with constraints on weights can be simplified as:

min
H,WL

1

n

C∑
c=1

nc∑
i=1

LCE

(
hi
c,W

L
)
, s.t.

∥∥∥WL
c

∥∥∥2

⩽ EW ,
∥∥∥hi

c

∥∥∥2

⩽ EH . (2)

Similarly, the local objective of k-th client with a set of classes Ck can be described as:

min
Hk,W

L
k

1

nk

∑
c∈Ck

nk,c∑
i=1

LCE

(
hi
k,c,W

L
k

)
, s.t.

∥∥∥WL
k,c

∥∥∥2

⩽ EW ,
∥∥∥hi

k,c

∥∥∥2

⩽ EH . (3)
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Figure 2: Averaged angles of classi-
fier vectors between locally existing
classes (existing angle) and between
locally missing classes (missing an-
gle) on CIFAR10 (Dir (β = 0.1)) in
local client and aggregated in global
server (local epoch is 10). In global,
“existing” angle and “missing” angle
converge to similar values while in
the local, “existing” angle expands
but “missing” angle shrinks.

When PCDD exists (Ck ̸= C), we can see the contradiction
between local and global objectives, which respectively forms
two structures, shown in Figure 3(a) and Figure 3(b). After
aggregated in server or constrained by some FL methods, the
structure in the local is restricted to meet the global structure,
causing space waste for personal tasks shown in Figure 1(d).

Motivation. To verify the contradiction and related feature
and classifier structures, we split CIFAR10 into 10 clients and
perform FedAvg on it with Dirichlet Distribution (Dir (β =
0.1)). As illustrated in Figure 2, the angle difference between
existing classes and between missing classes becomes smaller
and converges to a similar value in the global model. However,
in the local training, angles between existing classes become
larger while angles between missing classes become smaller,
which indicates the contradiction. With this observation, to
bridge the gap between Eq (3) and Eq (2) under PCDD, we
need to construct the symmetrical and uniform classifier angles
for all classes while encouraging local clients to expand exist-
ing classes’ feature space. Therefore, we propose our method
FedGELA that classifier can be Globally fixed as ETF but
Locally Adapted based on the local distribution matrix to
utilize the wasted space for the existing classes.
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3.3 FedGELA

Global ETF. Given the global aim of achieving an unbiased classifier that treats all classes equally
and provides them with the same discrimination and classifier angles, we curate the global model’s
classifier as a randomly initialized simplex ETF with scaling

√
Ew at the start of federated training:

WL =
√
EwM.

Then the ETF is distributed to all clients to replace their local classifiers. In Theorem 1, we prove
in federated training under some basic assumptions, by fixing the classifier as a randomly simplex
ETF with scaling

√
EW and constraints EH on the last layer features, features output by last layer of

backbone and their within class means will converge to the ETF similar to Eq (1), which meets the
requirement of global tasks.

Local Adaptation. However, when PCDD exists in the local clients, naively combining ETF with
FL does not meet the requirement of P-FL as analyzed in Eq (2) and Eq (3). To utilize the wasted
space for locally missing classes, in the training stage, we curate the length of ETF received from the
server based on the local distribution as below:

WL
k = ΦkW

L = Φk

√
EwM, (4)

where Φk is the distribution matrix of k-th client. Regarding the selection of Φk, it should satisfy
a basic rule for federated learning, wherein the aggregation of local classifiers aligns with the
global classifier, thereby ensuring the validity of theoretical analyses from both global and local
perspectives. Moreover, it is highly preferable for the selection process to avoid introducing any
additional privacy leakage risks. To meet the requirement that averaged classifier should be standard
ETF: WL =

∑N
k=1 pkW

L
k in the globally balanced case, its row vectors are all one’s vector multiple

statistical values of personal distribution:(ΦT
k )c =

nk,c

nkγ
1 (γ is a constant, and nk,c and nk are the

c-th class sample number and total sample number of the k-th client) respectively. We set γ to 1
|C| .

Finally, the local objective from Eq. (3) is adapted as:

min
Hk

1

nk

C∑
c=1

nk,c∑
i=1

− log
exp(Φk,cW

L
c
T
hi
k,c)∑

c′∈Ck
exp(Φk,c′WL

c′
T
hi
k,c)

,

s.t. ∥hi∥2 ⩽ EH , ∀1 ⩽ i ⩽ nk.

(5)

Algorithm 1 FedGELA
Input:(N,K, nk, ck,H

0,M, EW , EH , T, η, E)

Parallelly for all clients: WL
k ← Φk

√
EWM.

for t = 0, 1, . . . , T − 1 do
▷ on the server side
Ht ←

∑K
k=1 p

t
kH

t−1
k .

sample K clients from all N clients.
▷ on the client side

do in parallel for ∀k ∈ K clients
receive Ht from server, Ht

k ← Ht.
for τ = 0, 1, ..., E − 1 do

sample a mini-batch btE+τ
k in local data.

Ht
k ← Ht

k − η∇Fk(b
t
k,ΦkW

L
g ;Ht

k)

end for
submit Ht

k to the server.
end in parallel

end for
Output:(HT ,WL

g ) and (HT
k ,ΦkW

L
g ).

Total Framework. After introducing two
key parts of FedGELA (Global ETF and Local
Adaptation), we describe the total framework
of FedGELA. As illustrated and highlighted in
Algorithm 1 (refer to Appendix D for the work-
flow figure), at the initializing stage, the server
randomly generates an ETF as the global classi-
fier and sends it to all clients while local clients
adjust it based on the personal distribution ma-
trix as Eq (4). At the training stage, local clients
receive global backbones and train with adapted
ETF in parallel. After E epochs, all clients sub-
mit personal backbones to the server. In the
server, personal backbones are received and ag-
gregated to a generic backbone, which is broad-
cast to all clients participating in the next round.
At the inference stage, on the client side, we
obtain a generic backbone with standard ETF to
handle the world data while on the client side, a
personal backbone with adapted ETF to handle
the personal data.

4 Theoretical Analysis
In this part, we first primarily introduce some notations and basic assumptions in Sec. 4.1 and then
present the convergence guarantees of both local models and the global model under the PCDD with
the proper empirical justification and discussion in Sec. 4.2. (Please refer to Appendix B for entire
proofs and Appendix D for details on justification experiments.)
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Figure 3: Illustration of local and global convergence verification together with the effect of Φ. (a)
and (b) are the results of averaged angle between all class means and between locally existing class
means in FedAvg, FedGE, and FedGELA on CIFAR10 under 50 clients and Dir (β = 0.2). (c) is the
illustration of how local adaptation utilizes the wasted space of missing classes for existing classes.

4.1 Notations

We use t and T to denote a curtain round and pre-defined maximum round after aggregation in
federated training, tE to denote the state that just finishing local training before aggregation in round
t, and tE + τ to denote τ -th local iteration in round t and 0 ≤ τ ≤ E − 1. The convergence
follows some common assumptions in previous FL studies and helpful math results [15, 20, 29–
31, 33, 36, 38, 45, 51] including smoothness, convexity on loss function F1, F2, · · · , FN of all clients,
bounded norm and variance of stochastic gradients on their gradient functions ∇F1,∇F2, · · · ,∇FN

and heterogeneity Γ1 reflected as the distance between local optimum W∗
k and global optimum W∗.

Please refer to the concrete descriptions of those assumptions in Appendix B. Besides, in Appendix B,
we additionally provide a convergence guarantee without a bounded norm of stochastic gradients, as
some existing works [24, 32] point out the contradiction to the strongly convex.

4.2 Convergence analysis

Here we provide the global and local convergence guarantee of our FedGELA compared with FedAvg
and FedGE (FedAvg with only the Globally Fixed ETF) in Theorem 1 and Theorem 2. To better
explain the effectiveness of our FedGELA in local and global tasks, we record the averaged angle
between all class means in global and existing class means in local as shown in Figure 3(a) and
Figure 3(b). Please refer to Appendix B for details on the proof and justification of theorems.
Theorem 1 (Global Convergence). If F1, ..., FN are all L-smooth, µ-strongly convex, and the vari-
ance and norm of ∇F1, ...,∇FN are bounded by σ and G. Choose κ = L/µ and γ = max{8κ,E},
for all classes c and sample i, expected global representation by cross-entropy loss will converge to:

E
[
log

(WL,∗)Thi,∗
c

(WL
g )Thi

c

]
≤ κ

γ + T − 1

(
2B

µ
+

µγ

2
E||W1 −W∗||2

)
,

where in FedGELA, B =
∑N

k=1(p
2
kσ

2 + pk||ΦkW
L − WL||) + 6LΓ1 + 8(E − 1)2G2. Since

WL = WL,∗ and (WL,∗)Thi,∗
ci ≥ E[(WL)Thi

ci ], h
i
ci will converge to hi,∗

ci .

In Theorem 1, the variable B represents the impact of algorithmic convergence (p2kσ
2), non-iid

data distribution (6LΓ1), and stochastic optimization (8(E − 1)2G2). The only difference between
FedAvg, FedGE, and our FedGELA lies in the value of B while others are kept the same. FedGE and
FedGELA have a smaller G compared to FedAvg because they employ a fixed ETF classifier that is
predefined as optimal. FedGELA introduces a minor additional overhead (pk||ΦkW

L −WL||) on
the global convergence of FedGE due to the incorporation of local adaptation to ETFs. The cost might
be negligible, as σ, G, and Γ1 are defined on the whole model weights while pk∥ΦkW

L −WL∥ is
defined on the classifier. To verify this, we conduct experiments in Figure 3(a), and as can be seen,
FedGE and FedGELA have similar quicker speeds and larger classification angles than FedAvg.

Theorem 2 (Local Convergence). If F1, ..., FN are L-smooth, variance and norm of their gradients
are bounded by σ and G, and the heterogeneity is bounded by Γ1, clients’ expected local loss satisfies:

E[F (t+1)E
k ] ⩽ F tE

k +
LEη2

t

2
σ2 + Γ1 −A,

where in FedGELA, A = (ηt−L
2 η

2
t )EG2−L

∥∥ΦkW
L −WL

∥∥, which means if A− G4

LE(G2+σ2) ≤ 0,
there exist learning rate ηt making the expected local loss decreasing and converging.
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In Theorem 2, only “A” is different on the convergence among FedAvg, FedGE, and FedGELA.
Fixing the classifier as ETF and adapting the local classifier will introduce smaller G and additional
cost of L

∥∥ΦkW
L −WL

∥∥ respectively, which might limit the speed of local convergence. However,
FedGELA might reach better local optimal by adapting the feature structure. As illustrated in
Figure 3 (c), the adapted structure expands the decision boundaries of existing major classes and
better utilizes the feature space wasted by missing classes. To verify this, in Figure 3(b), we record
the averaged angles between the existing class means during the local training. It can be seen
that FedGELA converges to a much larger angle than both FedAvg and FedGE, which suits our
expectations. More angle results can be seen in Figure 5.

5 Experiments

5.1 Experimental Setup

Datasets. We adopt three popular benchmark datasets SVHN [23], CIFAR10/100 [16] in federated
learning. As for data splitting, we utilize Dirichlet Distribution (Dir (β), β = {10000, 0.5, 0.2,
0.1}) to simulate the situations of independently identical distribution and different levels of PCDD.
Besides, one standard real-world PCDD dataset, Fed-ISIC2019 [4, 7, 34, 35] is used, and we follow
the setting in the Flamby benchmark [34]. Please refer to Appendix C for more details.

Metrics. Denote PA as the personal accuracy, which is the mean of the accuracy computed on each
client test dataset, and GA as the generic accuracy on global test dataset (mixed clients’ test datasets).
Since there is no global model in P-FL methods, we calculate GA of them as the averaged accuracy
of all best local models on global test dataset, which is the same as FedRod [3]. Regarding PA, we
record the best results of personal models for P-FL methods while for G-FL methods we fine-tune
the best global model in 10 epochs and record the averaged accuracy on all client test datasets. For
FedRod and FedGELA, we can directly record the GA and PA (without fine-tuning) during training.

Implementation. We compare FedGELA with FedAvg, FedRod [3], multiple state-of-the-art
methods in G-FL (FedRS [21], MOON [17], FedProx [19], FedGen [54] and FedLC [47]) and in
P-FL (FedRep [6], FedProto [33] and FedBABU [25]). For SVHN, CIFAR10, and CIFAR100, we
adopt a commonly used ResNet18 [8, 17, 47, 48, 52] with one FC layer as the backbone, followed by
a layer of classifier. FedGELA replaces the classifier as a simple ETF. We use SGD with learning rate
0.01, weight decay 10−4, and momentum 0.9. The batch size is set as 100 and the local updates are
set as 10 epochs for all approaches. As for method-specific hyper-parameters like the proximal term
in FedProx, we tune it carefully. In our method, there are EW and EH need to set, we normalize
features with length 1 (EH = 1) and only tune the length scaling of classifier (EW ). All methods
are implemented by PyTorch [27] with NVIDIA GeForce RTX 3090. See detailed information in
Appendix C.

5.2 Performance of FedGELA

In this part, we compare FedGELA with FedAvg, FedRod, three SOTA methods of P-FL (FedRep,
FedProto, and FedBABU), four SOTA methods of G-FL (FedProx, MOON, FedRS, FedLC and
FedGen) on different aspects including the scale of clients, the level of PCDD, straggler situations,
and real-world applications. Similar to recent studies [8, 17, 44], we split SVHN, CIFAR10, and
CIFAR100 into 10 and 50 clients and each round select 10 clients to join the federated training,
denoted as full participation and partial participation (straggler situation), respectively. With the help
of Dirichlet distribution [11], we verify all methods on IID, Non-IID (β = 0.5), and extreme Non-IID
situations (β = 0.1 or β = 0.2). As the decreasing β, the level of PCDD increases and we show the
heat map of data distribution in Appendix C. We set β = 0.2 in partial participation to make sure
each client has at least one batch of samples. The training round for SVHN and CIFAR10 is 50 in full
participation and 100 in partial participation while for CIFAR100, it is set to 100 and 200. Besides,
we also utilize a real federated scenario Fed-ISIC2019 to verify the ability to real-world application.

Full participation and partial participation. As shown in Table 2, with the decreasing β or
increasing number of clients, the generic performance of FedAvg and all other methods greatly drops
while the personal performance of all methods greatly increases. This means under PCDD and the
straggler problem, the performance of generic performance is limited but the personal distribution
is easier to capture. As for P-FL methods, they fail in global tasks especially in severe PCDD
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Table 2: Personal and generic performance on SVHN, CIFAR10, and CIFAR100. We use Dir (β =
0.5) for medium heterogeneity and Dir (β = 0.1) or Dir (β = 0.2) for high-level heterogeneity. To
verify the straggler situation, we split all datasets into 10 or 50 clients for full participation or partial
participation, and in each round, 10 clients are selected in the federated training.

Dataset

Method Full Participation (10, 10) Partial Participation (50, 10)

#Partition IID β = 0.5 β = 0.1 IID β = 0.5 β = 0.2

#Metric PA GA PA GA PA GA PA GA PA GA PA GA

SVHN

FedAvg 93.01 92.61 93.95 91.24 98.10 75.24 91.44 91.29 92.70 89.29 95.31 84.70
FedProx 93.12 93.12 93.71 92.15 97.98 75.13 91.67 91.66 92.71 89.98 95.13 85.68
MOON 93.16 93.16 92.98 92.46 98.06 76.21 93.49 91.41 91.86 90.20 95.78 86.22
FedRS 93.29 93.21 93.92 92.33 98.04 76.26 91.63 91.59 93.51 91.70 96.20 87.78
FedGen 94.02 93.99 94.47 92.66 98.22 76.51 91.47 91.33 93.67 91.35 95.77 87.59
FedLC 93.29 93.28 94.76 91.20 98.24 76.17 91.69 91.67 92.73 91.02 95.20 86.92
FedRep 93.01 92.61 94.77 91.24 97.87 68.52 91.77 89.20 93.14 80.94 95.38 67.77

FedProto 93.21 91.68 94.48 85.85 98.26 56.49 90.23 87.27 93.28 76.59 95.62 54.92
FedBABU 93.26 93.08 95.20 92.04 98.16 75.52 93.69 91.05 93.54 90.49 95.70 84.42

FedRod 93.50 93.22 95.47 92.09 98.06 76.24 92.04 91.65 93.96 91.20 95.68 86.98
FedGELA 94.84 94.66 96.27 93.66 98.52 78.88 94.68 93.59 95.54 93.29 96.85 89.58

CIFAR10

FedAvg 73.17 72.8 81.67 67.28 92.66 54.57 66.88 66.64 70.64 61.81 80.04 49.13
FedProx 73.69 73.69 81.95 67.53 92.94 56.13 67.67 67.27 73.62 60.80 80.66 50.82
MOON 73.29 73.29 82.27 68.34 92.90 55.61 67.58 67.58 74.64 61.81 83.42 52.19
FedRS 73.56 72.94 81.59 68.10 92.57 58.19 66.76 66.52 72.21 58.95 81.11 51.66
FedLC 73.05 73.00 81.99 67.97 92.48 57.02 67.46 67.13 72.57 61.31 82.14 55.15
FedGen 73.72 73.49 82.22 69.33 92.79 58.04 68.74 68.02 75.52 62.44 81.07 53.46
FedRep 73.42 73.23 83.30 47.96 92.92 38.32 67.85 67.74 77.28 42.64 84.52 33.22

FedProto 67.06 66.74 81.03 46.99 93.17 32.13 61.85 52.76 72.89 37.47 81.73 26.07
FedBABU 73.86 72.30 81.40 65.03 92.94 53.65 66.99 64.90 77.59 58.17 82.92 49.90

FedRod 74.24 73.76 82.34 70.74 92.27 58.86 70.09 70.04 78.23 64.13 84.63 58.86
FedGELA 75.02 74.07 84.52 72.73 94.28 61.57 72.33 72.04 80.96 65.08 86.55 60.52

CIFAR100

FedAvg 65.27 65.27 65.59 63.96 76.43 59.17 55.16 55.29 55.36 54.15 58.85 53.39
FedProx 65.71 65.71 65.31 64.18 75.95 59.93 56.86 56.89 56.89 56.08 59.27 55.25
MOON 65.33 65.33 65.23 64.79 75.45 60.12 56.91 56.86 56.72 56.14 59.51 55.53
FedRS 65.18 65.64 66.48 64.62 76.86 60.74 56.51 55.91 56.45 56.34 61.92 55.99
FedGen 65.74 65.75 66.72 64.33 76.92 60.43 56.77 56.74 57.43 56.27 60.09 55.27
FedLC 65.83 65.84 65.91 65.02 75.67 60.07 56.87 56.04 56.56 56.28 60.89 55.95
FedRep 61.21 59.21 67.87 52.51 77.81 42.77 53.41 51.44 55.60 48.67 67.70 33.10

FedProto 56.56 56.26 66.08 46.88 77.68 37.63 52.41 50.04 54.05 42.88 63.22 28.74
FedBABU 65.63 65.28 71.30 64.54 80.33 60.99 56.91 54.57 60.14 54.40 68.44 54.24

FedRod 66.17 66.17 72.05 65.19 80.46 61.01 57.76 57.01 63.90 56.53 72.37 54.67
FedGELA 67.28 68.07 72.61 66.94 82.79 63.13 61.70 59.29 64.37 58.60 72.93 58.53

Table 3: Personal and generic performance on a real federated application Fed-ISIC2019. More
results of other realworld dataset are shown in the Appendix.

Method FedAvg FedProx MOON FedRS FedGen FedLC FedRep FedProto FedBABU FedRod FedGELA

PA 77.27±0.19 77.91±0.16 77.94±0.17 78.27±0.12 78.02±0.23 77.58±0.19 76.94±0.13 77.80±0.17 78.91±0.13 78.65±0.34 79.27±0.19

GA 73.59±0.17 73.69±0.26 73.80±0.21 74.60±0.15 74.37±0.27 74.26±0.25 68.05±0.37 66.26±0.16 74.06±0.31 74.98±0.21 75.85±0.16

situations since they do not consider the global convergence during training. As for G-FL methods,
the performance is better in generic tasks but limited in personalized tasks, especially in CIFAR100.
They constrain the model’s ability to fit personalized distributions during local training, resulting
in improved consistency during global optimization. As can be seen, our FedGELA consistently
exceeds all baselines for all settings with averaged performance of 2.42%, 5.2% and 5.7% to FedAvg
and 1.35%, 1.64% and 1.81% to the best baseline on the three datasets respectively.

Performance in real-world applications. Except for the above three benchmarks, we also verify
FedGELA with other methods under a real PCDD federated application: Fed-ISIC2019. As shown in
Table 3, our method achieves the best improvement of 2% and 2.26% relative to FedAvg and of 0.36%
and 1.25% relative to the best baseline on personal and generic tasks respectively, which demonstrates
that our method is robust to practical situations in the both views. In the Appendix D.5, we provide
more results on additional two real-world applications named FEMNIST and SHAKESPEARE to
further show the effectiveness of our method in the real-world scenarios.

8



3 4 5 60.87

0.89

0.91

Ac
cu

ra
cy

SVHN (Global)

Ours
FedAvg

3 4 5 60.61

0.65

0.69

Ac
cu

ra
cy

CIFAR10 (Global)

Ours
FedAvg

3 4 5 60.58

0.60

0.62

Ac
cu

ra
cy

CIFAR100 (Global)

Ours
FedAvg

3 4 5 60.73

0.74

0.75

0.76

Ac
cu

ra
cy

ISIC (Global)

Ours
FedAvg

3 4 5 60.93

0.95

0.97

Ac
cu

ra
cy

SVHN (Local)

Ours
FedAvg

3 4 5 60.77

0.80

0.83

Ac
cu

ra
cy

CIFAR10 (Local)

Ours
FedAvg

3 4 5 60.62

0.66

0.70

Ac
cu

ra
cy

CIFAR100 (Local)

Ours
FedAvg

3 4 5 60.77

0.78

0.79

0.80

Ac
cu

ra
cy

ISIC (Local)

Ours
FedAvg

Figure 4: Bilateral performance on four datasets by tuning logEW (x axis) of FedGELA.
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Figure 5: Illustration of the averaged angle between locally existing classes and missing classes on
the local client and global server of FedAvg, FedGE, and our FedGELA on CIFAR10.

Table 4: Ablation study of FedGELA. GE and LA mean the global ETF and local adaptation.

GE LA SVHN CIFAR10 CIFAR100 Fed-ISIC2019
#Partition Full Parti. Partial Parti. Full Parti. Partial Parti. Full Parti. Partial Parti. Real World
#Metric PA GA PA GA PA GA PA GA PA GA PA GA PA GA

- - 95.02 86.36 93.15 88.43 82.50 64.88 72.52 59.19 69.09 62.80 56.46 54.28 77.27 73.59

✓ - 95.92 88.93 93.97 92.42 83.63 69.70 77.66 65.56 71.46 66.02 62.67 58.98 69.88 75.54
- ✓ 95.93 74.84 93.15 89.58 83.97 63.75 77.76 61.55 71.93 60.76 58.92 51.95 54.65 62.43

✓ ✓ 96.54 89.07 95.69 92.15 84.61 69.46 79.95 65.21 74.23 66.05 66.33 58.81 79.27 75.85

5.3 Further Analysis

More angle visualizations. In Figure 5, we show the effectiveness of local adaptation in FedGELA
and verify the convergence of fixed classifier as ETF and local adaptation compared with FedAvg.
Together with Figure 3, it can be seen that, compared with FedAvg, both FedGE and FedGELA
converge faster to a larger angle between all class means in global. In the meanwhile, the angle
between existing classes of FedGELA in the local is much larger, which proves FedGELA converges
better than FedAvg and the adaptation brings little limits to convergence but many benefits to local
performance under different levels of PCDD.

Hyper-parameter. FedGELA introduces constrain EH on the features and the length EW of classifier
vectors. We perform L2 norm on all features in FedGELA, which means EH = 1. For the length of
the classifier, we tune it as hyper-parameter. As shown in Figure 4, from a large range from 10e3 to
10e6 of EW , our method achieves bilateral improvement compared to FedAvg on all datasets.

Ablation studies. Since our method includes two parts: global ETF and local adaptation, we illustrate
the average accuracy of FedGELA on all splits of SVHN, CIFAR10/100, and Fed-ISIC2019 without
the global ETF or the local adaptation or both. As shown in Table 4, only adjusting the local classifier
does not gain much in personal or global tasks, and compared with FedGE, FedGELA achieves
similar generic performance on the four datasets but much better performance on the personal tasks.
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Table 5: Performance of FedGELA compared with FedAvg and the best baseline under pure PCDD
settings on CIFAR10 and SVHN datasets.PϱCς means that the dataset is divided into ϱ clients and
each client has ς classes. We show the improvement in red on each baseline compared to FedGELA.

Dataset (split) Metric FedAvg Best Baseline FedGELA

CIFAR10(P10C2)
PA 92.08+3.76 94.07+1.77 95.84
GA 47.26+12.34 52.02+7.58 59.60

CIFAR10(P50C2)
PA 91.74+3.68 93.22+2.20 95.42
GA 36.22+18.56 44.74+10.04 54.78

SVHN(P10C2)
PA 95.64+3.11 97.02+1.73 98.75
GA 69.34+14.22 76.06+7.50 83.56

SVHN(P50C2)
PA 94.87+3.50 96.88+1.49 98.37
GA 66.94+10.24 72.97+4.21 77.18

Table 6: Performance of choosing different Φ. Assuming the row vector of distribution matrix(Φk)
T
c

is related to class distribution nk,c

nk
and the relationship as Qk(

nk,c

nk
). Except for Qk(x) = x, we have

also considered employing alternative methods like employing an exponential Qk(x) = ex or power
function Qk(x) = x

1
2 of the number of samples.

Dataset (split) Metric Qk(x) = ex Qk(x) = x
1
2 Qk(x) = x(ours)

SVHN(IID)
PA 95.12 95.43 94.84
GA 94.32 93.99 94.66

SVHN(β = 0.5)
PA 96.18 95.56 96.27
GA 93.28 93.22 93.66

SVHN(β = 0.1)
PA 98.33 98.21 98.52
GA 78.95 77.18 78.88

Performance under pure PCDD setting. To verify our method under pure PCDD, we decouple
the PCDD setting and the ordinary heterogeneity (Non-PCDD). In Table 5, we use PxCy to denote
the dataset is divided in to x clients with y classes, and in each round, 10 clients are selected into
federated training. The training round is 100. According to the results, FedGELA achieves significant
improvement especially 18.56% to FedAvg and 10.04% to the best baseline on CIFAR10 (P50C2).

Other types of Φ. Considering the aggregation of local classifiers should align with the global
classifier, which ensures the validity of theoretical analyses from both global and local perspectives,∑N

k=1 pkΦk should be 1 (1 is all-one matrix). Assuming the row vector of distribution matrix(Φk)
T
c

is related to class distribution nk,c

nk
and the relationship as Qk(

nk,c

nk
). The equation can be rewrite

as: γ
∑N

k=1 pkQk(
nk,c

nk
) = 1, where γ is the scaling constant. In our FedGELA, to avoid sharing

statistics for privacy, we only find one potential way that Qk(
nk,c

nk
) =

nk,c

nk
and γ = 1

C . In this part,
we have also considered employing alternative methods like employing an exponential or power
function of the number of samples. As shown in the Table 6, other methods need to share Qk(

nk,c

nk
)

but achieve the similar performance compared to FedGELA, which exhibits the merit of our choice.

In Appendix D, we provide more experiments from other perspectives like communication efficiency
and the local burden of storing and computation, to show promise of FedGELA.

6 Conclusion
In this work, we study the problem of partially class-disjoint data (PCDD) in federated learning on
both personalized federated learning (P-FL) and generic federated learning (G-FL), which is practical
and challenging due to the angle collapse of classifier vectors for the global task and the waste of space
for the personal task. We propose a novel method, FedGELA, to address the dilemma via a bilateral
curation. Theoretically, we show the local and global convergence guarantee of FedGELA and verify
the justification on the angle of global classifier vectors and on the angle between locally existing
classes. Empirically, extensive experiments show that FedGELA achieves promising improvements
on FedAvg under PCDD and outperforms state-of-the-art methods in both P-FL and G-FL.
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