
Uncovering Meanings of Embeddings
via Partial Orthogonality

Yibo Jiang1, Bryon Aragam2, and Victor Veitch3,4

1Department of Computer Science, University of Chicago
2Booth School of Business, University of Chicago
3Department of Statistics, University of Chicago

4Data Science Institute, University of Chicago

Abstract

Machine learning tools often rely on embedding text as vectors of real numbers.
In this paper, we study how the semantic structure of language is encoded in
the algebraic structure of such embeddings. Specifically, we look at a notion of
“semantic independence” capturing the idea that, e.g., “eggplant” and “tomato” are
independent given “vegetable”. Although such examples are intuitive, it is difficult
to formalize such a notion of semantic independence. The key observation here
is that any sensible formalization should obey a set of so-called independence
axioms, and thus any algebraic encoding of this structure should also obey these
axioms. This leads us naturally to use partial orthogonality as the relevant algebraic
structure. We develop theory and methods that allow us to demonstrate that partial
orthogonality does indeed capture semantic independence. Complementary to
this, we also introduce the concept of independence preserving embeddings where
embeddings preserve the conditional independence structures of a distribution, and
we prove the existence of such embeddings and approximations to them.

1 Introduction

This paper concerns the question of how semantic meaning is encoded in neural embeddings, such as
those produced by [Rad+21]. There is strong empirical evidence that these embeddings—vectors of
real numbers—capture the semantic meaning of the underlying text. For example, classical results
show that word embeddings can be used for analogical reasoning [e.g., Mik+13; PSM14], and such
embeddings are the backbone of modern generative AI systems [e.g., Ram+22; Bub+23; Sah+22;
Dev+18]. The high-level question we’re interested in is: How is the semantic structure of text encoded
in the algebraic structure of embeddings? In this paper, we provide evidence that the concept of
partial orthogonality plays a key role.

The first step is to identify the semantic structure of interest. Intuitively, words or phrases possess a
notion of semantic independence, which does not have to be statistical in nature. For example, the
word “eggplant” seems more similar to “tomato” than to “ennui”. Yet, if we were to “condition"
on the common property of “vegetable”, then “eggplant” and “tomato” should be “independent".
And, if we condition on both “vegetable” and “purple”, then “eggplant" may be “independent” of
all other words. However, it is difficult to formalize what is meant by “independent" and “condition
on" in these informal statements. Accordingly, it is hard to establish a formal definition of semantic
independence, and thus it is challenging to explore how this structure might be encoded algebraically!

The key observation in this paper is to recall that most reasonable concepts of “independence” adhere
to a common set of axioms similar to those defining probabilistic conditional independence. Formally,
this abstract idea is captured by the axioms of the so-called independence models [Lau96]. Thus, if
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(a) ‘eggplant’ (b) ‘zebra’

Figure 1: For target embedding of “eggplant”, the set of embeddings that include “purple” and “vegetable”
forms the subspace such that after projection, the residual of ‘eggplant” has the lowest cosine similarity with
residuals of other test embeddings. This matches our intuition for the meaning of “eggplant”. Similarly,
for target embedding of “zebra”, the set of embeddings that include “striped” and “animal” forms the most
suitable subspace.

semantic independence is encoded algebraically, it should be encoded as an algebraic structure that
respects these axioms. In this paper, we use a natural candidate independence model in vector spaces
known as partial orthogonality [Lau96; AAZ22]. Here, for two vectors va and vb and a conditioning
set of vectors vC , partial orthogonality takes va independent vb given vC if the residuals of va and vb
are orthogonal after projecting onto the span of vC . We discover that this particular tool is indeed
valuable for understanding CLIP embeddings. For instance, Figure 1 shows that after projecting
onto the linear subspace spanned by CLIP embeddings of “purple” and “vegetable”, the residual
of embedding “eggplant” has on average low cosine similarity with the residuals of random test
embeddings, which also matches our intuitive understanding of the word.

Since partial orthogonality is an independence model, we can go one step further to define Markov
boundaries for embeddings as well. Drawing inspiration from graphical models, it is reasonable to
expect that the Markov boundary of any target embedding should constitute a minimal collection of
embeddings that encompasses valuable information regarding the target. Unlike classical applications
of partial orthogonality in regression and Gaussian models, however, the geometry of embeddings
presents several subtle technical challenges to directly adopting the usual notion of Markov boundary.
First, the intersection axiom never holds for practical embeddings, which makes the standard Markov
boundary non-unique. More importantly, practical embeddings could potentially incorporate distor-
tion, noise and undergo phenomena resembling superposition [Elh+22]. Therefore, in this paper, we
introduce generalized Markov boundaries for studying the structure of text embeddings.

Contributions Specifically, we make the following contributions:

1. We adapt ideas from graphical independence models to specify the structure that should be
satisfied by semantic independence. We discover that partial orthogonality in the embedding
space offers a natural way of encoding semantic independence structure (Section 2).

2. We study the semantic structure of partial orthogonality via Markov boundaries. Due to the
unique characteristics of embeddings and noise in learning, exact orthogonality is unlikely
to hold. So, we give a distributional relaxation of the Markov boundary and use this to
provide a practical algorithm for finding generalized Markov boundaries and measuring the
semantic independence induced by generalized Markov boundaries (Section 3.2).

3. We introduce the concept of independence preserving embeddings, which studies how
embeddings can be used to maintain the independence structure of distributions. This holds
its own intrigue for further research (Section 4).

4. Finally, we design and conduct experimental evaluations on CLIP text embeddings, finding
that the partial orthogonality structure and generalized Markov boundary encode semantic
structure (Section 5).

Throughout, we use CLIP text embeddings as a running example, though the method and theory
presented can be applied more broadly.
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Related work There are many papers [e.g., Aro+16; GAM17; AH19; EDH19; Tra+23; Per+23;
Lee+23; MEP23; Wan+23] connecting semantic meanings and algebraic structures of popular
embeddings like CLIP [Rad+21], Glove [PSM14] and word2vec [Mik+13]. Simple arithmetic on
these embeddings reveals that they carry semantic meanings. The most popular arithmetic operation
is called linear analogy [EDH19]. There are several papers trying to understand the reasoning behind
this phenomenon. Arora et al. [Aro+16] explains this by proposing the latent variable model but it
requires the word vectors to be uniformly distributed in the embedding space which generally is not
true in practice [MT17]. Alternatively, [GAM17; AH19] adopts the paraphrase model that also does
not fit practice. [EDH19], on the other hand, studies the geometry of embeddings that decomposes the
shifted pointwise mutual information (PMI) matrix. Trager et al. [Tra+23] and Perera et al. [Per+23]
decomposes embeddings into combinations of a smaller set of vectors that are more interpretable. On
the other hand, similar to using vector orthogonality to represent (conditional) independence, kernel
mean embeddings [Mua+17] are Hilbert space embeddings of distributions that can also be used to
represent conditional independences [Son+09; SFG13]. It is a popular method for machine learning,
and causal inference [Gre+05; Moo+09; GS20]. But unlike independence preserving embeddings,
kernel mean embeddings use the kernel and do not explicitly construct finite-dimensional vector
representations.

2 Independence Model and Markov Boundary

Let E be a finite set of embeddings with |E | = n and each embedding is of size d. Every embedding
is a vector representation of a word. In other words, there exists a function f that maps words to n
vectors in Rd. As explained above, we might expect embeddings to encode “independence structures”
between words. These independence structures are difficult to define formally, though the structure is
similar to that of probabilistic conditional independence. We will use independence models as an
abstract formalization of this structure.

2.1 Independence Model

Throughout this paper, we use many standard definitions and facts about graphical models and more
generally, abstract independence models. A detailed overview of this material can be found, for
instance, in [Lau96; Stu05].

Suppose V is a finite set. In the case of embeddings, V would be a set of vectors. An independence
model ⊥⊥σ is a ternary relation on V . Let A,B,C,D be disjoint subsets of V . Then a semi-graphoid
is an independence model that satisfies the following axioms:

(A1) (Symmetry) If A⊥⊥σ B|C, then B ⊥⊥ σA|C;
(A2) (Decomposition) If A⊥⊥σ(B ∪D)|C, then A⊥⊥σ B|C and A⊥⊥σ D|C;
(A3) (Weak Union) If A⊥⊥σ(B ∪D)|C, then A⊥⊥σ B|(C ∪D);
(A4) (Contraction) If A⊥⊥σ B|C and A⊥⊥σ D|(B ∪ C), then A⊥⊥σ(B ∪D)|C.

The independence model is a graphoid if it also satisfies

(A5) (Intersection) If A⊥⊥σ B|(C ∪D) and A⊥⊥σ C|(B ∪D), then A⊥⊥σ(B ∪ C)|D.

And, the graphoid is called a compositional graphoid if it also satisfies

(A6) (Composition) If A⊥⊥σ B|C and A⊥⊥σ D|C, then A⊥⊥σ(B ∪D)|C.

We also use Iσ(V ) to be the set of conditional independent tuples under the independence model ⊥⊥σ .
In other words, if (A,B,C) ∈ Iσ(V ), then A⊥⊥σ B|C where A,B,C are disjoint subsets of V .

Probabilistic Conditional Independence (⊥⊥P) Given a finite set of random variables V , prob-
abilistic conditional independence over V defines an independence model that satisfies (A1)-(A4)
which means that probabilistic independence models are semi-graphoids. In general, however, they
are not compositional graphoids. If the distribution has strictly positive density w.r.t. a product mea-
sure, then the intersection axiom is true. In this case, probabilistic independence models are graphoids.
Still, in general, the composition axiom is not satisfied because pairwise independence does not imply
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joint independence. One notable exception is when the distribution is regular multivariate Gaussian;
then the probabilistic independence model is a compositional graphoid.

Undirected Graph Separations (⊥⊥G) For a finite undirected graph G = (V,E). One can easily
show that ordinary graph separation in undirected graphs is a compositional graphoid. The rela-
tions between probabilistic conditional independences and graph separations are well-studied in
the graphical modeling literature [KF09; Lau96]. We recall a few important definitions here for
completeness. Consider a natural bijection between graphical nodes and random variables. Then if
IG(V ) ⊆ IP (V ), we say the distribution P over V satisfies the Markov property with respect to G
and G is called an I-map of P . An I-map G for P is minimal if no subgraph of G is also an I-map of
P . It is not difficult to show that there exists a minimal I-map G for any distribution P .

Remark 1. Not every compositional graphoid can be represented by an undirected graph. Sadeghi
[Sad17] provides sufficient and necessary conditions for this.

Partial Orthogonality (⊥⊥O) Let V be a finite collection of vectors in Rd. If a ∈ V, b ∈ V and
C ⊆ V , then we say that a and b are partially orthogonal given C if

a⊥⊥O b|C ⇐⇒
〈
proj⊥C [a], proj⊥C [b]

〉
= 0,

where proj⊥C [a] = a − projC [a] is the residual of a after projection onto the span of C. It is not
hard to verify that ⊥⊥O is a semi-graphoid that also satisfies the composition axiom (A6). When
V is a set of linearly independent vectors, then ⊥⊥O satisfies (A5) and thus is a compositional
graphoid. Partial orthogonality has been studied under different names in the statistics literature for
many decades. For example, if we replace Euclidean space with the L2 space of random variables,
partial orthogonality is equivalent to the well-known concept of partial correlation or second-order
independence (Example 2.26 in [Lau20]). The concept of geometric orthogonality (Example 2.27
in [Lau20]) is closely related but does not always satisfy the intersection axiom. More recently, the
concept of partial orthogonality in abstract Hilbert spaces was defined and studied extensively in
[AAZ22]. Finally, when V is a linearly independent collection of vectors, partial orthogonality yields
a stronger independence model known as a Gaussoid, which is well-studied [e.g. LM07; BK19, and
the references therein]. It is worth emphasizing that in the present setting of text embedding, we
typically have d≪ n, and hence V cannot be linearly independent.

2.2 Markov boundaries

Suppose ⊥⊥σ is an independence model over a finite set V . Let vi be an element in V , then the
Markov blanketM of vi is any subset of V \ {vi} such that

vi⊥⊥σ V \ ({vi} ∪M)|M

A Markov boundary is a minimal Markov blanket.

A Markov boundary, by definition, always exists and can be an empty set. However, it might not be
unique. It is well-known that the intersection property is a sufficient condition to guarantee Markov
boundaries are unique. Thus, the Markov boundary is unique in any graphoid. The proof is presented
here for completeness.

Theorem 2. If ⊥⊥σ is a graphoid over V , then the Markov boundary is unique for any element in V .

Proof. Let vi ∈ V . Suppose vi has two distinct Markov boundaries M1, M2. Then they must
be non-empty and vi ̸⊥⊥σM1, vi ̸⊥⊥σM2, vi⊥⊥σM2 |M1, vi⊥⊥σM1 |M2. By the intersection
axiom, vi⊥⊥σM1 ∪M1. Then by the decomposition axiom, vi⊥⊥σM1 and vi⊥⊥σM2 which is a
contradiction.

Remark 3. For any semi-graphoid, the intersection property is not a necessary condition for the
uniqueness of Markov boundaries. See Remark 1 in [WW20].

The connection between orthogonal projection and graphoid axioms is well-known [Lau96; Daw01;
Whi09]. But graphoid axioms find their primary applications in graphical models [Lau96]. In
particular, there are many existing papers on Markov boundary discovery for graphical models
[Tsa+03; Ali+10; SV16; GA21; TAS03; Pen+07]. They typically assume faithfulness or the
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distributions are strictly positive, which are sufficient conditions for the intersection property and thus
ensure unique Markov boundaries. As an important axiom for graphoids, the intersection property
has also been thoroughly investigated [SMMR05; Pet15; Fin11]. But the intersection property rarely
holds for embeddings (See Section 3), which means there could be multiple Markov boundaries.
[SLA13; WW20] study this case for graphical models and causal inference.

3 Markov Boundary of Embeddings

As indicated in Section 2, partial orthogonality (⊥⊥O) can be used as an independence model over
vectors in Euclidean space and is a compositional semi-graphoid. Thus, one can use partial orthogo-
nality to study embeddings, which are real vectors. When n ≤ d and the vectors in E are linearly
independent, every vector in E has a unique Markov boundary by Theorem 2.

Unfortunately, when d < n, which happens in practice with embeddings as there are usually more
objects to embed than the embedding dimension, there is a possibility of having multiple Markov
boundaries. In fact, the main challenge with Markov boundary discovery for embeddings is that the
intersection property generally does not hold, as opposed to graphical models where this property is
commonly assumed [Tsa+03; Ali+10; SV16].

While the Markov boundary might not be unique, the following theorem says that all Markov
boundaries of the target vector capture the same “information” about that vector.

Theorem 4. Let partial orthogonality ⊥⊥O be the independence model over a finite set of embedding
vectors E. SupposeM1,M2 ⊆ E are two distinct Markov boundaries of vi ∈ E, then,

projM1
[vi] = projM2

[vi]

When d≪ n, then it is likely that the target embedding vi lies in the linear span of other embeddings
(i.e, vi ∈ span(E \{vi})), Corollary 5 below shows that, in this case, the span of any Markov
boundary is precisely the subspace that contains vi:

Corollary 5. Let parital orthogonality ⊥⊥O be the independence model over a finite set of embedding
vectors E. SupposeM1 ⊆ E is a Markov boundary of vi ∈ E and vi ∈ span(E \{vi}), then,

projM1
[vi] = vi.

In other words, to find a Markov boundary of vi, we need to find some vectors such that their linear
combination is exactly vi. This seems very strict but is necessary because the formal definition of the
Markov boundary requires residual orthogonalities between vi and every other vector. In the sequel,
we show how to relax the definition of the Markov boundary.

3.1 From Elementwise Orthogonality to Distributional Orthogonality

Corollary 5 suggests that the span of the Markov boundary for any target vector should contain
that target vector. This is a consequence of the elementwise orthogonality constraint because the
definition of the Markov boundary requires the residual of a target vector to be orthogonal to the
residual of any test vector. The implicit assumption here is that embeddings are distortion-free and
every non-zero correlation is meaningful. However, due to the inherent limitation of the embedding
dimension—which often restricts the available space for storing all the orthogonal vectors—and
noises introduced from training, embeddings are likely prone to distortion when compressed into a
relatively small Euclidean space. In fact, we empirically show in Section 5.2 that inner products in
embedding space do not necessarily respect semantic meanings faithfully. Therefore, the notion of
elementwise orthogonality loses practical significance.

Instead of enforcing elementwise orthogonality, we relax the definition of the Markov boundary of
embeddings such that intuitively, after projection, the residual of the target vector and the residuals
of test vectors should be orthogonal in a distributional sense where the distribution is the empirical
distribution over test vectors. To capture distributional orthogonalities, this paper focuses on the
average of cosine similarities.

In particular, we have the following definition of generalized Markov boundary for partial orthogo-
nality.
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Algorithm 1: Approximate Algorithm to Find Generalized Markov Boundary
Input: v, E
/* E is the set of all embeddings and v ∈ E is the target embedding */
Input: nr, dr, K
/* nr is the number of sampled random subspaces, dr is the number of

sampled vectors for each random subspace and K is the number of
candidate vectors to construct generalized Markov boundary */

Output:M⊆ E
/* M is the estimated generalized Markov boundary for v */

for i← 1 to nr do
randomly sample a set of dr vectorsMi = {vik}

dr

k=1 ⊆ (E \{v})
caculate ScMi

(v, u) for all u ∈ (E \{v})
end
Find the top K vectors {ui}Ki=1 with the highest

∑
i S

c
Mi

(v, u) .
Find the subsetM of {ui}Ki=1 that has the lowest SM(v,E).
Result:M

Definition 6 (Generalized Markov Boundary for Partial Orthogonality). Given a finite set E of
embedding vectors. Let v be an element in E, then a generalized Markov boundaryM of v is a
minimal subset of E \{v} such that

SM(v,E) =
1

|Ev
M |

∑
u∈Ev

M

ScM(v, u) = 0

where ScM(v, u) is the cosine similarity of u and v after projection and Ev
M = E \({v} ∪ M).

Specifically, ScM(v, u) =
⟨proj⊥M[v],proj⊥M[u]⟩

||proj⊥M[v]||·||proj⊥M[u]|| .

Intuitively, this suggests that, on average, there is no particular direction of residuals that have
nontrivial correlations with the residual of the target embedding.

Remark 7. It is evident that the conventional definition of Markov boundary implies Definition 6
(Lemma 15 in Appendix A).

3.2 Finding Generalized Markov Boundary

With a formal definition of the generalized Markov boundary established, our objective is now to
identify this boundary. One can always use brute force by enumerating all possible subsets of E, but
the algorithm would be infeasible when |E | is large.

Suppose v ∈ E is a target vector andM is its generalized Markov boundary, then we can write
v = v⊥ + v∥ where v⊥ = proj⊥M[v] and v∥ = projM[v]. Intuitively, Definition 6 suggests that
the residual of test vectors can appear in any direction relative to v⊥. Therefore, if one samples
random test vectors {ui}, their span is likely to be close to v⊥. In other words, the residual of v after
projection onto span({ui}) should contain more information about the generalized Markov boundary
direction v∥.

This motivates the approximate method Algorithm 1. For any target embedding v, one first sample
subspaces spanned by randomly selected embeddings. Embeddings that, on average have high cosine
similarities with the target embedding after projecting onto orthogonal complements of previously
sampled random subspaces, are considered to be candidates for the generalized Markov boundary.
The final selection of generalized Markov boundary searches over these top K candidates.

Empirically, for text embedding models like CLIP, random projections prove to be advantageous in
revealing semantically related concepts. In Section 5.2, we provide several examples where, for a
given target embedding, the embeddings that exhibit high correlation after random projections are
more semantically meaningful compared to embeddings with merely high cosine similarity with the
target embedding before projections.
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4 Independence Preserving Embeddings (IPE)

In the previous sections, we discussed the Markov boundary of embeddings under the partial orthog-
onality independence model. In Section 5, we will test its effectiveness at capturing the “semantic
independence structure” through experiments conducted on CLIP text embeddings. The belief is that
the linear algebraic structure possesses the capacity to uphold the independence structure of semantic
meanings.

A natural question to ask is: Is it always possible to use vector space embeddings to preserve
independence structures of interest? In this section, we study the case for random variables. Consider
an embedding function f that maps a random variable X to f(X) ∈ Rd. Ideally, it is desirable for
the partial orthogonalities of embeddings to mirror the conditional independences present in the
joint distribution of X . We call such representations independence preserving embeddings (IPE)
(Definition 8). In this section, we delve into the theoretical feasibility of these embeddings by initially
demonstrating the construction of IPE and then showing how one can use random projection to reduce
the dimension of IPE. We believe that studying IPE lays the theoretical foundation to understand
embedding models in general.

Definition 8 (Independence Preserving Embedding Map). Let V be a finite set of random variables
with distribution P . A function f : V → Rd is called an independence preserving embedding map
(IPE map) if

IO(f(V )) ⊆ IP (V ).

An IPE map is called a faithful IPE map if
IO(f(V )) = IP (V ).

4.1 Existence and Universality of IPE Maps

We first show that for any distribution P over random variables V , we can construct an IPE map.

For any distribution P over V , there exists a minimal I-map G = (V,E) such that IG(V ) ⊆ IP (V )
(See Section 2). We will use GP to be a minimal I-map of P and adj(GP ) to be the adjacency matrix
of GP . We further define adjε(GP ) to be an adjusted adjacency matrix with ε ∈ R where

adjε(GP ) = 1+ ε adj(GP )
and 1 is the identity matrix.

Ideally, this matrix is invertible, however, it turns out that not every ε produces an invertible adjε(GP ).
We therefore define the following perfect perturbation factor. For any matrix A ∈ Rn×n, define
AI,J to be the submatrix of A with row and column indices from I and J , respectively. If I = J ,
the submatrix is called a principal submatrix and we denote it simply as AI .

Definition 9 (Perfect Perturbation Factor). For a given graph G = (V,E) where n = |V |, ε is called a
perfect perturbation factor if (1) adjε(GP ) is invertible and (2) for any I ⊆ [n], (adjε(GP )I)−1

ij = 0

if and only if vIi
⊥⊥G vIj

|{vk : k ̸∈ I} where Ii is the ith element of I.

Theorem 10. Let V be a finite set of random variables with distribution P . GP is a minimal I-map
of P . Let A be equal to adjε(GP )−1 with eigen decomposition A = UΣUT . If ε is a perfect
perturbation factor, then the function f with

f(vi) = UiΣ
1/2

is an IPE map of P where vi is a random variable in V and Ui is the i-th row of U . Furthermore, if
P is faithful to GP , then f is a faithful IPE map for P .

Remark 11. One can always normalize these embeddings to have unit norms without changing the
partial orthogonality structures.

Finding a perfect perturbation factor might seem daunting, but the following lemma, which is a direct
consequence of Theorem 1 in Lněnička and Matúš [LM07], shows that almost every ε is a perfect
perturbation factor.

Lemma 12. For any simple graph G, ε is perfect for all but finitely many ε ∈ R.
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4.2 Dimension Reduction of IPE

Theorem 10 shows how to learn a perfect IPE but it requires the dimension of embeddings to be the
same as the number of variables in V . In the worst case, this is inevitable for a faithful IPE map: If
the random variables in V are mutually independent, then we need at least |V | dimensions in the
embedding space to contain V orthogonal vectors.

But this is not practical. Suppose we want to embed millions of random variables (e.g. tokens) in a
vector space, having the dimension of each embedding be in the magnitude of millions is less than
ideal. Therefore, one needs to do dimension reduction.

In this section, we show that by using random projection, the partial orthogonalities induced by
Markov boundaries are preserved approximately. Intuitively, this is guaranteed by the Johnson-
Lindenstrauss lemma [Vem05].

Theorem 13. Let U be a set of vectors in Rn where n = |U | and every vector is a unit vector. Let Σ
be a matrix in Rn×n where Σij = ⟨ui, uj⟩. Assume λ1 = λmin(Σ) > 0. Then there exists a mapping
g : Rn → Rk where k = ⌈20 log(2n)/(ε′)2⌉ with ε′ = min{1/2, ε/C, λ1/2r

2} and ε ∈ (0, 1) such
that for any ui ∈ U with its unique Markov boundary Mi ⊆ U and any uj ∈ U \ ({ui} ∪Mi), we
have ∣∣∣∣〈proj⊥g(Mi)

[g(ui)], proj⊥g(Mi)
[g(uj)]

〉∣∣∣∣ ≤ ε

where ri = |Mi|, r = maxi |Mi| and C = (r + 1)3( 2λmax(Σ)+2(r+1)2

λmin(Σ) )r.

Theorem 13 shows that as long as the partial orthogonality structure of embeddings is sparse in the
sense that the size of the Markov boundary for each embedding is small. Then one can reduce the
dimension of the embedding and the residuals of target and test vectors after projection onto the
Markov boundary are almost orthogonal.

Remark 14. The assumption in Theorem 13 is satisfied by the construction of IPE in Section 4.1.

5 Experiments

One of the central hypotheses of the paper is that the partial orthogonality of embeddings, and
its byproduct generalized Markov boundary, carry semantic information. To verify this claim, we
provide both quantitative and qualitative experiments. Throughout this section, we consider the set
of normalized embeddings E that represent the 49815 words in the Brown corpus [FK79]. For each
target embedding of a word, under any experiment setting, we automatically filter words, whose
embeddings have 0.9 or above cosine similarities with the target embedding, or words, whose Wu-
Palmer similarity measure with the target word is almost 1. The purpose of this filtering step is to
prevent the inclusion of synonyms.

5.1 Semantic Structure of Partial Orthogonality

To examine the rule of partial orthogonality, nine categories are chosen, each with 10 words in it
(See Table 3 in Appendix B). Specifically, each word within a given category is a hyponym for that
category in WordNet [Mil95]. We assess how much, on average, the cosine similarities between words
within each category decrease when conditioned on these different nine categories. By conditioning,
we use the clip embedding of the category word of interest and project out the subspace of that clip
embedding. The results are shown in Figure 2. We normalize reduction values by sampling 10,000
embeddings and calculating the mean and standard deviation of cosine reductions between these
embeddings. It is apparent that on average, cosine similarities of intra-category words decrease more
than inter-category words. One interesting finding is that when conditioned on the category word
“food”, the average similarities between word pairs in “beverage” also drop considerably. We suspect
this is because one synset of “food” is also a hypernom of “beverage”. Although words in the “food”
category are chosen to mean solid food, it could also mean nutrient which also encompasses the
meaning of “beverage”.
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Figure 2: Experiments show conditioning on the
category word, cosine similarities of intra-category
words decrease more than inter-category words.
Each row shows the (normalized) average cosine
similarities reduction between words within each
category when conditioned on the category word
of that row.

Figure 3: Experiments show that learned general-
ized Markov boundaries have on average smaller
principal angles with the description embedding
compared to subspaces spanned by randomly se-
lected embeddings. The standard errors are over
50 examples.

5.2 Sampling Random Subspaces

The first step of Algorithm 1 is to find embeddings that have high similarities with the target
embeddings even after projecting onto orthogonal complements of subspaces spanned by randomly
selected embeddings. It turns out that this step can reveal semantic meanings. In this section, we
design experiments to show both quantitatively and qualitatively that embeddings of words that
remain highly correlated with the target embedding after projection are semantically closer to the
target word. In various experimental configurations, we employ 10 sets of 50 randomly chosen
embeddings to form random projection subspaces for each target embedding. Qualitatively, Table 4
in Appendix B gives a few examples showing that the words that on average remain highly correlated
with the target word tend to possess greater semantic significance. Quantitatively, we calculate the
average Wu-Palmer similarities between target words and the top 10 correlated words before and after
random projections. We conduct experiments on 1000 random words as well as 300 common nouns
provided by ChatGPT. The results are shown in Table 4 verify our claims. This set of experiments
also indirectly shows that the embeddings are noisy and that generalized Markov boundaries are
indeed needed.

Table 1: Experiments show that the top 10 words that have, on average, high correlations with target words
after projecting onto the orthogonal complements of randomly selected linear subspaces have higher Wu-
Palmer similarities with the target words than the top 10 highly correlated words without projections. This
table contains average Wu-Palmer similarities with standard errors.

Target Before Projection After Projection

Random Words 0.223± 0.006 0.245± 0.007

Common Nouns 0.343± 0.008 0.422± 0.008

5.3 Generalized Markov Boundaries

We first demonstrate that Algorithm 1 can find generalized Markov boundaries. The experiments
are run over 1000 randomly selected words. In particular, Table 2 shows that with a relatively small
candidate set, the algorithm can already approximate generalized Markov boundaries well, suggesting
that the size of generalized Markov boundaries for CLIP text embeddings should be small.

Semantic Meanings of Markov Boundaries The estimated generalized Markov boundaries re-
turned by Algorithm 1 is a set of embeddings. It is reasonable to anticipate that the linear spans of
these embeddings hold semantic meanings. To evaluate this hypothesis, we propose to calculate the
smallest principal angles [KA02] between the span of generalized Markov boundaries and the span
of selected embeddings that are meaningful to the target word.
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We again conducted both quantitative and qualitative experiments. Qualitatively, Figure 4 in Ap-
pendix B give a few examples comparing target words’ generalized Markov boundaries with the span
of selected embeddings. For instance, the generalized Markov boundary of ‘car’ is more aligned with
the subspace spanned by embeddings of ‘road’ and ‘vehicle’ than the span of ‘sea’ and ‘boat’ and
randomly selected subspaces. This suggests that the estimated generalized Markov boundaries hold
semantic significance. To verify this quantitatively, we ask ChatGPT to provide a list of common
nouns with short descriptions (selected examples are provided in Table 5). We then use CLIP text em-
bedding to convert the description sentence into one vector and compare the smallest angle between
the description vector with generalized Markov boundaries and random linear spans. Figure 3 shows
that the generalized Markov boundaries are more semantically meaningful than random subspaces.

Table 2: With relatively small number of K, the average SM(v,E) is small. The standard errors are over
1000 experiments.

K 1 3 5 8 10

AVERAGE SM(v,E) 0.345±0.03 0.128±0.03 0.054±0.002 0.015±0.002 0.008±0.001

6 Conclusion

This paper studies the role of partial orthogonality in analyzing embeddings. Specifically, we extend
the idea of Markov boundaries to embedding space. Unlike Markov boundaries in graphical models,
the boundaries for embeddings are not guaranteed to be unique. We propose alternative relaxed
definitions of Markov boundaries for practical use. Empirically, these tools prove to be useful in
finding the semantic meanings of embeddings. We also introduce the concept of independence
preserving embeddings where embeddings use partial orthogonalities to preserve the conditional
independence structures of random variables. This opens the door for substantial future work. In
particular, one promising theoretical direction is to study if CLIP text embeddings preserve the
structures in the training distributions.
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A Additional Proofs

Lemma 15. Let v be an element in E, andM a Markov boundary of v, thenM is also a generalized
Markov boundary.

Proof. By definition, for any u ∈ V \({v}∪M), ScM(v, u) = 0. Therefore,M is also a generalized
Markov boundary.

Theorem 4. Let partial orthogonality ⊥⊥O be the independence model over a finite set of embedding
vectors E. SupposeM1,M2 ⊆ E are two distinct Markov boundaries of vi ∈ E, then,

projM1
[vi] = projM2

[vi]

Proof. To slightly abuse notation, we also useM1 to be a matrix where each column is an element
inM1. We defineM2 similarly.

Because M1 and M2 are two distinct Markov boundaries, they must not be empty. Therefore,
vi ̸⊥⊥OM1 and vi ̸⊥⊥OM2. By the definition of Markov boundary, we also have vi⊥⊥OM1 |M2

and vi⊥⊥OM2 |M1. Note thatM2 andM1 must have full rank, otherwise, they are not minimal.

Thus,

⟨proj⊥M1
[vi], proj⊥M1

[vj ]⟩ = 0, ∀vj ∈M2

⇐⇒ ⟨proj⊥M1
[vi], vj⟩ = 0, ∀vj ∈M2

⇐⇒ vTi M1(MT
1 M1)

−1MT
1 vj = vTi vj ∀vj ∈M2

⇐⇒ vTi M1(MT
1 M1)

−1MT
1 M2 = vTi M2

With (compact) singular value decomposition, we haveM1 = U1Σ1V
T
1 andM2 = U2Σ2V

T
2 . Then,

vTi M1(MT
1 M1)

−1MT
1 M2 = vTi U1U

T
1 M2 = vTi M2

⇐⇒ vTi U1U
T
1 U2 = vTi U2

Similarly,
vTi U2U

T
2 U1 = vTi U1

Therefore,
vTi U1U

T
1 U2U

T
2 = vTi U2U

T
2

In other words,
projM2

[projM1
[vi]] = projM2

[vi]

On the other hand, vi ̸⊥⊥OM1.
projM1

[vi] = U1U
T
1 vi ̸= 0

Similarly,
projM2

[vi] = U2U
T
2 vi ̸= 0

Therefore, we must have,
projM1

[vi] ∈ span(M2)

which means,
projM2

[projM1
[vi]] = projM1

[vi] = projM2
[vi]

Corollary 5. Let parital orthogonality ⊥⊥O be the independence model over a finite set of embedding
vectors E. SupposeM1 ⊆ E is a Markov boundary of vi ∈ E and vi ∈ span(E \{vi}), then,

projM1
[vi] = vi.
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Proof. Because vi ∈ span(E \{vi}), then vi =
∑m

k=1 αkvk with E′ = {v1, ..., vm} ⊆ E.

SinceM1 is a Markov boundary of vi,

vTi M1(MT
1 M1)

−1MT
1 vk = vTi vk ∀vk ∈ E′

vTi M1(MT
1 M1)

−1MT
1

m∑
k=1

αkvk = vTi

m∑
k=1

αkvk

⟨projM1
[vi], vi⟩ = ⟨vi, vi⟩

Thus, projM1
[vi] = vi.

A.1 Construction of IPE Map

Theorem 10. Let V be a finite set of random variables with distribution P . GP is a minimal I-map
of P . Let A be equal to adjε(GP )−1 with eigen decomposition A = UΣUT . If ε is a perfect
perturbation factor, then the function f with

f(vi) = UiΣ
1/2

is an IPE map of P where vi is a random variable in V and Ui is the i-th row of U . Furthermore, if
P is faithful to GP , then f is a faithful IPE map for P .

Proof. Let |V | = n and, to slightly abuse notation, we use index i ∈ [n] to mean the vertex vi and the
i-th embedding. And we use AV1,V2

where V1, V2 ⊆ V to mean the submatrix of A{i:vi∈V1},{i:vi∈V2}.

Because Gp is a miminal I-map of P , we have IG(V ) ⊆ IP (V ).

We just need to show IG(V ) = IO(f(V )). And if P is faithful to Gp, then IO(f(V )) = IG(V ) =
IP (V ).

If vi⊥⊥G vj |V ′ where V ′ ⊆ V , let V c = V \ V ′, then

A =

(
AV c , AV c,V ′

AV ′,V c , AV ′

)
On the other hand, if f(vi)⊥⊥O f(vj)|f(V ′), then

f(vi)
T f(vj)− f(vi)

T f(V ′)(f(V ′)T f(V ′))−1f(V ′)T f(vj) = 0 (A.1)

Note that by our construction, (f(V ′)T f(V ′))−1 = AV ′ is invertible. We can write (A.1) as follows:

f(vi)
T f(vj)− f(vi)

T f(V ′)(f(V ′)T f(V ′))−1f(V ′)T f(vj) = Ai,j −Ai,V ′A−1
V ′ AV ′,j

By Schur’s complement, we have that

(adjε(GP )V c)−1 = (A−1)−1
V c = AV c −AV c,V ′A−1

V ′ AV ′,V c

Becasue ε is a perfect perturbation factor, by definition, f(vi)⊥⊥O f(vj)|f(V ′) if and only if
vi⊥⊥G vj |V ′. By the compositional property, we have that IG(V ) = IO(f(V )).

Lemma 12. For any simple graph G, ε is perfect for all but finitely many ε ∈ R.

Proof. This is a direct consequence of Theorem 1 in [LM07].
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A.2 Dimension Reduction of IPE

Theorem 13. Let U be a set of vectors in Rn where n = |U | and every vector is a unit vector. Let Σ
be a matrix in Rn×n where Σij = ⟨ui, uj⟩. Assume λ1 = λmin(Σ) > 0. Then there exists a mapping
g : Rn → Rk where k = ⌈20 log(2n)/(ε′)2⌉ with ε′ = min{1/2, ε/C, λ1/2r

2} and ε ∈ (0, 1) such
that for any ui ∈ U with its unique Markov boundary Mi ⊆ U and any uj ∈ U \ ({ui} ∪Mi), we
have ∣∣∣∣〈proj⊥g(Mi)

[g(ui)], proj⊥g(Mi)
[g(uj)]

〉∣∣∣∣ ≤ ε

where ri = |Mi|, r = maxi |Mi| and C = (r + 1)3( 2λmax(Σ)+2(r+1)2

λmin(Σ) )r.

Proof. Let g be linear map of Lemma 16 with error parameter ε′ ∈ (0, 1
2 ). For convenience, let

ũi = g(ui), ũj = g(uj) and M̃i = g(Mi). Let ri = |Mi|. To slightly abuse notation, we use Mi and
M̃i to also mean matrices where each column is an element in the set. Furthermore, we also define Σ̃
to be Σ̃ij = ⟨ũi, ũj⟩. We use ΣA,B where A,B ⊆ U to be a submatrix where the row indices are
from A and the column indices are from B, and when A = B, we just use ΣA for simplicity. In

particular, let Σ(i,Mi),(j,Mi) =

(
Σi,j , Σi,Mi

ΣMi,j , ΣMi

)
. And we can define a similar thing for Σ̃.

We first want to find ε′ such that Σ̃Mi is non-singular for all i ∈ |U |. Note that for any ui ∈ U , we
know that by Weyl’s inequality for eigenvalues [HJ12],

|λmin(Σ̃Mi
)− λmin(ΣMi

)| ≤ ||Σ̃Mi
− ΣMi

|| ≤ ||Σ̃Mi
− ΣMi

||F ≤ r2ε′

Thus,
λmin(Σ̃Mi) ≥ λmin(ΣMi)− r2ε ≥ λmin(Σ)− r2ε = λ1 − r2ε′

Therefore, if we want λmin(Σ̃Mi) >
λ1

2 we need ε′ < λ1

2r2 .

On the other hand, because Mi is an Markov boundary for ui, we have

uT
i uj − uT

i Mi(M
T
i Mi)

−1MT
i uj = 0 (A.2)

Note that Mi must be full rank. Otherwise, we can find a subset of Mi to be the Markov boundary.

And there is a different way to write this. Remember that Σ(i,Mi),(j,Mi) =

(
Σi,j , Σi,Mi

ΣMi,j , ΣMi

)
. Using

Schur’s complement, we have that

det(Σ(i,Mi),(j,Mi)) = det(ΣMi) det(Σi,j − ΣT
i,Mi

(ΣMi)
−1Σj,Mi)

= det(ΣMi)(u
T
i uj − uT

i Mi(M
T
i Mi)

−1MT
i uj)

We want to estimate the following:

|
〈
proj⊥g(Mi)

[g(ui)], proj⊥g(Mi)
[g(uj)]

〉
| = |ũT

i ũj − ũT
i M̃i(M̃

T
i M̃i)

−1M̃T
i ũj |

= |
det(Σ̃(i,Mi),(j,Mi))

det(Σ̃Mi
)

|
(A.3)

We already know that det(Σ̃Mi
) > (λ1

2 )ri . On the other hand, by Theorem 2.12 in [IR08], we have
that

|det(Σ̃(i,Mi),(j,Mi))| = |det(Σ̃(i,Mi),(j,Mi))− det(Σ(i,Mi),(j,Mi))|
≤ (ri + 1)||Σ̃(i,Mi),(j,Mi) − Σ(i,Mi),(j,Mi)||max{||Σ(i,Mi),(j,Mi)||, ||Σ̃(i,Mi),(j,Mi)||}

ri

By Weyl’s inequality for singular values, we have that

||Σ̃(i,Mi),(j,Mi)|| = σmax(Σ̃(i,Mi),(j,Mi)) ≤ σmax(Σ(i,Mi),(j,Mi)) + (ri + 1)2ε′

≤ λmax(Σ) + (ri + 1)2ε′ ≤ λmax(Σ) + (ri + 1)2
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Thus,
|det(Σ̃(i,Mi),(j,Mi))| ≤ (ri + 1)(ri + 1)2ε′(λmax(Σ) + (ri + 1)2)ri

And,

|
det(Σ̃(i,Mi),(j,Mi))

det(Σ̃Mi
)

| ≤ ε′
(ri + 1)3(λmax(Σ) + (ri + 1)2)ri

(λ1

2 )ri

Let C = (r + 1)3( 2λmax(Σ)+2(r+1)2

λmin(Σ) )r. Then,

|
det(Σ̃(i,Mi),(j,Mi))

det(Σ̃Mi)
| ≤ ε′C

Let ε′ = min{ 12 ,
ε
C , λ1

2r2 } and k = ⌈ 20 log(2n)
(ε′)2 ⌉, we have that

|
〈
proj⊥g(Mi)

[g(ui)], proj⊥g(Mi)
[g(uj)]

〉
| ≤ ε

Lemma 16. Let ε ∈ (0, 1
2 ). Let V ⊆ Rd be a set of n points and k = ⌈ 20 log(2n)

ε2 ⌉, there exists a
linear mapping g : Rd → Rk such that for all u, v ∈ V :

|⟨g(u), g(v)⟩ − ⟨u, v⟩| ≤ ε

Proof. The proof is an easy extension of the JL lemma [Vem05] by adding all the −vi for all vi ∈ V
into the set V .
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B Additional Experiments, Figures and Tables

Table 3: 9 categories of words used to test the semantic meaning of partial orthogonality

Category Words in Category

‘vehicle’ ‘car’, ‘bicycle’, ‘skateboard’, ‘motorcycle’, ‘helicopter’,
‘truck’, ‘boat’, ‘airplane’, ‘submarine’, ‘scooter’

‘animal’ ‘lion’, ‘dolphin’, ‘eagle’, ‘dog’, ‘elephant’,
‘cat’, ‘rat’, ‘giraffe’, ‘bird’, ‘tiger’

‘tool’ ‘hammer’, ‘screwdriver’, ‘wrench’, ‘pliers’, ‘hacksaw’,
‘drill’, ‘chisel’, ‘plunger’, ‘trowel’, ‘cutter’

‘clothing’ ‘shirt’, ‘pants’, ‘dress’, ‘sweater’, ‘jacket’,
‘hat’, ‘socks’, ‘gloves’, ‘scarf’, ‘vest’

‘beverage’ ‘coffee’, ‘tea’, ‘soda’, ‘lemonade’, ‘milk’,
‘wine’, ‘beer’, ‘sake’, ‘smoothie’, ‘nectar’

‘science’ ‘biology’, ‘ecology’, ‘genetics’, ‘chemistry’, ‘physics’,
‘geology’, ‘mathematics’, ‘linguistics’, ‘psychology’, ‘cryptography’

‘furniture’ ‘couch’, ‘bed’, ‘cabinet’, ‘dresser’, ‘hallstand’,
‘lamp’, ‘bench’, ‘chair’, ‘table’, ‘closet’

‘plant’ ‘daisy’, ‘pine’, ‘iris’, ‘lily’, ‘oak’,
‘tulip’, ‘fern’, ‘rose’, ‘bamboo’, ‘cactus’

‘food’ ‘chocolate’, ‘meat’, ‘steak’, ‘pasta’, ‘fish’,
‘brisket’, ‘sausage’, ‘loaf’, ‘roe’, ‘lobster’

Table 4: Experiments show that top correlated words with target words after projecting onto the orthogonal
complements of randomly selected linear subspaces are more semantically meaningful

Target Top Correlated Words Before Projection Top Correlated Words After Projection

‘eggplant’ ‘potato’, ‘banana’, ‘grape’, ‘vegetable’ ‘grape’, ‘purple-black’, ‘purple’, ‘turnips’
‘bananas’, ‘tomato’, ‘espagnol’ ‘plum’, ‘lilac’, ‘vegetable’

‘eternal’, ‘potatoes’, ‘e.g.’ ‘vegetables’ ‘banana’, ‘ultra-violet’

‘king’ ‘mister’, ‘bossman’, ‘thet’, ‘thatt’ ‘royalty’, ‘sport-king’, ‘bossman’, ‘kingan’
‘beast’, ‘killed’, ‘yesiree’ ‘mister’, ‘prince’s’, ‘princess’

‘bossed’, ‘outdo’, ‘queen’s’ ‘princes’ ‘handsomest’, ‘ruling’

‘advise’ ‘spoken’, ‘askin’, ‘concur’, ‘applies’ ‘guidelines’, ‘guidance’, ‘tips’, ‘motto’
‘said’, ‘according’, ‘astute’ ‘motivating’, ‘encourages’, ‘advising’

‘pertinent’, ‘evident’, ‘preached’ ‘advisory’ ‘self-help’, ‘reminder’

‘work-out’ ‘healthy’, ‘weights’, ‘worked’, ‘time-on-the-job’ ‘gym’, ‘weights’, ‘footing’, ‘running’
‘on-the-job’, ‘work-success’, ‘busy-work’ ‘jogs’, ‘dumbbells’, ‘conditioning’

‘out’n’, ‘healthiest’, ‘hardworking’ ‘body-building’ ‘runing’, ‘pumped-up’

‘poem’ ‘!’, ‘ya’, ‘eh’, ‘yes’, ‘;’ ‘poems’, ‘poetizing’, ‘poetry’s’, ‘rhyming’
‘mem’, ‘oh’, ‘)’, ‘poignant’, ‘hee’ ‘sonnet’, ‘lyrics’, ‘recited’

‘poetically’ ‘sonnets’, ‘rhyme’
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Table 5: Selected examples provided by ChatGPT when asked “give me a list of 50 common nouns, each
with a short description, and the first one is eggplant”

Target Word Description Sentence

‘eggplant’ ‘A purple or dark-colored vegetable with a smooth skin,
often used in cooking and known for its mild flavor.’

‘dog’ ‘A domesticated mammal often kept as a pet or used for various purposes.’

‘book’ ‘A physical or digital publication containing written or printed content.’

‘car’ ‘A motorized vehicle used for transportation on roads.’

‘tree’ ‘A woody perennial plant with a main trunk and branches, usually producing leaves.’

‘house’ ‘A building where people live, providing shelter and accommodation.’

‘computer’ ‘An electronic device used for processing and storing data, and performing various tasks.’

‘cat’ ‘A small domesticated carnivorous mammal commonly kept as a pet.’

‘chair’ ‘A piece of furniture designed for sitting on, often with a backrest and four legs.’

‘phone’ ‘A communication device that allows voice calls and text messaging.’

(a) ‘lemon’ (b) ‘book’

(c) ‘car’ (d) ‘king’

Figure 4: Linear subspaces spanned by estimated generalized Markov boundaries have smallest subspace
angles with linear subspaces spanned by embeddings that best match semantic meanings
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