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Abstract

Given a Lipschitz or smooth convex function f : K → Rd for a bounded
polytope K := {θ ∈ Rd : Aθ ≤ b}, where A ∈ Rm×d and b ∈ Rm,
we consider the problem of sampling from the log-concave distribution
π(θ) ∝ e−f(θ) constrained to K. Interest in this problem derives from
its applications to Bayesian inference and differential privacy. We present
a generalization of the Dikin walk to this setting that requires at most
O((md+ dL2R2) ×mdω−1 log( w

δ )) arithmetic operations to sample from π
within error δ > 0 in the total variation distance from a w-warm start. Here
L is the Lipschitz constant of f , K is contained in a ball of radius R and
contains a ball of smaller radius r, and ω ≈ 2.37 is the matrix-multiplication
constant. This improves on the running time of prior works for a range of
structured settings important for the aforementioned inference and privacy
applications. Technically, we depart from previous Dikin walks by adding
a soft-threshold regularizer derived from the Lipschitz or smoothness prop-
erties of f to a barrier function for K that allows our version of the Dikin
walk to propose updates that have a high Metropolis acceptance ratio for
f , while at the same time remaining inside the polytope K.

1 Introduction

We consider the problem of sampling from a log-concave distribution supported on a poly-
tope: Given a polytope K := {θ ∈ Rd : Aθ ≤ b}, where A ∈ Rm×d and b ∈ Rm, and a convex
function f : K → R, output a sample θ ∈ K from the distribution π(θ) ∝ e−f(θ). Our in-
terest in this problem derives from its applications to Bayesian inference and differentially
private optimization. In Bayesian inference, the ability to sample from π(θ) ∝ e−f(θ) allows
one to compute Bayesian confidence intervals and other statistics for the Bayesian posterior
distribution of many machine learning models (see e.g. [17, 20, 6]). In differentially private
optimization, sampling from the “exponential mechanism” [36] allows one to get optimal
utility bounds for the problem of minimizing f under ε-differential privacy [2].
The instances of the polytope-constrained sampling problem that arise in these applications
are more general than the two well-studied special cases– the uniform density case (f ≡ 0)
and the unconstrained case (K = Rd). However, they still have more structure than the
case of a general log-concave function supported on an arbitrary convex body. For instance,
in Bayesian Lasso logistic regression, f(θ) =

∑n
i=1 ℓ(θ;xi), where ℓ is the logistic loss and xi

are datapoints with ∥xi∥2 ≤ 1, and K = {θ ∈ Rd : ∥θ∥1 ≤ O(1)}; see [44, 43, 26, 47]. Since
the logistic function is both O(1)-smooth and O(1)-Lipschitz, f is both O(n)-Lipschitz and
O(n)-smooth, and K is defined by O(d) inequalities and contained in a ball of radius O(1).
To obtain an ε-differentially private mechanism for the Lasso logistic regression problem,
using the exponential mechanism, the goal is to sample from exp(− ε

R

∑n
i=1 ℓ(θ;xi)), where

ℓ is the logistic loss and K is contained in a ball of radius R. Thus, the log-density is both
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β-smooth and L-Lipschitz for β = L = nε/R = O(d) if n = d and ε < 1, since R = O(1).
Another example is a result of [28] that reduces the problem of ε-differentially private low-
rank approximation of a symmetric p×p matrix to a constrained sampling problem where f
is linear (and thus 0-smooth) of dimension d = p2 and K is the Gelfand-Tsetlin polytope (a
generalization of the probability simplex). Here K has d inequalities and diameter O(

√
d).

Importantly, when sampling from the exponential mechanism in privacy applications, sam-
pling with total variation (TV) bounds–the case that has received the most attention–is
insufficient to guarantee ε-differential privacy, the strongest notion of differential privacy;
see [14]. Instead, one requires bounds in the stronger infinity-distance metric d∞(ν, π) :=
supθ∈K |log(ν(θ)/π(θ))|. A recent work [35] showed how to convert samples within O(δ)-TV
distance from continuous log-Lipschitz densities π, into samples with O(ε)-infinity-distance
bounds, but it requires the TV distance δ to be very small–roughly δ = O(εe−d−LR), rais-
ing the question of designing Markov chains whose runtime bounds also have a low-order
dependence on log 1/δ. Thus, for the aforementioned applications to Bayesian inference and
privacy which give rise to structured instances of sampling from log-concave densities over
polytopes, it is desirable to design sampling algorithms that have a low-order polynomial
dependence not only on the parameters d, L,R, β, but also on log 1/δ.

Main related works. A line of work has developed algorithms for sampling in the general
setting when K is an arbitrary convex body given by a membership oracle [16, 1, 15, 33, 34].
[33] use the “hit-and-run” framework to give an algorithm to sample from a log-concave
distribution π ∝ e−f on a convex body K which also contains a ball of radius r with
TV-error δ > 0 in O(d2(R/r)2 log2(wdR/(rδ)) log3(w/δ))(Tf + T̂K)) arithmetic operations from
a w-warm start (their Theorem 1.1) and O(d3(R/r)2) log5(dR2

/(δr)(Tf + T̂K)) arithmetic
operations from a cold start (Corollary 1.2). Here Tf is the time required to evaluate f and
T̂K is the time for a membership oracle query. Here, a distribution ν is w-warm for w ≥ 1
w.r.t. the stationary distribution π if supz∈K

ν(z)/π(z) ≤ w.

[38] give a “Dikin-walk”-based algorithm to sample from any log-concave π ∝ e−f

on K where f is L-Lipschitz or β-smooth. The Dikin walk Markov chain was in-
troduced in [24] in the special case where f ≡ 0 (see also [37]). Their runtime is
O((d5 + d3L2R2) log(w/δ)(Tf + mdω−1)) arithmetic operations, where ω = 2.37 · · · is the
matrix-multiplication constant. From a cold start, their runtime is O((d5 +d3L2R2) log(1/δ)
(d log(R/r)+M +log(1/δ))(Tf +mdω−1), where M := log(maxθ∈K ef(a)−f(θ)). Their bounds
when f is β-smooth are the same, but with each L2 term replaced with β. We discuss
additional related work in Appendix A.

Our contributions. We present a Markov chain sampling algorithm that generates sam-
ples from an L-log-Lipschitz or β-log-smooth log-concave distribution π ∝ e−f on an R-
bounded polytope K given by m inequalities, with an error bounded in the TV distance (Al-
gorithm 1 and Theorem 2.1). Our algorithm requires O((md+dL2R2) log(w/δ))(Tf +mdω−1)
arithmetic operations to sample with TV error O(δ) from π ∝ e−f when f is L-Lipschitz,
and O((md+ dβR2) log(w/δ))(Tf +mdω−1) arithmetic operations in the setting where f is
β-smooth, where Tf is the number of arithmetic operations to compute the value of f and
mdω−1 is the number of arithmetic operations to compute the Hessian of the log-barrier of
K.
In comparison to [33], we improve dependence of the running time on the parameters R/r

and log 1/δ. In comparison to [38], we improve the dependence on d while retaining the same
dependence on 1/δ. Our result directly implies faster runtimes with improved dependence on
the dimension d for structured inference problems such as Bayesian Lasso logistic regression
where e.g. R/r = Ω(

√
d) (Corollary B.1). Moreover, plugging our algorithm into the TV-to-

infinity distance bound converter of [35], we obtain an algorithm to sample from a logconcave
density constrained to a polytope with error bounded by infinity distance that improves upon
prior work of [2]; see Corollary C.1 and the subsequent discussion. Corollary C.1, along with
the exponential mechanism [36], allows us to obtain faster runtime bounds with improved
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dependence on d for applications to differentially private empirical risk minimization [2] and
matrix approximation [28]; see Corollary D.1 and the subsequent discussion.
Technically, our algorithm is a Markov chain inspired by the Dikin walk [24, 37], whose steps
are determined by a barrier function that generalizes the log-barrier function by adding a
“soft-threshold” ℓ2-norm regularizer. The regularized barrier allows our Markov chain to
take larger steps, while still retaining a high acceptance probability on Lipschitz or smooth
log-densities f –allowing our Markov chain to sample from these distributions with a faster
runtime. A key technical step in obtaining our results is to show that our self-concordant
barrier function is the limit of an infinite sequence of log-barrier functions for K “padded”
with additional redundant inequalities. This allows us to leverage well-known properties of
the log-barrier to bound the acceptance probability and mixing time of our Markov chain.
While ℓ2 regularization is optimal for classes of functions f which are Lipschitz or smooth in
the ℓ2-norm, for other classes of functions (e.g., Lipschitz in the ℓ1-norm), ℓ2 regularization
may not be optimal. Moreover, it remains open to obtain runtime bounds for the Dikin walk
that do not require f to be Lipschitz or smooth, and/or depend polynomially on logR. This
leads to the question of whether one can design other tractable self-concordant barriers to
obtain further runtime improvements for sampling log-concave distributions on a polytope;
we discuss this in Appendix F.

2 Results

Our main result (Theorem 2.1 and Algorithm 1) is a Markov chain algorithm that generates
TV-error bounded samples from L-log-Lipschitz or β-log-smooth log-concave distributions
on a polytope. As explained later in this section, Theorem 2.1 often results in the fastest
known algorithm for some of the applications to Bayesian inference and differentially private
optimization mentioned in the introduction.

Notation. In the following, f is L-Lipschitz or β-smooth for some L, β > 0. Tf denotes the
number of arithmetic operations to evaluate f , TK is the number of arithmetic operations
to compute the Hessian of the log-barrier function, T̂K the operations for a membership
oracle query, and T̃K the operations to compute a projection oracle for K. When K is a
polytope K = {θ ∈ Rd : Aθ ≤ b} given by A ∈ Rm×d and b ∈ Rm, one has TK = O(mdω−1),
T̂K = O(md), and T̃K = O(mdω−1). For every j ∈ {1, . . . ,m}, we denote the j’th row
of A by aj and the j’th entry of b by bj . When comparing runtimes, we often assume
for simplicity that Tf = Θ(d2) unless otherwise stated, which is the case, e.g., in logistic
regression with n = Θ(d) datapoints. For any two distributions µ, ν on Rd, we denote their
total variation distance by ∥µ− ν∥TV := supS⊆Rd |µ(S) − ν(S)|. For θ ∈ Rd, t > 0, denote
the ball of radius t at θ by B(θ, t) := {z ∈ Rd : ∥z − θ∥2 ≤ t} where ∥ · ∥2 is the Euclidean
norm. Denote the interior of any S ⊆ Rd by Int(S) := {θ ∈ S : B(θ, t) ⊆ S for some t > 0}.
α > 0 is a step-size hyperparameter shared by our algorithm and the original Dikin walk of
[24, 37], γ > 0 is the hyperparameter in [38], and η > 0 a hyperparameter for our algorithm’s
regularizer.

Theorem 2.1 (Sampling with TV bounds via a soft-threshold Dikin Walk)
There exists an algorithm (Algorithm 1) which, given δ,R > 0 and either L > 0 or β > 0,
A ∈ Rm×d, b ∈ Rm that define a polytope K := {θ ∈ Rd : Aθ ≤ b} such that K is contained
in a ball of radius R and has nonempty interior, an oracle for the value of a convex function
f : K → Rd, where f is either L-Lipschitz or β-smooth, and an initial point sampled from
a distribution supported on K which is w-warm with respect to π ∝ e−f for some w > 0,
outputs a point from a distribution µ where ∥µ − π∥TV ≤ δ. Moreover, this algorithm
takes O((md + dL2R2) log(w/δ)) × (Tf + TK) arithmetic operations in the setting where f
is L-Lipschitz, or O((md + dβR2) log(w/δ)) × (Tf + TK) arithmetic operations when f is
β-smooth, where Tf is the number of operations to evaluate f and TK = O(mdω−1).

Theorem 2.1 improves on the previous bound of ([33]; Theorem 1.1) of
O(d2(R/r)2 log2(wdR/(rδ)) log3(w/δ))(Tf +T̂K) arithmetic operations, for sampling from ∝ e−f
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with TV error O(δ) from a w-warm start, by a factor of min(d2−ω(R/r)2, d3−ω
/(r2L2)) log4(w/δ)

when f is L-Lipschitz on a polytope K defined by m = O(d) inequalities (see Table 1).
Thus, T̂K = O(md) and if, e.g., we also have LR = O(

√
d) and R/r =

√
d, the im-

provement is d3−ω arithmetic operations.1 When f is β-smooth, the improvement is
min(d2−ω(R/r)2, d3−ω

/(r2β)) log4(w/δ) arithmetic operations.
When a warm start is not provided, Algorithm 1 takes at mostO((md+dL2R2)×(d log(R/r)+
M + log(1/δ)))(Tf + Tk) arithmetic operations when f is L-Lipschitz (or O((md+ dβR2) ×
(d log(R/r) + M + log(1/δ)))(Tf + Tk) arithmetic operations when f is β-smooth), since an
ed log(R/r)+M -warm start can be obtained by sampling uniformly from the ball B(a, r) ⊆ K,
where M = log(maxθ∈K ef(a)−f(θ)) ≤ LR. In comparison, the work of [33] for the hit-and-
run algorithm gives a bound of O(d3(R/r)2) log5(dR2

/(δr))(Tf + T̂K) arithmetic operations
to sample with TV error O(δ) without a warm start. Thus, when we are not given a
warm start and π ∝ e−f is constrained to a polytope K defined by m = O(d) inequalities,
Theorem 2.1 improves on the bounds of [33] for the hit-and-run algorithm by a factor
of min(d2−ω(R/r)2, d3−ω

/(rL2)) log4(1/δ) arithmetic operations in the setting when f is L-
Lipschitz, and min(d2−ω(R/r)2, d3−ω

/(rβ)) log4(1/δ) when f is β-smooth. On the other hand,
we note that the results of [33] apply more generally when π is a log-concave distribution on
a convex body, while our bounds for the soft-threshold Dikin walk (Theorem 2.1) apply to
the setting where π is a log-Lipschitz (or log-smooth) log-concave distribution on a polytope.
In the example of Bayesian Lasso logistic regression, our algorithm takes O(d3+ω log(d/δ))
arithmetic operations without a warm start since f is both β-smooth and L-Lipschitz, with
β = L = n = m = d, and R = 1 and r = 1/

√
d (Corollary B.1 in Appendix B); this

improves by a factor of d3−ω log4(d/δ) arithmetic operations on the bound of d6 log5(d/δ)
arithmetic operations for the hit-and-run algorithm of [33]. This is because, while it only
takes T̂K = O(d) arithmetic operations to establish membership in the ℓ1 ball, computing
the function f in logistic regression requires Tf = nd = d2 arithmetic operations.

Algorithm Iterations for
L-Lipschitz f

Iterations for
�-smooth f

Arithmetic
operations per

iteration

Iterations if
m = O(d), L, r = O(1),

R = O(d)

Iterations if
m = O(d), r = O( 1p

d
)

� = L = O(d), R = O(1)
Proximal Langevin MC

[3] Õ(d5��6L2(R
r )4) — O(md!�1) + Trf Õ(d9��6) Õ(d9��6)

Hit-and-run
[32] Õ(d2(R

r )2) same O(md) + Tf Õ(d4) Õ(d3)

Dikin Walk of
[37] Õ(d5 + d3L2R2) Õ(d5 + d3�R2) O(md!�1) + Tf Õ(d5) Õ(d5)

Soft Threshold Dikin
Walk (this paper) Õ(md + dL2R2) Õ(md + d�R2) O(md!�1) + Tf Õ(d3) Õ(d2)

Table 1: Number of iterations (and arithmetic operations per-iteration) of different algorithms which imply bounds for sampling within TV error O(�)

from a logconcave ⇡ / e�f on a polytope K when f is L-Lipschtiz or �-smooth, from a w-warm start. Tf and Trf are, respectively, the
number of operations to compute f or rf . The Õ notation hides logarithmic factors of d, �, r, R, w. The fifth column gives runtimes when K is
a polytope with R = O(d) that contains the unit ball (and is thus not well-rounded), and f is O(1)-Lipschitz. The sixth column corresponds to
sampling a Bayesian Lasso logistic regression posterior distribution with O(d) datapoints, where K is the unit `1-ball.

1

We also compare to the bound of O((d5 + d3L2R2) log(w/δ))(Tf +Tk) arithmetic operations
to sample from an L-log-Lipschitz density on a polytope defined by m inequalities with
TV error O(δ) from a w-warm start of [38].2 We note that while this bound has a larger
dependence on d (and L) than the bounds for the hit-and-run algorithm, the dependence on
log 1/δ is much smaller– by a factor of log4 1/δ– which can allow for faster runtimes when the
goal is to sample with infinity-distance error. We explain this in detail below. Theorem 2.1
improves on the bound of [38] bound by a factor of d2 arithmetic operations if m = O(d),

1Any convex body K contained in a ball of radius R > 0 and containing a ball of smaller radius
r > 0 satisfies the lower bound R/r ≥ 1. Moreover, for any convex body K, there always exists
a linear transformation T for which T K is contained in a ball of radius R̂ and contains a ball of
radius r̂ such that R̂/r̂ ≤ O(

√
d) (T K is referred to as a “well-rounded” convex body).

2When setting their scalar step size hyperparameter α
1/2 to O(min(1/d, 1/LR)), [38] get a bound

of ϕ ≥ α
1/2

/(κ
√

d) on the conductance ϕ of their Dikin walk (their Lemma 4). Here κ is the self-
concordance parameter of the barrier function; for the log-barrier κ = m, although there are other
barriers for which κ = O(d). Plugging their conductance bound into Corollary 1.5 of [31] implies a
bound of ϕ−2 log(w/δ)(Tf + Tk) = O((d5 + d3L2R2) log(w/δ)(Tf + Tk)) arithmetic operations from a
w-warm start for their walk to sample with O(δ) TV error from π. See Appendix A for details.
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and d3 if we also have that LR = O(
√
d). When f is instead β-smooth their bound is

O((d5 + d3βR2) log(w/δ))(Tf + Tk), and our improvement on this bound is d2 arithmetic
operations if m = O(d), and d3 if we also have that βR2 = O(d).
We also note that while many works, e.g. [24, 37, 27, 8], give faster bounds for the Dikin
walk and its variants than the bounds in [38], these only apply in the special case when π is
the uniform distribution on K. The proof of Theorem 2.1 appears in Appendix E. We give
an overview of the main ideas in the proof of Theorem 2.1 in Section 3. In Appendix F, we
give an axiomatic approach to arrive at our barrier function and discuss possible extensions.

Infinity-distance sampling. In applications of sampling to differentially private opti-
mization [36, 23, 2, 18, 28], bounds in the total variation (TV) distance are insufficient
to guarantee “pure” ε-differential privacy, and one instead requires bounds in the infinity-
distance d∞(ν, π) := supθ∈K |log(ν(θ)/π(θ))| ; see e.g. [14]. [35] give an algorithm that con-
verts samples from TV bounds to those bounded in infinity-distance. Namely, given ε > 0
and a sample from a distribution µ within TV distance δ ≤ O(ε(R(d log(R/r)+LR)2

/εr)−de−LR)
of π, this post-processing algorithm outputs a sample within infinity-distance O(ε) from
π. Plugging the TV bounds from our Theorem 2.1 into their Theorem 2.2 gives a faster
algorithm to sample from a log-concave and log-Lipschitz (or log-smooth) distribution con-
strained to a polytope K, with O(ε) error in d∞ (Corollary C.1 in Appendix C). In partic-
ular, Corollary C.1 gives a bound of O((md+ dL2R2) × [LR+ d log(Rd+LRd/rε)])(Tf + TK)
arithmetic operations to sample within O(ε) error in d∞ from a log-concave distribution
∝ e−f constrained to a polytope K from a cold start when f is L-Lipschitz (when f is
also β-smooth, the bound is O((md + dβR2) × [LR + d log(Rd+LRd/rε)])(Tf + TK)). This
improves on the bound of O((m2d3 +m2dL2R2) × [LR+ d log(Rd+LRd/rε)])(Tf +TK) arith-
metic operations in Theorem 2.1 of [35] by a factor of d3. Moreover, it further improves
on the bound of O((md9 +md5L4R4)(1/ε2) × polylog(1/ε, 1/r, R, L, d))(Tf + T̃K) operations
implied by [2]. Corollary C.1 improves on this bound by a factor of d9−ω

/ε2 when, e.g, each
function evaluation takes Tf = O(d2) operations and m = O(d) as may be the case in
privacy applications.

Differentially private optimization. A randomized mechanism h : Dn → R is ε-
differentially private (ε-DP) if for any datasets x, x′ ∈ D which differ by a single datapoint,
and any S ⊆ R, we have P(h(x) ∈ S) ≤ eεP(h(x′) ∈ S); see [14]. ε-differential privacy is
the strongest notion of differential privacy, holds several advantages over weaker notions of
differential privacy (see Remark 2.2), and has been widely studied in the literature [14, 25, 2].
In the application of the exponential mechanism to ε-DP low-rank approximation of a p× p
symmetric matrix M [28] (see also [19]), one wishes to sample within infinity distance
O(ε) from a log-linear distribution ∝ e−f on the Gelfand-Tsetlin polytope K ⊆ Rd (which
generalizes the probability simplex), where d = p2, and where K has m = d inequalities with
diameter R = O(

√
d). In this application, the log-linear density f is (trivially) 0-smooth

and d2σ1-Lipschitz, where σ1 := ∥M∥2 is the spectral norm of M . Thus, when applied to
the mechanism of [28], our algorithm takes d4.5+ωσ1 log(1/ε) arithmetic operations. This
improves by a factor of d3 on the bound of O(d7.5+ωσ1) arithmetic operations implied by
[35, 38], and improves by a factor of d11.5σ3

1/ε2 on the bound of O(d16σ4
1/ε2) implied by [2].

Consider the problem of finding an (approximate) minimum θ̂ of an empirical risk function
f : K × Dn → R under the constraint that θ̂ is ε-differentially private, where f(θ, x) :=∑n

i=1 ℓi(θ, xi). We assume that the ℓi(·, x) are L̂-Lipschitz for all x ∈ Dn, i ∈ N, for
some given L̂ > 0. In this setting, [2] show the minimum ERM utility bound under the
constraint that θ̂ is pure ε-DP, Eθ̂[f(θ̂, x)] − minθ∈K f(θ, x) = Θ(dL̂R/ε), is achieved if one
samples θ̂ from the exponential mechanism π ∝ exp(− ε

2L̂R
f) with infinity-distance error

at most O(ε). Plugging Corollary C.1 into the exponential mechanism, we obtain a faster
algorithm for a pure ε-DP mechanism which achieves the minimum expected risk (Corollary
D.1). Specifically, the runtime bound implied by Corollary D.1 is O((md+ dn2ε2) × (εn+
dlog(nRd/(rε))(Tf +TK)) arithmetic operations if each ℓi is L̂-Lipschitz (or O((md+dn β̂

L̂
Rε)×

(εn + dlog(nRd/(rε))(Tf + TK)) if f is also β-Lipschitz). This improves upon the bound of

5



O((d10(1/ε2) + ε2n4d6) × polylog(nRd/rε)))(Tf + T̃K) arithmetic operations in [2] by a factor
of max(d10−ω

/(ε2m), nd5(1/ε)), when the ℓi are L̂-Lipschitz on a polytope K and f can be
evaluated in Tf = O(nd) operations. And it improves by a factor of (at least) md on the
bound of O((m2d3 +m2dn2ε2)(εn+ d)log2(nRd/(rε))) ×mdω−1) operations obtained in [35].
For instance, when applying the exponential mechanism to Lasso logistic regression, if e.g.
n = d and ε < 1, our algorithm requires O(d3+ω) arithmetic operations, improving by
d3 on the bound of d6+ω operations implied by [35] and by roughly d9−ω on the bound
of O(d12) operations implied by [2]. In another example, when training a support vector
machine with hinge loss and Lasso constraints under ε-DP, our algorithm requires O(d4+ω)
arithmetic operations, improving by a factor of d2 on the bound of d6+ω operations implied
by [35] and by d8−ω on the bound of O(d12) implied by [2]. See Appendix D for details.

Remark 2.2 (Weaker notions of differential privacy) ε-DP holds several practical
advantages over weaker notions of differential privacy (DP), including (ε, δ)-DP– a notion
of differential privacy where the privacy of the mechanism is allowed to fail with probability
O(δ). E.g., when group privacy— privacy of subsets of k individuals— must be preserved,
any pure ε-DP mechanism is also kε-DP. In contrast, (ε, δ)-DP only implies (ε, ke(k−1)εδ)-
DP for subsets of k individuals– the failure probability grows exponentially with k.

3 Overview of proof of Theorem 2.1

Suppose we are given any polytope K = {θ ∈ Rd : Aθ ≤ b} defined by m inequalities, and
a convex f : K → Rd which is L-Lipschitz (or β-smooth) and given by an oracle which
returns f(θ) at any θ ∈ K. Our goal is to sample from π ∝ e−f on K within any TV error
δ > 0, in a number of arithmetic operations and oracle calls that has a dependence on the
dimension d that is a lower-order polynomial than currently available bounds for sampling
from log-Lipschitz (or log-smooth) log-concave distributions, and is logarithmic in 1/δ.

Extending the Dikin walk to sample from log-concave distributions on K. As
a first step, we begin by attempting to generate samples from π via the (Gaussian) Dikin
walk, by extending the standard analysis given in e.g. [24, 37] for the special case when π
is uniform on K to the more general case where π is a log-Lipschitz log-concave on K.
In the special case where π is the uniform distribution on K, from any point θ in the
interior of K, the Dikin walk proposes updates z = θ +

√
αH−1(θ) ξ where ξ ∼ N(0, Id)

and H(θ) = ∇2φ(θ) is the Hessian of the log-barrier function φ(θ) = −
∑m

j=1 log(bj − a⊤
j θ)

for K = {θ ∈ Rd : Aθ ≤ b}, and α > 0 is a scalar hyperparameter. To ensure that the
stationary distribution of the Dikin walk is the uniform distribution on K, if a proposed
update falls in the interior of K, it is accepted with probability

min
((√

det(H(z))√
det(H(θ))

)
e∥z−θ∥2

H(θ)−∥θ−z∥2
H(z) , 1

)
determined by the metropolis rule; otherwise, it is rejected. The use of the log-barrier is to
ensure that the steps proposed by the Dikin walk remain inside the polytope K w.h.p.
The hyperparameter α is chosen as large as possible while still ensuring the proposed steps
remain in K and are accepted w.h.p. On the one hand, since the covariance matrix αH−1(θ)
of the proposed updates is proportional to α, larger choices of α allow the walk to propose
larger update steps. On the other hand, if α is too large, the proposed steps may fall outside
the polytope and be rejected w.h.p. To see how to choose α, note that for any θ ∈ Int(K),
the Dikin ellipsoid Dθ = {w : (w − θ)⊤H−1(θ)(w − θ) ≤ 1} is contained in K. Thus,
standard Gaussian concentration inequalities which guarantee ∥ξ∥2 = O(

√
d) w.h.p. imply

θ +
√
αH−1(θ) ξ is in K w.h.p. if α ≤ O(1/d). Moreover, using properties of log-barrier

functions, one can show the term det(H(z))/det(H(θ)) in the acceptance ratio is also Ω(1) for
α = O(1/d), as is done in [24, 37]. To see why, Lemma 4.3 of [45] implies that, if H(θ) is the
Hessian of a log-barrier function for K, its log-determinant V (θ) = log(det(H(θ))) satisfies

(∇V (θ))⊤[H(θ)]−1∇V (θ) ≤ O(d) ∀θ ∈ Int(K). (1)
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Thus, if α ≤ 1/d, the proposed update z = θ+
√
αH−1(θ) ξ has variance Ω(1) in the direction

∇V (θ), and (by Gaussian concentration), (θ − z)⊤∇V (θ) ≤ O(1) w.h.p. This implies
V (z) − V (θ) = log det(H(z)) − log det(H(θ)) = Ω(1), and hence det(H(z))/det(H(θ)) = Ω(1).
In [38], the Dikin walk is applied to the more general problem of sampling from a L-log-
Lipschitz (or β-log-smooth) log-concave π ∝ e−f onK (the problem of interest in this paper).
To guarantee the walk has the correct stationary distribution π, the Metropolis acceptance
probability of the proposed updates z = θ +

√
γH−1(θ) ξ, where γ is a hyperparameter,

gains an additional factor e−f(z)
/e−f(θ). To ensure this acceptance probability remains Ω(1),

they modify the scalar step size γ such that w.h.p. the walk takes steps where f changes
by O(1). To see how to choose γ, note that since f is L-Lipschitz, ef(z)−f(θ) = Ω(1) if the
Euclidean distance ∥z− θ∥2 is O(1/L). This can be shown to occur w.h.p. if γ = O(1/(LR)2),
since the fact that the Dikin ellipsoid is in K ⊆ B(0, R) implies that the eigenvalues of H(θ)
are all ≤ R2 and hence the variance γv⊤H−1(θ)v of the proposed step is ≤ O(1/(dL2)) in any
given direction v ∈ Rd (where v is a unit vector). Thus, it is sufficient for them to choose
γ = min(1/d, 1/(LR)2) to ensure the proposed step remains in K and is accepted w.h.p.
On the one hand, to ensure the Markov chain proposes steps that change f by an amount
at most O(1) for any L-Lipschitz f , it is necessary and sufficient to ensure that from any
point θ ∈ Int(K), the Markov chain makes updates which fall w.h.p. inside a Euclidean
ball B(θ, 1/L) of radius 1/L centered at θ. This is because the Lipschitz condition on f :
∥f(θ) − f(z)∥2 ≤ L∥θ − z∥2 for all θ, z ∈ K holds w.r.t. the Euclidean norm ∥ · ∥2. On the
other hand, to ensure that the Markov chain remains inside the polytope K, it is sufficient
to propose steps that lie inside the Dikin ellipsoid Dθ = {w : (w − θ)⊤H−1(θ)(w − θ) ≤ 1}
centered at θ. Roughly, the scalar step size γ is chosen such that this ellipsoid is contained
inside the Euclidean ball B(θ, 1/L), as this guarantees that w.h.p. the steps proposed by the
walk will both remain in K and will also not change the value of f by more than O(1).
However, at many points θ the Dikin ellipsoid Dθ is such that the ratio of the largest to
smallest eigenvalues of H−1(θ) may be very large (this ratio can grow arbitrarily large as θ
approaches a face of the polytope). Thus, roughly speaking, modifying the covariance matrix
of the Dikin walk by a scalar constant (γH−1(θ)) can cause the Dikin walk to propose steps
whose variance in some directions is much smaller than is required for either of the two goals:
staying inside K and staying inside the ball B(θ, 1/L) defined by the Lipschitz condition on
f . This suggests that modifying the log-barrier function for K by a scalar multiple may not
be the most efficient way of extending the Dikin walk to the problem of sampling from a
general L-log-Lipschitz (or β-log-smooth) log-concave distribution on K, and that one may
be able to obtain faster runtimes by making other modifications to the barrier function.

A soft-threshold regularized Dikin walk. Before we introduce our soft-threshold Dikin
walk, we first note that even in the special case where π is the uniform distribution on K,
the analysis in [38] does not recover the bounds given in [24, 37] for this special case, as [38]
use a different runtime analysis geared to time-varying distributions studied in that paper.
Namely, [38] imply a bound of O(m2d3 log(ω/δ)) steps to sample from a uniform distribution
on K, while [24, 37] show a bound of O(md log(ω/δ)). For this reason, we first extend the
analysis of the Gaussian Dikin walk given in [24, 37] for the special case of uniform π, to
the more general problem of sampling from an L-log-Lipschitz or β-log-smooth log-concave
density. The analysis in [24, 37] uses the cross-ratio distance metric. More specifically, if for
any distinct u, v ∈ Int(K) we let p, q be the endpoints of the chord in K passing through u
and v such that the four points lie in the order p, u, v, q, the cross-ratio distance is

σ(u, v) := ∥u− v∥2 × ∥p− q∥2

∥p− u∥2 × ∥v − q∥2
. (2)

One can show that for any u, v ∈ Int(K), σ2(u, v) ≥ (1/(mγ−1))∥u− v∥2
γ−1H(u) (see e.g. [24,

37]). Thus, as the usual Dikin walk takes steps that have roughly identity covariance matrix
Id with respect to the local norm ∥u∥γ−1H(θ) :=

√
u⊤γ−1H(θ)u, for γ = min(1/d, (1/(LR)2)),

the bound we would obtain on the number of steps until the Dikin walk is within TV error
δ from π is O(∆−1 log(ω/δ)) = O((md+mL2R2) log(w/δ)) steps from a w-warm start.
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To obtain even faster bounds, we would ideally like to allow the Dikin walk to take larger
steps by choosing a larger γ, closer to the value 1/d that is sufficient to ensure an Ω(1)
acceptance probability in the special case when π is uniform. Unfortunately, if e.g. LR ≥ d,
reducing γ from 1/d to (1/(LR)2) may be necessary to ensure the variance of the Dikin walk
steps is O(1/(dL2)) in every direction, and hence that the acceptance probability is Ω(1).
To get around this problem, we introduce a new variant of the Dikin walk Markov chain for
sampling from any L-log-Lipschitz (or β-log-smooth) log-concave distributions on a polytope
K, which generalizes the Dikin walk introduced in [24] for sampling from π in the special
case when π is the uniform distribution on K. The main difference between our Dikin
walk and the usual Dikin walk of [24] (and of [38]) is that our Dikin walk regularizes the
Hessian α−1H(θ) of the log-barrier for K by adding a “soft-threshold” regularization term
η−1Id proportional to the identity matrix, where η is a hyperparameter and α is the same
hyperparameter appearing in the original Dikin walk of [24]. Since the log-barrier Hessian
α−1H(θ) and regularization term η−1Id have different scalar hyperparameters α, η, we can
set α and η independently from each other: roughly, α−1 is chosen to be the largest value
such that the Dikin ellipsoid defined by the matrix α−1H(θ) remains inside K, while η−1

is independently chosen to be the largest value such that, with high probability, the steps
proposed by our Markov chain remain inside the ball B(θ, 1/L) defined by the Lipschitz
condition on f . Roughly, the addition of the soft-threshold regularization term to the log-
barrier Hessian allows us to reduce the variance of the proposed steps of the Dikin walk only
in those directions where a choice of α = 1/d would cause the variance to be greater than
1/(dL2) while leaving the variance in other directions unchanged.
More specifically, the steps proposed by our soft-threshold Dikin walk are Gaussian with
mean 0 and covariance matrix Φ−1(θ) := (α−1H(θ) + η−1Id)−1. The addition of the soft-
threshold regularization term η−1Id allows us to ensure that the largest eigenvalues of the
covariance matrix Φ−1(θ) are ≤ O(1/(dL2)), without reducing (by more than a constant
factor) the eigenvalues which were already ≤ O(1/(dL2)). This allows our Dikin walk to
take larger steps, while still ensuring these steps are accepted w.h.p. by the Metropolis
accept/reject rule for f . Taking larger steps allows our Dikin walk to converge more quickly
to the target distribution π(θ) ∝ e−f(θ) on K.
The (inverse) covariance matrix Φ(θ) of the steps proposed by our Dikin walk is the Hessian
of the function ψ(θ) = α−1φ(θ) + η−1∥θ∥2 where φ(θ) = −

∑m
j=1 log(bj − a⊤

j θ) is the log-
barrier for K. The modified function ψ(θ) can be seen to also be a self-concordant barrier
for K. In the special case where π is the uniform distribution, L = 0 and η−1 = 0, and our
“soft-threshold” Dikin walk recovers the original walk of [24]. Thus, our walk generalizes
the original Dikin walk to the problem of sampling from a general L-log-Lipschitz (or β-log-
smooth) log-concave distribution on a polytope.

Bounding the number of Markov chain steps. Setting η = 1/(dL2) ensures the vari-
ance v⊤αH−1(θ)v in any given unit-vector direction v of the proposed update z − θ of our
Markov chain is at most O(1/(dL2)), and hence the term ef(z)−f(θ) in the Metropolis accep-
tance rule is Ω(1) with high probability (Lemma E.5). Moreover, we also show that, if we
choose α = 1/d, the other terms in the Metropolis acceptance rule are also Ω(1) (Lemmas
E.8, E.9). While the proofs of these lemmas follow roughly the same outline as in the spe-
cial case of the original Dikin walk where π is uniform (e.g., [24, 37]), our bound on the
determinantal term detΦ(z)/detΦ(θ) must deal with additional challenges, which we discuss in
the next subsection.
To bound the number of steps required by our Markov chain, we first bound the cross-ratio
distance σ(u, v) between any u, v ∈ Int(K) by the local norm ∥u− v∥Φ(u) (Lemma E.2):

σ2(u, v) ≥

(
1

2m

m∑
i=1

(a⊤
i (u− v))2

(a⊤
i u− bi)2

)
+ 1

2
∥u− v∥2

2
R2 ≥ 1

2mα−1 + 2η−1R2 ∥u− v∥2
Φ(u). (3)

Using (3) together with the isoperimetric inequality for the cross-ratio distance (Theorem
2.2 of [32]), we show that, if the acceptance probability of our Markov chain is Ω(1) at
each step, then the number of steps for our Markov chain to obtain a sample within a TV
distance of δ from π is O(∆−1 log(ω/δ)) = O((md+ dL2R2) log(w/δ)) from an w-warm start,
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where ∆ = Ω(1/(2mα−1+2η−1R2)). In particular, if m = O(d) and LR > d, this improves on
the bound we would get for the basic Dikin walk by a factor of d.

Bounding the determinantal term in the acceptance probability. For our mixing
time bound to hold, we still need to show that det(Φ(z))/det(Φ(θ)) is Ω(1) w.h.p. We would
ideally like to follow the general approach previous works [24, 37] use to show the term
det(H(z))/det(H(θ)) in the basic Dikin walk is Ω(1) w.h.p., which relies on the property of log-
barrier functions in Inequality (1). Unfortunately, as Φ(θ) is not the Hessian of a log-barrier
function for any system of inequalities defining K, we cannot directly apply (1) to Φ(θ).
To get around this problem, we show that, while Φ(θ) is not the Hessian of a log-barrier
function, it is in fact the limit of a sequence of matrices Hi(θ), i ∈ N, where each matrix
Hi(θ) in this sequence is the Hessian of a (different) log-barrier function for K. Specifically,
for every j ∈ N, we consider the matrices Aj = [A⊤, Id, . . . , Id]⊤ where A is concatenated
with (mj−1)/d copies of the identity matrix Id, and mj = m+ ⌊αη−1j2⌋d. And we consider
the vectors bj = (b⊤, j1⊤, . . . , j1⊤)⊤, where b is concatenated with (mj−1)/d copies of the
vector j1, where 1 = (1, . . . , 1)⊤ ∈ Rd is the all-ones vector. Then, for large enough j,
K = {θ ∈ Rd : Ajθ ≤ bj}, and the Hessian of the corresponding log-barrier functions is

Hj(θ) =
∑mj

i=1
aj

i
(aj

i
)⊤

((aj
i
)⊤θ−bj

i
)2 = H(θ) + ⌊αη−1j2⌋

∑d
i=1

eie⊤
i

(e⊤
i

θ−j)2 . (4)

Using this fact (4), we show that, for every θ ∈ int(K), every z ∈ 1
2Dθ, and every sequence

{zj}∞
j=1 ⊆ 1

2Dθ such that zj → z, we have (Lemma E.7),

lim
j→∞

det(Hj(zj))
det(Hj(θ)) = det(Φ(z))

det(Φ(θ)) . (5)

Moreover, since each Hj is the Hessian of a log-barrier function for K, we have that (1) does
hold for Hj and hence (from the work of [24, 37]) that det(Hj(zj))/det(Hj(θ)) = Ω(1) w.h.p.
for all j ∈ N, if we set zj = θ + α1/2H

−1/2
j (θ)ξ, ξ ∼ N(0, Id), and choose α = 1/d. Thus, (5)

implies that det(Φ(z))/det(Φ(θ)) = Ω(1) w.h.p. as well (Lemma E.9), and hence the acceptance
probability of the soft-threshold Dikin walk is Ω(1) at each step.

Bounding the number of arithmetic operations. Since the acceptance probability
is Ω(1), from the above discussion, the number of steps for our Markov chain to obtain a
sample within TV distance δ > 0 from π is O((md+ L2R2) log(w/δ)) from a w-warm start.

Each time our Markov chain proposes a step θ+ Φ−1/2(θ)ξ, it must first sample a Gaussian
vector ξ ∼ N(0, Id) which takes O(d) arithmetic operations. It must then compute the
log-barrier Hessian H(θ), and invert the matrix Φ(θ) = α−1H(θ) + η−1Id.

Since H(θ) = C(θ)C(θ)⊤, where C(θ) is a d×m matrix with columns cj(θ) = aj/(a⊤
j θ−bj) for

all j ∈ [m], we can compute H(θ) in mdω−1 arithmetic operations. And since Φ(θ) is a d×d
matrix, computing Φ−1/2(θ) can be accomplished in dω arithmetic operations by computing
the singular value decomposition (SVD) of Φ. Next, we compute the acceptance probability

min
(

e−f(z)
√

det(Φ(z))
e−f(θ)

√
det(Φ(θ))

e∥z−θ∥2
Φ(θ)−∥θ−z∥2

Φ(z) , 1
)
. The determinants can be computed in O(dω)

arithmetic operations via the SVD. Evaluating f(z), f(θ) takes two calls to the oracle for f .
Thus, from a w-warm start, the soft-threshold Dikin walk takes at most O((md+ dL2R2) ×
log(w/δ)) Markov chain steps to obtain a sample from π with total variation error δ > 0,
where each step takes O(mdω−1) arithmetic operations, and one function evaluation.

Remark 3.1 (Optimality of ℓ2-regularization) For the class of functions considered in
our paper, we conjecture that an ℓ2-regularizer that does not depend on θ is optimal. This
is because we consider the class of functions which are L-Lipschitz or β-smooth with respect
to the ℓ2-norm, and our bound on L or β does not depend on θ. Moreover, we only have
access to the function θ through an oracle which returns the value of f at any given point θ
but does not tell us how f changes at nearby points.
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Algorithm 1: Soft-threshold Dikin walk
Input: m, d ∈ N, A ∈ Rm×d, b ∈ Rm, which define K := {θ ∈ Rd : Aθ ≤ b}.
Input: Oracle returning the value of a convex f : K → R. Initial point θ0 ∈ Int(K).

1 Hyperparameters: α > 0, η > 0, and T ∈ N.
2 Set θ ← θ0
3 for i = 1, . . . , T do
4 Sample a point ξ ∼ N(0, Id)

5 Set H(θ)←
∑m

j=1
aj a⊤

j

(a⊤
j

θ−bj )2

6 Set Φ(θ)← α−1H(θ) + η−1Id

7 Set z ← θ + Φ(θ)−1/2ξ
8 if z ∈ Int(K) then
9 Set H(z)←

∑m

j=1
aj a⊤

j

(a⊤
j

z−bj )2

10 Set Φ(z)← α−1H(z) + η−1Id

11 Accept z with probability 1
2 min

(
e−f(z)

√
det(Φ(z))

e−f(θ)
√

det(Φ(θ))
× e

∥z−θ∥2
Φ(θ)−∥θ−z∥2

Φ(z) , 1
)

12 else
13 Reject z
14 end
15 end
16 Output θ

In Theorem 2.1, we set the step size hyperparameters α = 1/(105d) and η = 1/(104dL2) if f is
L-Lipschitz, and the number of steps to be T = 109 (2mα−1 + η−1R2)× log(w/δ). When f
is β-smooth (but not necessarily Lipschitz), we instead set α = 1/(105d) and η = 1/(104dβ).
In many applications, a bound on L or β can be calculated analytically, allowing one to
set α, η as above. This includes, e.g., applications to training Bayesian or differentially
private logistic regression models (or other generalized linear models such as support vector
machines). When a bound on L or β is not known, one can in practice set α, η by hand
such that the average acceptance probability is ≥ Ω(1).

4 Conclusions, limitations, and future work

Our result improves on the runtime bounds of a line of previous work, for the problem of
sampling from several classes of log-Lipschitz or log-smooth log-concave distributions on a
polytope (see Table 1). To the best of our knowledge, this is the first result to introduce
regularized barrier functions that simultaneously take into account the geometry of both the
constraint polytope and the Lipschitz or smoothness property of a target logconcave func-
tion. These barrier functions may be of independent interest for sampling or optimization.
On the other hand, we note that [27] give an implementation of the Dikin walk in the special
case where f is constant, where the (average) cost of computing the Hessian matrix of the
log-barrier of the polytope K := {θ ∈ Rd : Aθ ≤ b} at each step of the walk is improved to
roughly O(d2+nnz(A)) arithmetic operations, where nnz(A) denotes the number of non-zero
entries of A. Whether this improvement in the per-step computation time can be achieved
for the problem of computing the regularized barrier functions used in our algorithm, in the
more general setting where f is L-Lipschitz or β-smooth, is an interesting open problem.
Moreover, we note that our bounds are polynomial in L or β, yet there are algorithms for
sampling from log-concave distributions ∝ e−f which do not assume f is L-Lipschitz or β-
smooth. Thus, another interesting open problem is whether one can obtain runtime bounds
for a version of the Dikin walk which do not require f to be Lipschitz or smooth.
Our results have applications to Bayesian inference and differentially private optimization.
Bayesian inference can lead to algorithms with better generalization properties and quan-
tification of uncertainty, and differential privacy guarantees are important to protecting the
privacy of individuals in medical and other sensitive datasets. Thus, we believe our results
will have positive societal impacts, and do not anticipate any negative impacts to society.
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A Additional discussion with related work

The problem of sampling from the uniform distribution when K is a polytope given by a set
of inequalities, and the distance to π is measured in total-variation (TV) distance has been
widely studied; see, e.g., [24, 37, 30, 8, 27]. Also widely studied is the problem of sampling
from an unconstrained log-concave distribution. One direction of study includes works that
require the log-density π to be L-log-Lipschitz or β-log-smooth on all Rd for some L, β > 0,
and give bounds on the distance to π in terms of TV distance [13], Wasserstein distance
[12, 9, 42], and Kullback-Leibler (KL) divergence [46, 11].
Further, [5, 3] provide versions of the Langevin dynamics for sampling from a log-concave
distribution π ∝ e−f on K where f is L-Lipschitz and β-smooth and K is given by a
projection oracle– when, e.g., K is contained in a ball of radius O(1), it contains a ball
of radius Ω(1), and L = β = O(1), [5] give a bound of roughly O(d9

/δ22) gradient and
projection oracle calls to sample from π with TV error δ > 0, while [3] give a bound of
roughly O(d5

/δ6) gradient and projection oracle calls. [21] provide an algorithm for sampling
from distributions ∝ e−f where f is both L-Lipschitz and µ-strongly convex (that is, f(θ)
is the sum of a convex function f̂(θ) and the quadratic function (µ/2)∥θ∥2 for some µ > 0)
on a convex body K in roughly Õ((L2

/µ) log2(d/δ)) membership and function oracle calls
(see also [7], who require f to be µ-strongly convex for µ > 0 and β-smooth). However,
the algorithms of [21, 7] do not apply to the more general setting where f is convex and
L-Lipschitz (or β-smooth), but not necessarily µ-strongly convex for any µ > 0.

Detailed comparison to [38]. Compared to [38], in our version of the Dikin walk, z is
sampled from a Gaussian with covariance matrix

(α−1H(z) + η−1Id)−1,

where α−1 and η−1 are hyper-parameters chosen to be α−1 ≈ d2 and η−1 ≈ dL2 if f
is L-Lipschitz (or η−1 ≈ dβ if f is L-smooth). The “soft-threshold” regularization term
η−1Id prevents the Markov chain from taking steps where the value of f decreases by more
than O(1) w.h.p., ensuring that the term ef(θ)−f(z) in the acceptance probability is Ω(1).
The soft-threshold regularizer is chosen to be a multiple of the identity matrix Id since the
Lipschitz condition on f is rotationally invariant– it bounds the derivative of f by the same
amount L in each direction (the same is true for the second derivative of f if f is β-smooth).
This in turn allows our choice of scaling α−1 for the “Dikin ellipsoid” term H(z)– which is
not in general rotationally invariant, and determined only by the geometry of the polytope
rather than the geometry of the function f– to be independent of L (or β). This is in
contrast to the Dikin walk in [38] where the scaling parameter for H(z) must depend on L
(or β) to ensure an Ω(1) acceptance probability, which allows our Markov chain to propose
steps with a larger variance than the Dikin walk in [38] in directions which are not the
largest eigenvector of H−1(z).
The (inverse) covariance matrix α−1H(z) + η−1Id of our soft-threshold Dikin walk updates
is the Hessian of the function ψ(θ) = α−1φ(θ) + η−1∥θ∥2

2. This barrier function can be
seen to be a Hessian of a self-concordant barrier. On the other hand, it is not the Hessian
of a logarithmic-barrier function for any polytope defined by any set of inequalities. This
prevents us from directly applying the analysis of the Dikin walk in the special case where
f ≡ 0 [37]–which relies on properties of log-barrier functions– to our soft-threshold Dikin
walk on Lipschitz or smooth f . To get around this problem, we show that, while ψ(θ) is
not a log-barrier function of any polytope K, it is the limit of a sequence of log-barrier
functions ψ̂1, ψ̂2, . . . where ψ̂i(θ) → ψ(θ) uniformly in θ as i → ∞. See Section 3 for a
detailed overview of the proof.
An open problem is to obtain runtime bounds for the Dikin walk that do not require f to be
Lipschitz or smooth, and/or that depend polynomially on logR. This leads to the question
of whether one can design other tractable self-concordant barriers to obtain further runtime
improvements for sampling log-concave distributions on a polytope. We discuss possible
extensions in Appendix F.
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Explanation of bounds in [38]. [38] consider a version of the Dikin walk for sampling
from a log-concave distribution π ∝ e−f on a polytope K contained in a ball of radius R > 0
(and also more generally on any convex body with a self-concordant barrier function). Their
version of the Dikin walk has proposed updates z = α

1
2H− 1

2 (θ)ξ where ξ ∼ N(0, Id), and

acceptance probability given by 1
2 × min

(
e−f(z)

√
det(H(z))

e−f(θ)
√

det(H(θ))
, 1
)

. Here H is the hessian of a

barrier function for the convex body K, which may be the log-barrier or another barrier
function. For a step size of α 1

2 = O(min( 1
d ,

1
LR )) (Condition 4 in Section 3.1 of their paper;

note that R is considered a constant in [38] and therefore does appear explicitly in their
bounds)3, they obtain a bound on the conductance ϕ of their version of the Dikin walk
(Lemma 4 of their paper):

ϕ ≥ α
1
2

κ
√
d
, (6)

where κ is the self-concordance parameter of the barrier function; for the log-barrier κ = m,
although there are other barrier functions for which κ = O(d). Plugging Inequality (6) into
Corollary 1.5 of [31] implies that their Dikin walk can obtain a sample from π with O(δ)
TV error in roughly ϕ−2 log( w

δ ) = O((d5 + d3L2R2) log( w
δ )) steps from a w-warm start.

The number of arithmetic operations per step is mdω−1 and the number of arithmetic oper-
ations to obtain a sample with TV error O(δ) from π is O((md4+ω +md2+ωL2R2) log( w

δ )).
If one also has that K contains a ball of radius r > 0, from a cold start one can find an
initial point which is ed log( R

r )+LR-warm by sampling from the uniform distribution on this
ball, and hence their bound is O((md4+ω +md2+ωL2R2)(d log( R

r ) + LR+ log( 1
δ ))).

B Application to Bayesian Lasso logistic regression

The following corollary follows directly from Theorem 2.1.

Corollary B.1 There exists an algorithm which, given δ, c > 0 and a dataset {xi}n
i=1 ⊆ Rd

s.t. ∥xi∥2 ≤ 1 ∀ i ∈ [n], and letting f(θ) =
∑n

i=1 ℓ(θ⊤xi) where ℓ(s) = 1
1+e−s is the logistic

loss, K = {θ ∈ Rd : ∥θ∥1 ≤ c} is the Lasso constraint, and π ∝ e−f has support K, outputs
a point from a distribution µ s.t. ∥µ − π∥TV ≤ δ, in O((d2 + ndc2)(dω+1 + nd2) log( d

δ ))
arithmetic operations.

C Infinity-distance sampling

In applications of sampling to differentially private optimization [36, 23, 2, 18, 28], bounds
in the total variation (TV) distance are insufficient to guarantee “pure” differential privacy,
and one instead requires bounds in the infinity-distance d∞(ν, π) := supθ∈K |log(ν(θ)/π(θ))| ;
see e.g. [14]. [35] give an algorithm that converts samples from TV bounds to those bounded
in infinity-distance. Namely, given ε > 0 and a sample from a distribution µ within TV
distance δ ≤ O

(
ε
(

R(d log(R/r)+LR)2
/εr
)−d

e−LR
)

of π, this post-processing algorithm outputs
a sample from a distribution ν with infinity distance d∞(ν, π) ≤ ε from π. Plugging the
TV bounds from our Theorem 2.1 into their Theorem 2.2 gives a faster algorithm to sample
from a log-concave and log-Lipschitz distribution constrained to a polytope K, with O(ε)
error in d∞. In particular, Corollary C.1 improves the bound of O((m2d3 + m2dL2R2) ×
[LR+ d log(Rd+LRd/(rε))])(Tf + TK) arithmetic operations in their Theorem 2.1. The proof
is identical to that of how their Theorem 2.2 implies their Theorem 2.1, and we refer the
reader to their paper.

Corollary C.1 (Sampling with infinity-distance guarantees) There exists an algo-
rithm which, given ε, L, r, R > 0, A ∈ Rm×d, b ∈ Rm (and possibly β > 0), that de-
fine a polytope K := {θ ∈ Rd : Aθ ≤ b} contained in a ball of radius R, a point

3There is a typo on page 7 of [38]: “R” should be the radius of the smallest ball containing K,
not the radius of the largest ball contained in K.
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a ∈ Rd such that K contains a ball B(a, r) of smaller radius r, and an oracle for
the value of a convex function f : K → Rd, where f is L-Lipschitz (or is both L-
Lipschitz and β-smooth), and defining π to be the distribution π ∝ e−f , outputs a
point from a distribution ν such that d∞(ν, π) < ε. Moreover, this algorithm takes
O
(
(md+ dL2R2) ×

[
LR+ d log

(
Rd+LRd

rε

)])
(Tf + TK) arithmetic operations, where Tf is

the number of arithmetic operations to evaluate f and TK = O(mdω−1). If f is also β-
Lipschitz, the number of operations is O

(
(md+ dβR2) ×

[
LR+ d log

(
Rd+LRd

rε

)])
(Tf +TK).

Corollary C.1 further improves the dependence on the dimension d over [2, 35]. Specifically,
[2] implies a bound of O((md9 +md5L4R4)(1/ε2) × polylog(1/ε, 1/r, R, L, d))(Tf + T̃K) arith-
metic operations, where Tf is the number of operations to compute f and T̃K the operations
to compute a projection oracle for K. Corollary C.1 improves on this bound by a factor of
roughly d10−ω

/(ε2m) when, e.g, each function evaluation takes Tf = O(d2) operations. For
example, when m = O(d), as may be the case in privacy applications, the improvement is
d9−ω

/ε2. Moreover, it improves by d3 on the bound of O((m2d3 + m2dmin(L2R2, βR2)) ×
[LR+ d log((Rd+LRd)/(rε))](Tf + TK) arithmetic operations obtained in [35].

D Differentially private optimization

A randomized mechanism h : Dn → R is said to be ε-differentially private (ε-DP) if for
any datasets x, x′ ∈ D which differ by a single datapoint, and any S ⊆ R, we have that
P(h(x) ∈ S) ≤ eεP(h(x′) ∈ S); see [14]. In the application of the exponential mechanism
to ε-DP low-rank approximation of a p × p symmetric matrix M [28] (see also [19]), one
wishes to sample within infinity distance O(ε) from a log-linear distribution ∝ e−f on the
Gelfand-Tsetlin polytope K ⊆ Rd (which generalizes the probability simplex), where d = p2,
and where K has m = d inequalities with diameter R = O(

√
d). In this application, the

log-linear density f is (trivially) 0-smooth and d2σ1-Lipschitz, where σ1 := ∥M∥2 is the
spectral norm of M . Thus, when applied to the mechanism of [28], our algorithm takes
d4.5+ωσ1 log(1/ε) arithmetic operations. This improves by a factor of d3 on the runtime
bound of O(d7.5+ωσ1) arithmetic operations implied by [35, 38], and improves by a factor
of d11.5σ3

1/ε2 on the bound of O
(

d16σ4
1/ε2
)

arithmetic operations for the bound in [2].

Consider the problem of finding an (approximate) minimum θ̂ of an empirical risk function
f : K × Dn → R under the constraint that θ̂ is ε-differentially private, where f(θ, x) :=∑n

i=1 ℓi(θ, xi). We assume that the ℓi(·, x) are L̂-Lipschitz for all x ∈ Dn, i ∈ N, for some
given L̂ > 0. In this setting, [2] show the minimum ERM utility bound under the constraint
that θ̂ is pure ε-DP, Eθ̂[f(θ̂, x)] − minθ∈K f(θ, x) = Θ(dL̂R/ε), is achieved if one samples θ̂
from the exponential mechanism π ∝ exp(− ε

2L̂R
f) with infinity-distance error at most O(ε).

Plugging Corollary C.1 into the exponential mechanism, we obtain a faster algorithm for a
pure ε-DP mechanism which achieves the minimum expected risk (Corollary D.1).

Corollary D.1 (Differentially private empirical risk minimization) There exists
an algorithm which, given ε, L̂, r, R > 0, A ∈ Rm×d, b ∈ Rm (and possibly β̂ > 0) that
define a polytope K := {θ ∈ Rd : Aθ ≤ b} contained in a ball of radius R and containing a
ball of smaller radius r, and an empirical risk function f(θ, x) :=

∑n
i=1 ℓi(θ, xi), where each

ℓi : K → R is L̂-Lipschitz (and possibly also β̂ − smooth), outputs a random point θ̂ ∈ K

which is pure ε-differentially private and satisfies Eθ̂[f(θ̂, x)] − minθ∈K f(θ, x) ≤ O(dL̂R/ε).
Moreover, this algorithm takes O((md+ dn2ε2) × (εn+ dlog(nRd/(rε))(Tf + TK)) arithmetic
operations if each ℓi is L̂-Lipschitz (or O((md + dn β̂

L̂
Rε) × (εn + dlog(nRd/(rε))(Tf + TK))

if f is also β-Lipschitz), where Tf is the number of operations to evaluate f and
TK = O(mdω−1).

Corollary D.1 improves on [2, 35]. In particular, it improves upon the bound of O((d10(1/ε2)+
ε2n4d6) × polylog(nRd/rε)))(Tf + T̃K) arithmetic operations in [2] by a factor of roughly
max(d10−ω

/(ε2m), nd5(1/ε)) arithmetic operations, in the setting where the ℓi are L̂-Lipschitz
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on a polytope K and f can be evaluated in Tf = O(nd) operations (T̃K is the number of
operations to compute a projection oracle for K). And it improves by a factor of (at least)
md on the bound of O((m2d3 + m2dn2ε2) × (εn + d)log2(nRd/(rε))) × mdω−1) arithmetic
operations obtained in [35]. The proof is identical to that of how their Theorem 2.2 implies
their Corollary 2.4, and we refer the reader to their paper. For instance, when applying
the exponential mechanism to the Lasso logistic regression problem, each loss ℓi is both
β̂-smooth and L̂-Lipschitz for β̂ = L̂ = 1 and R = O(1). Thus, if n = d and ε < 1, for
this problem our algorithm requires O(d3+ω) arithmetic operations, which improves by a
factor of d3 on the bound of d6+ω arithmetic operations implied by Corollary 2.4 in [35]
and by roughly d9−ω on the bound of O(d12) arithmetic operations implied by [2]. In
another example, when training a support vector machine model with hinge loss and Lasso
constraints under ε-differential privacy, one has that ℓi is L̂-Lipschitz but not smooth, for
L̂ = 1, and R = O(1). Thus, if n = d and ε < 1, our algorithm requires O(d4+ω) arithmetic
operations, which improves by a factor of d2 on the bound of d6+ω operations implied by
Corollary 2.4 in [35] and by roughly d8−ω on the bound of O(d12) implied by [2].

E Proof of Theorem 2.1

E.1 Bounding the number of arithmetic operations

In the following, we assume the hyperparameters α, η satisfy α ≤ 1
105d log( 1

δ̂
) for some

choice of δ̂ > 0, and either η ≤ 1
104dL2 (in the setting where f is L-Lipschitz) or η ≤ 1

104dβ

(in the setting where f is β-smooth). To obtain our main result (Theorem 2.1), we set
δ̂ = 1

100 . To obtain improved runtime bounds in the setting where A is sparse, we will set
δ̂ = 1

100(md+dL2R2) log( w
δ )δ when f is L-Lipschitz, and δ̂ = 1

100(md+dβR2) log( w
δ )δ when f is

β-smooth.

Lemma E.1 Each iteration of Algorithm 1 can be implemented in O(mdω−1) arithmetic
operations plus O(1) calls to the oracle for the value of f .

Proof: We go through each step of Algorithm 1 and add up the number of arithmetic
operations and oracle calls for each step:

1. Line 4 samples a d-dimensional Gaussian random vector ξ ∼ N(0, Id), which can
be performed in O(d) arithmetic operations.

2. At each iteration, Algorithm 1 computes the matrix H(w) at w = θ (line 5) and
w = z (line 9):

H(w) =
m∑

j=1

aja
⊤
j

(a⊤
j w − bj)2 .

Computing H(w) at any w ∈ Rd can be accomplished in mdω−1 operations as
follows:
Define C(w) to be the d × m matrix where each column cj(w) = aj

a⊤
j

w−bj
for all

j ∈ [m]. Then
H(w) = C(w)C(w)⊤.

Since C(w) is a d×m matrix the product C(w)C(w)⊤ can be computed in mdω−1

arithmetic operations. Thus, Lines 5 and 9 of Algorithm 1 can each be computed
in mdω−1 arithmetic operations.

3. Since Lines 6 and 10 compute a sum of two d× d matrices, Lines 6 and 10 can each
be performed in d2 arithmetic operations.

4. Line 7 computes the proposed update

z = θ + Φ(θ)− 1
2 ξ.
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Computing Φ(θ)− 1
2 can be performed by taking the singular value decomposition

of the matrix Φ(θ), and then inverting and taking the square root of its eigenval-
ues. This can be accomplished in dω arithmetic operations since Φ(θ) is a d × d

matrix. Once Φ(θ)− 1
2 is computed, the computation θ+ Φ(θ)− 1

2 ξ can be performed
in d2 arithmetic operations. Thus Line 7 can be computed in O(dω) ≤ O(mdω−1)
arithmetic operations.

5. Line 8 requires determining whether z ∈ K. This can be accomplished in O(md)
arithmetic operations, by checking whether the inequality Az ≤ b is satisfied.

6. Line 11 requires computing the determinant det(Φ(w)) and f(w) for w = θ and
w = z. Computing det(Φ(w)) can be accomplished by computing the singular value
decomposition of det(Φ(w)), and then taking the product of the resulting singular
values to compute the determinant. Since Φ(w) is a d × d matrix, computing the
singular value decomposition can be done in dω arithmetic operations. Computing
f(w) for any w ∈ Rd can be accomplished in one call to the oracle for the value of
f . Thus, Line 11 can be computed in O(dω) ≤ O(mdω−1) arithmetic operations,
plus two calls to the oracle for the value of f .

Therefore, adding up the number of arithmetic operations and oracle calls from all the
different steps of Algorithm 1, we get that each iteration of Algorithm 1 can be computed
in O(mdω−1) arithmetic operations plus O(1) calls to the oracle for the value of f .

E.2 Bounding the step size

Definition E.1 (Cross-ratio distance) Let u, v ∈ Int(K). If u ̸= v, let p, q be the end-
points of the chord in K which passes through u and v such that the four points lie in the
order p, u, v, q. Define

σ(u, v) := ∥u− v∥2 × ∥p− q∥2

∥p− u∥2 × ∥v − q∥2

if u ̸= v, and σ(u, v) = 0 if u = v.

For convenience, we define the cross-ratio distance between any two subsets S1, S2 ⊆ K as

σ(S1, S2) = min{σ(u, v) : u ∈ S1, v ∈ S2}.

And for any S ⊆ Rd and any density ν : Rd → R we define the induced measure:

ν⋆(S) =
∫

z∈S

ν(z)dz.

Definition E.2 For any positive-definite matrix M ∈ Rd × Rd, and any u ∈ Rd, we define

∥u∥M :=
√
u⊤Mu.

Lemma E.2 For any u, v ∈ Int(K), we have

σ(u, v) ≥ 1√
2mα−1 + η−1R2

∥u− v∥Φ(u).
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Proof: Let p, q be the endpoints of the chord in K which passes through u and v such
that the four points lie in the order p, u, v, q. Then

σ2(u, v) =
(

∥u− v∥2 × ∥p− q∥2

∥p− u∥2 × ∥v − q∥2

)2

≥ max
(

∥u− v∥2
2

∥p− u∥2
2
,

∥u− v∥2
2

∥u− q∥2
2
,

∥u− v∥2
2

∥p− q∥2
2

)
= max

(
max
i∈[m]

(a⊤
i (u− v))2

(a⊤
i u− bi)2 ,

∥u− v∥2
2

∥p− q∥2
2

)
≥ 1

2 max
i∈[m]

(a⊤
i (u− v))2

(a⊤
i u− bi)2 + 1

2
∥u− v∥2

2
∥p− q∥2

2

≥

(
1

2m

m∑
i=1

(a⊤
i (u− v))2

(a⊤
i u− bi)2

)
+ 1

2
∥u− v∥2

2
R2

= (u− v)⊤

(
1

2mα−1 × α−1
m∑

i=1

(aia
⊤
i )2

(a⊤
i u− bi)2 + 1

2R2η−1 × η−1Id

)
(u− v)

≥ 1
2mα−1 + 2η−1R2 (u− v)⊤Φ(u)(u− v)

= 1
2mα−1 + 2η−1R2 ∥u− v∥2

Φ(u).

Thus, we have
σ(u, v) ≥ 1√

2mα−1 + η−1R2
∥u− v∥Φ(u).

Lemma E.3 For any u, v ∈ Int(K) such that ∥u− v∥Φ(u) ≤ 1
2α1/2 we have that

(1 − α
1/2∥u− v∥Φ(u))2Φ(v) ⪯ Φ(u) ⪯ (1 + α

1/2∥u− v∥Φ(u))2Φ(v).

Proof:

∥u− v∥2
Φ(u) = α−1

m∑
i=1

(a⊤
i (u− v))2

(a⊤
i u− bi)2 + η−1∥u− v∥2

≥ α−1 max
i∈[m]

(a⊤
i (u− v))2

(a⊤
i u− bi)2 .

Thus,
|(a⊤

i u− bi) − (a⊤
i v − bi)| ≤ α

1/2∥u− v∥Φ(u)|a⊤
i u− bi| ∀i ∈ [m].

Therefore, for all w ∈ Rd we have

w⊤

[
(1 − α

1/2∥u− v∥Φ(u))2α−1
m∑

i=1

aia
⊤
i

(a⊤
i v − bi)2 + η−1Id

]
w

≤ w⊤

[
α−1

m∑
i=1

aia
⊤
i

(a⊤
i u− bi)2 + η−1Id

]
w

≤ w⊤

[
(1 + α

1/2∥u− v∥Φ(u))2α−1
m∑

i=1

aia
⊤
i

(a⊤
i v − bi)2 + η−1Id

]
w.

Thus,

(1 − α
1/2∥u− v∥Φ(u))2Φ(v) ⪯ Φ(u) ⪯ (1 + α

1/2∥u− v∥Φ(u))2Φ(v).
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E.3 Bounding the acceptance probability

Lemma E.4 Let θ ∈ Int(K). Then the acceptance ratio of satisfies

Pz∼N(θ,Φ−1(θ))

(
π(z)

√
det(Φ(z))

π(θ)
√

det(Φ(θ))
× exp

(
∥z − θ∥2

Φ(θ) − ∥θ − z∥2
Φ(z)

)
× 1{z ∈ K} ≥ 3

10

)
≥ 1

3 .

Proof:
By (33) of Lemma E.9, we have

Pz∼N(θ,Φ−1(θ))

(
∥z − θ∥2

Φ(θ) − ∥z − θ∥2
Φ(z) ≥ − 2

50

)
≥ 98

100 . (7)

By Lemmas E.5, E.9, and E.8 we have that

Pz∼N(θ,Φ−1(θ))

(
π(z)

√
det(Φ(z))

π(θ)
√

det(Φ(θ))
× exp

(
∥z − θ∥2

Φ(θ) − ∥θ − z∥2
Φ(z)

)
× 1{z ∈ K} ≥ 3

10

)

≥ Pz∼N(θ,Φ−1(θ))

({
π(z)
π(θ) ≥ 1

2

}
∩

{√
det(Φ(z))√
det(Φ(θ))

≥ 48
50

}

∩
{

exp
(

∥z − θ∥2
Φ(θ) − ∥θ − z∥2

Φ(z)

)
≥ 0.96

}
∩ {z ∈ K}

)
= 1 − Pz∼N(θ,Φ−1(θ))

({
π(z)
π(θ) ≥ 1

2

}c

∪

{√
det(Φ(z))√
det(Φ(θ))

≥ 48
50

}c

∪
{

∥z − θ∥2
Φ(θ) − ∥θ − z∥2

Φ(z) ≥ − 2
50

}c

∪ {z ∈ K}c

)
≥ 1 − Pz∼N(θ,Φ−1(θ))

({
π(z)
π(θ) ≥ 1

2

}c)
− Pz∼N(θ,Φ−1(θ))

({√
det(Φ(z))√
det(Φ(θ))

≥ 48
50

}c)

− Pz∼N(θ,Φ−1(θ))

(
∥z − θ∥2

Φ(θ) − ∥θ − z∥2
Φ(z) < − 2

50

)
− Pz∼N(θ,Φ−1(θ)) ({z ∈ K}c)

Lemmas E.5,E.9,E.8, Eq. 7
≥ 1 − 6

10 − 2
100 − 2

100 − 1
100

≥ 1
3 .

Lemma E.5 Let θ ∈ int(K). Then

Pz∼N(θ,Φ−1(θ))

(
π(z)
π(θ) ≥ 99

100

)
≥ 99

100 .

Proof: Since z ∼ N(θ,Φ(θ)−1), we have that
z = θ + Φ(θ)− 1

2 ξ = θ + (α−1H(θ) + η−1Id)− 1
2 ξ

for some ξ ∼ N(0, Id).
Since α−1H(θ) + η−1Id ⪰ η−1Id, and H(θ) and Id are both positive definite, we have that

ηId ⪰ (α−1H(θ) + η−1Id)−1. (8)
Thus,

∥z − θ∥2 = ∥(α−1H(θ) + η−1Id)− 1
2 ξ∥2

=
√
ξ⊤ (α−1H(θ) + η−1Id)−1

ξ

Eq. (8)
≤

√
ξ⊤ηIdξ

= √
η∥ξ∥2. (9)
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Now, since ξ ∼ N(0, Id), by the Hanson-wright concentration inequality for the χ-
distribution [22, 40], we have that

P(∥ξ∥2 > t) ≤ e− t2−d
8 ∀t >

√
2d. (10)

Thus, Equations (9) and (10) together imply that

P(∥z − θ∥2 >
√
η
√

40d) ≤ e− 29d
8 <

1
100 . (11)

Now, in the setting where f is L-Lipschitz, we have
π(z)
π(θ) = e−(f(z)−f(θ)) ≥ e−L∥z−θ∥2 .

Therefore,

Pz∼N(θ,Φ−1(θ))

(
π(z)
π(θ) ≥ 99

100

)
≥ Pz∼N(θ,Φ−1(θ))

(
e−L∥z−θ∥2 ≥ 99

100

)
= Pz∼N(θ,Φ−1(θ))

(
∥z − θ∥2 ≤

log( 100
99 )
L

)
≥ 99

100
where the last inequality holds by Inequality (11), since η ≤ 1

104dL2 .
Moreover, in the setting where f is differentiable and β-Lipschitz, we have that, since z − θ
is a multivariate Gaussian random variable,

P((z − θ)⊤∇f(θ) ≤ 0) = 1
2 .

If (z − θ)⊤∇f(θ) ≤ 0, we have that

f(z) − f(θ) ≤ (z − θ)⊤∇f(θ) + β∥z − θ∥2
2

≤ β∥z − θ∥2
2.

Therefore,

Pz∼N(θ,Φ−1(θ))

(
π(z)
π(θ) ≥ 99

100

)
≥ Pz∼N(θ,Φ−1(θ))

({
π(z)
π(θ) ≥ 99

100

}
∩
{

(z − θ)⊤∇f(θ) ≤ 0
})

≥ Pz∼N(θ,Φ−1(θ))

(
e−β∥z−θ∥2

2 ≥ 99
100

∣∣∣∣(z − θ)⊤∇f(θ) ≤ 0
)

× P((z − θ)⊤∇f(θ) ≤ 0)

= Pz∼N(θ,Φ−1(θ))

(
∥z − θ∥2 ≤

√
log(2)√
β

∣∣∣∣(z − θ)⊤∇f(θ) ≤ 0
)

× P((z − θ)⊤∇f(θ) ≤ 0)

≥ 99
100 × 1

2 ,

where the last Inequality holds by Inequality (11), since η ≤ 1
104dβ and since the Gaussian

distribution is symmetric about the d− 1-dimensional hyperplane (z − θ)⊤∇f(θ) = 0.

Lemma E.6 For any θ, z ∈ Int(K) such that ∥θ − z∥Φ(θ) ≤ 1
4α1/2 , we have that

∥N(θ,Φ−1(θ)) −N(z,Φ−1(z))∥2
TV ≤ 3dα∥θ − z∥2

Φ(θ) + 1
2∥θ − z∥2

Φ(θ)
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The proof of Lemma E.6 is an adaptation of the proof Lemma 3 in [41] to our Markov
chain’s “soft” barrier function, and follows roughly along the lines of that proof.

Proof: Since ∥θ − z∥Φ(θ) ≤ 1
4α1/2 , by Lemma E.3 we have that

(1 − α
1/2∥θ − z∥Φ(θ))2Φ(z) ⪯ Φ(θ) ⪯ (1 + α

1/2∥θ − z∥Φ(θ))2Φ(z). (12)
From Inequality (12) we have that

(1 − α
1/2∥θ − z∥Φ(θ))2Id ⪯ Φ(z)− 1

2 Φ(θ)Φ(z)− 1
2 ⪯ (1 + α

1/2∥θ − z∥Φ(θ))2Id.

Thus, denoting by λi(M) the ith-largest eigenvalue of any matrix M ∈ Rd × Rd, we have
by Inequality (12) that

(1 −α
1/2∥θ− z∥Φ(θ))2 ≤ λi(Φ(z)− 1

2 Φ(θ)Φ(z)− 1
2 ) ≤ (1 +α

1/2∥θ− z∥Φ(θ))2 ∀i ∈ [d]. (13)
Now the KL-divergence between any to multivariate Gaussian distributions with any means
µ1, µ2 ∈ Rd and any covariance matrices Σ1,Σ2 ∈ Rd satisfies (see e.g. Section 9 of [10] or
Fact 5 in [41])

DKL (N(µ1,Σ), N(µ2,Σ))

= 1
2

(
Tr(Σ−1

1 Σ2) − d+ log
(

det(Σ1)
det(Σ2

)
+ (µ1 − µ2)⊤Σ−1

1 (µ1 − µ2)
)
. (14)

Therefore we have that

∥N(θ,Φ−1(θ)) −N(z,Φ−1(z)∥2
TV

Pinsker’s Inequality
≤ 2DKL

(
N(θ,Φ−1(θ)), N(z,Φ−1(z))

)
Eq. (14)= 1

2

(
Tr(Φ(θ)Φ−1(z)) − d+ log

(
det(Φ−1(θ))
det(Φ−1(z))

)
+ (θ − z)⊤Φ(θ)(θ − z)

)
= 1

2

(
Tr(Φ− 1

2 (z)Φ(θ)Φ− 1
2 (z)) − d+ log

(
det(Φ−1(θ))
det(Φ−1(z))

)
+ (θ − z)⊤Φ(θ)(θ − z)

)
= 1

2

d∑
i=1

λi(Φ− 1
2 (z)Φ(θ)Φ− 1

2 (z)) − 1
2d+ 1

2 log
(

1
det(Φ− 1

2 (z)Φ(θ)Φ− 1
2 (z))

)
+ 1

2∥θ − z∥2
Φ(θ)

= 1
2

d∑
i=1

(
λi(Φ− 1

2 (z)Φ(θ)Φ− 1
2 (z)) − 1 + log

(
1

λi(Φ− 1
2 (z)Φ(θ)Φ− 1

2 (z)

))
+ 1

2∥θ − z∥2
Φ(θ)

≤ 1
2

d∑
i=1

(
λi(Φ− 1

2 (z)Φ(θ)Φ− 1
2 (z)) + 1

λi(Φ− 1
2 (z)Φ(θ)Φ− 1

2 (z))
− 2
)

+ 1
2∥θ − z∥2

Φ(θ)

Eq. (13)
≤ 1

2

d∑
i=1

 max
t∈
[
(1−α1/2∥θ−z∥Φ(θ))2

, (1+α1/2∥θ−z∥Φ(θ))2] t+ 1
t

− 2

+ 1
2∥θ − z∥2

Φ(θ)

= 1
2

d∑
i=1

(
max

t∈[−α1/2∥θ−z∥Φ(θ), α1/2∥θ−z∥Φ(θ)]
(1 + t)2 + 1

(1 + t)2 − 2
)

+ 1
2∥θ − z∥2

Φ(θ)

≤ 1
2

d∑
i=1

(
max

t∈[−α1/2∥θ−z∥Φ(θ), α1/2∥θ−z∥Φ(θ)]
6t2
)

+ 1
2∥θ − z∥2

Φ(θ)

convexity
≤ 1

2

(
d∑

i=1
6α∥θ − z∥2

Φ(θ)

)
+ 1

2∥θ − z∥2
Φ(θ)

= 3dα∥θ − z∥2
Φ(θ) + 1

2∥θ − z∥2
Φ(θ),

where the first inequality is Pinsker’s inequality, the second inequality holds because
log( 1

t ) ≤ 1
t − 1 for all t>0, the fourth inequality holds because (1 + t)2 + 1

(1+t)2 − 2 ≤ 6t2

for all t ∈ [− 1
4 ,

1
4 ], and the fifth inequality holds since t2 is convex for t ∈ R.
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For every j ∈ N, let mj = m + ⌊αη−1j2⌋d. Consider the matrices Aj = [A⊤, Id, . . . , Id]⊤
where A is concatenated with mj−1

d copies of the identity matrix Id. And consider the
vectors bj = (b⊤, j1⊤, . . . , j1⊤), where b is concatenated with mj−1

d copies of the vector j1,
where 1 = (1, . . . , 1)⊤ ∈ Rd is the all-ones vector. Then K = {θ ∈ Rd : Ajθ ≤ bj}, and the
Hessian of the corresponding log-barrier functions is

Hj(w) :=
mj∑
i=1

aj
i (aj

i )⊤

((aj
i )⊤w − bj

i )2
.

Lemma E.7 For all w ∈ int(K) we have that
lim

j→∞
Hj(w) = αΦ(w), (15)

uniformly in w, and that
lim

j→∞
(Hj(w))−1 = α−1(Φ(w))−1, (16)

uniformly in w. Moreover, for any θ ∈ int(K), any z ∈ 1
2Dθ and any sequence {zj}∞

j=1 ⊆
1
2Dθ such that limj→∞ zj = z uniformly in z, we have that

lim
j→∞

Hj(zj) = αΦ(z), (17)

uniformly in z, and that
lim

j→∞

det(Hj(zj))
det(Hj(θ)) = det(Φ(z))

det(Φ(θ)) , (18)

uniformly in z.

Proof:

Hj(w) =
m∑

i=1

aia
⊤
i

(a⊤
i w − bi)2 + ⌊αη−1j2⌋

d∑
i=1

eie
⊤
i

(e⊤
i w − j)2

= H(w) + ⌊αη−1j2⌋
d∑

i=1

eie
⊤
i

(e⊤
i w − j)2 . (19)

Now, since w ∈ K ⊆ B(0, R), we have that

(R− j)2 ≤ (e⊤
i w − j)2 ≤ (−R− j)2. (20)

Thus,

lim
j→∞

⌊αη−1j2⌋
(e⊤

i w − j)2 ≤ lim
j→∞

⌊αη−1j2⌋
(R− j)2 = αη−1, (21)

and
lim

j→∞

⌊αη−1j2⌋
(e⊤

i w − j)2 ≥ lim
j→∞

⌊αη−1j2⌋
(−R− j)2 = αη−1. (22)

Thus, (19) (21), and (22) together imply that

lim
j→∞

Hj(w) = H(w) +
d∑

i=1
eie

⊤
i × lim

j→∞

⌊αη−1j2⌋
(e⊤

i w − j)2

= H(w) +
d∑

i=1
eie

⊤
i × αη−1

= H(w) + αη−1Id

= αΦ(w), (23)

24



where Inequalities (21) and (22) imply that the convergence to the limit is uniform in w.
This proves Equation (15).
Moreover, since {zk}∞

k=1 ⊆ 1
2Dθ, and Dθ ⊆ K, we also have that

|a⊤
i zj − bi| ≥ 1

2 |a⊤
i θ − bi|. (24)

Therefore,

lim
j→∞

Hj(zj) = H(zj) +
d∑

i=1
eie

⊤
i × lim

j→∞

⌊αη−1j2⌋
(e⊤

i zj − j)2

=
m∑

i=1

aia
⊤
i

(a⊤
i zj − bi)2 +

d∑
i=1

eie
⊤
i × lim

j→∞

⌊αη−1j2⌋
(e⊤

i zj − j)2

=
m∑

i=1

aia
⊤
i

(a⊤
i zj − bi)2 +

d∑
i=1

eie
⊤
i × αη−1

Eq. (24)=
m∑

i=1

aia
⊤
i

(a⊤
i z − bi)2 +

d∑
i=1

eie
⊤
i × αη−1

= H(z) + αη−1Id

= αΦ(z),
where the convergence of the limit in the fourth equality holds uniformly in z by (24) and
the fact that limj→∞ zj = z. Thus, we have that

lim
j→∞

Hj(zj) = αΦ(z) (25)

uniformly in z. This proves Equation (17).
Moreover, since the determinant is a polynomial in the entries of the matrix, Inequality (23)
implies that

lim
j→∞

det(Hj(w)) = det(αΦ(w)), (26)

uniformly in w.
We also have, plugging Inequality (20) into Equation (19),

H(w) +
d∑

i=1
eie

⊤
i × ⌊αη−1j2⌋

(R− j)2 ⪯ Hj(w) ⪯ H(w) +
d∑

i=1
eie

⊤
i × ⌊αη−1j2⌋

(−R− j)2

and, hence, that

v⊤
[
H(w) + ⌊αη−1j2⌋

(R− j)2 Id

]
v ≤ v⊤Hj(w)v ≤ v⊤

[
H(w) + ⌊αη−1j2⌋

(−R− j)2 Id

]
v ∀v ∈ Rd.

(27)
Thus, Inequality (27) implies that

H(w) + ⌊αη−1j2⌋
(R− j)2 Id ⪯ Hj(w) ⪯ H(w) + ⌊αη−1j2⌋

(−R− j)2 Id ∀j ∈ N. (28)

Thus, Inequality (28) implies that

(
H(w) + ⌊αη−1j2⌋

(−R− j)2 Id

)−1

⪯ (Hj(w))−1 ⪯
(
H(w) + ⌊αη−1j2⌋

(R− j)2 Id

)−1

∀j ∈ N. (29)

Thus, since H(w) is positive definite, Inequality (29) together with inequalities (21) and
(22) imply that

lim
j→∞

(Hj(w))−1 = (H(w) + αη−1Id)−1

= α−1Φ(w)−1 ∀w ∈ Int(K)
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uniformly in w. This proves Equation (16).
Moreover, Inequality (28) implies that

det(Hj(w)) ≤ det
(
H(w) + ⌊αη−1j2⌋

(R− j)2 Id

)
≤
(
λmax

(
H(w) + ⌊αη−1j2⌋

(R− j)2 Id

))d

≤
(
λmax(H(w)) + λmax

(
⌊αη−1j2⌋
(R− j)2 Id)

))d

≤
(
λmax(H(w)) + 3αη−1)d

= c1 ∀j ≥ 3R, (30)
for some c1 > 0 which does not depend on j.
Inequality (27) also implies that

det(Hj(w)) ≥ det
(
H(w) + ⌊αη−1j2⌋

(R− j)2 Id

)
≥
(
λmin

(
H(w) + ⌊αη−1j2⌋

(R− j)2 Id

))d

≥
(

max
(
λmin(H(w)), λmin

(
⌊αη−1j2⌋
(R− j)2 Id)

)))d

≥
(

1
3αη

−1
)d

= c2 ∀j ≥ 3R, (31)
for some c2 > 0 which does not depend on either j or w.
Thus, Inequalities (26), (30), and (31) together imply that for any θ, z ∈ int(K) we have
that

lim
j→∞

min
(

det(Hj(z))
det(Hj(θ)) , 1

)
Eq. (30),(31)= min

(
limj→∞ det(Hj(zj))
limj→∞ det(Hj(θ)) , 1

)
Eq. (26),(25)= min

(
det(αΦ(z))
det(αΦ(θ)) , 1

)
= min

(
det(Φ(z))
det(Φ(θ)) , 1

)
,

where the limit converges uniformly in z. This proves Equation (18).

Lemma E.8 Let ξ ∼ N(0, Id) and let θ ∈ int(K). Then with probability at least 1 − 1
100 δ̂

we have that
θ + α

1
2H−1/2(θ)ξ ∈ 1

2Dθ

and
∥ξ∥2 ≤ 10

√
d.

Proof: Let z = θ + α
1
2H− 1

2 (θ)ξ. Then since ξ ∼ N(0, Id), by the Hanson-Wright
concentration inequality [22, 40], we have that

P(∥ξ∥2 > t) ≤ e− t2−d
8 ∀t >

√
2d.

And hence, since α−1/2∥z − θ∥H(θ) = ∥H 1
2 (θ)H− 1

2 (θ)ξ∥2 = ∥ξ∥2, that

P(∥z − θ∥H(θ) > α
1/2t) ≤ e− t2−d

8 ∀t >
√

2d.
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Hence,
P(∥z − θ∥H(θ) > α

1/210
√
d) ≤ 1

100 .

Thus, since α ≤ log( 1
δ̂

)
100d we have that

P
(
z ∈ 1

2Dθ

)
= P

(
∥z − θ∥H(θ) ≤ 1

2

)
≥ 1 − 1

100 δ̂.

Lemma E.9 Consider any θ ∈ int(K), and ξ ∼ N(0, Id). Let z = θ + (Φ(θ))− 1
2 ξ. Then

P
(

det (Φ(z))
det(Φ(θ)) ≥ 48

50

)
≥ 1 − 1

100 δ̂, (32)

and

P
(

∥z − θ∥2
Φ(z) − ∥z − θ∥2

Φ(θ) ≤ 2
50

)
≥ 98

100 . (33)

Proof: Let zj = θ+α
1
2H

− 1
2

j (θ)ξ for all j ∈ N. Since Hj(θ) ⪰ H(θ) for all j ∈ N, we have
that zj = θ+α

1
2H

− 1
2

j (θ)ξ ∈ 1
2Dθ whenever θ+α

1
2H(θ)− 1

2 ξ ∈ 1
2Dθ. Let E be the event that

∥ξ∥2 ≤ 10
√
d and that {zj}∞

j=1 ⊆ 1
2Dθ. Thus, by Lemma E.8, we have that

P (E) ≥ 99
100 . (34)

Moreover, by Equation (16) of Lemma E.7 we have that limj→∞ H−1
j (θ) = α−1Φ−1(θ),

which implies that

lim
j→∞

zj = lim
j→∞

θ + α
1
2H

− 1
2

j (θ)ξ

= θ + Φ− 1
2 (θ)ξ

= z (35)

uniformly in ξ (and hence uniformly in z = θ + Φ− 1
2 (θ)ξ) whenever the event E occurs.

Therefore, by Equation (18) of Lemma E.7 we have that

lim
j→∞

det(Hj(zj))
det(Hj(θ)) = det(Φ(z))

det(Φ(θ)) , (36)

uniformly in z whenever the event E occurs.
Since, for each j ∈ N, Hj is the Hessian of a log-barrier function for K, by last line in the
proof of Proposition 6 in [41], we have that, for all t ∈ (0, 1

2 ] and all γ ∈ (0, 1],

Pξ∼N(0,Id)

(
log det(Hj(θ + γ√

d
Hj(θ)− 1

2 ξ)) − log det(Hj(θ)) ≥ −γ
√

2 log(1
t
)
)

≥ 1 − t.

Setting t = 1
100 δ̂, we have

Pξ∼N(0,Id)

(
log det(Hj(θ + α

1
2Hj(θ)− 1

2 ξ)) − log det(Hj(θ)) ≥ − 1
100

)
≥ 1 − 1

100 δ̂,

since α ≤ 1
4002d log( 1

δ̂
) .

Thus,

Pξ∼N(0,Id)

(
det(Hj(θ + α

1
2Hj(θ)− 1

2 ξ))
det(Hj(θ)) ≥ 49

50

)
≥ 1 − 1

100 δ̂. (37)
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Inequalities (34) and (37) together imply that

Pξ∼N(0,Id)

({
det(Hj(zj))
det(Hj(θ)) ≥ 49

50

}
∩ E

)
≥ 1 − 1

100 δ̂. ∀j ∈ N. (38)

Moreover, Equation (36) implies that there exists some number N ∈ N such that{
det(HN (zN ))
det(HN (θ)) ≥ 49

50

}
∩ E ⊆

{
det(Φ(z))
det(Φ(θ)) ≥ 48

50

}
∩ E. (39)

Hence,

1 − 1
100 δ̂

Eq. (38)
≤ Pξ∼N(0,Id)

({
det(HN (zN ))
det(HN (θ)) ≥ 49

50

}
∩ E

)
Eq. (39)

≤ Pξ∼N(0,Id)

({
det(Φ(z))
det(Φ(θ)) ≥ 48

50

}
∩ E

)
. (40)

This proves Inequality (32).
Moreover, since, for each j ∈ N, Hj is the Hessian of a log-barrier function for K, by
Proposition 7 in [41], for all t ∈ (0, 1

2 ], all α > 0 such that
√
αd ≤ t

20 log( 11
t )− 3

2 , and all
j ∈ N, we have that

P
(

∥zj − θ∥2
Hj(zj) − ∥zj − θ∥2

Hj(θ) ≥ 2tα
)

≤ 1 − t ∀j ∈ N. (41)

Thus, Equations (41) and (34) imply that

P
({

∥zj − θ∥2
Hj(zj) − ∥zj − θ∥2

Hj(θ) ≤ 1
50α

}
∩ E

)
≥ 98

100 ∀j ∈ N, (42)

since α ≤ 1
105d .

By Equation (17) of Lemma E.7, Equation (35) implies that

lim
j→∞

Hj(zj) = αΦ(z), (43)

uniformly in z, whenever the event E occurs. Thus, Equation (43) implies that

lim
j→∞

∥zj − θ∥2
Hj(zj) − ∥zj − θ∥2

Hj(θ) = lim
j→∞

(zj − θ)⊤Hj(zj)(zj − θ) − (zj − θ)⊤Hj(θ)(zj − θ)

Eq. (43)= lim
j→∞

(z − θ)⊤αΦ(z)(z − θ) − (z − θ)⊤αΦ(θ)(z − θ)

= α∥z − θ∥2
Φ(z) − α∥z − θ∥2

Φ(θ) (44)

uniformly in z (and hence in ξ = Φ 1
2 (θ)(z − θ)) whenever event E occurs. Thus, Equation

(44) implies that there exists a number M ∈ N such that{
∥zM − θ∥2

HM (zM ) − ∥zM − θ∥2
HM (θ) ≤ 1

50α
}

∩E ⊆
{
α∥z − θ∥2

Φ(z) − α∥z − θ∥2
Φ(θ) ≤ 2

50α
}

∩E.

(45)
Thus,

98
100

Eq. (42)
≤ P

({
∥zM − θ∥2

HM (zM ) − ∥zM − θ∥2
HM (θ) ≤ 1

50α
}

∩ E

)
Eq. (45)

≤ P
({

α∥z − θ∥2
Φ(z) − α∥z − θ∥2

Φ(θ) ≤ 2
50α

}
∩ E

)
.

This proves Inequality (33).
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E.4 Bounding the conductance

Lemma E.10 For any θ, z ∈ int(K) we have that

∥Pθ − Pz∥TV ≤ 29
30 , whenever ∥θ − z∥Φ(θ) ≤ 1.

Proof: First, we note that,

∥Pθ − Pz∥TV ≤ ∥Pθ −N(θ,Φ−1(θ))∥TV

+ ∥N(θ,Φ−1(θ)) −N(z,Φ−1(z))∥TV + ∥Pz −N(z,Φ−1(z))∥TV. (46)

By Lemma E.6, the middle term on the RHS of (46) satisfies

∥N(θ,Φ−1(θ)) −N(z,Φ−1(z))∥TV ≤
√

3dα∥θ − z∥2
Φ(θ) + 1

2∥θ − z∥2
Φ(θ) (47)

Plugging in our choice of hyperparameter α = 1
105d , Inequality (47) simplifies to

∥N(θ,Φ−1(θ)) −N(z,Φ−1(z))∥TV ≤
√

53
100∥θ − z∥Φ(θ). (48)

Thus, if we can show that ∥Pθ −N(θ,Φ−1(θ))∥TV ≤ 1
5 for all θ ∈ int(K), we will have that

∥Pθ − Pz∥TV ≤ 29
30 whenever ∥θ − z∥Φ(θ) ≤ 1

2 , as desired.

To bound the other two terms on the RHS of (46), we observe that

∥Pθ −N(θ,Φ−1(θ))∥TV = 1 − Ez∼N(θ,Φ−1(θ))[q(θ, z)], (49)

where

q(θ, z) := min{1, π(z)
π(θ)

√
detΦ(z)√
detΦ(θ)

exp(∥z − θ∥2
Φ(θ) − ∥θ − z∥2

Φ(z)) × 1{z ∈ K}}

is the acceptance ratio.

By Lemma E.5, we have that Pz∼N(θ,Φ−1(θ))

(
π(z)
π(θ) ≥ 99

100

)
≥ 99

10 . Therefore,

Pz∼N(θ,Φ−1(θ))[q(θ, z) ≥ 9
10 ]

Lemma E.5
≥ 1 − Pz∼N(θ,Φ−1(θ))

(
π(z)
π(θ) <

99
100

)
− Pz∼N(θ,Φ−1(θ))

(√
det(Φ(z))√
det(Φ(θ))

<

√
48
50

)
− Pz∼N(θ,Φ−1(θ))

(
e∥z−θ∥2

Φ(θ)−∥θ−z∥2
Φ(z) < 0.96

)
− Pz∼N(θ,Φ−1(θ))(z /∈ K)

≥ 1 − 1
100 − 2

100 − 2
100 − 1

100
≥ 9

10 ,

where the term with the exponent is bounded by Inequality (33) of Lemma E.9, and the
other two terms are bounded by Lemmas E.8 and E.9. Therefore,

∥Pθ −N(θ,Φ−1(θ))∥TV = 1 − Ez∼N(θ,Φ−1(θ))[q(θ, z) ≥ 9
10 ] ≥ 1 − 9

10 × 9
10 ≥ 4

5 . (50)

Plugging Inequalities (48) and (50) into (46), we obtain that ∥Pθ − Pz∥TV ≤ 29
30 whenever

∥θ − z∥Φ(θ) ≤ 1
2 , as desired.

We recall the following isoperimetric inequality for a log-concave distribution on a convex
body, which uses the cross-ratio distance:
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Lemma E.11 (Isoperimetric inequality for cross-ratio distance (Theorem 2.2 of [32]))
Let π : Rd → R be a log-concave density, with support on a convex body K. Then for any
partition of Rd into measurable sets S1, S2, S3, the induced measure π⋆ satisfies

π⋆(S3) ≥ σ(S1, S2)π⋆(S1)π⋆(S2).

For any θ ∈ Int(K), define the random variable Zθ to be the step taken by the Markov chain
in Algorithm 1 from the point θ. That is, set z = θ+Φ(θ)− 1

2 ξ where ξ ∼ N(0, Id). If z ∈ K,

set Zθ = z with probability min
(

π(z)
√

det(Φ(z))
π(θ)

√
det(Φ(θ))

exp
(

∥z − θ∥2
Φ(θ) − ∥θ − z∥2

Φ(z)

)
, 1
)

. Else,

set z = θ.
For any θ, S ⊆ Rd, define the one-step transition probability of the soft-threshold Dikin
walk Markov chain to be

Pθ(S) = P(Zθ ∈ S).
The next proposition shows that the soft-threshold Dikin walk Markov chain is reversible
and π is a stationary distribution of this Markov chain:

Proposition E.12 (Reversibility and stationary distribution) For any S1, S2 ⊆ K
we have that ∫

θ∈S1

π(θ)Pθ(S2)dθ =
∫

z∈S2

π(z)Pz(S1)dz.

Proof: Let ρθ(z) :=
√

det(Φ(θ))

(2pi)
d
2

e− 1
2 (θ−z)⊤Φ(θ)(θ−z) for any θ, z ∈ Int(K) be the density of

the N(θ,Φ(θ)−1) distribution.

∫
θ∈S1

π(θ)Pθ(S2)dθ =
∫

θ∈S1

π(θ)
∫

z∈S2

ρθ(z)×

min
(
π(z)

√
det(Φ(z))

π(θ)
√

det(Φ(θ))
exp

(
∥z − θ∥2

Φ(θ) − ∥θ − z∥2
Φ(z)

)
, 1
)

dzdθ

=
∫

θ∈S1

∫
z∈S2

π(θ)ρθ(z) min
(
π(z)ρz(θ)
π(θ)ρθ(z) , 1

)
dzdθ

=
∫

z∈S2

∫
θ∈S1

π(θ)ρz(θ) min
(
π(θ)ρθ(z)
π(z)ρz(θ) , 1

)
dθdz

=
∫

θ∈S1

π(θ)Pθ(S2)dθ.

Define the conductance ϕ of the Markov chain to be

ϕ = inf
S⊆K:π⋆(S)≤ 1

2

1
π⋆(S)

∫
S

Pθ(K\S)π(θ)dθ.

Lemma E.13 The conductance ϕ satisfies

ϕ ≥ 1
104

1√
2mα−1 + η−1R2

.

Proof: The proof follows the general format for conductance proofs for geometric Markov
chains. Let S1 ⊆ K and let S2 = K\S1. Without loss of generality, we may assume that
π(S1) ≤ 1

2 (since otherwise we could just swap the names “S1” and “S2”). Let

S′
1 =

{
θ ∈ S1 : Pθ(S2) ≤ 1

70

}
,

S′
2 =

{
z ∈ S2 : Pz(S1) ≤ 1

70

}
, (51)
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and let
S′

3 = (K\S′
1)\S′

2.

By Proposition E.12 we have that∫
θ∈S1

π(θ)Pθ(S2)dθ =
∫

θ∈S2

π(θ)Pθ(S1)dθ. (52)

Moreover, by Lemma E.10, for any u, v ∈ Int(K) we have that

∥Pu − Pv∥TV ≤ 29
30 whenever ∥u− v∥Φ(u) ≤ 1

2 . (53)

Thus, on the one hand, by Lemma E.2, Inequality (53) implies that for any u, v ∈ Int(K),

∥Pu − Pv∥TV ≤ 29
30 , whenever σ(u, v) ≤ 1

2
√

2mα−1 + η−1R2
. (54)

On the other hand, Equations (51) imply that, for any u ∈ S′
1, v ∈ S′

2 we have that

∥Pu − Pv∥TV ≥ 1 − Pu(S2) − Pv(S1) ≥ 68
70 . (55)

Thus, Inequalities (54) and (55) together imply that

σ(S′
1, S

′
2) > 1

2
√

2mα−1 + η−1R2
. (56)

Moreover by Lemma E.11 we have that

π⋆(S′
3) ≥ σ(S′

1, S
′
2)π⋆(S′

1)π⋆(S′
2). (57)

First, we assume that both π⋆(S′
1) ≥ 1

4π
⋆(S1) and π⋆(S′

2) ≥ 1
4π

⋆(S2). In this case we have∫
S1

Pθ(S2)π(θ)dθ Eq. 52= 1
2

∫
S1

Pθ(S2)π(θ)dθ + 1
2

∫
S2

Pθ(S1)π(θ)dθ

Eq. 51
≥ 1

140π
⋆(S′

3)
Eq. 57

≥ 1
140σ(S′

1, S
′
2)π⋆(S′

1)π⋆(S2)
Eq. 56

≥ 1
280

1√
2mα−1 + η−1R2

π⋆(S′
1)π⋆(S′

2)

≥ 1
560

1√
2mα−1 + η−1R2

min(π⋆(S′
1), π⋆(S′

2))

≥ 1
2024

1√
2mα−1 + η−1R2

min(π⋆(S1), π⋆(S2)). (58)

Now suppose that instead either π⋆(S′
1) < 1

4π
⋆(S1) or π⋆(S′

2) < 1
4π

⋆(S2). If π⋆(S′
1) <

1
4π

⋆(S1) then we have∫
S1

Pθ(S2)π(θ)dθ Eq. 52= 1
2

∫
S1

Pθ(S2)π(θ)dθ + 1
2

∫
S2

Pθ(S1)π(θ)dθ

≥ 1
2

∫
S1\S′

1

Pθ(S2)π(θ)dθ

Eq. 51
≥ 1

2 × 3
4 × 34

70π
⋆(S1)

≥ 1
10 min(π⋆(S1), π⋆(S2)). (59)
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Similarly, if π⋆(S′
2) < 1

4π
⋆(S2) we have∫

S1

Pθ(S2)π(θ)dθ Eq. 52= 1
2

∫
S1

Pθ(S2)π(θ)dθ + 1
2

∫
S2

Pθ(S1)π(θ)dθ

≥ 1
2

∫
S2\S′

2

Pθ(S1)π(θ)dθ

Eq. 51
≥ 1

2 × 3
4 × 34

70π
⋆(S2)

≥ 1
10 min(π⋆(S1), π⋆(S2)). (60)

Therefore, Inequalities (58), (59), and (60) together imply that
1

min(π⋆(S1), π⋆(S2))

∫
S1

Pθ(S2)π(θ)dθ ≥ 1
104

1√
2mα−1 + η−1R2

. (61)

for every partition S1 ∪ S2 = K. Hence, Inequality (61) implies that

ϕ = inf
S⊆K:π⋆(S)≤ 1

2

1
π⋆(S)

∫
S

Pθ(K\S)π(θ)dθ ≥ 1
60

1√
2mα−1 + η−1R2

.

Definition E.3 We say that a distribution ν is w-warm for some w ≥ 1 with respect to the
stationary distribution π if supz∈K

ν(z)
π(z) ≤ w.

Lemma E.14 (Corollary 1.5 of [31]) Suppose that µ0 is the initial distribution of a lazy
reversible Markov chain with conductance ϕ > 0 and stationary distribution π, and let µi

be the distribution of this Markov chain after i ≥ 0 steps. Suppose that µ0 is w-warm with
respect to π for some w ≥ 1. Then for all i ≥ 0 we have

∥µi − π∥TV ≤
√
w

(
1 − ϕ2

2

)i

.

Lemma E.15 Let δ > 0. Suppose that f : K → R is either L-Lipschitz (or has β-Lipschitz
gradient). Suppose that θ0 ∼ µ0 where µ0 is a w-warm distribution with respect to π ∝
e−f with support on K. Let µ denote the distribution of the output of Algorithm 1 with
hyperparameters α ≤ 1

105d and η ≤ 1
104dL2 (or η ≤ 1

104dβ ), if it is run for T iterations. Then
if T ≥ 109 (2mα−1 + η−1R2)× log( w

δ ) we have that
∥µ− π∥TV ≤ δ.

Proof: By Lemma E.13 we have that the conductance ϕ of the Markov chain in Algorithm
1 satisfies

ϕ ≥ 1
104

1√
2mα−1 + η−1R2

,

and hence that
T = 109 (2mα−1 + η−1R2)× log(w

δ
) ≥ 2ϕ−2 × log(w

δ
).

Thus, by Lemma E.13 we have that

∥µT − π∥TV ≤
√
w

(
1 − ϕ2

2

)T

=
√
w

(
1 − ϕ2

2

)2ϕ−2 log( w
δ )

≤
√
we− log( w

δ )

≤ δ.

Proof: [of Theorem 2.1]
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Total variation bound. Recall that we have set the step size parameters α = 1
105d and

either η = 1
104dL2 (if f is L-Lipschitz) or η = 1

104dβ (if f is β-smooth). Thus, after running
Algorithm 1 for T = 109 (2mα−1 + η−1R2) × log( w

δ ) iterations, by Lemma E.15 we have
that the distribution µ of the output of Algorithm 1 satisfies

∥µ− π∥TV ≤ δ. (62)

Bounding the number of operations. Moreover, by Lemma E.1 we have that each
iteration of Algorithm 1 can be implemented in O(mdω−1) arithmetic operations plus O(1)
calls to the oracle for the value of f . Thus, the number of iterations T taken by Algorithm
1 is O((md+dL2R2)× log( w

δ )) iterations in the setting where f is L-Lipschitz and O((md+
dβR2) × log( w

δ )) iterations in the setting where f is β-smooth, where each iteration takes
one function evaluation and mdω−1 arithmetic operations.

F Extension to general barrier functions?

From any point θ, our algorithm proposes a step with Gaussian distribution
N(θ, 1

d (∇2g(θ))−1), where g is the following barrier function

g(θ) = φ(θ) + η̂−1θ⊤θ, (63)
where φ(θ) is a barrier function for the polytope K, and the parameter η̂−1 = Ω( 1

L2 ) in the
setting where f is guaranteed to be L-Lipschitz and η̂−1 = Ω( 1

β ) in the setting where f is
guaranteed to be β-smooth. Thus, most of the probability mass of the Gaussian distribution
concentrates in the Dikin ellipsoid D̂θ = θ + {w : w⊤(∇2g(θ))−1w ≤ 1} for the barrier
function g. For simplicity, in our main result, we assume that φ(θ) := −

∑m
j=1 log(bj −a⊤

j θ)
(which has self-concordance parameter m), however, we can in principle choose any barrier
function φ for the polytope K, such as the entropic barrier [4] or the Lee-Sidford Barrier
[29] which have self-concordance parameter roughly ν = d.
To arrive at our barrier function from a more axiomatic approach, we first consider the
definition of ν-self concordant barrier function:

Definition F.1 (ν-self-concordant barrier function for K) We say that g is a ν-self-
concordant barrier function if g : Int(K) → R and g satisfies the following conditions:

1. Convex and differentiable barrier: g is convex and third-order differentiable,
and g(x) → +∞ as x → ∂K.

2. Self-concordance: ∇3g(x)[h, h, h] ≤ 2(∇2g(x)[h, h])3/2 for all h ∈ Rd (this en-
sures that the Hessian of the barrier function does not change too much each time
the Dikin walk takes a step from x to z, that is, 1

2 ∇2g(z) ⪯ ∇2g(x) ⪯ 2∇2g(z))

3. g is ν-self concordant: h⊤∇g(x) ≤
√
νh⊤∇2g(x)h for every x ∈ Int(K), h ∈ Rd

The fact that our barrier function (63) satisfies parts (1) and (2) of Definition F.1 follows
from the fact that φ satisfies Definition F.1 and that ∇3(θ⊤θ) = 0. We discuss the self-
concordance parameter ν for which our barrier function satisfies (63) below.
To ensure that the steps z ∼ N(θ, ( 1

d ∇2g(θ))−1) proposed by our Dikin walk Markov chain
arising from the barrier function g has an Ω(1) acceptance ratio ef(z)−f(θ), we require that
the function g satisfies the following property. This property says that at least 1

4 of the
volume of the Dikin ellipsoid D̂θ is contained in the sublevel set {z ∈ K : f(θ) < f(θ) + 2}
where the value of f does not increase by more than 2.

Property F.1 Dikin ellipsoid mostly contained in sublevel set: At every θ ∈ Int(K),
the Dikin Ellipsoid, satisfies

Vol
(
D̂θ ∩ {z ∈ K : f(z) < f(θ) + 2}

)
≥ 1

4Vol(D̂θ).
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When designing a barrier function g, there is a trade-off between choosing g such that
the self-concordance parameter ν is small, while at the same time ensuring that Property
F.1 holds. Roughly, to make the parameter ν as small as possible, we would like the
Dikin ellipsoid to be large relative to the Hilbert-distance metric for the convex body K
(This is because, by Proposition 2.3.2(iii) of [39], any ν-self concordant function g satisfies
(h⊤∇2g(x)h)− 1

2 ≤ |h|x ≤ (1+3ν)(h⊤∇2g(x)h)− 1
2 , for any h ∈ Rd where |h|x := sup{α > 0 :

x±αh ∈ {z ∈ K}). On the other hand, if we make the Dikin ellipsoid too large (with respect
to the sublevel set {z ∈ K : f(z) < f(x) + 2}) then Property F.1 will not be satisfied, and
the steps proposed by the Dikin walk will have a very low acceptance probability. Setting
the hyperparameter η̂ = 1

L2 when f is L-Lipschitz or η̂ = 1
β when f is β smooth ensures

that our barrier function in (63) satisfies Property F.1.
In the special case where f is the log-density of the uniform distribution (f ≡ 0), or when
f is any linear function, we have that f is β-smooth for β = 0. Thus, our barrier function
(63) we use to encode the geometry of f on K is the same as the barrier function φ for the
polytope K. This is because, since the level sets of linear functions f are half-planes, any
ellipsoid centered at θ has at least half of its volume in the sublevel set {z ∈ K : f(z) ≤
f(θ)} ⊆ {z ∈ K : f(z) < f(θ) + 2}, satisfying Property F.1.
The following lemma shows that our barrier function in (63) is ν-self concordant with ν =
O(ν′ + η̂R2), where ν′ is the self-concordance parameters of φ (which is ν′ = m if we choose
φ to be log-barrier function). Thus, our barrier function in (63) is ν = O(ν′ + L2R2) self-
concordant in the setting where f is L-Lipschitz, and ν = O(ν′ + βR2) in the setting where
f is β-smooth:

Lemma F.2 Suppose that ϕ(x) is a ν′-self concordant barrier function for a convex body
K ⊂ Rd where B(0, r) ⊆ K ⊆ B(0, R) for some R > r > 0. Let g(x) = ϕ(x) + α

2 x
⊤x for

some α > 0. Then g is ν-self concordant for ν = 4ν′ + 4αR2.

The proof of Lemma F.2 is given in Appendix F.1. The polynomial dependence of ν on
LR or βR2 is a necessary feature of any objective function satisfying Definition F.1 and
Property F.1. In appendix F.2, we give explicit examples of classes of objective functions
f and polytopes K for which the minimum value of ν depends polynomially on LR (and
classes of smooth functions f where ν depends polynomially on

√
βR.

An open problem is whether one can design versions of the Dikin walk which sample from
log-concave distributions with a runtime that depends only on the dimension d, and is
independent of L, R or β and which are invariant to affine transformations. The difficulty
in achieving this lies in the fact that (e.g., in the setting where f is L-Lipschitz), on the one
hand, the level sets of f where most of the probability mass of ∝ e−f concentrates may have
a diameter roughly RL times smaller than the diameter R of K. Thus, to have an Ω(1)
acceptance probability the Dikin walk may need to take steps that are roughly RL times
smaller than the diameter of K. On the other hand, the isoperimetric inequality currently
used to bound the mixing time of the Dikin walk uses a metric– the cross-ratio distance
for K–which, roughly speaking, defines distances between steps by how quickly these steps
approach the boundary of K. Thus, measured in the cross-ratio distance, the steps proposed
by the Dikin walk are of size roughly proportional to 1

RL , and mixing time bounds obtained
with this isoperimetric inequality thus depend polynomially on RL. To obtain mixing time
bounds independent of the R,L, β one may need to show a new isoperimetric inequality
which is based on a different metric that encodes the geometry of all of the level sets of
f–rather than just the geometry of its support K.

F.1 Proof of Lemma F.2

Proof: [Proof of Lemma F.2] For any x ∈ int(K), we have

∇g(x) = ∇ϕ(x) + αx

Thus, for any h ∈ Rd,

h⊤∇g(x) = h⊤∇ϕ(x) + αh⊤x ≤ h⊤∇ϕ(x) + α∥h∥∥x∥ ≤ h⊤∇ϕ(x) + αR∥h∥ (64)
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Thus,

(h⊤∇g(x))2
Eq. (64)

≤ (h⊤∇ϕ(x) + αR∥h∥)2 (65)
≤ 4(h⊤∇ϕ(x))2 + 4(αR∥h∥)2

= 4(h⊤∇ϕ(x))2 + 4α2R2h⊤Idh

= 4(h⊤∇ϕ(x))2 + 4αR2h⊤(αId)h
≤ 4ν′h⊤∇2ϕ(x)h+ 4αR2h⊤(αId)h
≤ (4ν′ + 4αR2)(h⊤∇2ϕ(x)h+ h⊤(αId)h)
= (4ν′ + 4αR2)(h⊤(∇2ϕ(x) + αId)h)
= (4ν′ + 4αR2)(h⊤(∇2g(x))h)

where the third inequality holds since ϕ is ν′ self-concordant. Thus, plugging in ν = 4ν′ +
4αR2 to (65), we get that

h⊤∇g(x) ≤
√
ν(h⊤(∇2g(x))h).

F.2 Lower bounds for self-concordance parameter

Lower bounds on ν for worst-case L-Lipschitz f . Consider the L-Lipschitz function
f(θ) = L∥θ∥2 constrained to the convex body K = R

2
√

d
[−1, 1]d which is contained in

a ball of radius R. In this case, any barrier function g which satisfies Property F.1
has Dikin Ellipsoid D̂θ which is contained in the ball B(0, 8

L ). Thus, we have that
ν ≥ Ω(RL). (This is because, by Proposition 2.3.2(iii) of [39], any ν-self concordant
function g satisfies (h⊤∇2g(θ)h)− 1

2 ≤ |h|θ ≤ (1 + 3ν)(h⊤∇2g(θ)h)− 1
2 , for any h ∈ Rd where

|h|θ := sup{α > 0 : θ ± αh ∈ {z ∈ K}. Thus, at θ = 0 and choosing h = (1, · · · , 1) we have
|h|θ

∥h∥2
= R and (h⊤∇2g(θ)h)− 1

2 ≤ O( 1
L ). Thus, ν ≥ Ω

(
|h|θ

(h⊤∇2g(θ)h)− 1
2

)
≥ LR).

Since there exists a convex body K for which any self-concordant barrier function satisfy-
ing Definition F.1 has self-concordance parameter at least ν ≥ d, for any L,R > 0 there
exists a function f and convex body K ⊂ B(0, R) such that the self-concordance param-
eter of every barrier function satisfying both Definition F.1 and Property F.1 is at least
ν ≥ Ω(max(d, LR)).

Lower bounds on ν for worst-case β-smooth f . Consider the β-smooth function
f(θ) = 1

2βθ
⊤θ constrained to the convex body K = R

2
√

d
[−1, 1]d. At θ = 0, any ellipsoid D̂θ

satisfying Property F.1 is contained in the ball 8√
β
B(0, 1). Thus, we have that ν ≥ R

8√
β

√
β =

Ω(
√
βR) (This is because at θ = 0 we have |h|θ

∥h∥2
= R and (h⊤∇2g(θ)h)− 1

2 ≤ O( 1√
β

) and

thus, by Proposition 2.3.2(iii) of [39], we have ν ≥ Ω
(

|h|θ

(h⊤∇2g(θ)h)− 1
2

)
≥

√
βR). Thus, for

any β,R > 0 there exists a function f and convex body K ⊂ B(0, R) such that the self-
concordance parameter of every barrier function satisfying both Definition F.1 and Property
F.1 is at least ν ≥ max(d,Ω(βR)).
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