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Abstract

Compressed videos offer a compelling alternative to raw videos, showing the possi-
bility to significantly reduce the on-line computational and storage cost. However,
current approaches to compressed video processing generally follow the resource-
consuming pre-training and fine-tuning paradigm, which does not fully take ad-
vantage of such properties, making them not favorable enough for widespread
applications. Inspired by recent successes of prompt tuning techniques in computer
vision, this paper presents the first attempt to build a prompt based representation
learning framework, which enables effective and efficient adaptation of pre-trained
raw video models to compressed video understanding tasks. To this end, we pro-
pose a novel prompt tuning approach, namely Compressed Video Prompt Tuning
(CVPT), emphatically dealing with the challenging issue caused by the inconsis-
tency between pre-training and downstream data modalities. Specifically, CVPT
replaces the learnable prompts with compressed modalities (e.g. Motion Vectors
and Residuals) by re-parameterizing them into conditional prompts followed by
layer-wise refinement. The conditional prompts exhibit improved adaptability and
generalizability to instances compared to conventional individual learnable ones,
and the Residual prompts enhance the noisy motion cues in the Motion Vector
prompts for further fusion with the visual cues from I-frames. Additionally, we
design Selective Cross-modal Complementary Prompt (SCCP) blocks. After in-
serting them into the backbone, SCCP blocks leverage semantic relations across
diverse levels and modalities to improve cross-modal interactions between prompts
and input flows. Extensive evaluations on HMDB-51, UCF-101 and Something-
Something v2 demonstrate that CVPT remarkably outperforms the state-of-the-art
counterparts, delivering a much better balance between accuracy and efficiency.

1 Introduction

In recent years, there has been a surge of interest in compressed video understanding [51, 36, 8, 46,
11, 19] due to its great potential in saving the computational and storage cost for on-line processing,
which directly performs inference on compressed data and thus bypasses the resource-consuming
decoding phase.

Raw videos consist of dense RGB frames conveying coherent and consistent content, while com-
pressed videos are composed of sparsely decoded RGB frames with entire spatial information, i.e.
Intra-frames (I-frames), and incompletely decoded RGB frames with free but coarse motion clues, i.e.
Predicted frames (P-frames) or Bidirectionally predicted frames (B-frames). In this case, existing
approaches to compressed video understanding generally follow the pre-training and fine-tuning
paradigm, which initially pre-trains models on compressed videos from a large database (e.g. Kinetics-
400 [3]) and fully fine-tunes them on downstream ones. According to different network structures,
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Figure 1: Different types of approaches to representation learning in compressed videos. (a) and (b)
are the two main variants of the existing pre-training and fine-tuning paradigm, where the former
is based on multi-stream CNNs and the latter is based on ViT, both of which require pre-training
models on compressed videos. (c) is a plain prompt tuning scheme which can be considered as
a straightforward attempt to leverage frozen off-the-shelf models pre-trained on raw videos, but
it does not well adapt to the given task with degraded performance. (d) CVPT advances (c) by
designing conditional prompts for Motion Vectors and Residuals, delivering a novel paradigm which
successfully learns powerful representations for compressed videos in a more effective and efficient
manner.

they can be broadly classified into two categories. (i) [20, 1, 21, 19, 11] apply multi-branch CNNs for
individual modalities, which are then fused to deliver final results, as depicted in Figure 1 (a). (ii) [5]
employs a modified Vision Transformer (ViT) for all modalities, motivated by the advantage of ViT
in reasoning tasks and the ability to handle multi-modalities in text-image [15, 37, 50] and multi-task
domains [31, 18], as shown in Figure 1 (b). Despite their effectiveness, such a paradigm suffers
two major drawbacks. Firstly, it requires pre-training networks on compressed videos, resulting in a
high computational complexity in GPU-day in off-line mode. Several attempts are made to speed up
pre-training by loading or partially loading off-the-shelf models built based on raw videos; however, it
is still not favorable enough for wide popularization. Secondly, it relies on fully fine-tuning backbones,
which incurs a large parameter storage burden, making it challenging for deployment in real-world
applications. Furthermore, full fine-tuning tends to disrupt the knowledge learned by the pre-trained
model, degrading the generalization performance [54]. The limitations aforementioned highlight the
need for a more effective and efficient alternative to address these issues.

Inspired by the advancements of prompting techniques in Natural Language Processing (NLP),
researchers from the field of Computer Vision (CV) have been discussing this representation learning
paradigm. By freezing the pre-trained model and introducing a small number of learnable parameters
on input images or videos, they create decent visual prompts [4, 23]. This paradigm enables efficient
information mining from pre-trained models and eliminates the necessity for fully fine-tuning
networks. On the other side, raw videos contain richer spatial and temporal clues than compressed
ones, and if sufficient and important knowledge can be mined from the models pre-trained on raw
videos, it should strengthen representation learning of compressed videos. Both the facts trigger us to
investigate a prompt tuning paradigm to compressed video understanding with pre-trained raw video
models as a more effective and efficient alternative to the pre-training and fine-tuning one. Although
current prompt tuning approaches [32, 16, 24, 4, 9] have achieved successes in various tasks, they
generally work in the case that pre-training and downstream data share the same modality and it
remains problematic when they have different modalities, i.e. the pre-training data are in the raw
video (dense RGB frames) modality and the downstream data are in the compressed video modality
(I-frames, Motion Vectors and Residuals), as shown in Figure 1 (c).

In this paper, we present a novel paradigm to video understanding in the compressed domain, namely
Compressed Video Prompt-Tuning (CVPT). As in Figure 1 (d), our approach freezes the whole pre-
trained raw video-based model and learns a few modal-specific visual prompts. It allows us to leverage
the common prior knowledge in the feature and semantic spaces shared by the two types of videos,
to facilitate representation learning of compressed videos. Specifically, VPT employs a conditional
prompt framework with refinement, in which Motion Vectors and Residuals are re-parameterized
into conditional prompts. These prompts are more adaptable to individual instances and alleviate
the impact of freezing these modalities which can lead to performance degradation. Additionally,
CVPT incorporates simple and lightweight modality-complementary prompt blocks, namely Selective
Cross-modal Complementary Prompt (SCCP), into the frozen pre-trained model, capturing cross-
modal interactions for performance improvement. Concretely, SCCP firstly embeds the I-frame
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tokens as well as the conditional Motion Vector and Residual prompts into a low-dimensional feature
space, in pursuit of computational efficiency. Based on attention maps induced by the Residual
prompts, the Motion Vector prompts are subsequently refined via suppressing the noisy motions,
which are further integrated into the I-frame tokens as complementary motion cues. As a consequence,
the cross-modal interaction is significantly strengthened, remarkably facilitating model tuning for
efficient representation learning of compressed videos.

The main contributions of this paper are summarized in four-fold:

• We propose CVPT, a novel visual prompt tuning framework, which enables pre-trained
raw video models to adapt to compressed video understanding tasks. To the best of our
knowledge, this is the first work to address this issue.

• We introduce modal-related conditional prompts to replace conventional learnable ones,
proving more adaptable to individual instances and alleviates the inconsistency between
pre-training and downstream data modalities.

• We design selective cross-modal complementary prompt blocks, and these blocks substan-
tially strengthen cross-modal interactions and selectively complement dynamic cues in
Motion Vectors to input flows.

• We conduct extensive experiments on three widely used benchmarks and achieve newly
state-of-the-art results. Notably, our approach maintains the parameter-efficiency with less
than 1% parameters being trainable.

2 Related Work

2.1 Compressed Video Representation Learning

Early studies commonly adopt multi-stream CNNs and focus on dedicatedly designing the model
structures for P/B-frames and fusion modules. The pioneering work by [49] introduces the use of
CNNs to process compressed videos. They replace optical flows in the two-stream network [14] with
Motion Vectors, resulting in a higher efficiency. CoViAR [45] extends a third stream to leverage
all the modalities, including I-frames, Motion Vectors, and Residuals, completely bypassing video
decoding. To improve the quality of dynamics, [2] applies image denoising techniques, while [40]
employs GANs to generate Motion Vectors that approximate optical flows. [22] and [1] adopt a
similar approach by feeding compressed modalities into a CNN model to mimic a raw video-based
teacher. [22] presents Temporal Trilinear Pooling for fusing multiple modalities in lightweight models
suitable for portable devices. Inspired by SlowFast [12, 30] propose the Slow-I-Fast-P model, where
pseudo optical flows are estimated by a specific loss function. MM-ViT [5] is the first work using ViT
on compressed videos, factorizing the self-attention across the space, time and modality dimensions.

The advent of self-supervised learning, particularly contrastive learning and Masked AutoEncoder
(MAE), has led to the exploration of self-supervised pretext tasks for compressed videos. In this
context, IMRNet [48] stands out as the first work to delve into self-supervised learning for compressed
videos. It employs a three-stream network to individually encode I-frames, Motion Vectors, and
Residuals, and introduces two pretext tasks that make use of motion statistics and internal GOP
(Group of Pictures) structures in the compressed domain. Another notable approach is MVCGC [21],
which delivers a cross-guidance contrastive learning framework with multi-views. MVCGC utilizes
Motion Vectors as supervision signals for RGB frames and vice versa.

To sum up, the existing approaches in compressed video understanding involve the design of spe-
cialized modules or pretext tasks, which makes the pre-training and fine-tuning paradigm resource-
consuming, not favorable enough to various downstream applications. In contrast, our work presents
a prompt tuning based alternative, where necessary knowledge are mined from the off-the-shelf
model pre-trained on raw videos through only a few modal-specific visual prompts, and is more
effective and efficient.

2.2 Visual Prompt Tuning

Prompt tuning has emerged as a promising way to efficient representation learning in the field of
NLP. By leveraging textual prompts, researchers have successfully reformulated downstream tasks
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Figure 2: Framework of the proposed CVPT. It firstly embed the input compressed videos, consisting
of I-frames, Motion Vectors and Residuals, into the I-frame tokens E0

I , the conditional Motion Vector
prompts P 0

MV and the Residual prompts P 0
R, respectively. A frozen pre-trained Transformer with L

layers is adopt for feature extraction. The Selective Cross-modal Complementary Prompt (SCCP)
blocks are employed to perform conditional prompt learning as well as facilitate the interactions
between the prompts and the I-frame tokens for efficient fine-tuning.

to resemble pre-training tasks that have already been solved [28, 33]. This approach offers several
advantages over full fine-tuning, such as the high parameter efficiency and the reduced storage cost.
It has also shown promising results in various CV applications. For instance, VPT [23] introduces
learnable parameters to Transformer encoders and achieves superior performance compared to full
fine-tuning on multiple recognition tasks. AdaptFormer [7] enhances ViT models with lightweight
modules and surpasses the performance of fully fine-tuned models in action recognition benchmarks.
Convpass [25] proposes convolutional bypasses for prompt learning in pre-trained ViT models. Some
prompting attempts have also been made to deal with multi-modal tasks, such as visual and language.
CoOp [53] fine-tunes CLIP using a continuous set of prompt vectors, while Co-CoOp [52] improves
its generalization by conditioning prompts on image instances. [26] strengthens CLIP for video
understanding tasks by adding lightweight Transformers on visual features and text prompts. MaPLe
[27] optimizes the prompting mechanism in both the vision and language branches to improve the
adaptability of CLIP.

Different from current prompt-learning approaches in NLP and CV that primarily apply in the case
that pre-training and downstream data share the same modality, our work further addresses the
challenge arising from the inconsistency between pre-training and downstream data modalities, i.e.
the pre-training data are dense RGB frames while the downstream data are sparse I-frames and coarse
Motion Vectors and Residuals.

3 The Proposed Approach

In this section, we describe the details of the proposed Compressed Video Prompt Tuning (CVPT)
approach. Briefly, CVPT employs a conditional prompt framework with refinement as shown in
Figure 2, by proposing a Selective Cross-modal Complementary Prompt (SCCP), which are depicted
in the rest part.

3.1 Conditional Prompt with Refinement

Prompt tuning [28, 33] is commonly utilized to efficiently fine-tune a model pre-trained on the
upstream tasks to align with the downstream tasks. Existing prompt tuning approaches often assume
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that the pre-trained task and the downstream task share the same data modality. However, when
fine-tuning for compressed video-based applications, the data modality differs as the downstream
tasks adopt the compressed videos, and the pre-trained tasks utilize the raw videos. A straightforward
fine-tuning without considering the modality gap often severely deteriorates the performance, since
the Motion Vectors and Residuals are unique to compressed videos and have distinct data distributions
from the raw videos. To address this issue, existing works employ an extra feature extraction network
that may negatively abate the inter-modal interactions; or modify the Transformer structure to process
the multi-modal compressed video data, which however still requires pre-training and full fine-tuning.

In this paper, we propose an efficient prompt tuning approach for compassed video-based tasks.
Motivated by [54], we re-parameterize the Motion Vectors and Residuals into prompts and enhance
the cross-modal interactions with I-frames for prompt learning. Different from [54], we embed the
Motion Vectors and Residuals into distinct types of prompts, and refine the Motion Vector prompts
by leveraging the Residual counterparts, which are further integrated into the I-frame Motion Vectors
as strengthened complements of motion cues.

Concretely, the input I-frames XI ∈ R3×TI×H×W are firstly encoded into the I-frame tokens
E0

I ∈ RN×d by a frozen patch embedding layer, where H , W , d represent the frame height, frame
width and the encoding dimension, respectively. The Motion Vectors XMV ∈ R2×TP×H×W and
the Residuals XR ∈ R3×TP×H×W are encoded by learnable patch embedding layers, generating
the conditional Motion Vector prompts P 0

MV ∈ RN×d and the Residual prompts P 0
R ∈ RN×d,

respectively. TI/TP denote the number of I/P-frames.

The I-frame tokens E0
I together with the conditional prompts XMV and XR are comprehensively

integrated by the proposed Selective Cross-modal Complementary Prompt (SCCP) at the first layer
denoted by M1(·), where the output are fed into the Transformer block as complementary motion
cues to the I-frame tokens, as well as inputs to the SCCP block from the subsequent layer. The
SCCP blocks are successively stacked by aligning with the original ViT layers. The overall forward
propagation process for prompt tuning can be briefly formulated as follows:

[P l
MV,P

l
R,E

l−1
I ] = Tl

([
P̂ l−1

MV′ , P̂
l−1
R′ ,El−1

I + Êl−1
I′

])
, l = 1, 2, ...L; (1)

y = CLS_Head
([
PL

MV,P
L
R ,EL

I

])
. (2)

where L is the number of Transformer layers, Tl(·) and CLS_Head(·) refer to the Transformer block
at the l-th layer and the classification head, respectively. Here, [P̂ l−1

MV′ , P̂
l−1
R′ , Êl−1

I′
] represents the

output of the SCCP block at the l-th layer, which will be elaborated in Section 3.2.

3.2 Selective Cross-modal Complementary Prompt

Given the I-frame tokens E0
I , the conditional Motion Vector prompts P 0

MV, the Residual prompts P 0
R,

and a frozen pre-trained encoder GRGB containing L Transformer layers, SCCP aims to complement
the motion cues from the conditional prompts to the I-frame branch. Generally, SCCP aggregates the
tokens and prompts from multiple modalities of the previous layer to generate the new ones at the
current layer, which is formulated as below:[

P l−1
MV′ ,P

l−1
R′ ,El−1

I′

]
= Ml

([
P l−1

MV ,P l−1
R ,El−1

I

])
, l = 1, 2, ...L. (3)

It is worth noting that the Motion Vectors, which are block-wise motion cues estimated by matching,
tend to be coarse and noisy compared to the optical flow counterparts displayed in Figure 3(a). As
depicted in [39], motion information near object boundaries plays a crucial role in representation
learning. Inspired by this insight, we generate an attention map to select refined motion cues from the
Motion Vectors by leveraging the Residuals, based on the observation that the Residuals are generally
well-aligned with the boundaries of moving objects and strongly correlated with Motion Vectors as
observed in [40]. The refined motion cues are successively adopted as a informative complements to
the RGB modality, thus boosting learning discriminative representations.

The detailed design of SCCP is illustrated in Figure 3(b). Specifically, at the l-th layer, the input
of SCCP consists of the I-frame tokens El−1

I , the conditional prompts P l−1
MV and P l−1

R . In order
to obtain compact representations and reduce the overall size of parameters, we firstly embed the
C-dimensional input into a (C/α)-dimensional feature space as follows:

Êl−1
I = g1(E

l−1
I ), P̂ l−1

MV = g2(P
l−1
MV ), P̂ l−1

R = g3(P
l−1
R ), (4)
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Figure 3: (a) Illustration on the optical flows representing accurate motion cues, the coarse Motion
Vectors and the Residuals. The red rectangles highlight the areas that Motion Vectors contain noises,
which however can be refined by leveraging the Residuals. (b) Detailed architecture of the proposed
Selective Cross-modal Complementary Prompt.

where α is the reduction factor, the embedding functions g1(·), g2(·), and g3(·) are simple 1 × 1
convolutions. In the ViT-B backbone, the input feature dimension C is 768, and the reduction factor
α is set to 96 in all prompt blocks. As the scale of backbone grows, α usually increases proportionally.
In the case of Swin Transformer, as the feature dimension C becomes larger in deeper layers, we
gradually increase it to maintain the same embedding feature size across different layers.

After feature embedding, we generate a spatial-temporal attention map A by performing Softmax(·)
on the embedded Residual prompts P̂ l−1

R . To strengthen the smoothness of the attention map, we
introduce a learnable parameter. The attention map is subsequently applied to select representative
motion cues from the embedded Motion Vector prompts P̂ l−1

MV as the following:

P̂ l−1
MV = A⊙ P̂ l−1

MV = Softmax(ω × P̂ l−1
R )⊙ P̂ l−1

MV . (5)

The refined prompts P̂ l−1
MV is further integrated into the intermediate embedding Êl−1

I by addition, in
order to complement the motion cues as below

Êl−1
I := Êl−1

I + P̂ l−1
MV . (6)

After performing the above cross-modal interactions, the embedded tokens Êl−1
I , the embedded

prompts P̂ l−1
MV and P̂ l−1

R are finally project back to the high-dimensional ones by using the following
formulation:

Êl−1
I′

= g4(Ê
l−1
I ), P̂ l−1

MV′ = g5(P̂
l−1
MV ), P̂ l−1

R′ = g6(P̂
l−1
R ), (7)

where g4(·), g5(·), and g6(·) are 1× 1 convolutions.

In order to comprehensively enhance the representation learning, the SCCP block is applied to each
Transformer block, and is successively stacked, i.e. the conditional prompts P l−1

MV and P l−1
R are

updated in each SCCP block and is fed into the next SCCP block as input.
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4 Experimental Results and Analysis

4.1 Datasets and Evaluation Metric

HMDB-51 and UCF-101 are two relatively small datasets, which contain 6766 videos from 51
action categories and 13,320 videos from 101 categories, respectively. Something-Something v2
(SSv2) is a large-scale motion-centric video dataset, including 168,913 videos for training and 24,777
videos for validation from 174 categories. As a typical video understanding task, we choose action
recognition and report top-1 accuracy as the evaluation metric in all experiments.

4.2 Implementation Details

By following [45, 29], we convert the raw videos into the MP4 compressed format with a GOP
size of 12, where each GOP consists of 1 I-frame and 11 P-frames. We collect I-frames, Motion
Vectors and Residuals from 4 consecutive GOPs, totally containing 4 I-frames and 12 P-frames.
Within each GOP, we uniformly sample 3 P-frames. In regards of the backbone network, we utilize
two representative video Transformer architectures based on ViT [10] and Swin Transformer [34]
pre-trained on Kinetics-400 with raw videos, respectively. We adopt the original model configurations
and train the prompt parameters using the AdamW optimizer [35] on 12 NVIDIA V100 GPUs. We
apply random scaling, corner cropping, and horizontal flipping as data augmentation. The base
learning rate, weight decay and batch size are set to 1 × 10−3, 1 × 10−4 and 240, respectively.
Additionally, we adopt a warm-up strategy within the first 5 training epochs.

4.3 Comparison with the State-of-the-art Approaches

Compressed video-based methods. We firstly compare our method with the following full fine-
tuning compressed video-based models: 1) self-supervised pre-training based ones including CoViAR
[45], IMRNet [48], MVCGC [21] and the Full Fine-tuning baseline; and 2) supervised pre-training
based ones including Refined-MV [2], IPTSN [20], SIFP-Net [30], MEACI-Net [29] and MM-ViT
[5]. Table 1 and Table 2 summarize the comparison results on the HMDB-51, UCF-101 and SSv2
datasets. Generally, the proposed CVPT method achieves comparable or even better performance
than the full fine-tuning ones, by tuning less than 1% of the overall parameters. Notably, when
adopting the same ViT-B backbone, CVPT improves the top-1 accuracy of MM-ViT/Full Fine-tuning
by 2.1%/0.9% on UCF-101, and 2.9%/0.8% on SSv2, via tuning only 0.6% of the parameters.

Besides the full fine-tuning methods, we also compare with representative efficient fine-tuning models,
including the Linear Probe baseline, VPT [23] and AdaptFormer [7]. Since VPT and AdaptFormer
only report results on raw videos, we re-implement and evaluate them on compressed videos, denoted
by VPT∗ and Adaptformer∗, respectively. As displayed, Linear Probe exhibits the lowest performance
as it only optimizes the classification head. VPT∗ slightly outperforms Adaptformer∗, but both of
their performance are clearly inferior to the fine-tuning counterparts. This suggests that these methods
struggle to effectively align the upstream data for pre-training the downstream data for fine-tuning. In
contrast, our approach leverages inserted prompt blocks to facilitate the interaction of multimodal
information, boosting the accuracy of VPT∗ and Adaptformer∗ by 10.8% and 12.0% on HMDB-51,
5.4% and 7.1% on UCF-101, and 4.8% and 5.6% on SSv2, respectively, when pre-training with the
self-supervised learning.

In addition to the accuracy, our approach also has advantages in its training efficiency and facilitation.
Concretely, unlike IPTSN that adopts a complex knowledge distillation model based on a raw
video-based teacher during fine-tuning, or MVCGC that mines cross-modality information from pre-
trained RGB models through self-supervised learning, our method explores the efficient tuning and
reaches a promising accuracy. Moreover, as shown in Table 1 and Table 2, our approach consistently
promotes the performance by different pre-training strategies and network architectures (e.g. ViT-L),
highlighting its scalability.

Raw video-based methods. As summarized in Table 1 and Table 2, raw video-based fine-tuning
methods generally reach higher performance than compressed video-based counterparts, since the
raw videos convey more coherent and consistent information. Nevertheless, CVPT significantly
reduces this gap, and even surpasses both VPT and Adaptformer that are fine-tuned on raw videos.
The reason lies in that CVPT explores the Motion Vectors and Residuals as prompts to complement
the missing motion cues caused by sparse sampling of RGB frames in a more comprehensive way.
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Table 1: Comparison with the state-of-the-art approaches w.r.t. the top-1 accuracy (%) on HMDB-51
and UCF-101 pre-trained on Kinetics-400. ‘∗’ indicate the results by our re-implementation using the
same configuration. ‘PT’ stands for pre-training. ‘SL’ and ‘SSL’ refer to supervised learning and
self-supervised learning, respectively.

Method Modality Backbone Input [M] GFLOPs PT Tunable Params. [M] HMDB-51 UCF-101
R

aw

CoCLR [17] RGB+OF S3D 26.2 182.0 SSL 17.5 (100%) 62.9 90.6
RSPNet [6] RGB S3D-G 6.0 91.0 SSL 9.6 (100%) 64.7 93.7
CVRL [38] RGB R3D-50 48.2 402.0 SSL 46.9 (100%) 65.4 92.1
ρBYOL [13] RGB R3D-50 12.1 402.0 SSL 46.9 (100%) 73.6 95.5

STS [43] RGB S3D-G 96.3 689.0 SSL 9.6 (100%) 62.0 89.0
M3Video [41] RGB ViT-B 24.1 1080.0 SSL 86.4 (100%) 75.4 96.1
MVD-B [44] RGB ViT-B 24.1 1080.0 SSL 86.4 (100%) 76.4 97.0

MotionMAE [47] RGB ViT-B 24.1 1080.0 SSL 86.4 (100%) - 96.3
VideoMAE [42] RGB ViT-B 24.1 1080.0 SSL 86.4 (100%) 73.3 96.1

VPT [23] RGB ViT-B 12.1 1089.6 SSL 0.1 (0.09%) 52.7 -
AdaptFormer [7] RGB ViT-B 12.1 1093.8 SSL 1.3 (1.46%) 55.7 -

C
om

p.

CoViAR [45] I-Frame+MV+Res ResNet152 3.8 1222.0 SSL 142.5 (100%) 37.1 63.7
IMRNet [48] I-Frame+MV+Res R3D-18 3.8 - SSL 100.8 (100%) 45.0 76.8
MVCGC [21] RGB+MV S3D 15.7 - SSL 17.5 (100%) 63.4 90.8

Refined-MV [2] I-Frame+MV+Res ResNet152 - - SL 142.5 (100%) 59.7 89.9
IPTSN [20] I-Frame+MV+Res ResNet152 6.8 - SL 130.8 (100%) 69.1 93.4

SIFP-Net [30] I-Frame+MV+Res I3D 8.1 - SL 92.8 (100%) 72.3 94.0
MEACI-Net [29] I-Frame+MV+Res I3D 0.7 269.4 SL 50.7 (100%) 74.4 96.4

MM-ViT [5] I-Frame+MV+Res ViT-B 8.1 - SL 86.4 (100%) - 93.4
Full Fine-tuning I-Frame+MV+Res ViT-B 6.1 772.2 SSL 86.4 (100%) 60.3 88.1

Linear Probe I-Frame+MV+Res ViT-B 6.1 772.2 SSL 0.1 (0.08%) 47.8 76.8
VPT∗ [23] I-Frame+MV+Res ViT-B 6.1 778.2 SSL 0.1 (0.09%) 52.1 83.6

AdaptFormer∗ [7] I-Frame+MV+Res ViT-B 6.1 780.6 SSL 1.3 (1.46%) 50.9 81.9
CVPT (Ours) I-Frame+MV+Res ViT-B 6.1 772.2 SSL 0.5 (0.6%) 62.9 89.0
CVPT (Ours) I-Frame+MV+Res ViT-B 6.1 772.2 SL 0.5 (0.6%) 69.7 95.5
CVPT (Ours) I-Frame+MV+Res ViT-L 6.1 2569.6 SL 0.1 (0.03%) 81.5 98.0

Table 2: Comparison with the state-of-the-art approaches w.r.t. the top-1 accuracy (%) on SSv2 pre-
trained on Kinetics-400. ‘∗’ indicate the results by our re-implementation using the same configuration.
‘PT’ stands for pre-training. ‘SL’ and ‘SSL’ refer to supervised learning and self-supervised learning,
respectively.

Method Modality Backbone Input [M] GFLOPs PT Tunable Params. [M] SSv2

R
aw

RSPNet [6] RGB S3D-G 6.0 91.0 SSL 9.6 (100%) 55.0
ρBYOL [13] RGB R3D-50 12.1 402.0 SSL 46.9 (100%) 55.8
MVD-B [44] RGB ViT-B 24.1 1080.0 SSL 86.4 (100%) 72.5
M3Video [41] RGB ViT-B 24.1 1080.0 SSL 86.4 (100%) 70.5

MotionMAE [47] RGB ViT-B 24.1 1080.0 SSL 86.4 (100%) 71.8
VideoMAE [42] RGB ViT-B 24.1 1080.0 SSL 86.4 (100%) 70.3

VPT [23] RGB ViT-B 12.1 1089.6 SSL 0.1 (0.09%) 43.7
AdaptFormer [7] RGB ViT-B 12.1 1093.8 SSL 1.3 (1.46%) 59.0

C
om

p.

MM-ViT [5] I-Frame+MV+Res ViT-B 8.1 - SL 86.4 (100%) 62.6
Full Fine-tuning I-Frame+MV+Res ViT-B 6.1 772.2 SSL 86.4 (100%) 57.6

Linear Probe I-Frame+MV+Res ViT-B 6.1 772.2 SSL 0.1 (0.08%) 33.8
VPT∗ [23] I-Frame+MV+Res ViT-B 6.1 778.2 SSL 0.1 (0.09%) 53.6

AdaptFormer∗ [7] I-Frame+MV+Res ViT-B 6.1 780.6 SSL 1.3 (1.46%) 52.8
CVPT (Ours) I-Frame+MV+Res ViT-B 6.1 772.2 SSL 0.5 (0.6%) 58.4
CVPT (Ours) I-Frame+MV+Res ViT-L 6.1 2569.6 SL 0.1 (0.03%) 65.5

Additionally, CVPT is capable of directly fine-tuning an off-the-shelf model pre-trained on raw-
videos to the domain of compressed videos, thus simultaneously saving extra computational cost in
alternatively pre-training on the specific compressed data.

4.4 Ablation Study

To evaluate the effectiveness of components in CVPT, we conduct extensive ablation study. Without
loss of generality, we utilize ViT-B pre-trained by self-supervised learning as the backbone.

On the Main Components. We firstly evaluate the effect of the main components of the proposed
method. Specifically, we employ linear probe as the baseline method. As shown in Table 3, the
proposed CPR module without refinement, which only updates the conditional prompts in the first
layer, clearly improve the baseline. By introducing the SCCP module, which enriches the cross-
modal information between I-frames and conditional prompts of Motion Vectors and Residuals, the
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Table 3: Ablation results (%) on the main components of CVPT.

CPR w/o refinement SCCP CPR HMDB-51 UCF-101
47.8 76.8

✓ 55.7 83.9
✓ ✓ 61.4 87.6

✓ ✓ 62.9 89.0
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Figure 4: The influence of the number of SCCP
blocks on the proposed method.
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Figure 5: Illustrations of alternative structures
of SCCP. (a) and (b) indicate SCCP without PR

prompt and without attentions, respectively.

performance is remarkably boosted. Finally, applying the refinement module on CPR further obtains
gain in performance, leading to the highest accuracy.

On the Selective Cross-modal Complementary Prompt (SCCP). To demonstrate the effect of
the proposed SCCP module, we compare it to the following two alternative architecture designs as
shown in Figure 5: 1) removing the PR prompt and separately embedding the Motion Vectors and
Residuals into distinct two types of prompts as displayed in Figure 5(a); 2) abandoning the Residual-
guided attention and directly adding to the branch of Motion Vectors as displayed in Figure 5(b). As
summarized in Table 4, both of the two above alternative designs yield worse performance than the
proposed SCCP module, thus demonstrating the effectiveness of employing the Residual prompt to
facilitate extracting more informative dynamic cues for the downstream task.

Besides, we investigate the impact of incorporating different numbers of SCCP blocks into the
backbone. The insertion process begins from the first layer and increments by three layers in each
iteration. As illustrated in Figure 4, we observe that the overall performance on both datasets is
consistently improved as the number of inserted SCCP blocks increases.

On Distinct Backbones. We evaluate the performance of our method by using different backbones,
compared to the Full Fine-tuning baseline. As summarized in Table 5, our approach steadily
outperforms Full Fine-tuning for various backbones by distinct pre-training strategies.

4.5 On the Efficiency of CVPT

We present a comprehensive comparison of inference time between the proposed CVPT method
and the representative raw video-based approach VideoMAE. As shown in Table 6, our approach

Table 4: Ablation study (%) on different structures of the proposed SCCP module.

Method Total Params. [K] HMDB-51 UCF-101
SCCP w/o attention 39.2 59.6 86.9

SCCP w/o PR prompt 19.2 57.6 85.5
SCCP 39.2 61.4 87.6

9



Table 5: Ablation study (%) on different backbones.

Backbone ViT-B (SSL) ViT-B (SL) Swin-B (SL)
HMDB-51 UCF-101 HMDB-51 UCF-101 HMDB-51 UCF-101

Full Fine-tuning 60.3 88.1 66.5 94.3 62.9 92.0
Ours 62.9 (+2.6) 89.0 (+0.9) 69.7 (+3.2) 95.5 (+1.2) 64.9 (+2.0) 94.0 (+2.0)

Table 6: Comparison of inference time (ms) per video.

Method Pre-Process Model Inference Full Pipeline
VideoMAE [42] 2496.9 26.9 2523.8

CVPT (Ours) 238.3 25.0 263.3

BabyCrawling

CVPTFull Fine-tuningVPT*

Adaptformer*Linear Probe BaseballPitch Adaptformer*Linear Probe

CVPTFull Fine-tuningVPT*

Figure 6: Visualization of the last layer feature map generated by various approaches on UCF-101.

significantly reduces the pre-processing time without the need for video decoding, while maintaining
a comparable model inference time, thus remarkably decreasing the overall time cost.

4.6 Qualitative Results

We visualize the classification maps generated by CVPT, compared to several state-of-the-art com-
pressed video-based approaches including Linear Probe, Adaptformer*, VPT* and Full Fine-tuning.
As shown in Figure 6, our method exhibits a broader focus on motion regions than those compared
methods.

5 Conclusion and Discussion

We propose a novel prompt tuning method, namely CVPT, for compressed videos. Our approach
leverages Motion Vectors and Residuals to generate conditional prompts. Furthermore, we employ
the SCCP blocks to fully explore the discriminative dynamic cues in Motion Vectors as complements
to I-frames. Extensive experimental results on public benchmarks demonstrate the efficiency and
effectiveness of CVPT, compared to the current state-of-the-art approaches for efficient fine-tuning.

Despite the promising performance, the scalability of the proposed CVPT method to various vision
tasks such as compressed video-based segmentation and tracking has not been investigated. We will
further study this problem in our future research.
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