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Abstract

Gradient-based sampling algorithms have demonstrated their effectiveness in text
generation, especially in the context of controlled text generation. However, there
exists a lack of theoretically grounded and principled approaches for this task.
In this paper, we take an important step toward building a principled approach
for sampling from language models with gradient-based methods. We use
discrete distributions given by language models to define densities and develop an
algorithm based on Hamiltonian Monte Carlo to sample from them. We name our
gradient-based technique Structured Voronoi Sampling (SVS). In an experimental
setup where the reference distribution is known, we show that the empirical
distribution of SVS samples is closer to the reference distribution compared to
alternative sampling schemes. Furthermore, in a controlled generation task, SVS is
able to generate fluent and diverse samples while following the control targets
significantly better than other methods.

https://github.com/AfraAmini/svs

1 Introduction

Gradient-based sampling algorithms such as Hamiltonian Monte Carlo [HMC; 32] and Langevin
dynamics [46] are widely used in Bayesian inference due to their efficiency in drawing samples
from high-dimensional space [4]. Such algorithms construct a Markov Chain that has the desired
distribution as its stationary distribution and use the gradient information of this distribution to
efficiently navigate the state space. Additionally, gradient-based sampling schemes have recently been
deployed in computer vision to generate high-quality images from state-of-the-art models [13, 43],
and are a popular choice for tasks such as image synthesis [5] and image-to-image translation [40].

In natural language processing, there have been several attempts to apply gradient-based sampling
techniques to sampling text from neural language models [21, 23, 38]. The motivation behind this
approach to text generation is to sample from energy-based probabilistic models, where the normaliza-
tion factor is not tractable. One such case is in controlled text generation, where energy functions are
usually defined as a linear combination of LM probabilities and the probability of satisfying a set of
predefined constraints [21, 23, 38]. In contrast to computer vision, however, applying gradient-based
sampling schemes to text generation is nuanced as text, in contrast to images, is discrete.

Upon closer inspection, none of the proposed algorithms actually defines a valid Markov Chain Monte
Carlo [MCMC; 12, 29] scheme that will draw samples from the model in the limit. For instance, Qin
et al. [38] relax the language model from a distribution over strings to a distribution over logits. While
the relaxation does transform the language model into a continuous distribution, it introduces bias.
Kumar et al. [MUCOLA; 21] take a different approach. They derive a constrained gradient-based
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sampler where the constraint is enforced through a projection. However, the projection invalidates
the MCMC procedures, leading to an algorithm without guarantees.1

We derive a principled Hamiltonian Monte Carlo scheme for generating text from language models,
which we call a structured Voronoi sampler. Our scheme consists of two steps. First, we give a recipe
for encoding discrete distributions as densities over Rd; we term the resulting encoding Voronoi
measures.2 Second, we derive a refractive Hamiltonian Monte Carlo algorithm [30] for sampling
from an arbitrary Voronoi measure. In our theoretical analysis, we show that, despite the presence of
discontinuities, we are able to give proof that our sampler satisfies the detailed balance condition and,
thus, is a correct MCMC scheme.

To empirically evaluate the performance of structured Voronoi sampling, we begin by applying
it to a toy example where the exact reference probability distribution is known. We compare the
empirical distribution of drawn samples with the reference distribution and show Voronoi sampler’s
distribution is closer to the reference distribution than MUCOLA or unconstrained HMC. Furthermore,
we use our sampling scheme for controlled generation, where the goal is to use GPT-2 to generate
restaurant reviews for a target type of food, e.g., Italian, Fast food, or Japanese, and separately
to generate text with a positive sentiment. We find that structured Voronoi sampling outperforms
FUDGE [48], MUCOLA, and Langevin Dynamics algorithms in terms of adhering to the control
target. Additionally, the samples generated by structured Voronoi sampling are comparably fluent
and diverse to those produced by the other methods.

2 Language Models

Let Σ be an alphabet, a finite, non-empty set. By Σ∗ def
=
⋃∞

n=0 Σ
n, we denote the Kleene closure

of Σ.3 A probability distribution over Σ∗ is called a language model (LM). The elements of Σ
may be characters, subword pieces, or words; the choice lies with the modeler. Language models
can be factored autoregressively by means of the chain rule of probability, i.e., for any string
w = w1 · · ·wN ∈ Σ∗, we can write

p(w) = p(EOS | w)

N∏
n=1

p(wn | w<n), (1)

where EOS ̸∈ Σ is a distinguished end-of-sequence token and w<n is the prefix of length (n − 1)

of the string w. We define Σ
def
= Σ ∪ {EOS}, and require the conditional distributions p(· | w<n) to

be defined over Σ. While all language models can be factored autoregressively, not all conditionals
p(· | w<n) can be assembled into a language model. In some cases, probability mass must be placed
on infinite sequences [6]. In this work, we assume working with tight language models, i.e., that they
indeed define valid probability distributions over Σ∗.

2.1 Language Modeling with Embeddings

Most neural language models make use of embeddings. Moreover, in most language models,
the weights are shared between the language model head and the embedding layer. Such an
embedding-based language model is defined as follows

p(wn | w<n)
def
=

expvwn
· enc(w<n)∑

w∈Σ expvw · enc(w<n)
, (2)

where vw ∈ Rd is the embedding of w and enc : Σ∗ → Rd is a real-valued encoding of the context.
Notably, the context embedding enc(w<n) ∈ Rd is obtained by inputting the context w<n into the
language model, converting it to embeddings vw<n

, passing it through neural network layers, and
extracting the encoding from the model at position n− 1.

1In fact, a similar projection step is often applied in computer vision applications, which motivated Lou and
Ermon [26] to develop a principled approach that avoids projection.

2We call the measures structured Voronoi samplers when the state face is larger and factored.
3We define Σ0 def

= {ε}.
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Interestingly, one can lift an embedding-based language model to be a distribution over the set of
base embeddings: B = {vw : w ∈ Σ}. Specifically, we can associate a sequence of embeddings
V = [v1, . . . ,vN ] to any string w = w1 · · ·wN . Substituting each w with the corresponding vw, we
can rewrite Eq. (1) as

p(V) = p(vEOS | V)

N∏
n=1

p(vn | V<n). (3)

This transformation encodes a language model as a distribution over real-valued vectors. However,
p(V) only places a positive probability on a countable set, and is zero everywhere else.

2.2 Controlled Language Modeling with Embeddings

In a controlled generation task, we are interested in a subset of strings w that have a target property
t. Therefore, we want to model and sample from a conditional distribution p(w | t), e.g., sample a
sentence given a topic. Following Bayes’ rule, one can write p(w | t) ∝ p(t | w) p(w). Previous
papers model p(t | w) with an embedding-augmented classifier. Such a classifier receives embeddings
V associated with w and predicts the probability of the target t. Notably, if the classifier and the LM
share the same base embeddings B, the controlled LM can also be lifted as a distribution over the
base embeddings

p(V | t) = 1

Zt
p(t | V) p(V), (4)

where Zt =
∑

V p(t | V) p(V) is an intractable normalization factor, that sums over the embeddings
of all possible strings.4 Identically to p(V), p(V | t) only places a positive probability on a countable
set.

3 Voronoi Measures

In this section, we demonstrate how to encode an embedding-based language model as a density
that places positive probability on a set with a measure greater than zero. Such encoding allows
us to derive a principled gradient-based sampling approach to generate samples in §6. We start with
some definitions.
Definition 1. An embedding-augmented probability distribution over the first M positive integers
[M ] is an array p = [p1, . . . , pM ] such that pm ≥ 0 and

∑M
m=1 pm = 1 where we assume that there

is a real-valued embedding {vm}Mm=1 ⊂ Rd associated with each m ∈ [M ].

Embedding-augmented distributions can be viewed as densities over Rd using the following simple
encoding

p(x) =

{
pm, if x = vm

0, otherwise.
(5)

Eq. (5), however, yields a density that is 0 almost everywhere (with respect to the standard Lebesgue
measure) and its gradient with respect to pm is also zero almost everywhere. Thus, Eq. (5) is not
amenable to gradient-based sampling, and to derive a meaningful gradient-based sampling we require
a more nuanced encoding.

To provide such an encoding, we introduce the Voronoi measure. Given an embedding-augmented
distribution p = [p1, . . . , pM ] with embeddings {vm}Mm=1, and a compact set K ⊂ Rd that covers
the embeddings, i.e., {vm}Mm=1 ⊂ K, we define the Voronoi cell for the mth item with respect to
the compact set K as follows

Cm =
{
x : x ∈ K, ||x− vm||22 ≤ ||x− vm′ ||22,∀m′ ̸= m

}
. (6)

Now, using the definition of a Voronoi cell Cm given in Eq. (6), we can define a density that is not
zero almost everywhere as follows. The strategy is to spread out the probability mass pm over the
entirety of the set Cm. To do so, we assume access to a set of base measures {µm}Mm=1 that give
us a reference for how to judge the probability mass in each Cm. We make this encoding formal
in the following definition.

4We will discuss in §5.2 how gradient-based sampling can help to sample from this distribution without the
need to compute Zt.
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Definition 2. Let p = [p1, . . . , pM ] be an embedding-augmented distribution with embeddings
{vm}Mm=1 ⊂ Rd, and let K be a compact set such that {vm}Mm=1 ⊂ K. Furthermore, let {µm}Mm=1

be a set of base measures over Rd that are absolutely continuous with respect to the standard
Lebesgue measure λ over Rd, i.e., µm ≪ λ. Define the (K, µ)-Voronoi measure as follows

pV(x)
def
=

{
pm⋆(x)

µm(Cm⋆(x))
dµm

dλ (x), if x ∈ K
0, otherwise

(7)

where we define projection
m⋆(x)

def
= argmin

m∈[M ]

||x− vm||22. (8)

with ties broken arbitrarily.5
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Figure 1: The example shows how Voronoi Sam-
pling navigates through the space to sample one
embedding in R2. Each Voronoi is annotated with
the probability of its center, i.e., Voronoi measure
of the cell.

In the following proposition, we make precise
the sense in which a Voronoi measure encodes
the original embedding-augmented distribution.
Proposition 1. Let p = [p1, . . . , pM ] be an
embedding-augmented distribution with embed-
dings {vm}Mm=1 ⊂ Rd, and let pV be the cor-
responding Voronoi measure Eq. (7). Then,
pV(Cm) = pm where Cm is defined as in
Eq. (6). See App. C.1 for proof.
Example 1. Suppose p = [p1, . . . , p4] is a cate-
gorical distribution, and there are 4 embeddings
in R2 associated with each pi, namely: v1 =
[1, 1],v2 = [−1, 1],v3 = [−1,−1],v4 =
[1,−1]. Given the K = [−2, 2] × [−2, 2]
and the embedding-augmented probability
distribution p, Eq. (7) defines a Voronoi
measure over this space, where the Voronoi
cells are visualized in Fig. 1. We will discuss in §6 how Voronoi sampling navigates this space.

3.1 Structured Voronoi Measures

To encode language models as densities more naturally, we introduce a generalization of the Voronoi
measure, which we term a structured Voronoi measure. Now, rather than a distribution over M
elements, we assume to have a sequence of length N . Each token in the sequence takes value in
[M ]. Let m = [m1, . . . ,mN ] ∈ [M ]N . We define a structured Voronoi cell as Cm =

∏N
n=1 Cmn

,
where

∏
denotes the Cartesian product and we define the individual Voronoi cell as

Cmn
=
{
x : x ∈ K, ||x− vmn

||22 ≤ ||x− vm′ ||22,∀m′ ̸= mn

}
. (9)

Proposition 2. Let µ be a measure on Rd. Then, we have the product measure space as µ(Cm) =∏N
n=1 µ(Cmn). See App. C.2 for proof.

Definition 3. Let p be an embedding-augmented distribution over [M ]N . For m ∈ [M ]N , we denote
m’s probability as pm, and m’s embedding as Vm ∈ RN×d. Let K be a compact set that covers
the embeddings Vm and let µ ≪ λ be a base measure absolutely continuous with respect to the
Lebesgue measure λ. We define the (K, µ)-structured Voronoi measure as follows

pV(x)
def
=

{ pm⋆(x)

µ(Cm⋆(x))
dµ
dλ (x), if x ∈ K

0, otherwise
(10)

where we define the structured projection

m⋆(x)
def
= argmin

m∈[M ]N

N∑
n=1

||xn −Vmn ||22. (11)

5The set of x that induces a tie is a set of measure zero under the Lebesgue measure.
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4 Application to Text Generation

Def. 3 gives us the flexibility to use any probability distribution over sequences of embeddings
to define a structured Voronoi measure. For example, one can substitute pm⋆(x) with an
embedding-augmented LM, i.e., Eq. (3), to encode a language model as a structured Voronoi measure.
Another example is to encode a controlled LM as a structured Voronoi measure by substituting
pm⋆(x) with Eq. (4).

Base Measure. We have explained how to encode our desired distribution as a structured Voronoi
measure. However, in order to actually implement a gradient-based sampler, we need to specify the
base probability measures {µm}Mm=1. Given an embedding-augmented probability p(V) it is natural
to follow the gradient of log p(V) with respect to the word embedding, i.e., gm = ∇V log p(V).
Thus, if we want to follow a direction similar to gm, one natural choice for µ is a Gaussian measure
centered at the gradient gm restricted to Voronoi cell Cm,6 which we define:

µ(A) =
1

µ(Cm)

∫
A∩Cm

exp

(
−1

2
∥gm − x∥22

)
dλ(x). (12)

The normalizer ensures the measure is a probability measure. Furthermore, we have that µ’s
Radon–Nikodym derivative with respect to the Lebesgue measure λ is given by

dµ

dλ
(x)

def
=

{
1

µ(Cm) exp
(
− 1

2 ||gm − x||22
)
, if x ∈ Cm

0, otherwise
(13)

Eq. (13) should be recognizable as the standard Gaussian density, albeit one that is truncated to the
Voronoi cell Cm [27].
Proposition 3. Eq. (13) is absolutely continuous with respect to the Lebesgue measure λ. See
App. C.3 for proof.

Proposition 4. The gradient of the log of the Voronoi measure pV is given by

∇x log pV(x) =


gm − x, if x ∈ int(Cm)

undefined, if x ∈ ∂Cm

0, otherwise
(14)

where the first two blocks in the case statement apply if there exists some m such that x ∈ int(Cm)
or x ∈ ∂Cm. See App. C.4 for proof.

5 Gradient-Based Sampling

In this section, we first review gradient-based sampling methods, namely HMC and Langevin
dynamics. Then we discuss how they have been used in previous papers on text generation. This
will set the stage for our algorithm in §6, which is based on HMC.

5.1 Hamiltonian Monte Carlo

The goal of HMC, originally proposed by Duane et al. [7], is to design a better proposal distribution
in the standard Metropolis–Hastings MCMC by taking advantage of the gradient information in a
principled way. Concretely, to sample from a given distribution p(x) where x ∈ Rd, HMC treats x
as the coordinates of the particles in some fictitious physical system. It then introduces an auxiliary
momentum variable r ∈ Rd associated with each coordinate and defines a Hamiltonian function
H(x, r). Here, the Hamiltonian H has the intuitive physical interpretation of the total energy of some
conservative system, and, in classical mechanics, decomposes into the potential energy U(x) and the
kinetic energy K(r), i.e., H(x, r) = U(x) +K(r). This formulation is convenient in part because if
we define the joint distribution p(x, r) ∝ e−H(x,r) as in energy-based models, then

p(x, r) ∝ e−U(x) · e−K(r), (15)

6Please refer to App. B for a discussion on the reasoning behind choosing the Gaussian measure.
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which means we can treat x and r as independent variables. Naturally, we can let U(x) = − log p(x)
so that x has the marginal of the target distribution. It is also common practice to set K(r) =
r⊤M−1r/2 so that the momentum variable has a Gaussian distribution. Here, M ∈ Rd×d is called
the mass matrix and commonly set to identity.7

Algorithm 1 HMC
Input: xt: current sample, U : potential energy
function, ε: step size, L: number of leapfrog steps
Output: next sample: xt+1

1: r ∼ N (0, I)
2: Ht ← U(xt) +K(r)
3: xt+1 ← xt

4: for l = 1, . . . , L :
5: r← r− ε

2∇U(xt+1)

6: xt+1 ← xt+1 + εr
7: r← r− ε

2∇U(xt+1)

8: Ht+1 ← U(xt+1) +K(r)
9: ∆H ← Ht+1 −Ht

10: if s ∼ U(0, 1) < e−∆H :
11: return xt+1

12: else
13: return xt+1 ← xt

The Hamiltonian H determines the equations
of motion in a physical system, given by the
Hamiltonian equations, which is also known as
Hamiltonian dynamics,

dx

dt
=

∂H

∂r
,

dr

dt
= −∂H

∂x
. (16)

We are now ready to give a high-level descrip-
tion of how HMC generates a single sample (see
Algorithm 1): First sample a momentum r from
a Gaussian (line 1), then evolve the system us-
ing the Hamiltonian equations Eq. (16) for some
predetermined amount of time (lines 4 to 7), and
finally accept the new state with the Metropolis–
Hastings acceptance criterion (lines 8 to 13).
Note that the Hamiltonian equations often admit
no closed-form solution in practice, and hence
one needs to use numerical integrators for ap-
proximation. In particular, the leapfrog inte-
grator, corresponding to lines 5 to 7, is almost
always used in HMC.

Ingeniously designed by Duane et al. [7], the
efficiency of this elegant procedure is a result
of several favorable properties of Hamiltonian mechanics—namely volume preservation, reversibility,
and conservation. Upon exact simulation of the Hamiltonian dynamics, these properties will lead
to the acceptance probability of one, i.e., every proposed move will be accepted. In App. D, we
will give intuition about these properties. Since the method developed later in §6 will subsume HMC
as a special case, we delay the proof of correctness until then.

Langevin Dynamics. Langevin dynamics is a simplification of HMC, where only one leapfrog step
is performed. Furthermore, what is usually referred to as Langevin dynamics is in fact the uncorrected
Langevin dynamics, where the acceptance criterion is ignored, i.e., every proposed sample is accepted;
see Algorithm 2. While uncorrected Langevin dynamics is guaranteed to converge when the energy
function is smooth [31, §5.3], there is no such guarantee with the presence of a discontinuity in the
energy function. Nevertheless, due to its simplicity, Langevin dynamics is the only gradient-based
sampling method that has been applied for text generation applications.

5.2 Applications to Controlled Generation

One of the primary advantages of using gradient-based techniques for controlled generation is that
it provides a means to sample from the conditional distribution Eq. (4) without having to calculate
the normalization factor Zt. For example in HMC algorithm (Algorithm 1), all we need to calculate
regarding the potential energy U(V) = − log p(V | t) is two terms: (1) the gradient of U with
respect to V: ∇U , and (2) the difference between the potential energy of two points ∆U for the
Metropolis criterion. Fortunately, both terms are independent of Zt, and we can sample from the
conditional distribution without the need to compute Zt.

MUCOLA. As defined in Eq. (4), p(V | t) is Rd-valued, so it is tempting to apply a gradient-
based sampling technique to sample from it. And, indeed, Kumar et al. [21] have proposed such
a scheme based on Langevin dynamics. They define the potential energy of the embeddings as

7There exist sophisticated methods [15] to tune the mass matrix, but given that LM gradients are expensive
to compute, we will not attempt such methods in this paper.
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U(V)
def
= − log p(V | t) and apply Langevin dynamics out of the box; see Algorithm 3. However,

since U(V) is zero for any vector other than vectors in B (defined in §2.1), they modify the sampling
process and project the proposed sample to the base embeddings set at each step of the sampling
process (line 3 of the algorithm). The added projection step, however, is neither volume-preserving
nor time-reversible. Hence, this sampling procedure does not sample from the intended distribution
and is not a valid MCMC algorithm.

COLD and other schemes. Alternative approaches have been proposed in the literature to reformu-
late a language model as potential energy over the logit [COLD; 38] or simplex space [14, 20]. How-
ever, these formulations are not suitable for principled gradient-based sampling. COLD only employs
a heuristic energy function to select among the candidate generations obtained via top-k sampling,
and the simplex-based approach requires an extra constraint to ensure the sample stays on the simplex.

6 Structured Voronoi Sampling

Given our structured Voronoi measure pV, one can apply HMC to sample from it. In this section,
we take one step further and propose a variation of HMC that is more suitable to sample from pV.
Importantly, pV contains discontinuities whereas the generic leapfrog integrator does not account for
such sudden jumps in the potential function. In other words, even if the leapfrog integrator itself is
volume preserving and time-reversible, the sudden jumps in potential can lead to large deviations in
the Hamiltonian value, causing a low acceptance rate. We therefore would like to find an alternative
to leapfrog in such situations.

A Physical Analogy. In classical mechanics, discontinuity with smooth boundary in the potential
function occurs naturally, e.g., in collision dynamics or a slab magnetic field, and is referred to as a
potential barrier (or interface). Upon encountering a potential barrier, a particle will either be reflected
from or transmitted through the barrier surface, depending on whether it has enough kinetic energy
to overcome the potential jump (e.g., [8, §4.6.2]). Such behavior is similar to reflection–refraction
phenomenon in optics. The key insight here is that, in both cases, the Hamiltonian is conserved.

Reflection and Refraction. To give a precise mechanical description of this behavior, suppose
a particle encounters a potential barrier at position x with momentum r. We can decompose
momentum as r = r⊥ + r∥ where r⊥ is normal to the barrier and r∥ parallel to it. Let ∆U be the
signed potential energy difference between the two sides of the barrier. If ∥r⊥∥22 > 2∆U , then the
particle has enough kinetic energy to overcome the barrier, and its momentum’s normal component
will instantaneously become r′⊥ =

√
∥r⊥∥22 − 2∆U · r⊥

∥r⊥∥2
2

after being transmitted through the
barrier (refraction). Otherwise, if ∥r⊥∥22 ≤ 2∆U , the particle will be reflected from the barrier
and the normal component will instantaneously become r′⊥ = −r⊥. We show in App. E.1 that
Hamiltonian is conserved in either case. The reflect–refract process is summarized in Algorithm 5.

6.1 A Sampling Algorithm

Noting that the discontinuity surfaces of pV are all piecewise smooth, we can build on the above
and develop a sampling algorithm for pV to handle discontinuity in a principled and effective way.
In fact, we only need to make one change to the generic HMC, which is updates (x, r) according
to the mechanical description given above. Concretely, we need to replace step 2 in the HMC outline
in §5.1: When a single step of leapfrog encounters no discontinuity, we may advance to the next
point as in HMC; however, when there is discontinuity, if a full leapfrog step is taken, we need to
proceed by repeatedly computing where the discontinuity is encountered, taking a smaller step
up to the discontinuity and refracting–reflecting based on the potential energy difference. This
process is continued until we have exhausted the step size. Since refracting–reflecting conserves
Hamiltonian (App. E.1), this process yields a better acceptance rate in the presence of a discontinuity.
See Algorithm 4 for the details of this sampling procedure, and App. F.1 for how to efficiently find
discontinuities. We will supply proof of correctness in App. E.2.

A note on calculating the base measure. To adjust the momentum, one needs to compute ∆U ,
which implies computing the difference between two base measures, as defined in Eq. (12). How-
ever, computing such an integral in a high-dimensional space is not practical. Therefore, make an
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Figure 2: Left: JS divergence between the refer-
ence probability and empirical probability distribu-
tion. Voronoi Sampling clearly outperforms others
in low temperatures. Right: reference probability
distribution annealed with 3 temperatures: 0.25
(peaked), 1, and 2 (close to uniform).
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Figure 3: Perplexity of 100 samples taken
with different gradient-based algorithms,
compared to 1000 samples taken with
the ancestral sampling (in green). While
LANGEVIN, SVS, and MUCOLA are com-
parably close to the ancestral samples’ dis-
tribution, SVS models the tail of the distri-
bution better.

assumption that the base measures of Voronoi cells are equal, and thus do not have an effect on ∆U .
However, such an assumption might not hold. See App. A for limitations.

7 Experiments

We empirically assess the performance of Voronoi sampling in a series of experiments. In each
experiment, we perform a grid search to find the best set of hyperparameters, these experimental
details can be found in App. H. Our open-source implementation will be available upon publication.

7.1 Toy Example

We first apply our Voronoi sampling8 method on the toy example discussed earlier in Example 1,
where the reference probability distribution is tractable and known p(x). The potential energy is
then set to U(x) = − log pV(x). Importantly, the toy experiment is intentionally designed such that
the base measure of all of the Voronoi cells is equal, therefore, we can safely ignore calculating
the base measure and arrive at exact sampling methods.

We compare Voronoi sampling to MUCOLA and HMC. To make a fair comparison, we add the
Metropolis criterion9 to the MUCOLA algorithm and only do one leapfrog step in all algorithms.
Furthermore, to see the effect of the reference distribution on the performance of the sampling
algorithm, we anneal this distribution with 6 temperatures, where the lower temperatures lead to
peaky distributions and the higher temperatures to uniform-like distributions.

We take 200 samples after 500 burn-in iterations, and compare the empirical distributions of samples
to the reference by measuring the Jensen–Shannon (JS) divergence between the two. As results in
Fig. 2 show, the JS divergence between the reference distribution and the empirical distribution of
Voronoi samples is the smallest. The difference between the methods is more pronounced at lower
temperatures, as the change in potential energy is greater, resulting in more errors in the leapfrog
integrator. In App. I we provide more empirical support that Voronoi sampling converges faster to
the reference distribution, especially when we increase the dimensionality of the sampling space.

7.2 Sampling from Language Models

Next, we apply our method to sample from a language model. The underlying LM is a finetuned
GPT-210 on E2E dataset [34]; see App. G for dataset statistics. As opposed to the previous

8Note that in the case of the toy experiment, we are not sampling a sequence of text, but rather a single
embedding. To highlight this point, we use Voronoi sampling instead of structured Voronoi sampling to refer to
our algorithm in this section.

9We accept transitioning from xt to xt+1 with probability eH
t−Ht+1

.
10We use gpt2 checkpoint from the Huggingface library [47].
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experiment, the reference distribution of the LM is not tractable. Therefore, we use the empirical
distribution of ancestral samples as an unbiased estimate of the reference distribution. Note that
ancestral sampling incrementally draws samples from a language model, where at each step of the
generation a token wn is sampled with the probability given by the LM: p(wn | w<n). Therefore,
the process can give unbiased estimates of the reference distribution.

We follow §4 to define a structured Voronoi measure pV using the LM probability. We then
implement SVS, where the potential energy is set to − log pV. To empirically measure the benefit of
reflection–refraction step in SVS, we compare it to applying Langevin dynamics directly to pV. We
implement MUCOLA as a baseline, which writes the potential energy using an embedding-augmented
LM, i.e., Eq. (3).

We show the distribution of samples’ perplexity in Fig. 3. The green trace is the empirical distribution
of 1000 ancestral samples. While all the sampling methods result in distributions comparably close
to ancestral samples’ distribution, we observe that SVS manages to model the tail of the distribution
better. On the other hand, MUCOLA and LANGEVIN tend to take samples from the mode of the
distribution more often.

7.3 Controlled Generation

Finally, we apply our structured Voronoi sampling to 2 controlled generation task. The goal of the
first task is to generate restaurant reviews for a target food type t, e.g., Italian, Fast food, Japanese,
etc. The goal of the second task is to control the sentiment of the generations to enforce a positive
sentiment. We train classifiers to predict the target t (food type or positive sentiment) from the input
sequence p(t | w).11 We implement two baselines:

FUDGE. Yang and Klein [48] offer a heuristic approach to sample from the conditional distribution.
They incrementally sample tokens under the language model. At each sampling step, they adjust
the probabilities given by the LM, by feeding each candidate prefix to a classifier and obtain the
probability of that prefix following the control target.

MUCOLA. Kumar et al. [21] treat p(V | t), Eq. (4), as a distribution in Rd and apply Langevin
dynamics directly to sample a sequence of embeddings V. The potential energy is defined as
− log p(V | t). When rewriting this potential energy with Bayes’ rule, it has been shown empirically,
that adding a hyperparameter γ is helpful to keep the balance between the classifier and LM. Therefore,
the final potential energy is defined as:

U(V)
def
= − log p(V)− γ log p(t | V). (17)

As mentioned earlier, p(V | t) only places a positive probability on a countable set. We, therefore,
use Def. 3 to define structured Voronoi measures and set the potential energy to

U(x)
def
= − log pV(x)− γ log pV(t | x). (18)

We then apply Langevin dynamics and SVS to sample according to this potential energy.

Evaluation. We sample 120 sentences of length 2012 and evaluate the generations on three metrics:

• Success: is defined as the percentage of generations that adhere to the control target. To determine
whether a generation conforms to the specified target we use an evaluator classifier.

• Fluency: is measured by the mean and standard deviation of perplexity under the language model.
• Diversity: is measured by the mean number of distinct n-grams (n = 1, 2, 3) in a set of samples,

normalized by the length of the sequence.

As results in Table 1 show,13 FUDGE tends to achieve the highest diversity, however, it fails to follow
the control target. MUCOLA either generates fluent results without paying enough attention to
the control, or sacrifices fluency in favor of following the control target; thus, the high variance
in success rates. Both LANGEVIN and SVS result in a high success rate and maintain fluency and
diversity, and SVS is effective in maintaining a balance between various metrics and producing fluent
sentences that adhere to control targets.

11See App. H for more experimental details about classifiers.
12We sample 20 sentences per control target.
13Please refer to Fig. 7 to see a visualization of the topic control results, and to Table 6 for results per target type.
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Topic Control Sentiment Control

Success(↑) PPL(↓) Dist-1(↑) Dist-2(↑) Dist-3(↑) Success(↑) PPL(↓) Dist-1(↑) Dist-2(↑) Dist-3(↑)
GPT2 0.12± 0.10 5.10± 2.06 0.40 0.56 0.67 0.55± 0.49 21.33± 27.17 0.40 0.60 0.71
FUDGE 0.30± 0.12 5.59± 0.60 0.39 0.55 0.65 0.57± 0.49 24.27± 12.46 0.40 0.60 0.70
MUCOLA 0.58± 0.23 33.09± 36.32 0.26 0.40 0.51 0.66± 0.47 85.74± 152.18 0.28 0.42 0.53

LANGEVIN 0.91± 0.12 14.26± 2.55 0.24 0.39 0.51 0.82± 0.38 26.76± 14.42 0.16 0.30 0.41
SVS 0.92± 0.05 13.9± 2.04 0.22 0.37 0.49 0.84± 0.36 32.73± 16.70 0.14 0.28 0.41

Table 1: Evaluation of different sampling methods on controlled generation, using three criteria:
success in following the control target (measured by the evaluator classifier), fluency (measured by
perplexity), and diversity.

8 Related Work

Controlled Generation. Numerous approaches have been proposed to enforce controls during the
text generation process [19, 24, 41, inter alia]. For example, weighted decoding [10, 17] scores each
candidate token with a weighted sum of its score under the language model and its adherence to
control targets, subsequently selecting candidates with the highest scores. FUDGE method adopts a
similar scoring function, resembling a Bayesian formulation for p(w | t). After making simplifying
assumptions and factorizing p(w | t), FUDGE samples tokens autoregressively based on their scores.
More recently, a line of research attempts to directly sample from p(w | t) by reformulating it as an
energy-based model and sampling from it using efficient gradient-based sampling algorithms. As
discussed in §5.2 COLD reformulates p(w | t) as an energy-based model on the logit space and uses
that to select samples with high energy from a number of candidate generations. MUCOLA offers a
sampling algorithm motivated by Langevin Dynamics that operates in the embedding space.

Gradient-based Sampling. Our work is closely related to the line of research that makes use of
gradient information to sample from complex distributions [7, 31, 46]. Gradient-based samplers
[15, 32] are shown to be highly effective when sampling from continuous distributions [3, 4, 37].
However, it is a difficult problem to adapt gradient-based samplers to discrete settings [36, 50]. More
recently, several papers proposed promising gradient-based MCMC for discrete distribution that are
reversible chains [11, 39, 49]. Our work instead formulates an irreversible Markov chain based on
HMC. We leave it to future work to explore the utility of these recent papers on text generation.

9 Conclusion

In this work, we propose structured Voronoi sampling, a principled gradient-based sampling method
for text generation. To formulate the energy function used in SVS, we define structured Voronoi
measures on the embedding space and show how such measures can encode language models. In
a controlled generation task, SVS outperformed other sampling methods in following the control
target while producing comparably fluent and diverse samples.

Broader Impacts

It has been repeatedly shown that LMs can generate harmful, toxic, or non-factual content [9, 35, 42].
In fact, an application of the controlled generation scheme discussed in this paper could be to mitigate
such issues. However, the same method could be used to generate misinformation, or toxic content
intentionally.
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A Limitations

Approximating the base measure. In this work, we go one step closer to implementing a principled
approach for text generation. However, in our text generation experiments, we follow the previous
work in using uncorrected Langevin dynamics. Moreover, when implementing SVS for text generation,
we assume all Voronoi cells to have an equal base measure, which might not hold.

Efficiency. As reported in App. H, all gradient-based samplers are considerably slower than
ancestral sampling and heuristics such as FUDGE. Further efforts are needed to make gradient-based
methods faster.

Text Quality. As shown in previous work, sequences with high probability under the LM can be
repetitive, dull, or degenerate [16]. Therefore, as with any other sampling method, SVS might sample
degenerate sentences, and the quality of the samples depends on the LM probability distribution. This
is an active area of research with various proposals from changing the loss function during training
[45], to modifying the decoding objective [28].

B A Note on the Choice of the Gaussian Measure

We thank the reviewers and the meta reviewer for their careful assessment of this work and their
thoughtful feedback. As a response to an important point raised by the meta reviewer, here we explain
the reasoning behind using a Gaussian measure in Eq. (12). The gradient gm is only defined at
Voronoi centers and the goal is to follow a direction similar to gm when we are in the vicinity of the
Voronoi center, i.e., in the Voronoi cell. We note that this direction needs to be adjusted depending on
the position in the Voronoi cell x. A natural choice for this would be to use a truncated Gaussian
that is centered at gm, which implies that the gradient in x should be gm − x, to follow a similar
direction gm at the center of the Voronoi.

C Proofs

C.1 Proof of Proposition 1

Proposition 1. Let p = [p1, . . . , pM ] be an embedding-augmented distribution with embeddings
{vm}Mm=1 ⊂ Rd, and let pV be the corresponding Voronoi measure Eq. (7). Then, pV(Cm) = pm
where Cm is defined as in Eq. (6). See App. C.1 for proof.

Proof.

pV(Cm) =

∫
Cm

pV(x)dλ (19a)

=

∫
Cm

pm
µ(Cm)

dµ

dλ
(x)dλ (19b)

=
pm

µ(Cm)

∫
Cm

dµ

dλ
(x)dλ (19c)

=
pm

µ(Cm)
µ(Cm) = pm (19d)

■

C.2 Proof of Proposition 2

Proposition 2. Let µ be a measure on Rd. Then, we have the product measure space as µ(Cm) =∏N
n=1 µ(Cmn

). See App. C.2 for proof.
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Proof. Let m = [m1, . . . ,mN ] ∈ [M ]N . We have

µ(Cm) = µ

(
N∏

n=1

Cmn

)
(20a)

=

N∏
n=1

µ(Cmn) (20b)

■

C.3 Proof of Proposition 3

Proposition 3. Eq. (13) is absolutely continuous with respect to the Lebesgue measure λ. See
App. C.3 for proof.

Proof. Choose E ∈ B(Rd) such that λ(E) = 0.14 Note that E = (E \K)∪
⋃M

m=1(E ∩Cm) where
µ(E \ K) = 0 by Eq. (13). Since the Gaussian measure over Rd itself is absolutely continuous with
respect to λ, we can also conclude that µ(E ∩ Cm) = 0 for any m. Hence, µ(E) ≤ µ(E \ K) +∑

m µ(E ∩ Cm) = 0 which means µ(E) = 0. So µ≪ λ. ■

C.4 Proof of Proposition 4

Proposition 4. The gradient of the log of the Voronoi measure pV is given by

∇x log pV(x) =


gm − x, if x ∈ int(Cm)

undefined, if x ∈ ∂Cm

0, otherwise
(14)

where the first two blocks in the case statement apply if there exists some m such that x ∈ int(Cm)
or x ∈ ∂Cm. See App. C.4 for proof.

Proof. We have three cases. Suppose x ∈ int(Cm) for some m ∈ [M ]. Then, by Observation 1, we
have that pV(x), and, thus, log pV(x) is differentiable. Direct computation reveals:

∇x log pV(x) = ∇x log
pm

µ(Cm)︸ ︷︷ ︸
=0

+∇x log
dµ

dλ
(21a)

= ∇x log exp

(
−1

2
||gm − x||22

)
−∇x logµ(Cm)︸ ︷︷ ︸

=0

= −1

2
∇x||gm − x||22 (21b)

= gm − x (21c)

Next, suppose x /∈
⋃M

m=1 Cm. Then, the measure is zero, so the gradient is as well. Finally, we
have that x ∈ ∂Cm for some m. Then, by the next Observation (Observation 1), we have that pV is
discontinuous, so the derivative is not defined. ■

Observation 1. A (K, µ)-Voronoi measure pV is differentiable with respect to pm on the set
∪Mm=1int (Cm), and discontinuous on the set K \ ∪Mm=1int (Cm), i.e., the union of the Voronoi
cells’ boundaries ∪Mm=1∂Cm.

14We use B(·) to denote the standard Borel σ-algebra.
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D Properties of Hamiltonian Dynamics

Preservation of Measure. First of all, the Hamiltonian equations are volume- or measure-
preserving. Intuitively, this means that if we move a region in the phase space along the dynamics for
an arbitrary amount of time, the volume of the region would stay unchanged.15 Concretely, we can
define a function

gt : (x(0), r(0)) 7→ (x(t), r(t)) (22)

as moving every point in the phase space along the Hamiltonian equations for some time t.16 Then,
using gt as a change of variable would leave the underlying probability measure unchanged.

Time Reversibility. Next, the Hamiltonian equations are time reversible, meaning that if the
equations can move (x, r) to (x′, r′), then it would also take (x′,−r′) to (x,−r). Due to our
choice of distribution of r is always symmetric, these properties simplify the acceptance probability
to be only the energy difference, i.e., we can ignore the conditional probabilities in the standard
Metropolis–Hastings acceptance probability.

Conservation of Hamiltonian. Finally, we can quickly verify that the Hamiltonian H is conserved
by the Hamiltonian dynamics:17

dH

dt
=
∑
i

∂H

∂xi

dxi

dt
+
∑
i

∂H

∂ri

dri
dt

(23)

=
∑
i

∂H

∂xi

∂H

∂ri
−
∑
i

∂H

∂ri

∂H

∂xi
(definition in Eq. (16)) (24)

=
∑
i

∂H

∂xi

∂H

∂ri
−
∑
i

∂H

∂xi

∂H

∂ri
(symmetry) (25)

= 0 (26)

This shows that the acceptance probability will be exactly 1 if the Hamiltonian equations are integrated
exactly. In practice, numerical errors will lead to fluctuations in H . The Metropolis–Hastings
acceptance probability ensures detailed balance.

E Details of Voronoi Sampling

E.1 Conservation of Hamiltonian in Refraction–Reflection

Proposition 5. A single step of refraction–reflection conserves the Hamiltonian.

Proof. Suppose an instantaneous refraction–reflection takes (x, r) to (x′, r′). In other words, (x, r)
is the particle’s coordinate and momentum at the boundary prior to the refraction–reflection, and
(x′, r′) is the particle’s coordinate and momentum after the refraction–reflection, which includes
instantaneous changes in its potential energy and momentum. Recall the refraction–reflection equation
is

r′⊥ =

{√
∥r⊥∥22 − 2∆U · r⊥

∥r⊥∥2
2

(refraction when ∥r⊥∥22 > 2∆U )

−r⊥ (reflection when ∥r⊥∥22 ≤ 2∆U )
(27a)

15This result is known as Liouville’s theorem in classical mechanics [2, §16]. Upon noticing that the
Hamiltonian dynamics is divergenceless, one can interpret it as a simple application of the (higher-dimensional)
divergence theorem, which itself is a consequence of the generalized Stokes’ theorem.

17We say a transformation taking (x, r) to (x′, r′) conserves Hamiltonian if H(x, r) = H(x′, r′).
17This function is called the Hamiltonian phase flow, or simply Hamiltonian flow [2, §16]. Flow is a general

and important notion in the study of differential equations and related subjects, in which some additive group
acts on (R,+). In the case of a smooth Hamiltonian H , {gt}t∈R can be seen a one-parameter group of
diffeomorphisms over R2d.
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where r = r⊥ + r∥ is the normal decomposition of r and r′ = r′⊥ + r′∥. Then,

H(x′, r′) = U(x′) +
1

2
∥r′∥22 (27b)

= U(x′) +
1

2
∥r′⊥ + r′∥∥

2
2 (27c)

= U(x′) +
1

2
∥r′⊥∥22 + ⟨r⊥, r∥⟩+

1

2
∥r′∥∥

2
2 (27d)

= U(x′) +
1

2
∥r′⊥∥22 +

1

2
∥r′∥∥

2
2 ( ⟨r⊥, r∥⟩ = 0) (27e)

=

{
U(x) + ∆U + 1

2 (∥r⊥∥
2
2 − 2∆U) + 1

2∥r
′
∥∥

2
2 (refraction)

U(x) + 1
2∥ − r⊥∥22 + 1

2∥r∥∥
2
2 (reflection)

(27f)

=

{
U(x) +��∆U + 1

2∥r⊥∥
2
2 −��∆U + 1

2∥r
′
∥∥

2
2 (refraction)

U(x) + 1
2∥ − r⊥∥22 + 1

2∥r∥∥
2
2 (reflection)

(27g)

= U(x) +
1

2
∥r∥22 (27h)

= H(x, r). (27i)

■

E.2 Proof of Correctness

In this section, we give a proof of correctness of our sampler by establishing its detailed balance. We
will first prove several useful properties of the sampler in E.2.1 to E.2.3 and then combine them to
prove the detailed balance in App. E.2.4.

E.2.1 Measure Preservation in Leapfrog

First of all, we note that the two leapfrog steps are measure-preserving, since they are composed of a
series of shear transformations.

Proposition 6. The leapfrog steps are measure-preserving.

Proof. Recall that the two leapfrog steps used in HMC (algorithm 1) are (x, r)→ (r, r− ε
2∇U(x))

and (x, r)→ (x+ εr, r).

By the change-of-variable formula, to show a transformation is measure-preserving, it suffices to
show that its Jacobian has determinant 1. The leapfrog step (x, r)→ (x, r− ε

2∇U(x)) as a function
has the Jacobian

∂(x, r− ε
2∇U(x))

∂(x, r)
=

(
I 0

− ε
2∇

2U(x) I

)
(28)

where∇2U(x) denotes the Hessian of U . This Jacobian (28) has determinant 1 and hence the leapfrog
transformation (x, r) to (x, r− ε

2∇U(x)) is measure preserving. Similarly, the other leapfrog step
(x, r)→ (x+ εr, r) has Jacobian

∂(x+ εr, r)

∂(x, r)
=

(
I εI
0 I

)
(29)

which also has determinant 1. ■

E.2.2 Measure Preservation in Refraction–Reflection

The computation for showing that refraction and reflection steps are measure preserving is slightly
more involved than the leapfrog case. Our proof below largely follows the one found in Mohasel
Afshar and Domke [30], where we simplified and corrected some details.

Proposition 7. The refraction–reflection step is measure-preserving.
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Proof. We consider a single step of refraction–reflection as a function γ that takes (x, r) to (x′, r′)
with total step size ε and with only one discontinuity. Note that, without loss of generality, we may
only consider the discontinuity surface to be the hyperplane x1 = 0 since it is equivalent to any
tangent hyperplane of the discontinuity (hyper)surface through an affine transformation. Then, a
normal vector to the hyperplane x1 = 0 is e1 = (1, 0, . . . , 0) and

r⊥ = (r1, 0, . . . , 0) and r∥ = (0, r2, . . . , rd). (30)

In this case,

∀ i ≥ 2, r′i = ri and x′
i = xi + εri (31)

since r∥ is not affected by refraction–reflection. Therefore,

∀ i ≥ 2,
∂x′

i

∂xi
=

∂r′i
∂ri

= 1 (32)

and

∀ i, j ≥ 2 and j ̸= i,
∂x′

i

∂xj
=

∂x′
i

∂rj
=

∂r′i
∂xj

=
∂r′i
∂rj

= 0. (by Eq. (31)) (33)

Eq. (32) and Eq. (33) shows that the absolute determinant of the Jacobian of γ is the same as

|det∇γ| =

∣∣∣∣∣det
(

∂x′
1

∂x1

∂x′
1

∂r1
∂r′1
∂x1

∂r′1
∂r1

)∣∣∣∣∣ =
∣∣∣∣∂x′

1

∂x1

∂r′1
∂r1
− ∂x′

1

∂r1

∂r′1
∂x1

∣∣∣∣ . (34)

We analyze all four quantities in Eq. (34) individually below. Again, without loss of generality,
suppose x1 ≤ 0 and x′

1 ≥ 0. Let ∆U(x) be the function of the signed potential difference as x1

changes from negative to positive, defined only when x1 = 0. Let y = (0,y2, . . . ,yd) be the point
where the discontinuity is encountered. In other words, the particle begins at x, moved past y and
arrived at x′.

Refraction. In the case of refraction, r21 > 2∆U(y) and

r′1 =
√

r21 − 2∆U(y). (35)

Let δ be the step size it takes to reach y. Then

δ = −x1

r1
, (36)

x′
1 = (ε− δ)r′1 =

(
ε+

x1

r1

)
r′1, (37)

and

y = x+ δr = x− x1

r1
r. (38)

Then,

∂x′
1

∂x1
=

∂

∂x1

(
ε+

x1

r1

)
r′1 (Eq. (37)) (39a)

= ε
∂r′1
∂x1

+
1

r1
r′1 +

x1

r1

∂r′1
∂x1

(product rule) (39b)

=

(
ε+

x1

r1

)
∂r′1
∂x1

+
r′1
r1

(product rule), (39c)

∂x′
1

∂r1
=

∂

∂r1

(
ε+

x1

r1

)
r′1 (Eq. (37)) (40a)

= −x1r
′
1

r21
+

(
ε+

x1

r1

)
∂r′1
∂r1

, (40b)
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∂r′1
∂x1

=
∂
√
r21 − 2∆U(y)

∂x1
(by Eq. (35)) (41a)

=
1

2
√
r21 − 2∆U(y)

∂(r21 − 2∆U(y))

∂x1
(chain rule) (41b)

= − 1

r′1

∂∆U(y)

∂x1
, (41c)

and
∂r′1
∂r1

=
∂
√
r21 − 2∆U(y)

∂r1
(by Eq. (35)) (42a)

=
1

2
√
r21 − 2∆U(y)

∂(r21 − 2∆U(y))

∂r1
(chain rule) (42b)

=
r1
r′1
− 1

r′1

∂∆U(y)

∂r1
. (42c)

Then,

det∇γ =
∂x′

1

∂x1

∂r′1
∂r1
− ∂x′

1

∂r1

∂r′1
∂x1

(Eq. (34))

(43a)

=

(
�������
(
ε+

x1

r1

)
∂r′1
∂x1

+
r′1
r1

)
∂r′1
∂r1
−
(
x1r

′
1

r21
+
�������
(
ε+

x1

r1

)
∂r′1
∂r1

)
∂r′1
∂x1

(Eq. (39) and (40))

(43b)

=
r′1
r1

(
∂r′1
∂r1

+
x1

r1

∂r′1
∂x1

)
(43c)

=
r′1
r1

(
r1
r′1
− 1

r′1

∂∆U(y)

∂r1
− x1

r1

1

r′1

∂∆U(y)

∂x1

)
(Eq. (41) and (42))

(43d)

= 1− 1

r1

(
∂∆U(y)

∂r1
+

x1

r1

∂∆U(y)

∂x1

)
(43e)

where
∂∆U(y)

∂r1
+

x1

r1

∂∆U(y)

∂x1
(44a)

=
∑
i

∂∆U(y)

∂yi

∂yi

∂r1
+

x1

r1

∑
i

∂∆U(y)

∂yi

∂yi

∂x1
(chain rule) (44b)

=
∑
i

∂∆U(y)

∂yi

x1ri
r21
− x1

r1

∑
i

∂∆U(y)

∂yi

ri
r1

(Eq. (38)) (44c)

= 0. (44d)
Hence, Eq. (43) and Eq. (44) together imply that

|det∇γ| = 1. (45)
So γ is measure-preserving in the case of refraction.

Reflection. In the case of reflection, r21 ≤ 2∆U(y) and
r′1 = −r1. (46)

As in the case of refraction, let δ be the step size it takes to reach y. Then

δ = −x1

r1
, (47)

x′
1 = (ε− δ)r′1 =

(
ε+

x1

r1

)
(−r′1) = −εr′1 − x1. (48)
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We can then directly calculate

∂x′
1

∂x1
= −1, ∂x′

1

∂x1
= −ε, (Eq. (48)) (49a)

∂x′
1

∂x1
= 0,

∂x′
1

∂x1
= −1. (Eq. (46)) (49b)

Hence,

|det∇γ| = |(−1)(−1)− 0 · (−ε)| = 1. (50)

So γ is measure preserving in the case of reflection as well.

■

E.2.3 Time Reversibility

Proposition 8. The refraction–reflection step is time-reversible.

Proof. A refraction–reflection step is time-reversible means that, if a single step of refraction–
reflection procedure takes (x, r) to (x′, r′), then it would also take (x′,−r′) to (x,−r). We can show
this by considering each cases:

• Reflection: When reflection happens, ∥r⊥∥22 ≤ 2∆U , and hence ∥ − r′⊥∥22 = ∥ − r⊥∥22 =
∥r⊥∥22 ≤ 2∆U , meaning that the reverse trajectory would be reflected as well;

• Refraction: If ∆U > 0, then the reverse trajectory is crossing the boundary from the other
side, seeing a sudden decrease in potential, and hence would be refracted and regain the
magnitude of momentum lost in the forward step. If ∆U < 0, then ∥ − r′⊥∥22 > 2∆U and
hence the reverse trajectory would also be refracted, ending in the original momentum with
the sign reversed.

■

Proposition 8, combined with time reversibility of leapfrog step as in basic HMC, shows that Voronoi
sampling is time reversible. Hence we only need to use the Hamiltonian difference in the Metropolis-
Hastings acceptance probability.

E.2.4 Detailed Balance

Theorem 1. A step of Structured Voronoi Sampling (Algorithm 4) satisfies the detailed balance.

Proof Sketch. From measure preservation (App. E.2.1 and App. E.2.2), the change of variable as
introduced by integrating Hamiltonian equations have Jacobian with absolute determinant 1 and hence
can be omitted. From time reversibility (App. E.2.3), we only need to use the Hamiltonian difference
in the Metropolis–Hastings acceptance probability. And, finally, by using a Metropolis–Hastings
accepting step (lines 8 to 13) we ensure the detailed balance. ■

E.3 Related Work

Such an integrator scheme appears to be well-known in the computational physics community, dating
back to as early as Jin and Wen [18], and quite possibly even earlier. Integration algorithms based on
this idea continue to receive active research [44].

The first usage of such integrator with discrete stepin the context of MCMC appeared in Mohasel
Afshar and Domke [30].18 Mohasel Afshar and Domke [30] primarily based their motivation on the
optical reflection–refraction analogy. We note that, in fact, Hamiltonian mechanics originated from
Hamilton’s formulation of geometrical optics (or Hamiltonian optics) [22, §VIII.7]. This connection,
important to modern physics, should be interpreted with care in our context since momentum isn’t a
natural quantity in optical rays.

18In an earlier work, Pakman and Paninski [36] used the same idea but solved the trajectory exactly for simpler
systems instead of using discrete steps.
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Later, Nishimura et al. [33] provided a derivation of this integrator from the first principles of the
calculus of variations [1]. Importantly, it should be noted that, due to the potential function being
discontinuous, Eq. (16) loses its well-posedness as a system of differential equations, hence the
necessity of justification based on non-smooth analysis.

F Algorithms

Algorithm 2 Langevin Dynamics
Input: xt: current sample, U : potential energy function, ε: step size
Output: next sample: xt+1

1: r ∼ N (0, I)
2: r← r− ε

2∇U(xt)

3: xt+1 ← xt + εr
4: return xt+1

Algorithm 3 MUCOLA

Input: Vt: current sample, U : potential energy function, ε: step size
Output: next sample: Vt+1

1: r ∼ N (0, I)
2: r← r− ε

2∇U(Vt)

3: Vt+1 ← ProjB(V
t + εr)

4: return Vt+1

Algorithm 4 Structured Voronoi Sampling
Input: xt: current embeddings, U : potential function, ε: step size
Output: next sample: xt+1

1: r ∼ N (0, εI)
2: Ht ← U(Vm⋆(xt)) +K(r)
3: r← r− ε

2∇U(Vm⋆(xt))

4: xt+1 ← FINDDISC(xt, r)
5: r← r− ε

2∇U(Vm⋆(xt+1))

6: Ht+1 ← U(xt+1) +K(r)
7: ∆H ← Ht+1 −Ht

8: if s ∼ U(0, 1) < e−∆H : ▷ Metropolis criterion
9: return xt+1

10: else
11: return xt+1 ← xt

Algorithm 5 REFRACTREFLECT

Input: rt: current momentum, b normal vector of the boundary, ∆U : difference in potential energy
Output: next momentum: rt+1

1: rt⊥ ← bT rt

∥b∥2
2
b

2: rt∥ ← rt − rt⊥
3: if ∥rt⊥∥22 > 2∆U :
4: rt+1

⊥ ←
√
∥rt⊥∥22 − 2∆U · rt⊥

∥rt⊥∥2
2

▷ refract

5: else
6: rt+1

⊥ ← −rt⊥ ▷ reflect

7: rt+1 ← rt+1
⊥ + rt∥

8: return rt+1
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Split Chinese English Fast food French Indian Italian Japanese Total

train 2929 4100 5891 5889 4412 5909 5996 42061
valid 1489 1780 - - - - - 4672
test 492 613 632 639 497 608 638 4693

Table 2: Number of restaurant reviews in each split and food type. Note that some reviews do not
represent any specific food type, therefore, the total count is bigger than the sum count of reviews in
each food category.

F.1 Efficiently Finding Discontinuities

As explained in §6, the key insight in SVS is to adjust the momentum when facing discontinuity in the
potential function. Therefore, we first need to find discontinuities efficiently and then reflect/refract
on the boundary of the discontinuity. Remember that at each leapfrog step, we move from xt to
xt+1 = xt + εr. To find discontinuities along this trajectory, we divide each leapfrog step into
fractions of a step and check for discontinuity. Concretely, we only advance the embedding by
a fraction α, i.e. x′ = x + αεr (line 4 in Algorithm 6). Then, we check for discontinuity by
looking at the difference between the potential energies. If we don’t observe any changes in the
potential function, we take the next fraction of a step. Otherwise, we find the boundary and adjust the
momentum (line 10 in Algorithm 6). Note that in SVS, finding the boundary is straightforward, and it
is a hyperplane characterized by the normal vector, as the line goes through the two Voronoi centers
on each side of the hyperplane.

Algorithm 6 Find Discontinuity
Input: xt: current embeddings, r: current momentum, U : potential function, ε: step size, α:
discontinuity step size
Output: next sample: xt+1

1: τ ← 0
2: x← xt

3: while τ < 1 :
4: x′ ← x+ αεr
5: ∆U ← U(Vm⋆(x′))− U(Vm⋆(x))
6: if ∆U = 0 : ▷ there is no discontinuity
7: x← x′

8: τ ← τ + α
9: else

10: b, α′ ← FINDB(x,x′) ▷ Returns the intersection α′ and the normal vector of the boundary b
11: x← x+ α′εr
12: τ ← τ + α′

13: r← REFRACTREFLECT(r, b,∆U)

14: return xt+1 ← x

G Dataset Statistics

This dataset is made available under the CC BY-SA 4.0 license. Our use of this dataset is for i)
fine-tuning GPT-2, and ii) training classifiers for topic control, which clearly matches the intended
use of this dataset mentioned by the creators as end-to-end training and generating text with content
selection. A summary of dataset statistics can be found in Table 2.

H Experimental Details

Sampling algorithms. Hyperparameters for each experiment are reported in Table 4. Following
prior work [46], in algorithms based on Langevin dynamics, we apply an exponential decay to the
step size by decreasing it to 0.05 after 500 steps. In all settings, we take 500 burn-in steps.
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Toy Example LM Sampling Controlled Generation

ε α ε α ε α γ

VS 0.1 0.1 - - - - -
SVS 0.1 0.1 1. 0.4 1.5 0.3 1.5
HMC 0.1 0.1 - - - - -
LANGEVIN - - 1. - 1.5 - 1.5
MUCOLA 0.1 0.1 1. - 1. - 2.

Table 4: Hyperparameters used in sampling algorithms.

Table 3: Inference time for different
methods on the controlled generation
experiments. All experiments are done
on a single A100-40GB GPU.

method sec/batch

FUDGE 10
MUCOLA 30
LANGEVIN (ours) 31
SVS (ours) 84

Food Classifiers. We train 3 classifiers. First, for exper-
iments with FUDGE, we follow the experimental detail as
in the original paper [48] and train a 3-layered BILSTM
classifier with 0.5 dropout. The hidden dimension is set
to 300, and the embedding layer is trained from scratch.
Second, in experiments with MUCOLA, LANGEVIN, and
SVS, to make the setup as close as to FUDGE, we train a
3-layered BILSTM classifier with 0.5 dropout. However,
this time the BILSTM is trained on top of frozen GPT-2
representations, thus sharing the embedding layer that is
necessary for these methods to work. Finally, to evaluate
the success of the methods in following the control targets,
we finetune a ROBERTA [25] base model. The accuracy of all the classifiers and the number of
trained parameters are reported in Table 5. We train all the models on a single gtx_1080_ti GPU
with approximately 2 hours of total computational budget.

Inference times. We report inference times based on sec/batch. The number of decoded sentences
per batch depends on the GPU memory and the size of the model. As depicted in table 3, using
Voronoi measures does not increase the inference time (compare MUCOLA and LANGEVIN). We
observe that SVS inference time is longer, because of the extra momentum adjustment steps. However,
one can reduce the inference time by increasing α.

model f1-score precision recall # params

BILSTM 0.87 0.87 0.87 17M
BILSTMPROBE 0.84 0.84 0.84 37M
ROBERTA 0.90 0.91 0.90 124M

BILSTMPROBE 0.90 0.90 0.90 878M
Table 5: Performance of food classifiers, and their number of learnable parameters, used in controlled
generation experiment. All classifiers are trained and tested on E2E dataset.

I More Experiments on The Toy Model

To better understand the advantages of Voronoi sampling over HMC or MUCOLA, we further look at
the JS divergence between the reference distribution and the distribution of samples when increasing
the number of iterations. As depicted in Fig. 4, while the divergence decreases with more iterations
across all sampling methods, Voronoi sampling converges to the reference distribution with fewer
iterations. We then look at the distribution of sampled elements in Fig. 5. We observe that with 100
iterations, MUCOLA undersamples the element with the maximum probability while oversampling
other elements. Finally, we extend the toy model from 4 squared cells in R2 to 2k hypercube cells
in Rk (Fig. 6). As the dimensionality increases, the divergence between the samples’ distribution
and the reference distribution also increases in all sampling methods. Importantly, Voronoi sampling
consistently converges faster across different values for k.
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Figure 4: Comparing JS divergence of methods using different numbers of iterations. In general,
Voronoi sampling converge to the true distribution faster compared to HMC and MUCOLA. As
the number of iterations increases, the divergence between the samples’ distribution and the true
distribution decreases across all sampling methods.

J Controlled Generation Results

Table 6, Fig. 7 show the performance of 4 sampling methods on different metrics. We show a sample
of generations for each control target in Table 7.

FUDGE MUCOLA LANGEVIN SVS

Success PPL Dist-1 Dist-2 Dist-3 Success PPL Dist-1 Dist-2 Dist-3 Success PPL Dist-1 Dist-2 Dist-3 Success PPL Dist-1 Dist-2 Dist-3

Chinese 0.30 5.41 0.38 0.53 0.63 0.30 10.90 0.21 0.35 0.47 1.00 16.21 0.22 0.36 0.48 0.90 12.42 0.22 0.36 0.49
English 0.15 5.82 0.41 0.57 0.67 0.45 17.76 0.26 0.39 0.49 0.70 15.82 0.27 0.43 0.55 0.85 15.00 0.25 0.41 0.54
Fast food 0.25 6.44 0.41 0.57 0.68 0.95 5.39 0.26 0.38 0.47 1.00 10.09 0.23 0.37 0.49 1.00 11.43 0.23 0.38 0.50
French 0.25 6.02 0.39 0.55 0.66 0.75 88.19 0.29 0.43 0.54 0.80 12.87 0.21 0.36 0.49 0.95 17.23 0.21 0.35 0.47
Indian 0.55 4.52 0.41 0.55 0.64 0.40 7.87 0.25 0.40 0.51 0.95 17.67 0.26 0.41 0.54 0.95 12.89 0.19 0.35 0.47
Italian 0.35 5.49 0.37 0.53 0.64 0.50 18.19 0.27 0.42 0.53 0.95 14.29 0.26 0.41 0.53 0.90 15.47 0.26 0.41 0.52
Japanese 0.30 5.44 0.42 0.55 0.65 0.75 83.37 0.27 0.42 0.54 1.00 12.90 0.21 0.36 0.47 0.95 12.89 0.18 0.33 0.45

Table 6: Evaluation of different sampling methods on controlled generation, using three criteria:
success in following the control target (measured by the evaluator classifier), fluency (measured by
perplexity), and diversity.
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Figure 5: Comparing the distribution of sampled elements at temperature 0.25. With 100 iterations,
MUCOLA undersamples the element with the highest probability while oversampling other elements.
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Figure 6: Comparing the distribution of sampled elements with the true distribution after 100
iterations, at temperature 0.5. There are 2k Voronoi cells with equal base measures in Rk, where
elements to sample from are located at the center of each Voronoi cell. Voronoi sampling converges
faster to the true distribution across all k values. As the dimensionality of the sample space increases,
the divergence of all methods increases.
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Figure 7: Evaluation of different sampling methods on restaurant review generation, along 6 axes:
mean and standard deviation of negative perplexity19(-ppl-mean ↑ , -ppl-std ↑), the percentage
of generated sentences adhering to the control target (success ↑), and diversity metrics (dist-1 ↑,
dist-2 ↑, dist-3 ↑). For most control targets, SVS achieves the highest success rate, with relatively
low perplexity.
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Chinese
FUDGE In the city centre near Yippee Noodle Bar Chinese, is Alimentum. It has moderate prices and
MUCOLA and has a 1 out of 5. It has food and high customer rating. The Rice Boat is
LANGEVIN It serves Chinese food with a low customer rating. The fast food and restaurant The Golden Curry is a
SVS It has a low customer rating and a price. The highly rated Chinese restaurant The Phoenix has a high

English
FUDGE It has an average customer Rating. Bibimbap House has English food in the riverside area near
MUCOLA and has a low customer rating. The Golden Curry is a children friendly, serving English food, with
LANGEVIN It has low rating and is located near the to the city centre. The Phoenix is a English food
SVS Alimentum in the city centre near the a moderate price range. It serves English food, is

Fast food
FUDGE A fast food, coffee shop, Strada has a low customer rating, has a price range of over £30. It is
MUCOLA and is family friendly and serves fast food. The Wrestlers is a fast food coffee shop in the
LANGEVIN It is located near the riverside, is a cheap family friendly fast food restaurant, and is called
SVS It is located near the river. The Mill is a cheap, fast food and coffee shop near the

French
FUDGE It has a low-priced Inn French food. It is near Café Rouge.The Alimentum is a kid friendly fast food
MUCOLA The French restaurant The Waterman is located in the city centre. The price range is less than
LANGEVIN It is a restaurant located in the riverside, the restaurant, offers French food with a price
SVS It is a family restaurant that serves French food with a price range and has a low customer rating.

Indian
FUDGE The Phoenix Indian restaurant has moderate prices with a 3 out of 5 rating. Located on the
MUCOLA It is in the city and has a low customer rating. The Waterman is a low priced
LANGEVIN It is not child friendly and it is near the river. It serves Indian food and a customer rating
SVS It is located in the city centre near The Portland Arms Indian food and has a low customer rating.

Italian
FUDGE It has family Italian food and has a low a moderate price range. The Rice Boat has an average
MUCOLA is a high priced Italian food restaurant with a customer rating of average. The Phoenix is a high
LANGEVIN It is located in the city centre, it is not family friendly and is a coffee shop serving Italian
SVS It is located in the the city centre near The Portland Arms.The Eagle is an Italian restaurant.

Japanese
FUDGE Japanese food. Its customer rating is 3 out of 5.The Phoenix is Japanese in the city centre
MUCOLA for Japanese food is located in the city centre. It has a low customer rating. The Golden
LANGEVIN It is located in the riverside. It is a Japanese food. It is a pub restaurant
SVS It is located in the riverside. It is a low rated Japanese restaurant, and coffee shop.

Table 7: Examples of sampled sentences from different control food targets.
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