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Abstract

Advancements in deep neural networks have allowed automatic speech recognition
(ASR) systems to attain human parity on several publicly available clean speech
datasets. However, even state-of-the-art ASR systems experience performance
degradation when confronted with adverse conditions, as a well-trained acous-
tic model is sensitive to variations in the speech domain, e.g., background noise.
Intuitively, humans address this issue by relying on their linguistic knowledge:
the meaning of ambiguous spoken terms is usually inferred from contextual cues
thereby reducing the dependency on the auditory system. Inspired by this observa-
tion, we introduce the first open-source benchmark to utilize external large language
models (LLMs) for ASR error correction, where N-best decoding hypotheses pro-
vide informative elements for true transcription prediction. This approach is a
paradigm shift from the traditional language model rescoring strategy that can
only select one candidate hypothesis as the output transcription. The proposed
benchmark contains a novel dataset, “Hypotheses Paradise” (HP), encompass-
ing more than 316,000 pairs of N-best hypotheses and corresponding accurate
transcriptions across prevalent speech domains. Given this dataset, we examine
three types of error correction techniques based on LLMs with varying amounts of
labeled hypotheses-transcription pairs, which gains a significant word error rate
(WER) reduction. Experimental evidence demonstrates the proposed technique
achieves a breakthrough by surpassing the upper bound of traditional re-ranking
based methods. More surprisingly, LLM with reasonable prompt and its generative
capability can even correct those tokens that are missing in N-best list. We make
our results publicly accessible for reproducible pipelines with released pre-trained
models, thus providing a new paradigm for ASR error correction with LLMs.

1 Introduction

Automatic speech recognition (ASR) has become increasingly important in modern society, as it
enables efficient and accurate transcription of spoken languages. This capability facilitates access to
information and enhances communication across various domains, including education [7], health-
care [51], and business [36]. Driven by the recent advances in deep learning, remarkable success
has been achieved on several ASR tasks through end-to-end training techniques [27, 26, 9, 20, 29].
However, a major challenge of applying ASR in practical conditions lies in effectively handling
variations in speech caused by different factors such as background noise [10], speaker accent [87],
and speaking styles [83, 2]. These adverse factors are common and inevitable in speech signal,
significantly affecting the accuracy of the recognition results [56].
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Figure 1: The left part shows the pipeline to generate the N-best hypotheses using a vanilla ASR
engine with beam search decoding. The right part counts the probabilities of case (i) and case (ii) on
the test set of LibriSpeech dataset. It indicates the discarded information in 2nd ∼ 20th utterances.
Green and red Ti in “Exp" respectively denote correct and wrong tokens compared with ground-truth.

Humans demonstrate remarkable robustness when faced with the above variations in acoustic environ-
ment, as the human recognition system does not only rely on acoustic cues – we usually speculate the
ambiguous or distorted spoken terms based on speech context and our inherent linguistic knowledge.
Similarly, current ASR system typically employs an independent language model (LM) for rescoring
during the decoding process [85, 47, 44, 24]. As shown in Fig. 1, given N-best hypotheses generated
by an ASR engine with beam search decoding, a trained language model (LM) can be used to re-score
each utterance and select the one with the highest likelihood (referred to as the 1st utterance) as the
output of the ASR; whereas, the other sentences (the 2nd – N th utterances) are discarded. However, it
is widely believed [71] that the N-best list contains useful information [90, 37, 57], as each hypothesis
is an independent textual representation of the input speech. Consequently, discarded sentences
might also carry correct tokens for accurately predicting the true transcription. To validate this belief,
we have conducted experiments on the LibriSpeech dataset [69], counting the probabilities of two
scenarios observed during LM rescoring: (i) the discarded utterances contain a better candidate with
lower word error rate (WER), and (ii) the other discarded hypotheses can provide the right answer for
the wrong tokens in 1st utterance. The statistical results of 2nd ∼ 20th utterances are shown in the
left part of Fig. 1. Taking 2nd discarded utterance as example, it has a 14% probability of having a
lower WER than the 1st utterance. Furthermore, given a wrong token in 1st utterance, there is a 34%
probability of finding the correct token in the 2nd utterance.

To better mine the information in N-best hypotheses, we propose the first attempt on publicly available
ASR generative error correction benchmark that directly predicts a true transcription, rather than
selecting a candidate from the N-best list. To put forth this benchmark, we introduce a novel dataset
named Hypotheses Paradise (HP), which comprises various N-best hypotheses provided by state-
of-the-art ASR systems and their paired true transcriptions. Considering real-life applications, HP
dataset covers various challenging speech domains, including scenarios with background noise,
specific contexts, and speaker accents. Furthermore, in terms of resources availability, we define three
settings to mimic the deployment of ASR systems in real-world scenarios: (i) Zero-shot Learning.
In this setting, only test set hypotheses are available for inference. This corresponds to applying a
well-trained ASR model to new scenarios without any training data. (ii) Few-shot Learning. A few
in-domain hypotheses with true transcription are available for training. This setting aims to address
domain-specific ASR tasks with a few manual annotations. (iii) Finetuning. A sufficient training set
is available to learn the mapping between hypotheses and transcription.

To exploit the three aforementioned scenarios, we present multiple error correction techniques using
large language models (LLMs), which have shown the outperforming ability of language generation
and reasoning in recent studies [5, 107, 49, 86]. For zero-shot and few-shot settings, we design an
in-context learning method without any parameter tuning, which directly performs error correction
based on task prompt and in-domain demonstration. In the finetuning scenario, we develop two
sequence-to-sequence training solutions, H2T-ft and H2T-LoRA, which adapt pre-trained LLMs to
specific transcription domains. Experimental results show that all learning strategies can be beneficial
to reduce the WER in different resource settings, providing potential solutions for alleviating the
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negative impact of speech variation. Additionally, with reasonable prompt design, LLMs can correct
those specious tokens that are exclusive from N-best list. We will release the HP datasets, reproducible
pipelines, and pre-trained models on Github 2 under MIT licence.

Our contribution can be summarized as follows:

• We propose the first benchmark to evaluate how LLMs can be utilized to enhance ASR
results with N-best hypotheses, where a new dataset Hypotheses Paradise with more than
316K hypotheses-transcription pairs are collected from the various ASR corpus in most
common speech domains.

• We develop three ASR error correction techniques based on LLMs in different resource
settings to directly predict the true transcription from the N-best hypotheses. Experimental
results in the finetuning setting show that our new approach can surpass the upper-bound of
traditional re-ranking based methods.

• We present a new paradigm generative error correction for ASR: acoustic model generates
informative elements in hypotheses list, and then LLMs predict accurate transcription using
linguistic knowledge and context information.

2 Related Work

2.1 ASR Rescoring and Error Correction

In order to improve the linguistic acceptability of ASR results, LM rescoring has been widely
employed and achieved stable performance gain for ASR systems [80, 65, 4]. Typically, an external
LM is trained separately and utilized to re-score the N-best list of hypotheses generated by ASR
decoding with beam search. Various approaches for LM integration have been proposed, such as
shallow fusion [15, 104, 47, 85], deliberation [100, 31, 41, 40, 94, 39], component fusion [78], and
cold fusion [82]. Some authors have used pre-trained LM models to replace trainable LMs [88, 76],
and the log-likelihood of each hypothesis is computed using unidirectional models, e.g., GPT-2, or
pseudo-log-likelihood using bidirectional models like BERT [19] and RoBERTa [61]. In ASR, LMs
are also widely used for the error correction task in different languages [99, 28], leveraging only the
1-best hypothesis generated by the ASR model [54, 64, 106, 21, 109, 79]. Furthermore, more recent
works [63, 53, 52] utilize a candidates list after decoding for error correction. Though Grammatical
Error Correction (GEC) has been actively explored [18, 96], ASR error correction is distinct with
GER due to the arbitrariness of the spoken language [2], which requires the efforts from both speech
and NLP communities [16].

2.2 Large Language Models

More recently, there has been a surge of interest in Transformer-based LLMs [86, 73, 77, 107] in both
academia and industry. By learning from massive amounts of text data, LLMs can capture linguistic
patterns and semantic relationships, which have led to impressive performance for a wide range of
natural language processing (NLP) tasks [5, 68, 98].

In-context Learning. Given specific task descriptions or input-output pairs, LLMs show outstanding
adaptability on downstream NLP tasks without any parameter tuning [66, 67]. Such a capability
of task-specific inference is also known as in-context learning (ICL) [101], which utilize LLMs to
generate text that is more coherent and relevant to the specific domain or task [45, 14, 50, 75, 8, 108].

Low-rank Approximation based Neural Adapter. Tuning all LLM parameters for a given down-
stream task is usually not feasible due to memory constraints. Many researchers sought to mitigate
that problem by either adapting only a few parameters or leveraging external trainable modules for
a new task [60, 32]. A pioneer work [1] showed that the learned over-parametrized models in fact
reside on a low intrinsic dimension, consequently, a low-rank adaptation (LoRA) approach [38] was
proposed to indirectly tune some dense layers by optimizing rank decomposition matrices of the
dense layers. Due to its computational efficiency, LoRA adaptation has been rapidly adopted as a
new paradigm for LLMs tuning, which was useful in various downstream tasks [105, 23, 43, 95].

2https://github.com/Hypotheses-Paradise/Hypo2Trans
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3 Hypothesis Generation and Dataset Creation

We introduce the generation process of the Hypotheses Paradise dataset in this section. The employed
ASR system for N-best hypotheses generation is illustrated in 3.1, and then we introduce the selected
speech domain in 3.2. Finally, we provide statistic information and generated HP in 3.2.

3.1 ASR System

We employ two state-of-the-art ASR models, namely WavLM [13] and Whisper [72] for N-best
hypotheses generation. Besides their remarkable performance and popularity, those models are
representative in the deployment of an ASR because: (1) WavLM is a well-trained ASR model on
LibriSpeech [69] but suffering from domain mismatch, and (2) Whisper is a universal ASR model
but lacking domain specificity. More details about those two ASR models are described below:

WavLM: We utilize the ESPnet toolkit [97] along with the pre-trained model from HuggingFace
to deploy our WavLM-based ASR system. The WavLM architecture consists of two blocks: the
front-end, and the ASR model (433 million parameters in total). The front-end consists of 24
Transformer-based [91] encoder layers and is pre-trained using a combination of LibriLight [46]
(60k hours of data), Gigaspeech [11] (10k hours of data), and VoxPopuli [93] (24k hours of data).
Front-end features are fed into the ASR back-end for finetuning. The back-end consists of 12
Conformer-based [29] encoder layers, and 6 Transformer-based decoder layers. The finetuning
process is performed on 960-hour LibriSpeech data. Additionally, the WavLM decoding recipe
incorporates an external LM rescoring option, where the external LM adopts Transformer architecture
with 16 encoder layers and is trained using the text of LibriSpeech 960 hours data and extra LM
training data from the web.

Whisper: We employ the Whisper-LargeV2 model developed by OpenAI to generate hypotheses,
without in-domain language model rescoring. The used configuration consists of an encoder-decoder
Transformer architecture with 1,550 million parameters, which is trained on 680,000 hours of
multilingual-weakly labeled speech data collected from the web.

Leveraging these two pre-trained ASR models, we have employed the beam search algorithm during
decoding and generated N-best lists of sentence hypotheses for each input waveform. For both
WavLM and Whisper, the default beam size was set to 60. After removing repeatable utterances, we
select top-5 utterances with highest probabilities as N-best list, as they have carried sufficient elements
to accurately predict transcription. Subsequent experiments confirm this belief by calculating the
accurately upper-bound WER using 5-best hypotheses list. To build the HP dataset, we carry out this
decoding strategy on multiple popular ASR datasets (please see Section 3.2) and generate paired
data consisting of an 5-best hypotheses list and 1 ground-truth transcription. The pre-processing and
generation code are also released for integrating new ASR corpus into HP. All the links of relevant
resources are presented in Appendix.

3.2 Selected Speech Corpora

For corpora selection, our goal is to cover common scenarios of ASR task, e.g., noisy background
and speaker accent. Consequently, we collect and modify the following corpora with evident domain
characteristics to compose the HP dataset.

LibriSpeech [69]: LibriSpeech is a public corpus of read speech from audiobooks, including 1,000
hours of speech data with diverse speakers, genders, and accents. For generating HP training data, we
exclude some simple cases from its train-960 split that show WER result of 0, resulting in 88,200
training utterances. We use the entire test-clean and test-other splits for HP test data generation.

CHiME-4 [92]: CHiME-4 is a dataset for far-field speech recognition. It includes real and simulated
noisy recordings in four noisy environments, i.e., bus, cafe, pedestrian area, and street junction. We
use its train (with 8,738 utterances) and test-real (with 1,320 utterances) splits to generate HP training
and test data. The four different noises in test-real split are also evaluated separately in Table 3.

WSJ [70]: The Wall Street Journal (WSJ) is a widely-used benchmark for speech recognition. It
includes read speech from speakers in a controlled environment, with a focus on business news and
financial data. We use its train-si284 split (with 37,514 utterances) to generate HP training set. The
dev93 (with 503 utterances) and eval92 (with 333 utterances) are applied to build test sets.
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Table 1: HP dataset statistics in terms of the number of hypotheses-transcription pairs and average
utterance length in various domains.

Domain Training Set # Pairs Length Test Set # Pairs LengthSource Category

LibriSpeech Audiobooks train-960 88,200 33.7 test-clean 2,620 20.1
test-other 2,939 17.8

CHiME4 Noise train 8,738 17.0 test-real 1,320 16.4

WSJ Business news train-si284 37,514 17.5 dev93 503 16.7
eval92 333 17.3

SwitchBoard Telephone train 36,539 11.8 eval2000 2,000 11.8

CommonVoice Accented English train-accent 49,758 10.5 test-accent 2,000 10.5

Tedlium-3 TED talk train 47,500 12.6 test 2,500 12.6

LRS2 BBC audio train 42,940 7.6 test 2,259 7.6

ATIS Airline info. train 3,964 12.4 test 809 11.3

CORAAL Interview train 1,728 24.2 test 100 24.0

Total train 316,881 18.1 test 17,383 14.1

SwitchBoard [25]: The SwitchBoard corpus is a telephone speech dataset collected from conver-
sations between pairs of speakers. It focuses on North American English and involves over 2.4k
conversations from approximately 200 speakers. We randomly select 36,539 samples from its train
split to generate HP training set, as well as 2,000 utterances from the eval2000 split for HP test set.

CommonVoice [3]: CommonVoice 5.1 is a freely-available dataset for speech recognition. It contains
speech recordings from diverse speakers in over 60 languages. To generate HP dataset, we randomly
select 51,758 samples from its train-en split with accent labels, i.e., African, Australian, Indian, and
Singaporean, where training set contains 49,758 samples and test set contains 2,000 samples.

Tedlium-3 [34]: Tedlium-3 is a dataset of speech recorded from TED Talks in multiple languages. It
contains a diverse range of background noise, speaker accents, speech topics, etc. Considering its
large size, we randomly select 50,000 samples from its train split for HP dataset generation, where
training set contains 47,500 samples and test set contains 2,500 samples.

LRS2 [17]: Lip Reading Sentences 2 (LRS2) is a large-scale publicly available labeled audio-visual
dataset, consisting of 224 hours of video clips from BBC programs. We randomly select 42,940
samples from its train split as training set, and the remaining 2,259 samples are used for test set.

ATIS [33]: Airline Travel Information System (ATIS) is a dataset comprising spoken queries for air
travel information, such as flight times, prices, and availability. It contains around 5,000 to 5,400
utterances, which are recorded from around 500 to 550 speakers.

CORAAL [48]: The Corpus of Regional African American Language (CORAAL) is the first
public corpus of AAL data. It includes audio recordings along with the time-aligned orthographic
transcription from over 150 sociolinguistic interviews. To generate HP dataset, we select 1,728
samples as training set and 100 samples as test set.

3.3 Hypotheses Paradise (HP) Dataset Statistics

After performing beam search decoding on the selected speech datasets introduced in Section 3.2, we
collected more than 316K pairs of hypotheses list and transcription to form the HP dataset, including
training and test sets. The statistics for the HP dataset are given in Table 1, which shows the number
of pairs and average length in various domains and splits. We would release our generated datasets
and kindly request more hypotheses-transcription pairs from the public 3.

3https://github.com/Hypotheses-Paradise/HP-V0
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Q: Do you know automatic speech recognition?
R: Yes, ASR is [...]

Q: Do you know language model rescoring in ASR?
R: Sure, LM rescoring [...]

Q: Can you generate an example with 5-best list?
R: 5-best hypothesis list: [...], and answer is [...]

Self-activated In-context Learning

Q: Please do the same thing on following N-best list:
   [N-best hypothesis]
R: Of course. The true transcription should be: [...]

   I provide #n real cases in [CLS] domain:

     The N-best hypothesis list is: [...],
     and the true transcription is: [...] 
 
   n-shots demonstration  

Figure 2: Self-activated in-context learning. The demonstration in blue box is drawn from the training
set, which is optional for LLMs input.

Correction Model

Prompt  + N-best hypotheses list

Predicted transcription

Pre-trained
Weights A=               

B=0
（a） （b）

Input

Hidden

Figure 3: (a) Structure of H2T-ft. (b) Reparametrization in H2T-LoRA. Solid box denotes the module
is fixed during tuning while dashed box stands for trainable. Blue color denotes the weights has been
pre-trained on another dataset.

4 ASR Error Correction from Hypotheses to Transcription

We hereby introduce a hypotheses-to-transcription (H2T) training scheme utilizing the collected
HP dataset to enhance ASR performance with LLM integration. With limited labeled data, in-
context learning is employed to form task-specific prompts and in-domain demonstrations: Linguistic
knowledge in LLM is exploited without parameter tuning. Furthermore, we present two trainable
methods fine-tuning (ft) and H2T-LoRA to learn the hypotheses-to-transcription mapping when a
sufficient amount of labeled data is available.

4.1 Self-activated In-context Learning

We present a “self-activated” in-context learning mechanism in Fig.2, where a multi-turn prompting
is generated to activate consistent knowledge in LLMs. This mechanism can be applied for both zero-
shot and few-shot settings, where few-shot setting requires some in-domain hypotheses-transcription
pairs (blue box in Fig.2). Under this setup, an LLM first explains the task it is working on, then
generates an example from its understanding, and finally produces the actual task output. In our
experiments, we noticed that LLMs can mimic an N-best hypotheses list consisting of utterances with
similar pronunciation, showing that LLMs have perceived acoustic information during pre-training.

In few-shot learning, we provide some in-domain training examples as a demonstration for LLM input,
before an LLM performs on the target task. In this case, we can also insert the domain information
into the demonstration, as shown in Fig.2. Furthermore, we explore the effect of this domain-hint
prompting on zero-shot setting with relative experiments in 5.5.

4.2 Hypotheses-to-Transcription (H2T) Training

In addition to in-context learning, we introduce two parameter-tunable methods to learn hypotheses-
to-transcription mapping in a sequence-to-sequence manner: H2T-ft and H2T-LoRA.

H2T-ft denotes fine-tuning all parameters of a neural model with labeled data of each HP domain.
Specifically, we introduce a similar method with N-best T5, which utilizes other hypotheses to
improve the 1-best hypothesis as shown in Fig. 3. To constrain the decoding space, we add an
new item criterion Lft =

∑N
i=1 αi logP (x(i)|x, θ), where y∗ denotes the ground-truth transcription,
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Table 2: WER (%) results of H2T-ft and H2T-LoRA in finetuning setting. "onb" and "ocp" respectively
denote n-best oracle and compositional oracle that are defined in 5.2.

Test Set Baseline LMrank
H2T-ft H2T-LoRA Oracle

T5 LLaMA T5 LLaMA onb ocp

WSJ 4.5 4.3 4.0 3.8 2.7−40.0% 2.2−51.1% 4.1 1.2
ATIS 8.3 6.9 2.7 3.4 1.7−79.5% 1.9−77.1% 5.2 1.1

CHiME-4 11.1 11.0 7.9 8.2 7.0−36.9% 6.6−40.5% 9.1 2.8
Tedlium-3 8.5 8.0 6.6 5.2 7.4−12.9% 4.6−45.9% 3.0 0.7
CV-accent 14.8 16.0 12.9 15.5 11.0−25.7% 11.0−25.7% 11.4 7.9

SwitchBoard 15.7 15.4 15.9 18.4 14.9−5.1% 14.1−10.2% 12.6 4.2
LRS2 10.1 9.6 9.5 10.2 6.6−34.7% 8.8−12.9% 6.9 2.6

CORAAL 21.4 21.4 23.1 22.9 20.9−2.3% 19.2−10.3% 21.8 10.7

and x(i) is the i-th hypothesis in N-best list. This item aims to encourage the correction model to
preferentially consider tokens into the N-best hypotheses list, preventing arbitrary modification in
huge decoding space. αi is a hyper-parameter for i-th hypothesis that decreases with the order ranked
by the acoustic model.

H2T-LoRA avoids tuning the whole set of parameters of a pre-trained model by inserting a neural
module with a small number of extra trainable parameters to approximate the full parameter updates,
allowing for efficient learning of the H2T mapping without affecting the pre-trained parameters of the
LLM. H2T-LoRA introduces trainable low-rank decomposition matrices into LLMs’ existing layers,
enabling the model to adapt to new data while keeping the original LLMs fixed to retain the previous
knowledge. Specifically, LoRA performs a reparameterization of each model layer expressed as
a matrix multiplication by injecting low-rank decomposition matrices (Fig.3 (b)). As a result, the
representations generated by the LLM are not distorted due to task-specific tuning, while the adapter
module acquires the capability to predict the true transcription from the N-best hypotheses.

Benefiting from efficient training, we can employ a large-scale language model in the H2T-LoRA
method, which is expected to understand the task description and capture correlation in the N-best
list. Meanwhile, instead of adding an extra training objective in H2T-ft, we constrain the decoding
space of H2T-LoRA by adding requirement in task description.

5 Experimental Results

5.1 Language Models Configurations

T5 (0.75B∼3B): T5 family [74] is a set of encoder-decoder models pre-trained on a multi-task
mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text
format. T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the
input corresponding to each task, e.g., for machine translation or text summarization. In this paper,
we select T5-large (0.75B) as the correction model in H2T-ft method.

LLaMA (7B∼65B): Proposed by Meta AI, LLaMA [86] is a collection of foundation language
models ranging from 7B, 13B, 30B, and 65B parameters. It is trained on publicly available datasets
exclusively, and shows remarkable efficiency on NLP benchmarks. We select LLaMA-13B for LoRA
adaptation in H2T-LoRA method as one best setup under ablations.

GPT-3.5 (175B): Proposed by OpenAI, GPT-3.5-turbo is one of the most advanced large language
models, which powers the popular ChatGPT. It has been optimized from the GPT-3 [5] for chat
purposes but works well for traditional completions tasks as well. We utilize GPT-3.5-turbo in
self-activated in-context learning, which conduct zero-shot and few-shot learning experiments with
designed task prompt.

5.2 Training and Evaluation

For few-shot settings, the specific task prompts with LLM’s response of self-activated ICL are attached
in Appendix. For finetuning setting, the detailed configuration of H2T-ft and H2T-LoRA are also
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Table 3: Cross-domain WER results by ICL in zero-shot and few-shot learning settings. "onb" and
"ocp" respectively denote n-best oracle and compositional oracle that are defined in 5.2.

Domain Test Set Baseline n-shot In-context Learning, n = Oracle
Shift 0 1 5 10 onb ocp

Specific
Scenario

WSJ-dev93 9.0 8.5−5.6% 7.8−13.3% 7.7−14.4% 7.1−21.1% 6.5 5.3
WSJ-eval92 7.6 7.3−3.9% 6.6−13.2% 6.6−13.2% 6.3−17.1% 5.5 4.7

ATIS 5.8 5.5−5.2% 5.1−12.1% 5.0−13.8% 4.7−19.0% 3.5 2.4

Common
Noise

CHiME4-bus 18.8 17.6−6.4% 16.7−11.2% 16.2−13.8% 15.9−20.7% 16.8 10.7
CHiME4-caf 16.1 14.7−8.7% 14.3−11.1% 13.7−14.9% 13.2−18.0% 13.3 9.1
CHiME4-ped 11.5 10.9−5.2% 9.9−14.4% 9.7−15.7% 9.4−18.3% 8.5 5.5
CHiME4-str 11.4 10.9−4.4% 10.0−12.3% 9.7−14.9% 9.2−19.3% 9.0 6.0

Speaker
Accent

CV-af 25.3 24.9−1.6% 24.2−4.3% 23.6−6.7% 22.6−10.7% 23.6 21.7
CV-au 25.8 25.1−2.7% 24.1−6.6% 24.0−7.0% 23.3−9.7% 24.9 21.8
CV-in 28.6 27.6−3.5% 25.6−10.5% 25.0−12.6% 24.4−14.7% 27.1 22.6
CV-sg 26.4 26.5+0.4% 25.0−5.3% 25.1−4.9% 23.7−10.2% 25.5 22.2

Table 4: Case study of ICL. The utterance is drawn from WSJ-dev93 dataset.

Type Utterance WER

1st Hypo. Bankers in Hong Kong expect xinnepec to return for more loans 16.7by AM as it develops China’s petro chemical industry.

2nd Hypo. Bankers in Hong Kong expect xinepec to return for more loans 8.3by AM as it develops China’s petrochemical industry.

Correction Bankers in Hong Kong expect Sinopec to return for more loans 0by LLM as it develops China’s petrochemical industry.

Ground-truth Bankers in Hong Kong expect Sinopec to return for more loans -Transcription as it develops China’s petrochemical industry.

explained in Appendix. Furthermore, we release some of the pre-trained correction models to allow
interested readers to reproduce our results.

We report WER results as the evaluation metric for all methods. Additionally, we report the two
oracle WER for comparison, which are 1) the n-best oracle onb: WER of the “best candidate” in
N-best hypotheses list, and 2) the compositional oracle method ocp: achievable WER using “all
tokens” in N-best hypotheses list. The onb can be viewed as upper bound performance of the re-rank
based method, while ocp denotes the upper bound of correction using occurred elements in the list.

5.3 Results of H2T-ft and H2T-LoRA

We first report the WER results for H2T-ft and H2T-LoRA in the finetuning setting, where the training
set of HP is available to learn H2T mapping. Whisper is employed as acoustic model for hypotheses
generation, and a vanilla language model LMrank is trained using in-domain transcription of the
training set, and then it re-ranks the hypotheses according to perplexity. From Table 2, we observe that
1) correction techniques achieve significant performance gain in specific scenarios, where H2T-LoRA
respectively reduces 77.1% and 55.1% relative WER on ATIS and WSJ. 2) WER performances on
CHiME-4 and CV-accent demonstrate proposed correction methods improves the robustness of on
background noise and speaker accent. Additionally, H2T-LoRA on these two datasets both surpass the
upper-bound of re-ranking based method referring to onb. 3) In general, H2T-LoRA usually generate
better WER results than H2T-ft, as the low-rank adapter allows LLMs to keep pre-trained knowledge
and avoid over-fitting problem.

Limitation and Failure Studies. We notice that an over-fitting phenomenon existing in our correction
techniques, especially in H2T-ft where all parameters are tunable. Furthermore, the mean and variance
of the utterance length can potentially influence the WER result, since H2T-ft results on CORAAL
(long-form speech) and SwitchBoard (large variance in length) both fail to enhance ASR performance.
On LibriSpeech, when the WER is low (1.8% by WavLM), there is less room to correct recognition
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errors with proposed framework. The experimental results and list the representative failure cases can
be found in Appendix Table 6 and Table 7. Given the evidence of ample room for further performance
improvement, our proposal thus serves as an appropriate benchmark to assess the contribution of
current and future LLMs to ASR.

5.4 In-context Learning Results

We conduct in-context learning experiments in the practical scenario when a well-trained ASR
system encounters domain mismatch. To this end, the WavLM is selected as the in-domain acoustic
model, and GPT-3.5 serves as the LLM for correction. We mainly consider common domain shifts
of application: specific scenario, common background noise, and speaker accent, where 5-best
hypotheses are selected as context input. From Table 3, we can observe that: (1) Without any
in-domain data, LLM can benefit from ASR results based on the hypotheses list. This performance
gain mainly relies on the linguistic knowledge of LLM and self-activated task description in pipeline.
(2) A few in-domain pairs effectively enhance the performance gain in terms of WER. From the final
output of the reasoning process, we find that LLM attempts to summarize the regulation from the
demonstration and then apply it to the given test example. (3) Leveraging the vast knowledge base,
LLM can even correct missing tokens that are exclusive from hypotheses list in terms of context
information.

To illustrate the third observation, we conduct the case study on WSJ-dev93 in Table 4. According
to the ground-truth transcription, two errors (shown as red) are included in 1st hypothesis, where
“petro chemical" is wrongly recognized as two tokens perhaps due to the speaking style of the speaker.
LLM correct this error since “petrochemical" can be found in 2nd hypothesis. However, “Sinopec" is
unseen during ASR training, leading it to be recognized as weird tokens (“xinnepec" or “xinepec") in
hypotheses. In this case, LLM shows human-like correction – it successfully infers the correct token
based on the pronunciation of “xinnepec", as well as the context of “China’s petrochemical". In fact,
Sinopec is a petrochemical-related Chinese company.

5.5 Additional Discussion

Effect on Spoken Language Intent Detection. We examine the effect of error correction on a
downstream task of spoken intent detection [81] (SID). To this end, we reproduce an BERT-based
SID model [12] and respectively feed the 1-best utterance and corrected utterance by H2T-LoRA for
comparison. The ablation results on ATIS dataset are reported in Appendix, which shows that our
correction technique can also benefit to SID task in terms of detection accuracy.

Zero-shot Prompting Results. We finally report an initial prompting evaluation on CHiME-4 in
zero-shot setting. Considering the task difficulty, T5 and LLaMA are employed for hypothesis
correction. For comparison, we also provide the correction results using a far smaller GPT-2 (1.5B)
with a 5-gram LM baseline trained by in-domain transcription.

Future work. We find that LLMs potentially perceive acoustic information during pre-training, as
they tend to perform error correction using tokens with similar pronunciation. Therefore, our first
future work is including more acoustic information in HP dataset, such as token-level confidence
provided by ASR engine. Furthermore, considering different data amount of each domain, more
parameter-efficient training methods besides low-rank adaptation should be discussed for LLMs
tuning [55], e.g., reprogramming [102, 30].

6 Conclusion

To explore the benefits in speech-language co-learning, this work introduces a new ASR benchmark
that utilizes LLMs for transcription prediction from N-best hypotheses. Our benchmark contains a
new HP dataset consisting of more than 316K hypotheses-transcription pairs that are collected from
9 different public ASR corpora. In few-shot settings, we demonstrate that LLMs with in-context
learning can serve as a plug-and-play back end to effectively alleviate domain shift of ASR. In the
finetuning setting, our proposed error correction technique based on LLMs achieves better WER
performance than the upper-bound of re-ranking based method, which provides a new paradigm for
applying ASR in some challenging conditions, such as background noise and speaker accent. We
believe our benchmark and findings provide new and unique insights into LLM-enhanced ASR.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.3
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 3.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Section 5.1.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix.
(b) Did you mention the license of the assets? [Yes] See Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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Appendix

Have LLMs seen ASR transcription during pre-training?

We raise a concern about LLM correction: is the remarkable correction result owing to to the fact that
the ASR transcriptions exist in the pre-trained corpus of LLM?

To evaluate this concern for GPT-3.5, we manually create some hypotheses to simulate the utterance
in case study in Table 4, and we show the correction results in Table 5.

Table 5: Synthetic hypotheses for LLM correction

ID Utterance

1 Patrue China and xinnepec own all national oil pipeline infrastructure.
Corrected item: "Patrue China" → "PetroChina", "xinnepec" → "Sinopec"

2 The Legend of Saida series is one of iconic games of nine ten door company.
Corrected item: "Saida" → "Zelda", "nine ten door" → "Nintendo"

We observe that given arbitrarily fabricated utterances, LLM can still give reasonable correction
results, especially on specific terms. Furthermore, we attach the LLM reasoning process for two
examples, which shows the utilization of context information:

ID 1: Please note that the transcription assumes "Patrue China" was an error, and "PetroChina" was
intended instead. Additionally, "xinnepec" has been interpreted as "Sinopec," which is another major
Chinese oil and gas company.

ID 2: Please note that there may have been some confusion with the phrase "nine ten door company,"
as it doesn’t match any known company or widely recognized term. As a result, I have inferred that it
may have been a misinterpretation or a typographical error. The transcription assumes "Zelda" as a
possible replacement for "Saida" based on its similarity to the well-known game series "The Legend
of Zelda" developed by Nintendo.

In H2T-ft, the T5 model was pre-trained on C4 dataset that does not include WSJ, but it still achieves
significant WER reduction on WSJ. In H2T-LoRA, we do not find the any ASR transcript exists in the
pre-trained data of LlaMa according to their papers or public information.

In general, we argue that the improved results of LLMs correction primarily stem from its extensive
knowledge base and the ability to utilize context information as part of a formal scientific experimental
process. However, the methods through which indirect knowledge is captured and propagated across
a large area remain open questions for future investigation. We hope that by initiating this study, the
results would encourage more further and ongoing works on knowledge grounding in the future.

Resources for Hypotheses Paradise (HP) Generation

The related toolkit and pre-trained models used to generate HP dataset are listed as follows:

• For ASR model, we used pre-trained WavLM from HuggingFace4 and the ESPNet toolkit5.
• When using WavLM for ASR decoding, we also incorporate an external LM rescoring

option, which is trained using extra text data from web6.
• Apart from WavLM, we also select Whisper-LargeV27 for ASR decoding.

Self-activated Prompting for Error Correction

We illustrate the given prompt for self-activated learning, as well as the response form LLM for each
turn as follows:

4https://huggingface.co/espnet/simpleoier_librispeech_asr_train_asr_conformer7_
wavlm_large_raw_en_bpe5000_sp

5https://github.com/espnet/espnet/tree/master/egs2/librispeech/asr1
6http://www.openslr.org/resources/11/librispeech-lm-norm.txt.gz
7https://github.com/openai/whisper
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Q: Are you familiar with speech recognition?

R: Yes, I am familiar with speech recognition. Speech recognition, also known as automatic speech
recognition (ASR) or speech-to-text, is the process of converting spoken language into text. This
technology involves using algorithms and machine learning models to analyze and transcribe the
acoustic features of spoken words and phrases. Speech recognition has many applications, including
voice-controlled assistants, automated phone systems, and transcription services.

Q: Are you familiar with language model rescoring in ASR?

R: Yes, I am familiar with language model rescoring for speech recognition. Language model
rescoring is a technique used to improve the accuracy of speech recognition systems. It involves using
a separate language model to evaluate the likelihood of a given hypothese list. This separate model
is typically more complex and powerful than the initial language model used for the transcription,
and it is used to re-score the transcription based on the probability of the words occurring in the
given context. The rescoring process involves taking the output of the initial language model, which
is usually based on statistical methods such as Hidden Markov Models, and then applying a more
advanced language model, such as a neural network-based language model, to generate a more
accurate transcription. This is accomplished by re-ranking the possible transcriptions based on the
probabilities assigned by the more advanced language model. Language model rescoring has been
shown to significantly improve the accuracy of speech recognition systems, particularly in noisy or
challenging environments where the initial language model may not perform well.

Q: Can you give a possible example on language model rescoring with 5-best hypotheses?

R: Sure, here is an example of language model rescoring for ASR with 5-best hypotheses:

1. I want to go to the store.

2. I want to go to the storm.

3. I want to go to the stove.

4. I want to go to the star.

5. I want to go to the storage.

After rescoring, I think the ground-truth of this speech should be: I want to go to the store.

Q: Nice job, i will give you a real example as a demonstration from [target domain]. The 5-
best hypothesis is:[hypotheses list from training set], and I expect your output is: [corresponding
transcription]. Following this example, can you report the true transcription from the following
5-best hypotheses:? [hypotheses list for inference]

It is noted that the responses from GPT-3.5 vary from random seeds. In our experiments, we utilize
the API key from OpenAI, and fix the above template before the last turn error correction.

We observe that many recent works [103] of ICL focus on the selection strategy for in-domain
demonstration, which might have an obvious impact on inference results. We leave the demonstration
selection as future work, and in our few-shot learning, we manually select those utterances with long
lengths according to [67].

Hypotheses-to-Transcription (H2T) Training Configuration

H2T-ft. We employ the T5-v1.1-large pre-trained model (0.75B) downloaded from HuggingFace 8.
Compared with the original T5 model, GELU Sevres as activation function in the feed-forward layer
to replace ReLU. Furthermore, T5 Version 1.1 was only pre-trained on C4 excluding any supervised
training. Therefore, this model has to be fine-tuned before it is applied on a downstream task.

We finetune 20 epochs on each domain of HP dataset with a batch size of 16. To select the best
model, we first split a validation set with 5% data amount of training set. The learning rate varies
from 1 × e−4 ∼ 1 × e−3 according to data amount of each domain, and AdamW is employed
for optimization. The α1 to α1 are set as 0.1, 0.05, 0.05, 0.05 respectively, as the 2nd utterances
are usually more informative than others as shown in Fig.1. In practice, we observe the over-
fitting phenomenon during training. The WER on training set can be lower than 1%, however, the

8https://huggingface.co/google/t5-v1_1-large
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performance on CORAAL dataset even is even worse than the baseline. In other words, H2T-ft still
has room for improvement by adding some techniques for avoiding over-fitting.

H2T-LoRA. We select LlaMa-13B as the frozen pre-trained model in our method, which is down-
loaded from HuggingFace 9. The learning rate is set as 1e−4, and the batch size is 128. For the
low-rank adapter, we implement by peft 10, where the configuration of lora_r is set as 8. Similarly,
we also use T5-v1.1-large as pre-trained model with low-rank adapter for experiments, where the
learning rate is set as 3e−4 and the lora_r is set as 16.

We train 10 epochs using AdamW optimizer, and the prompt for LLM is designed as follows:

"Below is a best-hypotheses that is transcribed from an automatic speech recognition system.
Write a response to predict the true transcription using the tokens from other-hypotheses.### best-
hypothesis:{1st utterance}### other-hypothesis:{2nd ∼ 5th utterances} ###Response:"

The prompt template is not unique, and it leaves a slight impact on the final WER result. Additionally,
we calculate the WER using Sclite11 toolkit, which keep consistent with evaluation script of ESPNet12.

LMrank is an Transformer-based language model that is implemented using ESPNet toolkit 13, where
the training transcription from each HP domain is utilized for a typical LM training. The Transformer
layer of each model varies from 8 to 16 in terms of data amount. The training epoch is set as 20,
and Adam is employed as optimizer. The initial learning rate is set as 0.002 with warm up strategy.
During decoding, the perplexity of each hypothesis is calculated for re-ranking the N-best list, and
the utterance with the lowest perplexity is selected as the final output.

LibriSpeech Results and Failure Cases Study

Table 6: WER (%) results on LibriSpeech dataset. "onb" and "ocp" respectively denote n-best oracle
and compositional oracle that are defined in 5.2.

Test Set Baseline Correction with Oracle
LMrank H2T-ft H2T-LoRA onb ocp

LS-clean 1.8 1.8 1.8−0.0% 1.7−5.6% 1.0 0.6
LS-other 3.7 3.7 3.9+5.4% 3.8+2.7% 2.7 1.6

We list two representative failure cases from LibriSpeech-test-other in Table. 7. For the first case,
“ward" is corrected by “warde" as there is an “his" behind it. Additionally, we observe that “warde"
also appears in the 2nd hypothesis, so LLM adopts it according to context information. For the second
case, LLM directly adopts the 2nd utterance in the N-best list, as “think" does not often appear at
the beginning of a sentence from a grammatical perspective. Therefore, as explained in future work
of 5.5, we argue that LLM correction should also consider acoustic information provided by the ASR
system, which helps to avoid “over-correction” cases and keeps the fidelity to spoken language.

Results on Spoken Language Intent Detection (SID) task

We first train an intent detection model using the transcription of ATIS training set, as the intent label
is available for each example. Then, during testing, we respectively feed the 1st ∼ 5th utterances in
Whisper hypotheses list, utterance after correction, and ground-truth transcription as input text for
intent detection. The accuracy results are reported in Table 8.

We observe that: (1) When we use corrected text for intent detection, the accuracy is 97.4% which
achieves an absolute improvement of 2.5% over 1st utterance in the hypothesis list. (2) 2nd utterance
is more suitable for intent detection than 1st utterance in terms of accuracy. This phenomenon
validates the case (ii) from a perspective other than WER, where the discarded utterances in the
N-best hypotheses might be better than the selected utterance. (3) LLM correction based on N-best

9https://huggingface.co/decapoda-research/llama-13b-hf
10https://github.com/huggingface/peft
11https://github.com/usnistgov/SCTK/blob/master/doc/sclite.htm
12https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/asr1/asr.sh
13https://github.com/espnet/espnet/tree/master/egs2/librispeech/asr1
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Table 7: Failure cases corrected by H2T-LoRA. The utterances are drawn from LibriSpeech-test-other.

Type Utterance WER

1st Hypo. Yet there was gambling again the second night between 0by AM ward and several others of his profession.

Correction Yet there was gambling again the second night between 6.25by H2T warde and several others of his profession.

Ground-truth Yet there was gambling again the second night between -Transcription ward and several others of his profession.

1st Hypo. Think he really needs it he pursued 0by AM

Correction He really needs it he pursued 14.3by H2T

Ground-truth Think he really needs it he pursued -Transcription

Table 8: Accuracy (%) results of intent detection with different input on ATIS test set.

Textual input nth utterance in Hypotheses list, n = After Correction Oracle1 2 3 4 5

Acc. (%) 94.9 95.5 94.2 94.3 94.2 97.4+2.5% 97.9

hypotheses can effectively enhance the downstream SIT result, which achieves comparable accuracy
with using ground-truth transcription (97.4% v.s. 97.9%).

Preliminary Results on Zero-shot Prompting-based Error Correction

To examine the zero-shot ability of LLM, we propose a framework that requires a targeted LLM to
perform either (i) ranking-based error correction or (ii) single-sentence generative correction. We
follow the self-activated prompting method mentioned in the previous appendix section to repurpose
the language model in the form of zero-shot error correction, without providing instructions. We
used LLaMA 13B to perform these zero-shot error correction tasks. Using the test set extracted
from Whisper, we observed that the zero-shot method did not yield improved results on CHiME-4
(11.5 ± 0.5%) and CV-accent (14.9% ± 1.5%). This zero-shot pipeline performed less stably on
the other test set discussed in Table 2, which we consider a failure case with a standard deviation
exceeding an absolute value of 10% in terms of WER. For T5-based error correction, we noticed that
the method also failed to perform zero-shot error correction by using 0.75B. Using the same decoding
test set from WavLM and Whisper, a 5-gram language model (coefficient of 0.1) combined with its
acoustic model score showed a 2.95% WER relative improvement. This result is slightly worse than
the LMrank baseline. The current limitations on the results regarding the zero-shot abilities of LMs
could be attributable to the model scale. The zero-shot or emergent abilities of these models have
been reported to be more significant when the parameter scale of the LLM exceeds 100B.

Hypotheses Paradise (HP) Dataset Visualizations

We have open-sourced a Colab example14 for HP dataset visualizations and analysis. First, same
as Fig. 1, we visualize and analyze the information in N-best hypotheses from both utterance- and
token-levels. Fig. 4 illustrate more visualizations on CHiME-4 test sets, where we can observe
valuable information in N-best hypotheses.

Furthermore, we also visualize and compare the word frequency in N-best hypotheses and ground-
truth transcription in Fig. 5, where we can observe some but limited gap between them.

14https://colab.research.google.com/drive/1traA2scdnmAKFq6yIEZhHwrhCBVxB2ig
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Figure 4: Probabilities of the case (i) and (ii) on CHiME-4 test set, similar to the right part of Fig. 1.
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Figure 5: Top-10 word frequencies in N-best hypotheses and ground-truth transcription of CHiME-4
test set.

N-best Hypotheses Distribution

Fig. 6 visualizes the distribution of N-best hypotheses generated by different-sized Whisper models,
i.e., from ‘tiny’ to ‘large’. We can observe very limited diversity in the N-best hypotheses generated
by Whisper models. Considering such high monotonicity, we only collect the top-5 hypotheses to
form our HP dataset.

whose feet are as the feet of hearts and
underneath the everlasting arms (WER: 7.7)

who is feet are as the feet of hearts and
underneath the everlasting arms (WER: 23.1)

GT whose feet are as the feet of harts and
underneath the everlasting arms

Figure 6: N-best hypotheses distribution with different Whisper models. Each color denotes an unique
hypothesis, ‘GT’ denotes the ground-truth transcription. The sample is selected from LibriSpeech
test-clean set, i.e., ‘1089/134691/1089-134691-0005.flac’.
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Results on Mandarin Dataset.

We include AISHELL-1 [6] as a Mandarin dataset into HP benchmark, consisting of a training set
with 120098 utterances and a testing set with 7176 utterances. We randomly select 20k examples
(16.7%) from training set to evaluate the effect of proposed H2T-LoRA. For the foundation model, we
employ Chinese LlaMa2-7b from Huggingface15, and keep other settings consistent with H2T-LoRA
in this paper. Notably, ASR on Mandarin dataset is usually evaluated by character error rate (CER),
as character is equal to word in Chinese.

Table 9: CER (%) results on AISHELL-1 dataset using 20k (16.7%) training examples. "onb" and
"ocp" respectively denote n-best oracle and compositional oracle that are defined in 5.2.

AM Baseline H2T-LoRA onb ocp

Whisper 6.3 5.0−20.6% 4.1 3.1

Comparison with Error Correction Baselines

Compared with speech recognition, error correction techniques are more actively explored in the
NLP community, as known as Grammatical Error Correction (GEC). However, directly evaluating
well-trained GEC on our benchmark is unfair: the "Grammar" might be different between ASR
transcription and normal text. To address it, we first train two error correction models (T5-large and
FLAN-T5-large) in a typical sequence-to-sequence manner, which consumes the top-1 hypothesis to
predict the true transcription. Furthermore, we also reproduce the MM-GEC from [22], where speech
signal is utilized to provide grounded information with a cross-attention approach. Specifically, we
employ top-1 hypothesis as ungrammatical text and recall speech from original dataset to compose
paired data. For comparison, we select WSJ and LRS2 from HP dataset as representatives, since
H2T-LoRA respectively achieves significant (51.1%) and moderate (12.9%) improvements in terms
of WER. The experimental results are reported in Table 10.

Table 10: Comparison WER result with other GEC methods that are trained with top-1 hypothesis
and transcription pairs. "onb" and "ocp" respectively denote n-best oracle and compositional oracle
that are defined in 5.2.

Dataset Baseline T5 FLAN-T5 MM-GEC H2T-LoRA onb ocp

WSJ 4.5 4.5 4.2 3.7 2.2−51.1% 4.1 1.2
LRS2 10.1 9.9 9.8 10.1 8.8−12.9% 6.9 2.6

Noise-robust ASR Results

Apart from CHiME-4, we add two noise-robust ASR datasets to verify the effectiveness of proposed
H2T-LoRA. The first is NOIZEUS dataset [42], which is a test set containing 30 sentences corrupted
by eight different real-world noises from Aurora-2 dataset [35] at different SNRs. Here we only
select the 5dB SNR version for evaluation. To simulate noisy training data, we add these noises to
LibriSpeech [69] train-100 data at random SNRs of {0, 5, 10, 15, 20}dB. The second is VoiceBank-
DEMAND dataset [89], which contains 11572 sentences in training set and 824 sentences in test set.
The noisy training set contains 10 noises from DEMAND dataset [84]. To simulate more challenging
mismatched train-test conditions, we add three different kind of noises [59] at 0dB to original
clean test set. As shown in Table 11, our proposed H2T-LoRA presents significant effectiveness on
noise-robust ASR task, with consistent improvement on different noise conditions.

15https://huggingface.co/ziqingyang/chinese-llama-2-7b

23



Table 11: WER (%) results of noise-robust ASR on NOIZEUS and VoiceBank-DEMAND datasets.
"onb" and "ocp" respectively denote n-best oracle and compositional oracle that are defined in 5.2.

Test set Noise Baseline H2T-LoRA Oracle
onb ocp

NOIZEUS

airport 13.2 12.4−6.1% 11.8 7.9
babble 21.4 18.4−14.0% 15.4 9.9

car 19.9 18.0−9.5% 11.7 7.0
exhibition 17.7 17.6−0.6% 12.3 9.9
restaurant 15.6 12.9−17.3% 10.8 8.3

station 19.2 15.0−21.9% 14.0 9.9
street 21.4 20.1−6.1% 13.8 11.2
train 21.9 21.3−2.7% 13.8 11.6

VoiceBank-DEMAND
Helicopter 10.3 6.8−34.0% 5.9 4.0
Baby-cry 10.6 6.5−38.7% 5.7 3.5

Crowd-party 26.5 20.6−22.3% 17.8 12.2

Code-switching ASR Results

Code-switching speech is defined as speech that more than one language within an utterance. Despite
the remarkable success of ASR, code-switching speech recognition (CS-ASR) is still a challenging
task due to grammatical structure complexity. We conduct experiment using our proposed H2T-
LoRA on SEAME dataset [62], which is a conversational Mandarin-English CS corpus collected
in Singapore. The training set includes 100 hours of CS speech from 134 speakers. Additionally,
SEAME has two official test sets SEAME-man and SEAME-sge, each consisting of 10 speakers.
which are respectively toward Mandarin and English speech. Test-man is biased towards Mandarin
speech and Test-sge towards English.

Table 12: Mixed Mandarin-CER (%) and English-WER (%) results of CS-ASR on SEAME dataset.

Test set Metric Baseline H2T-LoRA

SEAME-man CER 16.6 12.9−22.3%

SEAME-sge WER 23.3 19.7−15.5%

Limitations

Though the proposed HP benchmark provides a new paradigm of generative error correction for ASR,
we analyze and discuss the limitations of this work from the following perspective:

• Evaluation metric. As an ASR error correction benchmark, HP employs WER as the
primary metric to evaluate the system performance. Nevertheless, prior work [2] has
pointed out that WER can be too coarse-grained for describing the performance of ASR
models. Furthermore, [83] raise community awareness regarding the problems caused by the
optimistic bias toward ASR accuracy. In the future, we aim to provide more annotations for
spoken language, e.g., entity spans and dependency structure. Accordingly, a comprehensive
evaluation framework can be established to assess the quality and interpretability of output
from the LLM-enhanced ASR system.

• Robustness in reality. HP benchmark covers mainstream domains where ASR tasks are
usually deployed. However, as shown in [58], no single validation or test set from public
datasets is sufficient to measure transfer to real-world audio data. Since all test sets of HP
benchmark are drawn from existing ASR corpus, despite enhancing the WER performance,
we are unable to ascertain the extent to which it can mitigate the gap between well-trained
ASR models and real-world application scenarios. Furthermore, considering the discrepancy
between spoken language and written language, more efforts are required from both speech

24



and NLP communities to build a human-like robust ASR system beyond single modality
[16].

Broader Impact

With recent advances in using large-scale neural language models to solve problems once believed
to be challenging for machines to learn and understand, we believe it is timely to move to the next
milestone: providing publicly accessible n-best hypotheses as transcription resources from LLM
decoding. This motivation inspires this work, offering a collection of hypotheses paradise, inspired
by in-context learning.

• Who may benefit from this research: Researchers working on speech technology and
language model based error correction; as well as the users using the related techniques for
responsible and reproducible machine learning technology.

• Who may be put at disadvantage from this research: When our work revealed that open-
source hypotheses can be used to generate malicious recognition, we understood the re-
sponsibility of properly explaining the results to the public and providing reproducible
evaluations. We have discussed terms of use for reusing these hypotheses with legal and
regulatory experts, addressing potential risks and concerns.

• Whether the task/method leverages biases in the data: To alleviate possible bias in the data
and model, we have made efforts to design reproducible metrics and to evaluate a wide
variety of reproducible data sources and training configurations. We have also conducted
user studies to highlight potential bias in “terms of use” provided in our Github repo.

Maintenance Plan

• Who will be supporting/hosting/maintaining the dataset? Hypotheses Paradise has been
actively maintained by the authors of this paper. We are still actively updating the dataset
that focus on specific ASR scenario, which are noise-robust ASR and multi-lingual ASR.
In INTERSPEECH 2023, we will have a tutorial to introdunce the related Hypotheses
Paradise-V2 with some excited experimental results. Furthermore, we also open the link to
collect more hypothesis-transcription pairs from public.

• How can the owner/curator/manager of the dataset be contacted? To contact the main devel-
opers, we encourage users to use our emails: {chen1436,yuchen005}@e.ntu.edu.sg,
huckiyang@gatech.edu

• Is there an erratum? Users can use GitHub to report issues/bugs, and we would actively
improve the codes accordingly. We also have a HuggingFace Model card under an non-profit
organization in https://huggingface.co/datasets/PeacefulData/HP-v0.

• Will the dataset be updated? Yes, we are actively updating Hypotheses Paradise codes
and data sources. Users could get information and the newly updated version through our
GitHub repository.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances? No for the Dataset.

• Will older versions of the dataset continue to be supported/hosted/maintained? Yes, we will
keep the old version that generated by Whisper. All versions can be found on our GitHub
repository

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so? We maintain Hypotheses Paradise on GitHub and we encourage all users
to share their ideas to extend Hypotheses Paradise to more speech recognition cases. Users
can use GitHub to report issues/bugs, and send us emails to discuss solutions.
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