
Supplements: Template-free Articulated Neural Point
Clouds for Reposable View Synthesis

Lukas Uzolas Elmar Eisemann Petr Kellnhofer
Delft University of Technology

The Netherlands
{l.uzolas, e.eisemann, p.kellnhofer}@tudelft.nl

1 Extra Results Blender dataset

Table 1, and Fig. 1 show the quantitative and qualitative per-scene results respectively in the Blender
dataset [1]. While the non-reposable methods often achieve excellent results, our method is a clear
improvement with respect to the other reposable method, WIM [2], while simultaneously reducing
training time1.

Jumping Jacks Mutant Hook T-Rex
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
D-Nerf [1] 32.80 0.98 0.03 31.29 0.97 0.02 29.25 0.96 0.11 31.75 0.97 0.03
TiNeuVox [3] 34.23 0.98 0.03 33.61 0.98 0.03 31.45 0.97 0.05 32.70 0.98 0.03
HexPlane [4] 31.65 0.97 0.04 33.79 0.98 0.03 28.71 0.96 0.05 30.67 0.98 0.03
Tensor4D [5] 34.43 0.98 0.03 × × × × × × × × ×
WIM [2] 29.77 0.97 0.04 25.80 0.95 0.06 25.33 0.94 0.06 26.19 0.94 0.08
Ours 34.50 0.98 0.03 28.56 0.96 0.03 30.24 0.97 0.05 32.85 0.98 0.02

Stand Up Hell Warrior Lego Bouncing Ball
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
D-Nerf[1] 32.79 0.98 0.02 25.02 0.95 0.06 21.64 0.83 0.16 38.93 0.98 0.10
TiNeuVox [3] 35.43 0.99 0.02 28.17 0.97 0.07 25.02 0.92 0.07 40.73 0.99 0.04
HexPlane [4] 34.36 0.98 0.02 24.24 0.94 0.07 25.22 0.94 0.04 39.69 0.99 0.03
Tensor4D [5] 36.32 0.98 0.02 × × × 26.71 0.95 0.003 × × ×
WIM [2] 27.46 0.96 0.04 16.71 0.87 0.14 15.41 0.73 0.25 × × ×
Ours 31.93 0.97 0.02 27.53 0.96 0.06 17.91 0.76 0.14 × × ×
Table 1: Quantitative Results Per-Scene on Blender dataset. We only highlight best and second-best
values for PSNR as the precision reported of SSIM and LPIPS in [3] is not enough for fair comparison
in many cases.

2 Extra Results Robots dataset

Table 2, and Fig. 2 show the quantitative and qualitative per-scene results respectively for the Robots
dataset [2]. Consistent with the findings in the main paper, we see that WIM produces overly smooth
results while our method can capture more details in a shorter amount of training time. However, it
struggles to accurately recover the true poses for long kinematic chains (Table 2, Iiwa and Pandas).

1Training times are shown in the main paper.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

a) WIM b) Ours c) Ground Truth

Figure 1: Additional qualitative per-scene results of our method for the Blender dataset. We compare
WIM [6], with our method and the ground truth. The displayed results correspond to the final state of
the training procedures as described in the paper.

2

a) WIM b) Ours c) Ground Truth

Figure 2: Additional qualitative per-scene results of our method in the Robots dataset. We compare
WIM [6], with our method and the ground truth. The displayed results correspond to the final state of
the training procedures as described in the paper.

3

Atlas Baxter Cassie Iiwa
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
WIM[2] 23.99 0.94 0.07 22.70 0.95 0.06 30.20 0.97 0.04 31.58 0.98 0.03
Ours 28.71 0.97 0.04 28.60 0.97 0.04 31.84 0.98 0.04 29.74 0.98 0.04

Nao Pandas Spot
Method PSNR↑ SSIM↑ LPIPS↓ PSNR ↑ SSIM ↑ LPIPS↓ PSNR ↑ SSIM↑ LPIPS↓
WIM[2] 26.85 0.95 0.06 32.31 0.98 0.03 26.30 0.97 0.04
Ours 29.50 0.96 0.05 30.56 0.97 0.05 32.40 0.98 0.02

Table 2: Quantitative Results Per-Scene in the Robots dataset.

3 Implementation Details

3.1 Our method

For training, we utilize PyTorch and the Adam optimizer. We pre-train TiNeuVox for 20k iterations
on the synthetic Blender data set, and 40k iterations on the WIM data set, and add distortion loss
regularization [7] as implemented in [8]. All hyperparameters are adopted from [3].

The neural point clouds are trained for 160k iterations. In each iteration, we sample 8192 rays
randomly from multiple views at time step t. On each ray, we sample multiple points pi as a function
of the voxel size of the pre-trained NeRF volume, as specified in [3]. For each sampling point,
we query a maximum of 8 neighborhood points N(pi) within a radius of 0.01 using the KeOps
framework [9].

For the kinematic skeleton, we use a bone length of Blength = 10 for all experiments and a point cloud
density threshold of 0.05. We apply the MAT on the binary volume that we retrieve after thresholding
the density volume. Assuming a single object, we remove small holes from the volume and extract
the medial axis on the biggest blob via the method proposed in [10] and use the scikit-image library
[11].

For the mask loss, we project the warped point cloud to five views for the Robots dataset and to a
single view for Blender, as only a single view per timestamp is available. Furthermore, we subsample
the point cloud and ground truth mask to 3 000 points.

We fine-tune neural point features fi, skinning weights ŵi, joints J , density and color regressor Φd

and Φc and train the pose regressor Φr and feature point decoder Φp from scratch. The MLP of Φr

has 4 layers of size 128, except for the first layer which has a size of 128+ dim(γ(x)) = 191, where
γ is the positional encoding. For all MLPs and the weights, we use a learning rate of 0.0001, except
for Φr which uses a learning rate of 0.001. We further set the learning rate of α and J to 0.00001.
We further utilize learning decay, as in [3, 12] which decays the learning rate by 0.1 after 80 000
iterations. We train on a single Nvidia GPU RTX 3090.

3.2 Validation

We used the author’s code2 to reproduce the results of Watch-It-Move [2].

For the Robots datasets we adapted the author’s configuration files. First, we modified the selection
of training and testing views to match the split used in our experiments. That way we held out
images from the 10th and 20th camera for testing and provided the remaining 18 cameras for training.
Second, to enable early pose fitting and a meaningful computation of progressive learning metrics
(see Fig. 4 in the paper), we disabled the gradual scheduler of the training frames. We kept the
author’s initialization phase with only the first 10 timestamps accessible for the first 10 000 iterations
but we provided the entire training set afterwards. This corresponds to the moment past the 1-hour
mark in the paper Fig. 4 where the metrics start to improve as the model gets a chance to fit poses
of the entire sequence. Without this modification, the network would need another 70 000 steps to
access this information. Note that we have not observed a meaningful difference in the quality of the

2https://github.com/NVlabs/watch-it-move

4

final trained model as a result of this modification. Finally, we reduced the batch size from 16 to 8
views to fit into the 24 GB VRAM of our Nvidia RTX 3090 GPU.

We applied the same training strategy and settings when training with the Blender dataset and used
the author’s pre-trained snapshots for the ZJU-MoCap dataset.

4 Details of Skeleton Simplification

The skeleton simplification is an optional post-processing step that allows to simplify our kinematic
model (see Sec. 4.2 in the paper). While our model supports reposing without this step, we suggest
that a smaller number of skeletal parameters makes the process easier for the user/animator.

A key part of this procedure is selection of skeleton joints that are redundant and can be removed. To
this goal, we identify static joints as those that do not exhibit a rotational deviation with respect to the
rest pose and relative to its parent joint above a specified threshold in more than 5% of the observed
timestamps. Given the low computational cost of this procedure, a user can quickly experiment with
ideal selection of this threshold after the training procedure is completed.

After the static joints are identified, they can be removed and the skinning weights corresponding
to their children and parent bones can be merged. Here, the parent bone refers to the skeletal tree
edge starting in the given joint and pointing towards the root while the children bones are the edges
in the leaf direction. The merge only happens for two specific configurations: First, for a static joint,
we merge the skinning weights of the children with their parent. Second, we merge the weights of
sibling bones if their motion does not differ based on the 5%-heuristic.

To simplify the kinematic skeleton, we further prune bones where possible. A kinematic chain that
has multiple consecutive static joints connected by bones will be reduced to the longest possible bone,
removing unnecessary joints. However, a joint that functions as a center of rotation for non-static
children joints is never pruned. Lastly, static end effector joints are removed. An example of the
procedure can be seen Fig. 3.

b) Simpli�ed Kinematic Modela) Kinematic Model

j0 j1 j2

j3

j5
j4

j6

j0
j2

j1

j3
j4

j5

j7

Figure 3: Visualization of kinematic model simplification. a) The trained kinematic mode: The nodes
visualize whether the joint is static (red) or not (green). Each bone is associated with a blend-skinning
weight (rounded colored rectangles), and j0 is the root node. b) The simplified kinematic model:
Based on the static joints, bones have been pruned and weights have been merged where possible.
Weights of bones (j0, j1), (j1, j2), and (j2, j3) have been merged into the root weight (yellow), as all
of the joints were marked as static. Furthermore, joints j1 and j7 could be removed without harming
the underlying kinematic model because they do not have an effect on point cloud deformation. The
root node is never pruned.

5 Extra Results Ablations

Extra ablation results for the Jumping Jacks scene from the Blender dataset can be seen in Fig. 4.
We observe that without Lsmooth (Fig. 4b), the skinning weights are less consolidated and wrong
skinning weights are produced (compared to the full model in Fig. 4a). This limits the image
quality represented by the PSNR score. Next, without Ltranf (Fig. 4c) joint rotations are less
sparse and, therefore, we detect fewer static joints for removal during the skeleton simplification
(see Sec. 4). The presented static joint counts were measured for a simplification threshold of 20
degrees). Next, Lskel (Fig. 4d) does not have a major effect in this scene. However, for scenes with
thin structures, omission of Lskel allows the skeleton to drift outside of the geometry. This results in
bad reconstruction (see Fig. 8c in the paper). Next, utility of LARAP depends on the object class. For

5

b) -Lsmooth c) -Ltranf d) -Lskel e) -LARAP
f) -LSparsity

PSNR: 34.50
Static Joints : 19

a) Full Model

PSNR: 33.71
Static Joints : 17

PSNR: 34.72
Static Joints : 16

PSNR: 34.41
Static Joints : 20

PSNR: 35.35
Static Joints : 18

PSNR: 34.62
Static Joints : 15

Figure 4: Additional ablation results on Jumping Jacks scene from the Blender dataset. The skinning
weights and PSNR values are displayed prior to the simplification step. The static joint counts refer
to the number of joints that can be removed in our simplification step to ease the reposing task.
See Sec. 4. b) - f) show the show the results without the denoted regularization term.

Symbol Description Trainable Initialization

pi 3D Point from canonical point cloud Fixed Pre-trained model
fi Feature vector associated each pi Fine-tuned Pre-trained model
ŵi Blend skinning vector before softmax Fine-tuned Inverse bone-to-point distance
α global scalar which scales ŵi Trained from scratch 0.1
Φc Color regressor Fine-tuned Pre-trained model
Φd Density regressor Fine-tuned Pre-trained model
Φp Feature decoder Trained from scratch Random
Φr Pose regressor Trained from scratch Random
Φpe Pose embedding network Trained from scratch Random

Table 3: Overview of our notation.

strictly articulated shapes (see the robot in Fig. 8a in the paper), it enforces part rigidity and avoids
unrealistic deformations. However, its contribution is less obvious for partially soft shapes such as
humans (see Fig. 4e). Despite this, we used the same loss weights for all our results without notable
issues. Finally, omission of Lsparse decreases separation of the part labels (note the reduced label
color saturation in Fig. 4f). This suggests that this term reduces entanglement between points and
joints which indirectly leads to a higher static joint count for skeleton simplification.

6 Notation

An overview of our notation and trainable parameters can be found in Table 3.

7 Training Schedule for the ZJU-MoCap dataset

We make two adjustments while training in the ZJU-MoCap dataset that both aim to compensate
for a bias towards observation of early timestamps due to our incremental training data scheduler.
We deem this important since the real captured human subjects do not exhibit all motion modalities
uniformly through the entire sequences. This is different from the synthetic Robots and Blender
datasets where motion is simplistic, exaggerated and evenly distributed throughout the sequences.

First, we sample the training timestamps with importance sampling to increase probability of later
timestamps and compensate for their shorter overall accessibility during the course of training. We
define an importance of a timestamp as the inverse of the total sample count so far. Second, we only
enable the sparsity regularization after 160K training iterations when the scheduler converges and all

6

timestamps become accessible. This avoids loss of kinematic joints by early merging when not all
motion modalities were observed yet. Neither change leads to a computational overhead.

8 Ourspose: An extension for local deformations

Our full model is based on skeletal articulation with Linear Blend Skinning and as such it can well
model large locally rigid deformations. While well suited for many synthetic objects, this alone
does not accurately model local deformations of fabrics in the clothes of humans subjects in the
ZJU-MoCap dataset. Despite this, our full method can perform meaningful articulation of the human
subjects as shown in the main paper.

To further improve reconstruction of small surface details, we propose to extend our full method
and additionally condition the feature regressor Φp by a pose embedding pet ∈ R64 such that
f ti,x = Φp(fi, pe

t, xt
pi
) (see Eq. 5 from the main paper). Here, pet is regressed by another MLP (4

layers, 0.5× |γ(Jc)| hidden dimensions) from the canonical joint positions Jc and the joint positions
Jt observed at time t as pet = Φpe(γ(J

c − Jt)). This allows the method to learn additional local
geometry deformations and color changes specific to the current pose (see Fig. 5). Note, that the
poses are not an input to our method as they are already jointly learned in our original full model.
We observe, that the learned deformations are locally constrained by the fixed neighborhood search
radius in Eq. 6. Furthermore, we detach the gradient flow from Jt such that the skeletal poses are
not optimized to fit the local deformations. Please refer to the main paper for a comparison to our
unmodified full method and WIM [2].

Figure 5: Example of clothes deformations when conditioning Φp on the pose embedding in Ourspose.

9 Additional Animations

We demonstrate animation capabilities of our method by creating two animation sequences based
on manually defined joint rotations. First, we create a walking sequence of the Spot robot from the
Robots dataset in Fig. 6. Second, we create an over-extended jaw opening animation for the Trex
from the Blender dataset in Fig. 6. Lastly, we animate a scene from ZJU-MoCap from two different
views Fig. 8.

7

Figure 6: Manually defined walking animation for the Spot from the Robots dataset.

Figure 7: Manually defined jaw over-extension animation for the T-Rex from the Blender dataset.

Figure 8: Manually defined animation for scene 384 from the ZJU-MoCap dataset from two different
views.

8

References
[1] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-NeRF: Neural

radiance fields for dynamic scenes. arXiv preprint arXiv:2011.13961, 2020.

[2] Atsuhiro Noguchi, Umar Iqbal, Jonathan Tremblay, Tatsuya Harada, and Orazio Gallo. Watch it move:
Unsupervised discovery of 3d joints for re-posing of articulated objects. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3677–3687, 2022.

[3] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias Nießner, and
Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH Asia 2022 Conference
Papers, pages 1–9, 2022.

[4] Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 130–141, 2023.

[5] Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu, Hongwen Zhang, and Yebin Liu. Tensor4d:
Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16632–16642, 2023.

[6] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya Harada. Unsupervised learning of efficient
geometry-aware neural articulated representations. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVII, pages 597–614. Springer, 2022.

[7] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5470–5479, 2022.

[8] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Improved direct voxel grid optimization for radiance fields
reconstruction. arXiv preprint arXiv:2206.05085, 2022.

[9] Jean Feydy, Joan Glaunès, Benjamin Charlier, and Michael Bronstein. Fast geometric learning with
symbolic matrices. Advances in Neural Information Processing Systems, 33, 2020.

[10] Ta-Chih Lee, Rangasami L Kashyap, and Chong-Nam Chu. Building skeleton models via 3-d medial
surface axis thinning algorithms. CVGIP: graphical models and image processing, 56(6):462–478, 1994.

[11] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D Warner,
Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-image: image processing in python. PeerJ, 2:e453,
2014.

[12] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast convergence
for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5459–5469, 2022.

9

	Extra Results Blender dataset
	Extra Results Robots dataset
	Implementation Details
	Our method
	Validation

	Details of Skeleton Simplification
	Extra Results Ablations
	Notation
	Training Schedule for the ZJU-MoCap dataset
	Ourspose: An extension for local deformations
	Additional Animations

