
Augmentation-Aware Self-Supervision
for Data-Efficient GAN Training

Liang Hou1,3,4, Qi Cao1, Yige Yuan1,3, Songtao Zhao4, Chongyang Ma4,
Siyuan Pan4, Pengfei Wan4, Zhongyuan Wang4, Huawei Shen1,3, Xueqi Cheng2,3

1CAS Key Laboratory of AI Safety and Security,
Institute of Computing Technology, Chinese Academy of Sciences
2CAS Key Laboratory of Network Data Science and Technology,

Institute of Computing Technology, Chinese Academy of Sciences
3University of Chinese Academy of Sciences 4Kuaishou Technology

lianghou96@gmail.com

Abstract

Training generative adversarial networks (GANs) with limited data is challenging
because the discriminator is prone to overfitting. Previously proposed differentiable
augmentation demonstrates improved data efficiency of training GANs. However,
the augmentation implicitly introduces undesired invariance to augmentation for
the discriminator since it ignores the change of semantics in the label space caused
by data transformation, which may limit the representation learning ability of the
discriminator and ultimately affect the generative modeling performance of the
generator. To mitigate the negative impact of invariance while inheriting the benefits
of data augmentation, we propose a novel augmentation-aware self-supervised
discriminator that predicts the augmentation parameter of the augmented data.
Particularly, the prediction targets of real data and generated data are required to
be distinguished since they are different during training. We further encourage
the generator to adversarially learn from the self-supervised discriminator by
generating augmentation-predictable real and not fake data. This formulation
connects the learning objective of the generator and the arithmetic − harmonic
mean divergence under certain assumptions. We compare our method with state-
of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional
StyleGAN2 architectures on data-limited CIFAR-10, CIFAR-100, FFHQ, LSUN-
Cat, and five low-shot datasets. Experimental results demonstrate significant
improvements of our method over SOTA methods in training data-efficient GANs.1

1 Introduction

Generative adversarial networks (GANs) [10] have achieved great progress in synthesizing diverse
and high-quality images in recent years [2, 17, 19, 20, 13]. However, the generation quality of
GANs depends heavily on the amount of training data [47, 18]. In general, the decrease of training
samples usually yields a sharp decline in both fidelity and diversity of the generated images [39, 48].
This issue hinders the wide application of GANs due to the fact of insufficient data in real-world
applications. For instance, it is valuable to imitate the style of an artist whose paintings are limited.
GANs typically consist of a generator that is designed to generate new data and a discriminator that
guides the generator to recover the real data distribution. The major challenge of training GANs under
limited data is that the discriminator is prone to overfitting [47, 18], and therefore lacks generalization
to teach the generator to learn the underlying real data distribution.

1Our code is available at https://github.com/liang-hou/augself-gan.
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In order to alleviate the overfitting issue, recent researches have suggested a variety of approaches,
mainly from the perspectives of training data [18], loss functions [40], and network architectures [28].
Among them, data augmentation-based methods have gained widespread attention due to its simplicity
and extensibility. Specifically, DiffAugment [47] introduced differentiable augmentation techniques
for GANs, in which both real and generated data are augmented to supplement the training set of the
discriminator. However, this straightforward augmentation method overlooks augmentation-related
semantic information, as it solely augments the domain of the discriminator while neglecting the
range. Such a practice might introduces an inductive bias that potentially forces the discriminator to
remain invariant to different augmentations [24], which could limit the representation learning of the
discriminator and subsequently affect the generation performance of the generator [12].

In this paper, we propose a novel augmentation-aware self-supervised discriminator that predicts the
augmentation parameter of augmented data with the original data as reference to address the above
problem. Meanwhile, the self-supervised discriminator is required to be distinguished between the
real data and the generated data since their distributions are different during training, especially in
the early stage. The proposed discriminator can benefit the generator in two ways, implicitly and
explicitly. On one hand, the self-supervised discriminator can transfer the learned augmentation-aware
knowledge to the original discriminator through parameter sharing. On the other hand, we allow the
generator to learn adversarially from the self-supervised discriminator by generating augmentation-
predictable real and not fake data (Equation (6)). We also theoretically analyzed the connection
between this objective function and the minimization of a robust f -divergence divergence (the
arithmetic − harmonic mean divergence [37]). In experiments, we show that the proposed method
compares favorably to the data augmentation counterparts and other state-of-the-art (SOTA) methods
on common data-limited benchmarks (CIFAR-10 [21], CIFAR-100 [21], FFHQ [17], LSUN-Cat [45],
and five low-shot image generation datasets [36]) based on the class-conditional BigGAN [2] and
unconditional StyleGAN2 [19] architectures. In addition, we carried out extensive experiments
to demonstrate the effectiveness of the objective function design, the adaptability to stronger data
augmentations, and the robustness of hyper-parameter selection in our method.

2 Related Work

In this section, we provide an overview of existing work related to training GANs in data-limited
scenarios. We also discuss methodologies incorporating self-supervised learning techniques.

2.1 GANs under Limited Training Data

Recently, researchers have become interested in freeing training GANs from the need to collect large
amounts of data for adaptability in real-world scenarios. Previous studies typically fall into two
main categories. The first one involves adopting a pre-trained GAN model to the target domain by
fine-tuning partial parameters [41, 31, 42, 30]. However, it requires external training data, and the
adoption performance depends heavily on the correlation between the source and target domains.

The other one focuses on training GANs from scratch with elaborated data-efficient training strategies.
DiffAugment [47] utilized differentiable augmentation to supplement the training set to prevent
discriminator from overfitting in limited data regimes. Concurrently, ADA [18] introduced adaptive
data augmentation with a richer set of augmentation categories. APA [16] adaptively augmented the
real data with the most plausible generated data. LeCam-GAN [40] proposed adaptive regularization
for the discriminator and showed a connection to the Le Cam divergence [23]. [3] discovered
that sparse sub-network (lottery tickets) [5] and feature-level adversarial augmentation could offer
orthogonal gains to data augmentation methods. InsGen [43] improved the data efficiency of
training GANs by incorporating instance discrimination tasks to the discriminator. MaskedGAN [14]
employed masking in the spatial and spectral domains to alleviate the discriminator overfitting issue.
GenCo [7] discriminated samples from multiple views with weight-discrepancy and data-discrepancy
mechanisms. FreGAN [44] focused on discriminating between real and fake samples in the high-
frequency domain. DigGAN [8] constrains the discriminator gradient gap between real and generated
data. FastGAN [28] designed a lightweight generator architecture and observed that a self-supervised
discriminator could enhance low-shot generation performance. Our method falls into the second
category, supplementing data augmentation-based GANs and can be also applied to other methods.
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Original data ωcolor = (0.2, 0.3, 0.5) ωtranslation = (0.1, 0.8) ωcutout = (0.4, 0.6)

Figure 1: Examples of images with different kinds of differentiable augmentation (including the
original unaugmented one) and their re-scaled corresponding augmentation parameters ω ∈ [0, 1]d.

2.2 GANs with Self-Supervised Learning

Self-supervised learning techniques excel at learning meaningful representations without human-
annotated labels by solving pretext tasks. Transformation-based self-supervised learning methods
such as rotation recognition [9] have been incorporated into GANs to address catastrophic forgetting
in discriminators [4, 38, 12]. Various other self-supervised tasks have also been explored, including
jigsaw puzzle solving [1], latent transformation detection [33], and mutual information maximiza-
tion [25]. Moreover, ContraD [15] decouples the representation learning and discrimination of the
discriminator, utilizing contrastive learning for representation learning and a discriminator head for
distinguishing real from fake upon the contrastive representations. In contrast to ours, CR-GAN [46]
and ICR-GAN proposed consistency regularization for the discriminator, which corresponds to an
explicit augmentation-invariant of the discriminator. both our proposed method and SSGAN-LA [12]
belong to adversarial self-supervised learning, they differ in the type of self-supervised signals
and model inputs. SSGAN-LA is limited to categorical self-supervision [9], which is incompati-
ble with popular augmentation-based GANs like DiffAugment [47]. Our method is applicable for
continuous self-supervision and integrates seamlessly with DiffAugment. Furthermore, continuous
self-supervision have a magnitude relationship and thus can provide more refined gradient feedback
for the model to overcome overfitting in data-limited scenarios. Additionally, unlike SSGAN-LA, our
method does not constrain the invertibility of data transformations (Theorem 1) because it additionally
take the original sample as input for the self-supervised discriminator (Equation (5)).

3 Preliminaries

In this section, we introduce the necessary concepts and preliminaries for completeness of the paper.

3.1 Generative Adversarial Networks

Generative adversarial networks (GANs) [10] typically contain a generator G : Z → X that maps a
low-dimensional latent code z ∈ Z endowed with a tractable prior p(z), e.g., multivariate normal
distribution N (0, I), to a high-dimensional data point x ∈ X , which induces a generated data
distribution (density) pG(x) =

∫
Z p(z)δ(x−G(z))dz with the Dirac delta distribution δ(·), and also

contain a discriminator D : X → R that is required to distinguish between the real data sampled from
the underlying data distribution (density) pdata(x) and the generated ones. The generator attempts
to fool the discriminator to eventually recover the real data distribution, i.e., pG(x) = pdata(x).
Formally, the loss functions for the discriminator and the generator can be formulated as follows:

LD = Ex∼pdata(x)[f(D(x))] + Ez∼p(z)[h(D(G(z)))], (1)
LG = Ez∼p(z)[g(D(G(z)))]. (2)

Different real-valued functions f , h, and g correspond to different variants of GANs [32]. For example,
the minimax GAN [10] can be constructed by setting f(x) = − log(σ(x)) and h(x) = −g(x) =
− log(1− σ(x)) with the sigmoid function σ(x) = 1/(1 + exp(−x)). In this study, we follow the
practices of DiffAugment [47] to adopt the hinge loss [26], i.e., f(x) = h(−x) = max(0, 1 − x)
and g(x) = −x, for experiments based on BigGAN [2] and the log loss [10], i.e., f(x) = g(x) =
− log(σ(x)) and h(x) = − log(1− σ(x)), for experiments based on StyleGAN2 [19].

3



100% data 20% data 10% data

0.7

0.75

0.8
A

cc
ur

ac
y

CIFAR-10

100% data 20% data 10% data

0.45

0.5

0.55

CIFAR-100

BigGAN+DiffAug
AugSelf-BigGAN

Figure 2: Comparison of representation learning ability of discriminator between BigGAN + Dif-
fAugment and our AugSelf-BigGAN on CIFAR-10 and CIFAR-100 using linear logistic regression.

3.2 Differentiable Augmentation for GANs

DiffAugment [47] introduces differentiable augmentation T : X × Ω → X̂ parameterized by
a randomly-sampled parameter ω ∈ Ω with a prior p(ω) for data-efficient GAN training. The
parameter ω determines exactly how to transfer a sample x to an augmented one x̂ ∈ X̂ for the
discriminator. After manually re-scaling (for ω ∈ [0, 1]d), the parameters of all three kinds of
differentiable augmentation used in DiffAugment for 2D images can be expressed as follows:

• color: ωcolor = (λbrightness, λsaturation, λcontrast) ∈ [0, 1]3;
• translation: ωtranslation = (xtranslation, ytranslation) ∈ [0, 1]2;
• cutout: ωcutout = (xoffset, yoffset) ∈ [0, 1]2.

Figure 1 illustrates the augmentation operations and their parameters. Formally, the loss functions for
the discriminator and the generator of GANs with DiffAugment are defined as follows:

Lda
D = Ex∼pdata(x),ω∼p(ω)[f(D(T (x;ω)))] + Ez∼p(z),ω∼p(ω)[h(D(T (G(z);ω)))], (3)

Lda
G = Ez∼p(z),ω∼p(ω)[g(D(T (G(z);ω)))], (4)

where ω can represent any combination of these parameters. We choose all augmentations by default,
which means augmentation color, translation, and cutout are adopted for each image sequentially.

4 Method

Data augmentation for GANs allows the discriminator to distinguish a single sample from multiple
perspectives by transforming it into various augmented samples according to different augmentation
parameters. However, it overlooks the differences in augmentation intensity, such as color contrast
and translation magnitude, leading the discriminator to implicitly maintain invariance to these varying
intensities. The invariance may limit the representation learning ability of the discriminator because
it loses augmentation-related information (e.g., color and position) [24]. Figure 2 confirms the impact
of this point on the discriminator representation learning task [4]. We argue that a discriminator that
captures comprehensive representations contributes to better convergence of the generator [35, 22].
Moreover, data augmentation may lead to augmentation leaking in generated data, when using specific
data augmentations such as random 90-degree rotations [18, 12]. Therefore, our goal is to eliminate
the unnecessary potential inductive bias (invariance to augmentations) for the discriminator while
preserving the benefits of data augmentation for training data-efficient GANs.

To achieve this goal, we propose a novel augmentation-aware self-supervised discriminator D̂ :
X̂ × X → Ω+ ∪ Ω− that predicts the augmentation parameter and authenticity of the augmented
data given the original data as reference. Distinguishing between the real data and the generated
data with different self-supervision is because they are different during training, especially in the
early stage. Specifically, the predictive targets of real data and generated data are represented as
ω+ ∈ Ω+ and ω− ∈ Ω−, respectively. They are constructed from the augmentation parameter ω with
different transformations, i.e., ω+ = −ω− = ω. Since the augmentation parameter is a continuous
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Figure 3: Diagram of AugSelf-GAN. The original augmentation-based discriminator is D(T (·)) =
ψ(ϕ(T (·))). The augmentation-aware self-supervised discriminator is D̂(T (·), ·) = φ(ϕ(T (·)) −
ϕ(·)), where φ is our newly introduced linear layer with negligible additional parameters.

vector, we use mean squared error loss to regress it. The proposed method combines continuous
self-supervised signals with real-vs-fake discrimination signals, thus can be considered as soft-label
augmentation [12]. Comparison with self-supervision that does not distinguish between real and
fake is referred to Table 6 in Appendix C. Notice that the predictive targets (augmentations) can be a
subset of performed augmentations (see Table 7 in Appendix C for comparison). Mathematically, the
loss function for the augmentation-aware self-supervised discriminator is formulated as the following:

Lss
D̂

= Ex,ω

[
∥D̂(T (x;ω),x)− ω+∥22

]
+ Ez,ω

[
∥D̂(T (G(z);ω), G(z))− ω−∥22

]
. (5)

In our implementations, the proposed self-supervised discriminator D̂ = φ◦ϕ shares the backbone ϕ :
X → Rd with the original discriminatorD = ψ◦ϕ except the output linear layer φ : Rd → Ω+∪Ω−.
This parameter-sharing design not only improves the representation learning ability of the original
discriminator but also saves the number of parameters in our model compared to the base model, e.g.,
0.04% more parameters in BigGAN and 0.01% in StyleGAN2. More specifically, the self-supervised
discriminator predicts the target based on the difference between learned representations of the
augmented data and the original data, i.e., D̂(T (x;ω),x) = φ(ϕ(T (x;ω)) − ϕ(x)) (see Table 8
in Appendix C for comparison with other architectures). The philosophy behind our design is that
the backbone ϕ should capture rich (which necessitates the design of a simple head φ) and linear
(inspiring us to perform subtraction on the features) representations.

In order for the generator to directly benefit from the self-supervision of data augmentation, we
establish a novel adversarial game between the augmentation-aware self-supervised discriminator
and the generator with the objective function for the generator defined as follows:

Lss
G = Ez,ω

[
∥D̂(T (G(z);ω), G(z))− ω+∥22

]
− Ez,ω

[
∥D̂(T (G(z);ω), G(z))− ω−∥22

]
. (6)

The objective function is actually the combination of the non-saturating loss (regarding the generated
data as real, minG Ez,ω[∥D̂(T (G(z);ω), G(z))−ω+∥22]) and the saturating loss (reversely optimiz-
ing the objective function of the discriminator, maxG Ez,ω[∥D̂(T (G(z);ω), G(z))− ω−∥22]) (see
Table 9 in Appendix C for ablation). Intuitively, the non-saturating loss encourages the generator
to produce augmentation-predictable data, facilitating fidelity but reducing diversity. Conversely,
the saturating loss strives for the generator to avoid generating augmentation-predictable data, pro-
moting diversity at the cost of fidelity. We will elucidate in Section 5 how this formalization assists
the generator in matching the fidelity and diversity of real data, ultimately leading to an accurate
approximation of the target data distribution.

The total objective functions for the original discriminator, the augmentation-aware self-supervised
discriminator, and the generator of our proposed method, named AugSelf-GAN, are given by:

min
D,D̂

Lda
D + λd · Lss

D̂
, (7)

min
G

Lda
G + λg · Lss

G, (8)
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where the hyper-parameters are set as λd = λg = 1 in experiments by default unless otherwise speci-
fied (see Figure 6 for empirical studies). Details of objective functions are referred to Appendix B.

5 Theoretical Analysis

In this section, we analyze the connection between the theoretical learning objective of AugSelf-GAN
and the arithmetic − harmonic mean (AHM) divergence [37] under certain assumptions.
Proposition 1. For any generator G and given unlimited capacity in the function space, the optimal
augmentation-aware self-supervised discriminator D̂∗ has the form of:

D̂∗(x̂,x) =

∫
pdata(x,ω, x̂)ω

+dω +
∫
pG(x,ω, x̂)ω

−dω

pdata(x, x̂) + pG(x, x̂)
(9)

The proofs of all theoretical results (including the following ones) are deferred in Appendix A.
Theorem 1. Assume that ω+ = −ω− = c is constant, under the optimal self-supervised discrimina-
tor D̂∗, optimizing the self-supervised task for the generator G is equivalent to:

min
G

4c ·MAH(pdata(x, x̂)∥pG(x, x̂)), (10)

where c = ∥c∥22 is constant and MAH is the arithmetic − harmonic mean divergence [37], of which
the minimum is achieved if and only if pG(x, x̂) = pdata(x, x̂) ⇒ pG(x) = pdata(x).

Theorem 1 reveals that the generator of AugSelf-GAN theoretically still satisfies generative modeling,
i.e., accurately learning the target data distribution, under certain assumptions. Although AugSelf-
GAN does not obey the strict assumption, we note that this is not rare in the literature.2 Under this
assumption, AugSelf-GAN can be regarded as a multi-dimensional extension of LS-GAN [29] in
terms of the loss function, while excluding that of the generator. Additionally, our analysis offers an
alternative theoretically grounded generator loss function for the LS-GAN family.3

Corollary 1. The following equality and inequality hold for the AHM divergence:

• MAH(pdata(x, x̂)∥pG(x, x̂)) +MAH(pG(x, x̂)∥pdata(x, x̂)) = ∆(pdata(x, x̂)∥pG(x, x̂))
• MAH(pdata(x, x̂)∥pG(x, x̂)) = 1−W (pdata(x, x̂)∥pG(x, x̂)) ≤ 1

where ∆ is the Le Cam (LC) divergence [23], and W is the harmonic mean divergence [37].

Corollary 1 reveals an inequality MAH(pdata(x, x̂)∥pG(x, x̂)) ≤ ∆(pdata(x, x̂)∥pG(x, x̂)) because
of non-negativity of AHM divergence MAH(pG(x, x̂)∥pdata(x, x̂)) ≥ 0. Figure 4 plots the function
f in AHM divergence and other common f -divergences in the GAN literature. The AHM divergence
shows better robustness of the function f than others for extremely large inputs p(x)/q(x) =
D∗(x)/(1−D∗(x)), which is likely for the optimal discriminator D∗ in data-limited scenarios.

2Goodfellow et al. [10] analyzed that saturated GAN optimizes the Jensen Shannon (JS) divergence, but in
fact it uses non-saturated loss. LeCam-GAN [40] showed a connection between the Le Cam (LC) divergence [23]
and its objective function based on fixed regularization, but in practice it uses exponential moving average.

3The theoretical analysis of LS-GAN is actually inconsistent with its generator loss function.
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Table 1: IS and FID comparisons of AugSelf-BigGAN with state-of-the-art methods on CIFAR-10
and CIFAR-100 with full and limited data. The best result is bold and the second best is underlined.

Method 100% training data 20% training data 10% training data

IS (↑) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓)
C

IF
A

R
-1

0

BigGAN [2] 9.07 9.59 8.52 21.58 7.09 39.78
DiffAugment [47] 9.16 8.70 8.65 14.04 8.09 22.40
CR-GAN [46] 9.17 8.49 8.61 12.84 8.49 18.70
LeCam-GAN [40] 9.43 8.28 8.83 12.56 8.57 17.68
DigGAN [8] 9.28 8.49 8.89 13.01 8.32 17.87
Tickets [3] - 8.19 - 12.83 - 16.74
MaskedGAN [14] - 8.41±.03 - 12.51±.09 - 15.89±.12
GenCo [7] - 7.98±.02 - 12.61±.05 - 18.10±.06
AugSelf-BigGAN 9.43±.14 7.68±.06 8.98±.09 10.97±.09 8.76±.05 15.68±.26
AugSelf-BigGAN+ 9.27±.05 7.54±.04 9.08±.04 9.95±.17 8.79±.04 12.76±.14

C
IF

A
R

-1
00

BigGAN [2] 10.71 12.87 8.58 33.11 6.74 66.71
DiffAugment [47] 10.66 12.00 9.47 22.14 8.38 33.70
CR-GAN [46] 10.81 11.25 9.12 20.28 8.70 26.90
LeCam-GAN [40] 11.05 11.20 9.81 18.03 9.27 27.63
DigGAN [8] 11.45 11.63 9.54 19.79 8.98 24.59
Tickets [3] - 10.73 - 17.43 - 23.80
MaskedGAN [14] - 11.65±.03 - 18.33±.09 - 24.02±.12
GenCo [7] - 10.92±.02 - 18.44±.04 - 25.22±.06
AugSelf-BigGAN 11.19±.09 9.88±.07 10.25±.06 16.11±.25 9.78±.08 21.30±.15
AugSelf-BigGAN+ 11.12±.10 10.09±.05 10.14±.11 15.33±.20 9.93±.06 18.64±.09

Table 2: FID comparison of AugSelf-StyleGAN2 with competing methods on FFHQ and LSUN-Cat
with limited training samples. The best result is highlighted in bold and the second best is underlined.

Method FFHQ LSUN-Cat

30K 10K 5K 1K 30K 10K 5K 1K

StyleGAN2 [19] 6.16 14.75 26.60 62.16 10.12 17.93 34.69 182.85
+ ADA [18] 5.46 8.13 10.96 21.29 10.50 13.13 16.95 43.25
+ DiffAugment [47] 5.05 7.86 10.45 25.66 9.68 12.07 16.11 42.26
AugSelf-StyleGAN2 4.95 6.98 9.69 23.38 9.22 11.98 14.86 36.76
AugSelf-StyleGAN2+ 5.82 6.65 9.15 20.39 9.43 12.00 14.12 26.52

6 Experiments

We implement AugSelf-GAN based on DiffAugment [47], keeping the backbones and settings
unchanged for fair comparisons with prior work under two evaluation metrics, IS [34] and FID [11].
The mean and standard deviation (if reported) are obtained with five evaluation runs at the best FID
checkpoint. Each of experiments in this work was conducted on an 32GB NVIDIA V100 GPU.

6.1 Comparison with State-of-the-Art Methods
CIFAR-10 and CIFAR-100. Table 1 reports the results on CIFAR-10 and CIFAR-100 [21]. These
experiments are based on the BigGAN architecture [2]. Our method significantly outperforms the
direct baseline DiffAugment [47] and yields the best generation performance in terms of FID and
IS compared with SOTA methods. Notably, our method achieves further improvement when using
stronger augmentation (see Table 5), i.e., AugSelf-BigGAN+ (translation↑ and cutout↑).

FFHQ and LSUN-Cat. Table 2 reports the FID results on FFHQ [17] and LSUN-Cat [45]. The
hyper-parameter is λg = 0.2. AugSelf-GAN performs substantially better than baselines with the
same network backbone. Also, stronger augmentation, i.e., AugSelf-StyleGAN2+ (translation↑ and
cutout↑), further improves the performance when training data is very limited.
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Figure 5: Qualitative comparison between DiffAug (DA) and AugSelf (AS) on low-shot generation.

Table 3: FID comparison of AugSelf-StyleGAN2 with state-of-the-art methods with and without
pre-training on five low-shot datasets. The best result is in bold and the second best is underlined.

Method Pre-training? 100-shot AnimalFaces

Obama Grumpy cat Panda Cat Dog

Scale/shift [31] Yes 50.72 34.20 21.38 54.83 83.04
MineGAN [42] Yes 50.63 34.54 14.84 54.45 93.03
TransferGAN [41] Yes 48.73 34.06 23.20 52.61 82.38
FreezeD [30] Yes 41.87 31.22 17.95 47.70 70.46

StyleGAN2 [19] No 80.20 48.90 34.27 71.71 130.19
+ AdvAug [3] No 52.86 31.02 14.75 47.40 68.28
+ ADA [18] No 45.69 26.62 12.90 40.77 56.83
+ APA [16] No 42.97 28.10 19.21 42.60 81.16
+ DiffAugment [47] No 46.87 27.08 12.06 42.44 58.85
AugSelf-StyleGAN2 No 26.00 19.81 8.36 30.53 48.19

Low-shot image generation. Table 3 shows the FID scores on five common low-shot image
generation benchmarks [36] (Obama, Grumpy cat, Panda, AnimalFace cat, and AnimalFace dog).
The baselines are divided into two categories according to whether they were pre-trained. Due
to its training stability, we can train AugSelf-StyleGAN2 for 5k generator update steps to ensure
convergence. The hyper-parameters are λd = λg = 0.1 on Grumpy cat and AnimalFace cat, and
the self-supervision is color on all datasets. Impressively, AugSelf-StyleGAN2 surpasses competing
methods by a large margin on all low-shot datasets, approaching SOTA FID scores to our knowledge.
Figure 5 visually compares the generated images of DiffAugment and AugSelf-GAN, revealing the
latter as superior in generating images with more diversity and fewer artifacts.

6.2 Analysis of AugSelf-GAN

Fixed supervision. Table 4 reports the results of AugSelf-GAN on CIFAR-10 and CIFAR-100
compared to the setup using fixed self-supervision, i.e., ω+ = −ω− = 1, which corresponds to the
assumption in Theorem 1. AugSelf-GAN outperforms the fixed self-supervision in terms of both IS
and FID in all training data regimes. The reason is somewhat intuitive, as fixed self-supervision does
not constitute self-supervised learning for the model, therefore it cannot enable the discriminator to
learn semantic information related to data augmentation to optimize the generator. Interestingly, the
fixed one beats the baseline, which may be attributed to the multi-input [27] and regression loss [29].

Table 4: FID comparison with fixed self-supervision. The best results are highlighted in bold.

Method 100% training data 20% training data 10% training data

IS (↑) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓)

C
10 Fixed (c = 1) 9.25±.17 8.01±.05 8.70±.12 12.58±.16 8.53±.05 17.66±.55

AugSelf-GAN 9.43±.14 7.68±.06 8.98±.09 10.97±.09 8.76±.05 15.68±.26

C
10

0 Fixed (c = 1) 10.67±.06 12.02±.07 9.94±.06 17.70±.17 9.50±.13 22.84±.28
AugSelf-GAN 11.19±.09 9.88±.07 10.25±.06 16.11±.25 9.78±.08 21.30±.15
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Table 5: Study on stronger augmentation. The best is in bold and the second best is underlined.

Method 100% training data 20% training data 10% training data

IS (↑) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓)
C

10
DiffAugment 9.29±.02 8.48±.13 8.84±.12 15.14±.47 8.80±.01 20.60±.13
+ trans.↑ cut.↑ 9.28±.06 8.42±.18 8.78±.06 14.28±.27 8.69±.07 20.93±.21
AugSelf-GAN 9.43±.14 7.68±.06 8.98±.09 10.97±.09 8.76±.05 15.68±.26
+ trans.↑ cut.↑ 9.27±.05 7.54±.04 9.08±.04 9.95±.17 8.79±.04 12.76±.14

C
10

0

DiffAugment 11.02±.07 11.49±.21 9.45±.05 24.98±.48 8.50±.09 34.92±.63
+ trans.↑ cut.↑ 11.10±.08 11.28±.20 9.58±.05 24.10±.66 8.59±.04 35.32±.46
AugSelf-GAN 11.19±.09 9.88±.07 10.25±.06 16.11±.25 9.78±.08 21.30±.15
+ trans.↑ cut.↑ 11.12±.10 10.09±.05 10.14±.11 15.33±.20 9.93±.06 18.64±.09
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Figure 6: FID curves with varying hyper-parameters λ = λd = λg ∈ [0, 10] on CIFAR-10 and
CIFAR-100. The hyper-parameter λ = 0 corresponds to the baseline BigGAN + DiffAugment.

Stronger augmentation. Translation and cutout actually erase parts of image information, which
help prevent the discriminator from overfitting, but could suffer from underfitting if excessive. Our
self-supervised task enables the discriminator to be aware of different levels of translation and
cutout, which helps alleviate underfitting and allows us to explore stronger translation and cutout.
Table 5 compares AugSelf-GAN with DiffAugment in this setting. Overall, when data is limited,
AugSelf-GAN can further benefit from stronger translation and cutout and achieve new SOTA FID
results, while DiffAugment cannot. This implicitly indicates that our method enables the model o
learn meaningful features to overcome underfitting, even under strong data augmentation.

Hyper-parameters. Figure 6 plots the FID results of AugSelf-GAN with different hyper-parameters
λ = λd = λg ranging from [0, 10] on CIFAR-10 and CIFAR-100. Notice that λ = 0 corresponds to
the baseline BigGAN + DiffAugment. AugSelf-BigGAN performs the best when λ is near 1. It is
worth noting that AugSelf-BigGAN outperforms the baseline even for λ = 10 with 10% and 20%
training data, demonstrating superior robustness with respect to the hyper-parameter λ.

7 Conclusion

This paper proposes a data-efficient GAN training method by utilizing augmentation parameters as
self-supervision. Specifically, a novel self-supervised discriminator is proposed for predicting the
augmentation parameters and data authenticity of augmented (real and generated) data simultaneously,
given the original data. Meanwhile, the generator is encouraged to generate real rather than fake
data of which augmentation parameters can be recognized by the self-supervised discriminator after
augmentation. Theoretical analysis reveals a connection between the optimization objective of the
generator and the arithmetic − harmonic mean divergence under certain assumptions. Experiments
on data-limited benchmarks demonstrate superior qualitative and quantitative performance of the
proposed method compared to previous methods.

9



Limitations. In our experiments, we observed less significant improvement of AugSelf-GAN under
sufficient training data. Furthermore, its effectiveness depends on the specific data augmentation
used. In some cases, inappropriate data augmentation may limit the performance gain.

Broader impacts. This work aims at improving GANs under limited training data. While this
may result in negative societal impacts, such as lowering the threshold of generating fake content or
exacerbating bias and discrimination due to data issues, we believe that these risks can be mitigated.
By establishing ethical guidelines for users and exploring fake content detection techniques, one can
prevent these undesirable outcomes. Furthermore, this work contributes to the overall development
of GANs and even generative models, ultimately promoting their potential benefits for society.
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A Proofs

Proposition 1. For any generator G and given unlimited capacity in the function space, the optimal
augmentation-aware self-supervised discriminator D̂∗ has the form of:

D̂∗(x̂,x) =

∫
pdata(x,ω, x̂)ω

+dω +
∫
pG(x,ω, x̂)ω

−dω

pdata(x, x̂) + pG(x, x̂)
(9)

Proof. The objective function of the self-supervised discriminator can be written as follows:

Lss
D̂

= Ex,ω

[
∥D̂(T (x;ω),x)− ω+∥22

]
+ Ez,ω

[
∥D̂(T (G(z);ω), G(z))− ω−∥22

]
=

∫∫∫ [
pdata(x,ω, x̂)∥D̂(x̂,x)− ω+∥22 + pG(x,ω, x̂)∥D̂(x̂,x)− ω−∥22

]
dxdωdx̂.

Minimizing the integral objective is equivalent to minimizing the objective on each data point:

Lss
D̂
(x, x̂) =

∫ [
pdata(x,ω, x̂)∥D̂(x̂,x)− ω+∥22 + pG(x,ω, x̂)∥D̂(x̂,x)− ω−∥22

]
dω.

Getting its derivative with respect to the self-supervised discriminator and let it equals to 0, we have
the optimal self-supervised discriminator as:

∂Lss
D̂

∂D̂(x̂,x)
=

∫ [
pdata(x,ω, x̂)2(D̂(x̂,x)− ω+) + pG(x,ω, x̂)2(D̂(x̂,x)− ω−)

]
dω = 0

⇒ D̂∗(x̂,x) =

∫
pdata(x,ω, x̂)ω

+dω +
∫
pG(x,ω, x̂)ω

−dω

pdata(x, x̂) + pG(x, x̂)
.

Theorem 1. Assume that ω+ = −ω− = c is constant, under the optimal self-supervised discrimina-
tor D̂∗, optimizing the self-supervised task for the generator G is equivalent to:

min
G

4c ·MAH(pdata(x, x̂)∥pG(x, x̂)), (10)

where c = ∥c∥22 is constant and MAH is the arithmetic − harmonic mean divergence [37], of which
the minimum is achieved if and only if pG(x, x̂) = pdata(x, x̂) ⇒ pG(x) = pdata(x).

Proof. The objective function of the self-supervised task for the generator can be written as follows:

Ez,ω

[
∥D̂(T (G(z);ω), G(z))− ω+∥22

]
− Ez,ω

[
∥D̂(T (G(z);ω), G(z))− ω−∥22

]
=

∫∫∫
pG(x,ω, x̂)

[
∥D̂(x, x̂)− ω+∥22 − ∥D̂(x, x̂)− ω−∥22

]
dxdωdx̂

=

∫∫
pG(x, x̂)

[
∥c(pdata(x, x̂)− pG(x, x̂))

pdata(x, x̂) + pG(x, x̂)
− c∥22 − ∥c(pdata(x, x̂)− pG(x, x̂))

pdata(x, x̂) + pG(x, x̂)
+ c∥22

]
dxdx̂

= c ·
∫∫

pG(x, x̂)

[
∥pdata(x, x̂)− pG(x, x̂)

pdata(x, x̂) + pG(x, x̂)
− 1∥22 − ∥pdata(x, x̂)− pG(x, x̂)

pdata(x, x̂) + pG(x, x̂)
+ 1∥22

]
dxdx̂

= c ·
∫∫

pG(x, x̂)

[
∥ 2pG(x, x̂)

pdata(x, x̂) + pG(x, x̂)
∥22 − ∥ 2pdata(x, x̂)

pdata(x, x̂) + pG(x, x̂)
∥22
]
dxdx̂

= 4c ·
∫∫

pG(x, x̂)

[
pG(x, x̂)

2 − pdata(x, x̂)
2

(pdata(x, x̂) + pG(x, x̂))2

]
dxdx̂

= 4c ·
∫∫

pG(x, x̂)

[
pG(x, x̂)− pdata(x, x̂)

pdata(x, x̂) + pG(x, x̂)

]
dxdx̂

= 4c ·MAH(pdata(x, x̂)∥pG(x, x̂)),

where c = ∥c∥22 is a constant scalar for the constant vector c = ω+ = −ω−. And we have the optimal
generator pG(x, x̂) = pdata(x, x̂) ⇒ pG(x) = pdata(x) to minimize the AHM divergence.
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Table 6: IS and FID of AugSelf-BigGAN with different self-supervised tasks (SS: Equations (19)
and (21); SS+: Equations (20) and (21); ASS: Equations (5) and (6)) on CIFAR-10 and CIFAR-100
with full and limited training data. The best is bold and the second best is underlined.

Method 100% training data 20% training data 10% training data

IS (↑) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓)

C
IF

A
R

-1
0

Baseline 9.29±0.02 8.48±0.13 8.84±0.12 15.14±0.47 8.80±0.01 20.60±0.13
SS (λg = 0) 9.28±0.06 8.30±0.12 8.86±0.09 13.96±0.19 8.62±0.09 20.94±0.42
SS 9.29±0.07 8.24±0.10 8.98±0.04 13.42±0.36 8.69±0.05 19.40±0.28
SS+ (λg = 0) 9.25±0.06 8.11±0.18 8.81±0.05 13.86±0.31 8.76±0.06 19.52±0.24
SS+ 9.26±0.04 8.26±0.28 8.85±0.05 13.81±0.27 8.63±0.05 19.85±0.18
ASS (λg = 0) 9.12±0.05 8.90±0.07 8.82±0.03 13.65±0.70 8.52±0.04 18.14±0.33
ASS 9.43±0.14 7.68±0.06 8.98±0.09 10.97±0.09 8.76±0.05 15.68±0.26

C
IF

A
R

-1
00

Baseline 11.02±0.07 11.49±0.21 9.45±0.05 24.98±0.48 8.50±0.09 34.92±0.63
SS (λg = 0) 11.04±0.09 11.48±0.43 9.81±0.07 21.17±0.19 9.11±0.09 30.48±0.57
SS 10.96±0.11 11.04±0.15 9.99±0.09 20.72±0.33 9.23±0.07 31.54±1.12
SS+ (λg = 0) 10.84±0.09 11.48±0.13 9.95±0.07 21.22±0.57 9.14±0.05 31.02±1.00
SS+ 10.94±0.10 10.94±0.12 9.88±0.06 22.72±0.37 9.23±0.14 31.40±0.22
ASS (λg = 0) 10.82±0.10 11.29±0.12 9.96±0.11 18.90±0.41 9.45±0.05 25.77±0.95
ASS 11.19±0.09 9.88±0.07 10.25±0.06 16.11±0.25 9.78±0.08 21.30±0.15

Corollary 1. The following equality and inequality hold for the AHM divergence:

• MAH(pdata(x, x̂)∥pG(x, x̂)) +MAH(pG(x, x̂)∥pdata(x, x̂)) = ∆(pdata(x, x̂)∥pG(x, x̂))
• MAH(pdata(x, x̂)∥pG(x, x̂)) = 1−W (pdata(x, x̂)∥pG(x, x̂)) ≤ 1

where ∆ is the Le Cam (LC) divergence [23], and W is the harmonic mean divergence [37].

Proof. We first prove the first corollary:

MAH(pdata(x, x̂)∥pG(x, x̂))
≤MAH(pdata(x, x̂)∥pG(x, x̂)) +MAH(pG(x, x̂)∥pdata(x, x̂))

=

∫∫
pG(x, x̂)

pG(x, x̂)− pdata(x, x̂)

pdata(x, x̂) + pG(x, x̂)
dxdx̂+

∫∫
pdata(x, x̂)

pdata(x, x̂)− pG(x, x̂)

pG(x, x̂) + pdata(x, x̂)
dxdx̂

=

∫∫
pG(x, x̂)

pG(x, x̂)− pdata(x, x̂)

pdata(x, x̂) + pG(x, x̂)
dxdx̂−

∫∫
pdata(x, x̂)

pG(x, x̂)− pdata(x, x̂)

pG(x, x̂) + pdata(x, x̂)
dxdx̂

=

∫∫
(pG(x, x̂)− pdata(x, x̂))

2

pdata(x, x̂) + pG(x, x̂)
dxdx̂

= ∆(pdata(x, x̂)∥pG(x, x̂)),

where 0 ≤ ∆(pdata(x, x̂)∥pG(x, x̂)) ≤ 2 is the Le Cam (LC) divergence [23].

The following proves the second corollary:

0 ≤MAH(pdata(x, x̂)∥pG(x, x̂))

=

∫∫
pG(x, x̂)

pG(x, x̂)− pdata(x, x̂)

pdata(x, x̂) + pG(x, x̂)
dxdx̂

=

∫∫
pG(x, x̂)

[
1− 2pdata(x, x̂)

pdata(x, x̂) + pG(x, x̂)

]
dxdx̂

= 1−
∫∫

2pdata(x, x̂)pG(x, x̂)

pdata(x, x̂) + pG(x, x̂)
dxdx̂

= 1−W (pdata(x, x̂)∥pG(x, x̂)) ≤ 1,

where 0 ≤W (pdata(x, x̂)∥pG(x, x̂)) ≤ 1 is the well known harmonic mean divergence [37].
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B Loss Functions

AugSelf-GAN adopts all kinds of augmentations of DiffAugment as the self-supervised signals by
default, thus the self-supervised loss functions of the discriminator and the generator (Equations (5)
and (6)) actually each comprise three sub self-supervised loss functions. Specifically, for AugSelf-
GAN that uses color, translation, and cutout as self-supervision, the objective functions are:

min
D,D̂color,D̂translation,D̂cutout

Lda
D + λd ·

(
Lcolor
D̂color

+ Ltranslation
D̂translation

+ Lcutout
D̂cutout

)
, (11)

min
G

Lda
G + λg ·

(
Lcolor
G + Ltranslation

G + Lcutout
G

)
, (12)

where Lcolor
D̂color

, Ltranslation
D̂translation

, Lcutout
D̂cutout

, Lcolor
G , Ltranslation

G , and Lcutout
G are defined as:

Lcolor
D̂color

= Ex,ω

[
∥D̂color(T (x;ω),x)− ω+

color∥
2
2

]
+ Ez,ω

[
∥D̂color(T (G(z);ω), G(z))− ω−

color∥
2
2

]
, (13)

Ltranslation
D̂translation

= Ex,ω

[
∥D̂translation(T (x;ω),x)− ω+

translation∥
2
2

]
+ Ez,ω

[
∥D̂translation(T (G(z);ω), G(z))− ω−

translation∥
2
2

]
, (14)

Lcutout
D̂cutout

= Ex,ω

[
∥D̂cutout(T (x;ω),x)− ω+

cutout∥22
]

+ Ez,ω

[
∥D̂cutout(T (G(z);ω), G(z))− ω−

cutout∥22
]
, (15)

Lcolor
G = Ez,ω

[
∥D̂color(T (G(z);ω), G(z))− ω+

color∥
2
2

]
− Ez,ω

[
∥D̂color(T (G(z);ω), G(z))− ω−

color∥
2
2

]
, (16)

Ltranslation
G = Ez,ω

[
∥D̂translation(T (G(z);ω), G(z))− ω+

translation∥
2
2

]
− Ez,ω

[
∥D̂translation(T (G(z);ω), G(z))− ω−

translation∥
2
2

]
, (17)

Lcutout
G = Ez,ω

[
∥D̂cutout(T (G(z);ω), G(z))− ω+

cutout∥22
]

− Ez,ω

[
∥D̂cutout(T (G(z);ω), G(z))− ω−

cutout∥22
]
, (18)

where D̂color = φcolor ◦ ϕ, D̂translation = φtranslation ◦ ϕ, and D̂cutout = φcutout ◦ ϕ share the
backbone ϕ but differ in the heads φcolor, φtranslation, or φcutout, respectively. For the simplicity of
notations, we write Equations (5) and (6) in the main text as the objective function.

C Ablation Studies

Self-supervised tasks. We introduce two non-adversarial self-supervised tasks for comparison.
The first version is that the discriminator only learns self-supervision on real data, defined as:

Lss
D̂

= Ex∼pdata(x),ω∼p(ω)

[
∥D̂(T (x;ω),x)− ω∥22

]
. (19)

The second version is that the discriminator learns self-supervised tasks on both real and generated
data simultaneously, given by:

Lss
D̂

= Ex,ω

[
∥D̂(T (x;ω),x)− ω∥22

]
+ Ez,ω

[
∥D̂(T (G(z);ω), G(z))− ω∥22

]
. (20)

For both versions, the generator is encouraged to produce augmentation-recognizable data, as follows:

Lss
G = Ez∼p(z),ω∼p(ω)

[
∥D̂(T (G(z);ω), G(z))− ω∥22

]
. (21)

According to the self-supervised task, we denote different approaches as SS (Equations (19) and (21)),
SS+ (Equations (20) and (21)), and ASS (Equations (5) and (6), short for adversarial self-supervised
learning, i.e., the proposed AugSelf-GAN).
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Table 7: IS and FID of AugSelf-BigGAN with different self-supervised signals on CIFAR-10 and
CIFAR-100 with full and limited training data. The self supervised signal to be predicted is marked
by the symbol ✓. Notice that all methods adopt color, translation, and cutout as data augmentation.

Self-Supervised Signals 100% training data 20% training data 10% training data

color trans. cutout IS (↑) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓)

C
IF

A
R

-1
0

✗ ✗ ✗ 9.29±.02 8.48±.13 8.84±.12 15.14±.47 8.80±.01 20.60±.13
✗ ✗ ✓ 9.30±.05 7.48±.07 8.94±.07 11.73±.27 8.73±.12 16.66±.39
✗ ✓ ✗ 9.39±.07 7.51±.12 8.95±.05 11.82±.21 8.80±.03 16.27±.35
✗ ✓ ✓ 9.38±.05 7.41±.11 8.87±.04 11.19±.08 8.63±.08 16.30±.57
✓ ✗ ✗ 9.50±.07 7.57±.07 8.99±.06 11.38±.14 8.72±.09 16.50±.14
✓ ✗ ✓ 9.41±.07 7.51±.05 8.92±.12 11.20±.17 8.83±.07 15.55±.21
✓ ✓ ✗ 9.42±.06 7.43±.06 8.91±.09 11.19±.20 8.58±.02 15.17±.15
✓ ✓ ✓ 9.43±.14 7.68±.06 8.98±.09 10.97±.09 8.76±.05 15.68±.26

C
IF

A
R

-1
00

✗ ✗ ✗ 11.02±.07 11.49±.21 9.45±.05 24.98±.48 8.50±.09 34.92±.63
✗ ✗ ✓ 11.16±.13 10.03±.14 10.18±.09 19.45±.62 9.46±.12 25.99±.62
✗ ✓ ✗ 11.35±.10 9.88±.08 10.01±.07 18.39±.07 9.29±.10 26.50±.36
✗ ✓ ✓ 11.26±.07 9.75±.05 10.35±.20 16.88±.46 9.92±.08 23.09±.72
✓ ✗ ✗ 11.20±.08 10.01±.13 9.90±.11 18.16±.62 9.39±.04 21.48±.14
✓ ✗ ✓ 11.17±.12 10.12±.20 10.14±.09 17.11±.62 9.94±.12 24.52±.76
✓ ✓ ✗ 11.26±.16 9.65±.04 10.21±.12 17.32±.51 9.92±.06 22.94±.17
✓ ✓ ✓ 11.19±.09 9.88±.07 10.25±.06 16.11±.25 9.78±.08 21.30±.15

Table 8: IS and FID of AugSelf-BigGAN with different architectures and fusions of φ on CIFAR-10
and CIFAR-100 with 10% training data. The best result is bold and the second best is underlined.
Input can be concatenation [ϕ(x), ϕ(x̂)] ∈ R2d, subtraction ϕ(x̂)− ϕ(x), and augmentation ϕ(x̂).

Architecture Input CIFAR-10 10% data CIFAR-100 10% data

IS (↑) FID (↓) IS (↑) FID (↓)

two-layer MLP concatenation 8.54±0.07 18.47±0.37 8.65±0.11 30.15±0.47
two-layer MLP subtraction 8.62±0.07 16.94±0.49 8.88±0.06 28.63±0.36
two-layer MLP augmentation 8.78±0.05 19.06±0.81 8.73±0.10 29.40±0.91

linear layer concatenation 8.85±0.11 17.52±0.20 9.37±0.09 25.22±0.25
linear layer subtraction 8.76±0.05 15.68±0.26 9.78±0.08 21.30±0.15
linear layer augmentation 8.66±0.09 20.29±0.36 9.92±0.10 24.47±0.58

bilinear layer - 8.57±0.04 25.27±0.16 9.03±0.03 26.72±0.17

Table 6 reports the comparison between methods with different self-supervised tasks. We also
conducted generator-free self-supervised learning experiments by setting the hyper-parameter as
λg = 0 on each kind of self-supervised task. According to the FID score, ASS is significantly superior
to SS and SS+. Even without the self-supervised task of the generator, ASS (λg = 0) outperforms
SS and SS+ that include generator self-supervised tasks in limited (10% and 20%) data, and the
introduction of generator self-supervised tasks further expands this advantage.

Self-supervised signals. We empirically analyze the role of different augmentation parameters as
self-supervised signals for AugSelf-GAN. All methods employ three types of data augmentations
(color, translation, and cutout), with the difference lying in the predicted self-supervised signals.
According to the FID scores in Table 7, predicting any augmentation parameters can significantly
improve the final generative performance compared to the baseline. Although there is no significant
difference among them, we still choose to predict all augmentation parameters as the default setting
for AugSelf-GAN. This experiment demonstrates that the self-supervised task itself plays a decisive
role in training AugSelf-GAN, rather than the specific predicted augmentations. Therefore, we
believe that our method is generalizable and can be extended to other advanced data augmentations.

Network architectures. We investigate the impact of different network architectures (two-layer
multi-layer perceptron (MLP), linear layer, and bilinear layer) and input approaches (concatenation
[ϕ(x), ϕ(x̂)], subtraction ϕ(x̂) − ϕ(x), and augmented samples only ϕ(x̂)) on AugSelf-GAN. As
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Table 9: IS and FID of AugSelf-BigGAN with different loss functions on CIFAR-10 and CIFAR-100
with full and limited training data. The best result is bold and the second best is underlined.

Method 100% training data 20% training data 10% training data

IS (↑) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓)
C

IF
A

R
-1

0 λd = 0, λg = 0 9.29±.02 8.48±.13 8.84±.12 15.14±.47 8.80±.01 20.60±.13
λd = 1, λg = 0 9.12±.05 8.90±.07 8.82±.03 13.65±.70 8.52±.04 18.14±.33
saturating 9.27±.06 8.13±.14 8.83±.04 12.76±.29 8.42±.05 18.43±.21
non-saturating 9.37±.07 7.60±.08 8.91±.09 11.44±.16 8.63±.10 15.86±.26
combination 9.43±.14 7.68±.06 8.98±.09 10.97±.09 8.76±.05 15.68±.26

C
IF

A
R

-1
00 λd = 0, λg = 0 11.02±.07 11.49±.21 9.45±.05 24.98±.48 8.50±.09 34.92±.63

λd = 1, λg = 0 10.82±.10 11.29±.12 9.96±.11 18.90±.41 9.45±.05 25.77±.95
saturating 10.90±.07 10.53±.21 9.71±.08 18.78±.43 9.30±.09 25.92±.12
non-saturating 11.22±.14 9.90±.09 10.07±.02 16.12±.26 9.81±.10 21.99±.87
combination 11.19±.09 9.88±.07 10.25±.06 16.11±.25 9.78±.08 21.30±.15

reported in Table 8, we found that more complicated architectures of the predict head φ such as two-
layer MLP with input concatenation (D̂(T (x,ω),x) = MLP([ϕ(T (x,ω)), ϕ(x)])) or bilinear layer
(D̂(T (x;ω),x) = ϕ(T (x;ω))⊤Wϕ(x),W ∈ Rd×d) works worse than the simple linear layer with
input subtraction (D̂(T (x;ω),x) = φ(ϕ(T (x;ω))− ϕ(x))), which is the design of AugSelf-GAN.
The reason might be that complicated architectures of the head φ actually discourage the backbone ϕ
from capturing rich and linear representations, resulting in poor generalization of discriminators.

Generator loss functions. We study the effects of AugSelf-GANs with different generator loss
functions. As shown in Table 9, The hyper-parameters λd = 0, λg = 0 represent the baseline
BigGAN + DiffAugment. The generation performance is improved with only augmentation-aware
self-supervision for the discriminator (λd = 1, λg = 0). The saturating version of self-supervised
generator loss shows no significant further improvement. The non-saturating version yields compa-
rable performance with the combination one (AugSelf-GAN), and they both substantially surpass
the others. The reason is that the non-saturating loss directly encourages the generator to generate
augmentation-predictable real data, providing more informative guidance than the saturating one.

D Additional Results

100% training data 20% training data 10% training data

C
IF

A
R

-1
0

C
IF

A
R

-1
00

Figure 7: FID plots comparison of AugSelf-GAN and baselines on CIFAR-10 and CIFAR-100.
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Table 10: FID comparison on AFHQ. The number within the parentheses represents the percentage
of improvement (↓) in AugSelf-StyleGAN2 compared to the baseline StyleGAN2 + DiffAugment.

Method Cat Dog Wild

StyleGAN2 [19] 5.13 19.4 3.48
+ DiffAugment [47] 3.49 8.75 2.69
AugSelf-StyleGAN2 3.23 (↓ 7.45%) 8.17 (↓ 6.63%) 2.48 (↓ 7.81%)

StyleGAN2 + DiffAugment AugSelf-StyleGAN2

C
at

D
og

W
ild

Figure 8: Visual comparison between StyleGAN2+DiffAugment and AugSelf-StyleGAN2 on AFHQ.

Training stability. Figure 7 shows the FID plots during training of our method and baselines on
CIFAR-10 and CIFAR-100. Overall, AugSelf-BigGAN demonstrates a more stable convergence
compared to the baselines, while AugSelf-BigGAN+ goes even further.

AFHQ We also conduct experiments on the AFHQ dataset [6] to compare our proposed method
with DiffAugment by employing StyleGAN2 as the backbone model. The hyperparameters are
set as λd = 0.1, λd = 0.5, and λd = 0.2 on Cat, Dog, and Wild domains, respectively, and
λg = 0.1 on all three domains. Quantitative experimental results, as shown in Table 10, suggest that
AugSelf-StyleGAN2 yields approximately a 7% improvements in FID across all three domains when
compared to DiffAugment. Figure 8 presents a qualitative comparison between these two methods,
demonstrating a significant improvement in image quality for our method.

FFHQ and LSUN-Cat Figures 9 and 10 present the randomly generated images produced by
StyleGAN2 + DiffAugment and AugSelf-StyleGAN2+ on the FFHQ [17] and LSUN-Cat [45]
datasets with varying amounts of training data, respectively. Our AugSelf-StyleGAN2+ demonstrates
significant superiority over StyleGAN2 + DiffAugment in terms of visual quality of generated images.
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Figure 9: Comparison of random generated images between StyleGAN2 + DiffAugment and AugSelf-
StyleGAN2+ on FFHQ with different amounts of training data.
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Figure 10: Comparison of randomly generated images between StyleGAN2 + DiffAugment and
AugSelf-StyleGAN2+ on LSUN-Cat with different amounts of training data.
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