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Abstract

We establish stability of random forests under the mild condition that the squared
response (Y 2) does not have a heavy tail. In particular, our analysis holds for the
practical version of random forests that is implemented in popular packages like
randomForest in R. Empirical results show that stability may persist even beyond
our assumption and hold for heavy-tailed Y 2. Using the stability property, we
prove a non-asymptotic lower bound for the coverage probability of prediction
intervals constructed from the out-of-bag error of random forests. With another
mild condition that is typically satisfied when Y is continuous, we also establish
a complementary upper bound, which can be similarly established for the jack-
knife prediction interval constructed from an arbitrary stable algorithm. We also
discuss the asymptotic coverage probability under assumptions weaker than those
considered in previous literature. Our work implies that random forests, with its
stability property, is an effective machine learning method that can provide not
only satisfactory point prediction but also justified interval prediction at almost no
extra computational cost.

1 Introduction

Random forests (RFs) is a successful machine learning method that serves as a standard approach
to tabular data analysis and has good predictive performance [10, 7]. However, there is a big
gap between the empirical effectiveness of RFs and the limited understanding of its properties.
Most known theoretical results are established for variants of RFs not necessarily used in practice
[5, 25, 22, 14, 30]. For the RF version implemented in packages like randomForest in R [21], little
is known without strong assumptions [6, 26, 35]; RFs is notoriously difficult to analyze as a greedy
algorithm. Here we show an important property for the RF used in practice (as well as for other
variants) under realistic conditions.

1.1 Stability of random forests

The first main contribution of this work establishes the stability condition for the RF.

Theorem 1 (Stability of random forests, informal). For independent and identically distributed (iid)
training data points pXi, Yiq, i P t1, . . . , nu ” rns and a test point pX,Y q, if the squared response
Y 2 does not have a heavy tail, then the RF predictor RFB and any out-of-bag (OOB) predictor RFzi

B
predict similar values, i.e.,

P
´

ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą εn,B

¯

ď νn,B , (1)
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where RFB results from the aggregation of all B base tree predictors, while RF
zi
B only those with the

point pXi, Yiq excluded in training; εn,B and νn,B are small numbers depending on n and B.

This result is referred to as the stability of the RF because it indicates that no single training point
is extremely important in determining RFB in a probabilistic sense. Theorem 1 relies on a recent
important work that establishes the absolute stability (see below for a precise definition) of general
bagged algorithms with bounded outputs [28]. We take advantage of the fact that the range of the
RF output is conditionally dependent upon the maximal and minimal values of Y in the training set,
and then we show in theory that the stability property of the RF is possible even if Y is marginally
unbounded. To our knowledge, this is the first stability result established for the RF.

The technique used in our analysis requires that Y 2 not have a heavy tail (to make εn,B and νn,B
small). Though arguably already mild, we conjecture that this condition might be further relaxed. As
shown below, numerical evidence suggests that the light-tail assumption may not be necessary for RF
stability, which could hold even when Y follows a heavy-tail distribution like the Cauchy distribution.

1.2 Random-forest prediction intervals

Stability is a crucial property of a learning algorithm. For example, stability has a deep connection
with the generalization error of an algorithm [9, 19, 23]. Moreover, stability also turns out to be
important in distribution-free predictive inference. In particular, an algorithm being stable justifies
the jackknife prediction interval (PI), which otherwise has no coverage guarantee [3].

In this work, we show that stability makes it possible to construct a PI with guaranteed coverage from
the OOB error of the RF. The OOB error is defined as Ri “ |Yi ´ RF

zi
BpXiq|, i P rns. A main reason

why such a PI is appealing is that Ri can be obtained almost without extra effort. For example, a
one-shot training using the R package randomForest gives us an RF predictor RFB and all n OOB
predictions RFzi

BpXiq. So, from the computational point of view, a convenient way to construct a PI
for a test point pX,Y q is of the form “RFBpXq ˘ proper quantile of tRiu” [17, 35].

The second main contribution of this work constructs such PIs and theoretically proves, under mild
conditions, the non-asymptotic lower and upper bounds for the coverage probability.
Theorem 2 (Coverage lower bound, informal). Under the same assumptions as in Theorem 1, and
for α P p0, 1q 1, we have the following lower bound of coverage probability:

P p|Y ´ RFBpXq| ď the rpn ` 1qp1 ´ αqs-th smallest Ri ` εn,Bq ě 1 ´ α ´ Op
?
νn,Bq,

where r¨s is the ceiling function. Big O and other related notations are used in the usual way.
Theorem 3 (Coverage upper bound, informal). If we further assume that Y is continuous, resulting
in distinct prediction errors, then we also have the following upper bound:

P p|Y ´ RFBpXq| ď the rpn ` 1qp1 ´ αqs-th smallest Ri ´ εn,Bq ď 1 ´ α `
1

n ` 1
` Op

?
νn,Bq.

As we detail below, the PIs we provide coverage guarantees for are neither the jackknife-with-stability
interval discussed in [3], nor the jackknife+-after-bootstrap interval established in [18]. In our context,
constructing the former needs n leave-one-out (LOO) predictors (rather than n OOB predictors), i.e.,
n additional RFs with each built on a training set of size n ´ 1. Constructing the latter needs the
explicit information of each RF

zi
Bp¨q rather than the OOB prediction RF

zi
BpXiq for each Xi only. Both

these methods require additional, sometimes extensive, computation given current popular packages.
In contrast, our results are operationally more convenient. After one-shot training, we obtain not only
a point predictor RFBp¨q, but also a valid interval predictor at almost no extra cost. Under reasonable
conditions, our results indicate that by slightly inflating (or deflating) the PI constructed from the
rpn ` 1qp1 ´ αqs-th smallest Ri, the coverage probability is guaranteed not to decrease (or increase)
too much from the desired level of 1 ´ α. In fact, many numerical results, such as those in [17, 35],
suggest that

P p|Y ´ RFBpXq| ď the rpn ` 1qp1 ´ αqs-th smallest Riq « 1 ´ α.

Motivated by this fact, we further establish an asymptotic result of coverage for such PIs.
1When α P p0, 1{pn ` 1qq, we follow the convention that the pn ` 1q-th smallest Ri is 8.
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Theorem 4. (Asymptotic coverage, informal) In addition to the conditions in the above theorems, also
suppose the prediction error |Y ´ RFBpXq| is continuous, and its cumulative distribution function
(CDF) does not change too drastically for all sufficiently large n. Then

P p|Y ´ RFBpXq| ď the rpn ` 1qp1 ´ αqs-th smallest Riq Ñ 1 ´ α as n Ñ 8.

In [35], this asymptotic coverage was proved based on stronger assumptions. In particular, the
true model is assumed to be additive such that “Y “ f0pXq ` noise” with the zero-mean noise
independent of X , and RFBpXq is assumed to converge to f0pXq in probability. We do not require
RFB to converge to anything in any sense when n Ñ 8. Technically, we need the family of prediction
error CDFs be uniformly equicontinuous.

Based on our results, the RF seems to be the only one, among existing popular machine learning
algorithms, that can provide both point and interval predictors with justification in such a convenient
way. This makes the RF appealing, especially for tasks where the computational cost is a concern.

It is also worth noting that the upper-bound result is of interest in its own right. It can be generalized
to jackknife PIs that are constructed from any stable algorithm; the result serves as a complement to
the lower bounds established previously [3, 18].

Summarizing, we

• theoretically prove that the (greedy) RF algorithm is stable when Y 2 does not have a heavy
tail;

• numerically show that RF stability may hold beyond the above light-tail assumption;
• construct PIs based on the OOB error with finite-sample coverage guarantees: the lower

bound of coverage does not need any additional assumption beyond stability; the upper
bound needs an additional assumption, which is usually satisfied when Y is continuous;

• provide the upper bound of coverage for jackknife PIs constructed from general stable
algorithms, assuming distinct LOO errors; and

• prove asymptotically exact coverage for RF-based PIs under weaker assumptions than those
previously considered in published work.

2 Concepts of algorithmic stability

Stability stands at the core of this work. There are different types of stability, each of which is used
to assess quantitatively how stable (in some certain sense) an algorithm is with respect to small
variations in training data [9, 28, 4]. In a recent work [4], robust optimization is used to enhance the
stability of algorithms in classification tasks. In [28], bagging is proved to be an efficient mechanism
to stabilize algorithms in regression tasks. We focus on regression here. As will be made clear,
the technique used in this work relies on the fact that the RF predictor in regression results from
averaging tree predictors. However, the majority vote of tree predictors is used in classification, and
new ideas are needed to analyze the RF stability in this setting. For our purposes, we introduce three
levels of stability from strongest to weakest. The strongest version of stability, introduced in [28],
does not depend on the data distribution, and may be referred to as “absolute stability.”
Definition 1 (Absolute stability of algorithms). For any dataset consisting of n ě 2 training points
D “ tpX1, Y1q, . . . , pXn, Ynqu and any test point pX,Y q, an algorithm A is defined to be pε, δq-
absolutely-stable if

1

n

n
ÿ

i“1

Pξ

´
ˇ

ˇ

ˇ
f̂pXq ´ f̂´ipXq

ˇ

ˇ

ˇ
ą ε

¯

ď δ

for some ε, δ ě 0, where ξ denotes the possible innate randomness in the algorithm (such as the node
splitting procedure in the RF) and can be seen as a random variable uniformly distributed in r0, 1s,
f̂ “ ApD; ξq is the predictor trained on D, and f̂´i “ ApD´i; ξq is the ith LOO predictor trained
on D´i, i.e., D without the ith point pXi, Yiq. We might refer to the RF as both an algorithm (the
learning procedure) and a predictor (the learned function) for simplicity.

Many bagged algorithms, in particular those with bounded predicted values, can achieve absolute
stability with both ε and δ converging to 0, as long as n and the number of bags B go to infinity.

3



However, the predicted value of the RF is in general unbounded (for regression tasks considered in
this work), and we are more interested in another type of stability, investigated in [9], and called
out-of-sample stability [3]. For simplicity, we name it “stability.” This notion of stability turns out to
be important in validating a jackknife prediction interval.
Definition 2 (Stability of algorithms). For iid training and test data, algorithm A is pε, δq-stable if

PD,X,ξ

´ˇ

ˇ

ˇ
f̂pXq ´ f̂´ipXq

ˇ

ˇ

ˇ
ą ε

¯

ď δ

for some ε, δ ě 0, where D,X, f̂ , f̂´i are as defined above.

We will establish this type of stability for the derandomized RF defined below, where the data-
generating distribution is involved. To this end, we will use the methods in [28], which aim to provide
absolute stability for bagged algorithms. Technically, we use such methods to first establish the
“conditional stability” of an algorithm with respect to given data.
Definition 3 (Conditional stability of algorithms). Conditional on D and X , an algorithm A is
defined to be pε, δq-conditionally-stable if

1

n

n
ÿ

i“1

P ξ|D,X

´
ˇ

ˇ

ˇ
f̂pXq ´ f̂´ipXq

ˇ

ˇ

ˇ
ą ε

ˇ

ˇ

ˇ
D,X

¯

ď δ

for some ε, δ ě 0, where D,X, f̂ , f̂´i are as defined above.

Once conditional stability is established for the derandomized RF algorithm, its stability can be
consequently established by invoking

PD,X,ξp¨q “ ED,X

“

Pξ|D,Xp¨|D,Xq
‰

.

Stability of the derandomized RF provides the most essential ingredient for that of the practical RF,
although the latter involves another type of stability, known as ensemble stability [18]. Ensemble
stability justifies replacing the LOO predictor with the OOB predictor in (1). We may abuse the term
“stability” in the following when the OOB, rather than the LOO, predictor is used.

3 Stability of random forests

3.1 Basics of random forests

This work mainly considers using the RF to perform regression tasks, where the response Y P R
can be unbounded. By construction, the RF predictor with B bags, denoted by RFB , is a bagged
algorithm with the base algorithm being a tree, and RFB “ 1

B

řB
b“1 TREEb, where TREEb is the bth

tree predictor, trained on the bth bag rb, a bootstrapped sample of the training set D. The randomness
in the tree predictor TREE originates from two independent sources: innate randomness ξ in the node
splitting process and resampling randomness from the bag r. For the ith point, one can define the OOB
RF predictor as RFzi

B “ 1
Bi

řB
b“1 TREEb ˆ Iti R rbu, where It¨u denotes the indicator function, and

Bi “
řB

b“1 Iti R rbu. Define p ” Ppi P rq as the probability that the ith point is included in bag r.
Then it is clear that Bi „ BinomialpB, 1´pq for all i. We also denote rf and rfzi as the derandomized
versions of RFB and RF

zi
B , respectively. Precisely, rf “ Eξ,rrTREEs and rfzi

“ Eξ,rrTREE|i R rs. It
is worth noting that, by definition, RFzi

B ‰ RF´i
B for finite B, while rfzi

“ rf´i as the derandomized
RF results from the aggregation of an infinite number of trees. Since RF predictors are averages over
tree predictors, the predicted values they output, given training set D, are bounded in rYp1q, Ypnqs,
where Yp1q and Ypnq are the minimum and maximum of tY1, . . . , Ynu, respectively. We also let
Zi “ |Yi| for all i, and denote the maximum as Zpnq. As a result, we have that

|rfzi
´ rf| ď Ypnq ´ Yp1q ď 2Zpnq. (2)

Remark 1. This is also true for RFzi
B and RFB for any finite B. In fact, this is a distinctive feature of

the RF, irrespective of the node splitting rule. Other regression methods do not necessarily have such
a data-dependence bound. This observation helps to establish the conditional stability of the RF.
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Remark 2. Practically, when n is large, one might think that the bound (2) is crude. On one hand,
if we look for a bound valid for any finite n ě 2, then there is not much room for improvement
for small n. On the other hand, we do expect that the typical stability of the RF can go beyond the
finite-sample guarantee provided by (2) when n is big, which is consistent with the numerical results
shown below. A more informative bound for large n is worth future investigation.

There are several quantities that are useful in establishing the RF stability; they can be calculated
explicitly and are listed below. First, it is well known that

p ” Ppi P rq “ 1 ´ p1 ´ 1{nqn “ 1 ´ 1{e ` Op1{nq. (3)

Actually, p is monotonically decreasing for n ě 1. Second,

q ” ´CovpIti P ru, Itj P ruq “ p1 ´ 1{nq2n ´ p1 ´ 2{nqn “ Op1{nq, (4)

as can be directly checked. Third, the moment generating function of Bi is

E
“

esBi
‰

“ pp ` p1 ´ pqesqB . (5)

In the following, we first perform the stability analysis for the derandomized RF (consisting of an
infinite number of trees) and then extend the results to the practical finite-B case.

3.2 Derandomized random forests

The following theorem formalizes the conditional stability property for the derandomized RF, the
proof of which is a direct result of Theorem 8 in [28], and is omitted here.
Theorem 5 (Conditional stability of derandomized random forests). Conditional on training set D
and test point pX,Y q, for the derandomized random forest predictor rf we have that

1

n

n
ÿ

i“1

I
!

ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε

ˇ

ˇ

ˇ
D,X

)

ď δpD,Xq ”
Z2

pnq

ε2n

ˆ

p

1 ´ p
`

q

p1 ´ pq2

˙

. (6)

If δpD,Xq ě 1, the statement is trivial, and we will focus on the case that δpD,Xq P p0, 1q. We can
now establish the stability property for the derandomized RF.
Theorem 6 (Stability of derandomized random forests). For iid training and test data and ε ą 0, the
derandomized random forest predictor rf is stable with

PD,X

´ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε

¯

ď
ErZ2

pnq
s

ε2n

ˆ

p

1 ´ p
`

q

p1 ´ pq2

˙

” ν. (7)

This result follows directly from the conditional stability (6) by averaging over D and X . There
is some freedom in choosing the dependence of ε on n. On one hand, in order to make sense of
the word “stability,” we do expect ε and ν to be small for large n. From (3) and (4), it is clear
that the asymptotic behavior of ν is dominated by that of ErZ2

pnq
s{pε2nq, which can be tuned by

manipulating ε. For example, a matching convergence rate to 0 between ε and ν might be desirable,
and one can then set ε “ OppErZ2

pnq
s{nq1{3q if the scaling of ErZ2

pnq
s “ opnq is known or can be

inferred. On the other hand, we can fix ε to further investigate the relation between stability and the
convergence-in-probability property of the RF. By (7), under the condition that ErZ2

pnq
s{n Ñ 0 as

n Ñ 8, one immediately comes to the conclusion that rfzi
pXq ´ rfpXq converges to 0 in probability.

Actually, a stronger conclusion can be drawn under the same condition.
Corollary 1. For iid training and test data, we have

ED,X r|rfpXq ´ rfzi
pXq|s ă 2

d

ErZ2
pnq

s

n

ˆ

p

1 ´ p
`

q

p1 ´ pq2

˙

. (8)

Further assume that ErY 2s ă 8. Then we have

ED,X r|rfpXq ´ rfzi
pXq|s Ñ 0 and rfpXq ´ rfzi

pXq
P

Ñ 0 as n Ñ 8. (9)
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Remark 3. The additional assumption that ErY 2s ă 8 is mild. Many commonly encountered
random variables have a light tail and thus a finite second moment, irrespective of the detailed
information of the distribution in question. Note that the bound (2) itself can be crude, and our result
is expected to be valid even beyond this mild condition.

Remark 4. This result indicates that the difference is diminishing between rf and rfzi, built on n and
n ´ 1 training data points, respectively. However, there is no indication that the derandomized rfpXq

itself will converge to anything. This idea inspires the proposal of Theorem 11.

The proof of this result, as well as others below, will be deferred to the Appendix. So far, we
have investigated the derandomized version of the RF, which is a limiting case and can be seen
as consisting of an infinite number of trees, averaging out all kinds of possible randomness in the
predictor construction process. In order to make the results more relevant to applied machine learning,
the finite-B analysis for the RF is conducted below.

3.3 Finite-B random forests

We now consider the difference between RFB and RF
zi
B . We denote ξ “ pξ1, . . . , ξBq and r “

pr1, . . . , rBq as the corresponding sources of randomness in B trees. We also consider conditional
stability first and then move to the stability of RFB .
Theorem 7 (Conditional stability of finite-B random forests). Conditional on training set D and test
point pX,Y q, for a random forest predictor RFB that consists of B trees, we have for ε ą 0 that

1

n

n
ÿ

i“1

Pξ,r|D,X

¨

˝

ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą ε ` 2

d

2Z2
pnq

B
ln

ˆ

1

δ

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D,X

˛

‚ď 3δ ` gpp, δ, Bq,

where δ is short for δpD,Xq as defined in (6) and gpp, δ, Bq “ 2pp ` p1 ´ pqδ
1
B qB .

Next, we consider the case of iid data and investigate the RF stability by averaging out the randomness
in data. Note that Zpnq and δ are random and depend on the data distribution, while we are interested

in a probability bound for |RFBpXq ´ RF
zi
BpXq| greater than a deterministic quantity, which is only

a function of B and n. In this finite-B case, the stability of RFB cannot be directly obtained from its
conditional stability as in the derandomized situation.
Theorem 8 (Stability of finite-B random forests). Assume training points in set D and the test point
pX,Y q are iid, drawn from a fixed distribution. For the random forest predictor RFB consisting of B
trees and trained on D, we have

PD,X,ξ,r

´
ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą εn,B

¯

ď νn,B , (10)

where εn,B “
ř3

i“1 εi, and νn,B “
ř3

i“1 νi. The pair of pε2, ν2{λq satisfies the derandomized

RF stability condition (7) with λ ą 1. Moreover, ε1 “ ε3 “

b

2λErZ2
pnq

s lnp 1
ν2

q{B, ν1 “

2ν2 ` 2PpZ2
pnq

ą λErZ2
pnq

sq, and ν3 “ gpp, ν2, Bq ` 2PpZ2
pnq

ą λErZ2
pnq

sq.

On a high level, the establishment of this theorem relies on two observations: (i) the stability of the
derandomized RF, so that the difference |rfpXq ´ rfzi

pXq| is controlled, and (ii) the concentration
of measure, so that the differences |RFBpXq ´ rfpXq| and |RF

zi
BpXq ´ rfzi

pXq| are controlled. In
order to make full sense of the word “stability,” it is desirable that εn,B and νn,B can converge to
0. It is known that ErY 2s ă 8 suffices to ensure ErZ2

pnq
s “ opnq [15, 13], and hence the stability

of the derandomized RF. Now in the finite-B case, we need an additional distributional assumption
to control the tail probability PpZ2

pnq
ą λErZ2

pnq
sq. It turns out that for typical light-tailed Y 2, such

a tail probability will converge to 0 as n Ñ 8. Technically, we can assume Y 2 to be sub-gamma
[8]. Note that bounded and sub-Gaussian random variables are sub-gamma. Hence the sub-gamma
assumption is not strong and can be satisfied by distributions underlying many real datasets.
Definition 4 (Sub-gamma random variables [8]). A random variable W is said to be sub-
gamma (on the right tail) with parameters pσ2, cq where c ě 0, if lnErespW´ErW sqs ď
s2σ2

2p1´csq
for all s P p0, 1{cq.
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Figure 1: Left: Density plots of the log10 absolute difference |RFBpXq ´ RF
zi
BpXq| for 3000

OOB predictors RF
zi
B on 1000 test points. We let B “ 1000. The RF stability (10) seems to

persist, even though Y follows the (heavy-tailed) standard Cauchy distribution. Numerically, we set
ν̂n,B “ 0.05 and calculated the maximum of the 0.95 quantile of the 3000 empirical distributions to
have ε̂n,B “ 0.237. Right: Density plots of 1000 log10 absolute prediction errors |Y ´ RFBpXq|

and of 3000 log10 absolute OOB errors |Yi ´ RF
zi
BpXiq|. The similarity between the plots supports

the idea that the OOB errors can be used to construct PIs.

Lemma 1. Suppose Y 2 is sub-gamma with parameters pσ2, cq with c ą 0, and ErZ2
pnq

s „ a lnn

with a ď c. For λ ą c{a, we have limnÑ8 PpZ2
pnq

ą λErZ2
pnq

sq “ 0.

Remark 5. We have set c ą 0 above. If c “ 0, then Y 2 is in fact sub-Gaussian, and the tail
probability can be controlled similarly. If Y 2 is upper bounded by some constant M2, the stability
analysis is even simpler, and there is no need to consider the tail probability at all, as we can use M2

in place of Z2
pnq

in the conditional stability of the RF and then take expectation with respect to data.

Example 1. Consider Y 2 „ Expp1q, the exponential distribution with scale parameter 1. It
is known that Y 2 is sub-gamma with pσ2, cq “ p1, 1q [8], and ErZ2

pnq
s “

řn
i“1

1
i ” Hn with

Hn P pγ ` lnn, γ ` lnpn ` 1qq, where γ « 0.577 is Euler’s constant. Hence Hn “ lnn ` oplnnq,
and a straightforward calculation reveals that limnÑ8 PpZ2

pnq
ą λErZ2

pnq
sq “ 0 as long as λ ą 1.

From such results, one can see that the vanishing tail probability is not a stringent condition. By
taking this additional assumption, it is indeed possible that both εn,B and νn,B converge to 0.

Corollary 2. For the same setting as in Theorem 8, suppose Y 2 is sub-gamma with parameters
pσ2, cq with c ą 0 and ErZ2

pnq
s „ a lnn with a ď c. Let λ ą c{a be a fixed number, and let B

depend on n. Then for ε2 that satisfies both ε2 “ ωp
a

lnn{nq and ε2 “ op1q, and B “ Ωpln2 nq,
we have limnÑ8 εn,B “ limnÑ8 νn,B “ 0.

It is worth noting that there are multiple ways to let εn,B and νn,B approach 0, as the dependence of
ε2, B, and even λ on n can all be manipulated. The point is that, theoretically, even the greedy RF
can be stable with vanishing parameters. In practice, however, the stability of RFB seems to hold in
broader situations where both the moment and tail assumptions on Y 2 can be relaxed.

3.4 Stability in practice and limitations of theory

We created a virtual dataset consisting of n “ 4000 points. We let Y be a standard Cauchy random
variable, which is even without a well-defined mean. The feature vector X P R3 is determined as
X “ r0.5Y ` sinpY q, Y 2 ´ 0.2Y 3, ItY ą 0u ` ζsT where ζ is a standard normal random variable.
We used 3000 of the points for training and 1000 of them as test points. Using the randomForest
package with default setting (except letting B “ 1000), we had an output RF predictor RFB . We also
aggregated corresponding tree predictors to have 3000 OOB predictors RFzi

B . For each i P r3000s,
we calculated the absolute difference |RFBpXq ´ RF

zi
BpXq| on 1000 test points to come up with a
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density plot for such a difference, shown in Fig. 1. We also calculated 1000 absolute prediction errors
|Y ´ RFBpXq| that are incurred by RFB on test points, and 3000 OOB errors |Yi ´ RF

zi
BpXiq|, each

incurred by an OOB predictor RFzi
B on its OOB point pXi, Yiq. The computation can be done within

a few minutes on a laptop. The density plots of these two kinds of errors are also shown in Fig. 1.
This example shows that the RF stability can be present beyond the realm guaranteed by the light-tail
assumption. As mentioned above, this is because the bound (2) can be conservative when n is large.
We hope our results can inspire future study towards a more informative bound. Also, the similarity
between the prediction error and the OOB error in this heavy-tail case indicates that the RF-based PIs
analyzed below can find more applications in practice than justified by the current theory.

4 Random-forest prediction intervals

4.1 Comparison with related methods

With the stability property of the RF, it is possible to construct PIs with finite-sample guaranteed
coverage. Recent years have witnessed the development of distribution-free predictive inference
[1] with the full [33, 27], split [24, 31, 20], and jackknife+ [3, 32] conformal prediction methods
being three milestones. The full conformal method is computationally prohibitive when used in
practice. The split method greatly reduces the computational cost but fails to thoroughly extract the
available information of training data. The jackknife+ (J+) method maximizes the usage of data at a
computational cost in between those of full and split methods. In [18], jackknife+-after-bootstrap
(J+aB) was proposed for bagged algorithms to achieve the same goal as in J+, while the training
cost can be further reduced. However, the number of bags B is required to be a Binomial random
variable, which might seem unnatural. It turns out that by further imposing the assumption of
ensemble stability (which is essentially the concentration of resampling measure), J+aB can still have
guaranteed coverage with a fixed B. Ensemble stability is defined for bagged algorithms. It measures
how typical a bootstrap sample is, and is different from the algorithmic stability that quantifies the
influence of removing one training point. If algorithmic stability is also imposed, then not only J+aB,
but also jackknife can provide guaranteed coverage, which is otherwise impossible [29, 3].

Conceptually, the J+ approach and its variants under stability conditions are particularly relevant
to this work. As the stability we establish for the RF contains both ensemble and algorithmic
components, we will generally refer to the J+aB method with both ensemble and algorithmic stability
as J+aBS and the jackknife method with algorithmic stability as JS. Our method might be best
described as “jackknife-after-bootstrap-with-stability (JaBS)” tailored for the RF, which is different
from both JS and J+aBS. Our method requires the least effort of computing as only one output
predictor is needed, while all others require at least n output predictors.

There also exist RF-based PIs [17, 35] that are essentially of the jackknife-after-bootstrap (JaB) type
and almost identical to ours practically when ε is small and n equals the size of a typical dataset.
However, without stability, there is, in general, no guarantee for the coverage of such PIs, although the
asymptotic coverage 1 ´ α can be established based on strong assumptions [35]. We take advantage
of the stability of the RF algorithm to establish the lower bound of coverage in Theorem 9 below. An
upper bound is established in Theorem 10 with an additional mild assumption. We also propose a
weaker assumption for asymptotic coverage in Theorem 11.

We compare these relevant methods to ours in Table 1 and Table 2, where the RF is set as the working
algorithm for all methods and pε, νq is a general pair of stability parameters. We define qn,αtRiu,
q`
n,αtRiu, q´

n,αtRiu, and q1
n,αtRiu as follows. Given ta1, . . . , anu,

qn,αtaiu “ q`
n,αtaiu ” the rp1 ´ αqpn ` 1qs-th smallest value of ta1, . . . , anu,

q1
n,αtaiu ” the rp1 ´ αqns-th smallest value of ta1, . . . , anu,

q´
n,αtaiu ” the tαpn ` 1qu-th smallest value of ta1, . . . , anu,

where t¨u is the floor function. Let RLOO
i “ |Yi ´ RF´i

B pXiq| be the LOO error, where RF´i
B is

trained without the ith training point, and by definition RF´i
B ‰ RF

zi
B .

In Table 1, we list the corresponding PI constructed from each method and the output predictors
of each method. The number of output predictors directly reflects the computational cost. It is
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Table 1: Methods to construct prediction intervals using random forests: computational cost
Method Output predictors Prediction interval for future Y

J+ [3] RF´i
B , i P rns rq´

n,αtRF´i
B pXq ´ RLOO

i u, q`
n,αtRF´i

B pXq ` RLOO
i us

J+aB [18] RF
zi
B , i P rns rq´

n,αtRF
zi
BpXq ´ Riu, q

`
n,αtRF

zi
BpXq ` Rius

JS [3] RFB and RF´i
B , i P rns RFBpXq ˘ qn,αtRLOO

i ` εu

J+aBS [18] RF
zi
B , i P rns rq´

n,αtRF
zi
BpXq ´ Riu ´ ε, q`

n,αtRF
zi
BpXq ` Riu ` εs

JaB RFB RFBpXq ˘ qn,αtRiu [17]
RFBpXq ˘ q1

n,αtRiu [35]
Ours (JaBS) RFB RFBpXq ˘ qn,αtRi ` εu (Theorem 9)

RFBpXq ˘ qn,αtRi ´ εu (Theorem 10)
RFBpXq ˘ qn,αtRiu (Theorem 11)

Table 2: Methods to construct prediction intervals using random forests: theoretical coverage
Method Theoretical coverage Additional conditions

J+ [3] ě 1 ´ 2α None
J+aB [18] ě 1 ´ 2α Binomial B
JS [3] ě 1 ´ α ´ Op

?
νq Stability (algorithmic)

J+aBS [18] ě 1 ´ α ´ Op
?
νq Stability (ensemble + algorithmic)

JaB No guarantee [17] -
Ñ 1 ´ α [35] Strong (additive model, consistency of RF predictor)

Ours (JaBS) ě 1 ´ α ´ Op
?
νq Stability (Theorem 9)

ď 1 ´ α ` 1
n`1 ` Op

?
νq ` Distinct residuals (Theorem 10)

Ñ 1 ´ α ` Uniformly equicontinuous CDF of |Y ´ RFBpXq|

and vanishing ε, ν (Theorem 11)

worth noting that acquiring the LOO predictor RF´i
B needs substantial computation. In packages

like randomForest, aggregating tree predictors to obtain the OOB predictor RFzi
B also needs extra

computation. However, the predicted value RF
zi
BpXiq can be obtained immediately by calling the

predictpq function. The fact that the value of RFzi
BpXq on a test point is not needed further reduces

the computational cost of JaB and our method, which only need one output RF predictor, and are
more favorable computationally.

In Table 2, we list the coverage of the PI constructed from each method, as well as the additional
conditions (beyond iid data) needed to achieve the coverage. Note that J+ does not require any
additional conditions to achieve the coverage lower bound 1 ´ 2α, but J+aB requires that the number
of trees B be a Binomial random variable. For JS, J+aBS, and our method, stability is needed to
achieve the coverage lower bound 1 ´ α ´ Op

?
νq. With additional mild assumptions, the coverage

upper bound and asymptotic coverage of our method can be established. However, there is no
guarantee of coverage for JaB without strong assumptions.

In summary, our theoretical work provides a series of coverage guarantees to a computationally
feasible method for constructing PIs based on the RF algorithm. In the following, we will establish
the lower and upper bound of coverage, as well as the asymptotic coverage.

4.2 Non-asymptotic coverage guarantees

Theorem 9 (Coverage lower bound). Suppose the RF predictor RFB satisfies the stability condition
as in Theorem 8. Then we have for a test point pX,Y q that

PpY P RFBpXq ˘ qn,αtRi ` εn,Buq ě 1 ´ α ´ ν1 ´ 2
?
ν2 ´ 2

?
ν3. (11)

This result is established by starting from the analysis of an imaginary extended dataset D “

D Y tpX,Y qu, where the test point is assumed to be known. We denote pX,Y q as pXn`1, Yn`1q for

convenience. For all points in D, consider the derandomized RF predictor rrf
zi

that is built on n data
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points without the ith point in D, i P rn`1s. One can then define the OOB error rri ” |Yi´rrf
zi

|. Since
all data are iid, we have that Pprrn`1 ď qn,αtrriuq ě 1´α, where qn,αtrriu is the rp1´αqpn` 1qs-th

smallest value of trr1, . . . , rrnu. Next, notice rrn`1 “ |Yn`1 ´ rrf
zpn`1q

pXn`1q| “ |Yn`1 ´ rfpXn`1q|

by the definitions of rrf
zpn`1q

and rf. By concentration of measure, rfpXn`1q can be approximated by
RFBpXn`1q, and thus rrn`1 can be roughly replaced with |Yn`1 ´ RFBpXn`1q|, which is desired.
Then by stability of rf, trriu can be approximated by tri ” |Yi ´ rfzi

pXiq|u. Although triu is still
unavailable in practice, by applying the idea of concentration of measure again, triu can be further
approximated by tRiu, which is accessible given D. Eventually, we can bound |Yn`1 ´RFBpXn`1q|

in terms of tRiu. The approximations are accounted for by the stability parameters in Theorem 8.

If we further assume that there are no ties among trriu, i P rn`1s, a typical case when Y is continuous,
then we can also establish the upper bound of coverage.
Theorem 10 (Coverage upper bound). Suppose there are no ties in trriu, i P rn ` 1s, and the RF
predictor RFB satisfies the stability condition as in Theorem 8. Then

PpY P RFBpXq ˘ qn,αtRi ´ εn,Buq ď 1 ´ α `
1

n ` 1
` ν1 ` 2

?
ν2 ` 2

?
ν3. (12)

The upper bound can be established because if there are no ties among rr1, . . . , rrn`1, then Pprrn`1 ď

qn,αtrriuq ď 1 ´ α ` 1
n`1 . The apparent symmetry between the lower and upper bound originates

from the fact that they both are established by using the RF stability once and the concentration of
measure twice. Note that this idea can be applied to JS intervals for an arbitrary stable algorithm in
exactly the same way, providing a complement to the lower bound for JS intervals established in [3].

Corollary 3 (Coverage upper bound for jackknife-with-stability intervals). Let f̂ be a predictor
trained on n iid data points and f̂´i be the LOO predictor without the ith point. Suppose f̂ is
stable with Pp|f̂pXq ´ f̂´ipXq| ą εq ď ν, and the LOO errors are distinct on the extended

training set that includes an iid test point pX,Y q. Then we have P
´

|Y ´ f̂pXq| ď qn,αtri ´ εu

¯

ď

1 ´ α ` 1
n`1 ` 2

?
ν, where ri are the LOO errors on the original training set.

4.3 Asymptotic coverage guarantee

As shown above, the stability parameters pεn,B , νn,Bq can vanish when n Ñ 8. It is reasonable
to expect that PpY P RFBpXq ˘ qn,αtRiuq Ñ 1 ´ α in this limit, as is consistent with numerous
empirical observations [17, 35]. However, to achieve this goal, it seems that more assumptions are
unavoidable. In [35], the guaranteed coverage of the JaB method is established by assuming that
RFBpXq converges to some f0pXq in probability as n Ñ 8, where f0 is the true regression function
of an additive model that generates the data. We show that this can be done under weaker conditions.
Theorem 11 (Asymptotic coverage). Denote Fn as the CDF of |Y ´ RFBpXq|. Suppose tFnuněn0

is uniformly equicontinuous for some n0. Then PpY P RFBpXq ˘ qn,αtRiuq Ñ 1 ´ α as n Ñ 8

when conditions in Theorem 9, Theorem 10, and Corollary 2 are satisfied.

Remark 6. Intuitively, using errors from RF
zi
B that are trained on n ´ 1 points to approximate those

from RFB , trained on n points, we only need this approximation to be exact asymptotically. There
is no need for RFB itself to converge to anything. This is one major conceptual difference between
our work and [35], and it is in this sense that our assumption is weaker. Practically, this kind of PI is
recommended as it does not involve pεn,B , νn,Bq, and has great performance on numerous datasets.

5 Conclusion

In this work, for the first time, we theoretically establish the stability property of the greedy version
of random forests, which is implemented in popular packages. The theoretical guarantee is based on
a light-tail assumption of the marginal distribution of the squared response Y 2. However, numerical
evidence suggests that this stability could persist in much broader situations. Based on the stability
property and some mild conditions, we also establish finite-sample lower and upper bounds of
coverage, as well as the exact coverage asymptotically, for prediction intervals constructed from the
out-of-bag error of random forests, justifying random forests as an appealing method to provide both
point and interval prediction simultaneously.
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