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Figure 1: MAGICBRUSH provides 10K manually annotated real image editing triplets (source image,
instruction, target image), supporting both single-turn and multi-turn instruction-guided editing.

Abstract

Text-guided image editing is widely needed in daily life, ranging from personal
use to professional applications such as Photoshop. However, existing methods
are either zero-shot or trained on an automatically synthesized dataset, which
contains a high volume of noise. Thus, they still require lots of manual tun-
ing to produce desirable outcomes in practice. To address this issue, we intro-
duce MAGICBRUSH (https://osu-nlp-group.github.io/MagicBrush/),
the first large-scale, manually annotated dataset for instruction-guided real image
editing that covers diverse scenarios: single-turn, multi-turn, mask-provided, and
mask-free editing. MAGICBRUSH comprises over 10K manually annotated triplets
(source image, instruction, target image), which supports trainining large-scale
text-guided image editing models. We fine-tune InstructPix2Pix on MAGICBRUSH
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and show that the new model can produce much better images according to human
evaluation. We further conduct extensive experiments to evaluate current image
editing baselines from multiple dimensions including quantitative, qualitative, and
human evaluations. The results reveal the challenging nature of our dataset and the
gap between current baselines and real-world editing needs.

1 Introduction

Applying non-trivial semantic edits to real photos has long been an interesting task in image process-
ing [27]. With the ever-increasing demand for visual content, image editing has become even more
essential for enhancing and manipulating images in various fields including photography, advertising,
and social media. Natural language, as our innate and flexible interface, serves as an easy way to
guide the image editing process. As a result, text-guided image editing [21, 3, 8, 16, 14] has recently
gained more popularity compared to other mask-based image editing techniques [20, 35, 23].

Many text-guided image editing methods have been proposed recently and achieved impressive
results. These methods can be roughly divided into two categories: (1) zero-shot editing [2, 1, 24],
these pipeline methods require massive amount of manual tuning of its hyperparameters to produce
reasonable results. (2) end-to-end editing trained on synthetic datasets [4, 37, 7]. However, such silver
training data may not only contain annotation errors but also not well capture the need and diversity
of real-world editing cases, leading to models with limited editing and generalization abilities.

Therefore, there is an urgent need for a high-quality dataset to facilitate real-world text-guided image
editing. In this paper, we present MAGICBRUSH, a large-scale and manually annotated dataset for
instruction-guided real image editing. We adopt natural language instruction [29, 4, 41, 22] for its
flexibility, which enables users to easily express desired edits with phrases like “Remove the crowd
in the background” or others shown in Figure 1. Additionally, we extend the dataset to include the
multi-turn scenario considering the editing could be conducted iteratively on an image in practice.

We employ a rigorous training and selection for crowd workers, where they need to pass a qualification
quiz and undergo manual grading during a trial period. Ongoing spot-checks ensure consistent quality,
and failure to maintain high standards results in elimination from the task as shown in Figure 2.
During the task, qualified workers need to propose edit instructions and utilize the DALL-E 2 [31]
image editing platform to interactively synthesize target image. They will interact with the DALL-E
2 platform with different prompts and hyperparameters until they harvest their desired outputs,
otherwise, the example will be dropped. Workers may perform continuous edits on the input image,
leading to a series of edit turns. Each turn has a source image (may be the original or output from the
previous turn), an instruction, and a target image. We refer to such a complete edit process on a real
input image as an edit session. Eventually, we manually check the generated images to ensure quality.
MAGICBRUSH consists of 5,313 sessions and 10,388 turns, supporting various editing scenarios
including single-/multi-turn, mask-provided, and mask-free for both training and evaluation.

Experiments show that an end-to-end editing method InstructPix2Pix [4], delivers much better results
after fine-tuning on MAGICBRUSH and outperforms other baselines according to human preferences.
Furthermore, we conduct extensive experiments to evaluate current editing methods from multiple
dimensions including quantitative, qualitative, and human evaluations. All these results reveal the
challenging nature of MAGICBRUSH and the gap between existing methods and real-world editing
needs, calling for more advanced model development in the future.

2 Related Work

2.1 Text-guided Image Editing

Editing real images has long been an essential task in the field of image processing [27] and recent
text-guided image editing has drawn considerable attention. Specifically, it can be categorized into
three types in terms of different forms of text.

Global Description-guided Editing. Previous methods build fine-grained word and image region
alignment for image editing [9, 17, 18]. Recently, Prompt2Prompt [14] modifies words in the original
prompts to perform both local editing and global editing by cross-attention control. With the re-
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Table 1: Comparison of different image editing datasets. Flower and Bird are domain-specific
datasets with global descriptions of target images. EditBench adopts masks (white regions) and local
descriptions as guidance, and the size (240) may be insufficient for training. Due to the automatic
synthesis process, InstructPix2Pix may contain failure cases.

Datasets Real Image? Open-domain? Multi-turn? # Edits Example
Source Text Target

Oxford-Flower [26] ✓ ✗ ✗ 8,189
“numerous pale yellow
petals and green pedicel
with green oval leaves”

CUB-Bird [38] ✓ ✗ ✗ 11,788
“this is a grey bird with
a brown and yellow tail
wing and a red head”

EditBench [37] ✓ ✓ ✗ 240
“a flat, dark-colored
skateboard with yellow
wheels”

InstructPix2Pix [4] ✗ ✓ ✗ 313,010 “add a cat”

MAGICBRUSH ✓ ✓ ✓ 10,388 “make the man ride a mo-
torcycle”

weighting technique, follow-up work Null Text Inversion [24] further removes the need of original
caption for editing by optimizing the inverted diffusion trajectory of the input image. Imagic [16]
optimizes a text embedding that aligns with the input image, then interpolates it with the target
description, thus generating correspondingly different images for editing. In addition, Text2LIVE [2]
trains a model to add an edit layer and combines the edit layer and input image to enable local editing.
For global description-guided editing, generally CLIP [30] can be applied to rank generated images
w.r.t the alignment, thereby delivering higher-ranked results. However, the requirement for detailed
descriptions of the target image poses an inconvenience for users.

Local Description-guided Editing. Another line of work utilizes masked regions and corresponding
regional descriptions for local editing. Blended Diffusion [1] blends edited areas with the other
parts of the image at different noise levels along the diffusion process. Imagen Editor [37] trains
diffusion editing models by inpainting the masked objects. Local description-guided editing enables
fine-grained control by using masks and preserves the other areas intact. However, this method
places a greater burden on users, as they must provide additional masks. Also, this approach may
be complicated for certain editing types, such as object removal due to the difficulty of describing
missing elements.

Instruction-guided Editing. Another form of text is instruction, which describes which aspect and
how an image should be edited, such as “change the season to spring”. Instruction-guided editing,
as initially proposed in various studies [11, 13, 42], enables users to edit images without requiring
elaborate descriptions or region masking. With advancements in instruction following [29] and image
synthesis [15], InstructPix2Pix [4] and SuTI [7] learn to edit images using instructions. Trained with
synthetic texts by fine-tuned GPT-3 and images by Prompt2Prompt [14], InstructPix2Pix enables
image editing by following instructions. Later work HIVE [41] introduces more training triplets and
human ranking results to provide stronger supervision signals for better model training.

2.2 Image Editing Datasets

Table 1 compares various semantic editing datasets. Prior work [9, 40, 39, 17, 18] repurposes close-
domain image caption datasets [26, 38, 32] for image editing. However, these datasets primarily focus
on specific categories like birds and flowers, resulting in limited generalization abilities for the models
trained on them. In contrast, open-domain editing meets real-world needs, but high-quality data for
training are scarce and challenging to obtain. Although large-scale silver data can be automatically
synthesized [4], Table 1 shows the quality may not be desired. EditBench [37] is manually curated
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Figure 2: The three-stage crowdsourcing workflow designed for dataset construction.

while it includes only 240 examples, which is insufficient for model training and comprehensive
evaluations. Consequently, there is an urgent need for a manually annotated and large-scale dataset.

3 MAGICBRUSH Dataset

3.1 Problem Definition

Instruction-guided image editing aims to edit a given image following the instruction. In terms of
the editing guidance type, this task can be divided into two settings: In mask-free setting, given a
source image Is and a textual instruction T of how to edit this image, models are required to generate
a target image It following the instruction. In mask-provided setting, models take an additional
free-form mask M to limit the editing region, in addition to the source image and textual instruction.
This setting is easier for models but less user-friendly as it requires extra guidance (mask) from users.

Orthogonally, depending on whether the edits are conducted iteratively, we can categorize instruction-
guided image editing into two scenarios: single-turn and multi-turn. In multi-turn scenario, models
take the source image Is and a sequence of textual instructions {T1, T2, ..., Tn} to generate inter-
mediate images {Ît1 , ..., Îtn−1

} and final image Îtn . We term the entire process involving iterative
edits as an edit session. The evaluation compares Îtn with the ground truth final image Itn . In
single-turn scenario, models take both the original source images and intermediate ground truth
images {Is, It1 , ..., Itn−1

} as input, editing them only once with corresponding instructions to have
{Ĩt1 , Ĩt2 , ..., Ĩtn}, respectively. Note that Ĩti and Îti are usually different except when i = 1 where
models take the same source image Is and instruction T1. For single-turn evaluation, we compare all
generated images {Ĩt1 , Ĩt2 , ..., Ĩtn} and ground truths {It1 , It2 , ..., Itn} pairwisely.

Among these scenarios, mask-free multi-turn editing is the most user-friendly yet challenging setting.
Users can achieve complex editing goals with just textual instructions; however, this requires models
to edit images iteratively, which easily leads to error accumulations.

3.2 Dataset Annotation Pipeline

We focus on real image editing and sample source images from MS COCO dataset [19] for subsequent
annotations. We balance 80 object classes of COCO image to increase diversity, thus reducing the
over-representation of the person object while keeping the image diversity. Figure 3a shows the final
distribution of MAGICBRUSH, with 34.0% person-included images.

We hire crowd workers on Amazon Mechanical Turk (AMT) to manually annotate images using
the DALL-E 2 platform.2 DALL-E 2 is a highly capable text-guided image synthesis platform that
can generate high-quality candidate images for editing purposes. However, it requires expertise
in providing specific editing guidance, including both global descriptions and masked regions. To

2AMT: https://www.mturk.com, DALL-E 2: https://openai.com/product/dall-e-2
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(a) Top 20 object class distribution.

Number of Train Dev Test Overall

Edit Sessions 4,512 266 535 5,313
- Sessions with One Edit 1,789 100 216 2,105
- Sessions with Two Edits 1,151 70 120 1,341
- Sessions with Three Edits 1,572 96 199 1,867
Edit Turns 8,807 528 1,053 10,388

1

(b) Statistics of edit sessions and turns in each data split.

Figure 3: Statistics for the MAGICBRUSH dataset.

ensure the workers could proficiently use the DALL-E 2 platform, we provide them with detailed
tutorials, teaching them how to edit images by writing prompts and drawing masks. We employ
a stringent worker selection process as shown in Figure 2, and ultimately select 19 workers after
thorough filtering. In recognition of the workers’ contributions, we spend around $1 for each edit
turn, which includes payment for workers on AMT along with the DALL-E 2 platform fees. Qualified
workers will interact with DALL-E 2 using various prompts and masks until they achieve desired
target images. Please refer to Appendix E for more annotation details.

Specifically, starting from the first edit turn, workers propose a textual instruction T1, its corresponding
global description, and a free-form region mask M1 to enable high-quality image synthesis. Then
workers try to select the most description-faithful and photo-realistic synthesized image as target
image. Note that workers may need to modify their descriptions and masks to find a qualified target
image, or even restart with another instruction after several trials. After getting a qualified target
image It1 , workers may repeat the annotation process with a new textual instruction T2 based on
the current target image It1 to obtain It2 . In practice, we limit the max number of turns n to 3 for a
session, considering workers’ possible lack of motivation or inspiration for annotating more turns.

3.3 Dataset Analysis and Quality Evaluation

Data Composition. Through crowdsourcing, we collect a large-scale instruction-guided image
editing dataset named MAGICBRUSH, consisting of over 5K edit sessions and more than 10K edit
turns. Figure 3b provides the data splits, as well as the distributions of sessions with varying numbers
of edits. Meanwhile, MAGICBRUSH includes a wide range of edit instructions such as object addi-
tion/replacement/removal, action changes, color alterations, text or pattern modifications, and object
quantity adjustments. The keywords associated with each edit type demonstrate a broad spectrum,
covering various objects, actions, and attributes as shown in Figure 4. This diversity indicates that
MAGICBRUSH well captures a rich array of editing scenarios, allowing for comprehensive training
and evaluation of instruction-guided image editing models.

Data Quality Evaluation. We invite five AMT workers to review 500 randomly sampled edit
turns from MAGICBRUSH, with each evaluating 100 turns. Given an edit turn (source image, edit
instruction, and target image), the worker is required to measure the edited image from two aspects:
consistency and image quality. Consistency evaluates how well the editing to the original image
aligns with the instruction. Image quality assesses the overall quality of the edited image, considering
factors such as maintaining the visual fidelity of the original image, seamless blending of edited
elements with the original image, and the natural appearance of the changes. Workers provide a score
between 1 and 5 for each criterion. The average scores for consistency and image quality are reported
as 4.1 and 3.9 out of 5.0, respectively. Compared to edited images by existing methods in Section 4.4,
these numbers demonstrate the high quality of the MAGICBRUSH dataset.

4 Experiments

4.1 Experiment Setup

Baselines. For comprehensiveness, we consider multiple baselines in both mask-free and mask-
provided settings. For all baselines, we adopt the default hyperparameters available in the official
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Figure 4: An overview of keywords in edit instructions. The inner circle depicts the types of edits
and outer circle showcases the most frequent words used within each type.

code repositories to guarantee reproducibility and fairness. Given that some baselines may require
global and local descriptions, inspired by InstructPix2Pix [4], we instruct ChatGPT [28] to generate
desired text formats. Please refer to the Appendix C.4 for prompt details. Specifically, for mask-free
editing baselines, we consider: (1) Open-Edit [21], (2) VQGAN-CLIP [8], (3) SD-SDEdit [23], (4)
Text2LIVE [2], (5) Null Text Inversion [24], (6) InstructPix2Pix [4] and its fine-tuned version on
the training set of MAGICBRUSH, (7) HIVE [41] and its fine-tuned version on MAGICBRUSH. For
mask-provided baselines, we consider: (1) GLIDE [25] and (2) Blended Diffusion [1]. Please refer
to Appendix C.2 for more implementation and fine-tuning details.

Evaluation Metrics. We utilize L1 and L2 to measure the average pixel-level absolute difference
between the generated image and ground truth image. In addition, we adopt CLIP-I and DINO, which
measure the image quality with the cosine similarity between the generated image and reference
ground truth image using their CLIP [30] and DINO [6] embeddings. Finally, CLIP-T [34, 7] is
used to measure the text-image alignment with the cosine similarity between local descriptions and
generated images CLIP embeddings. We use local description because the global one is not specific
to the editing region and the edit instruction may not describe the target image.

4.2 Quantitative Evaluation

We evaluate mask-free and mask-provided baselines separately with the same 535 sessions from test
set, as the latter requires mask as additional editing guidance, making it relatively easier. For each
setting, we consider single- and multi-turn editing scenarios described in Section 3.1.

Mask-free Editing. Table 2 shows the results of mask-free methods which are given instructions
only to edit images. We have the following observations: (1) In general, all methods perform worse
in the multi-turn scenario due to the error accumulation in iterative editing. (2) The off-the-shelf
InstructPix2Pix [4] checkpoint is not competitive compared to other baselines, in both single-turn
and multi-turn scenarios. However, after fine-tuning on MAGICBRUSH, InstructPix2Pix shows
significant performance improvements across all metrics, achieving the best or second-best results
under most metrics. Such improvement introduced by MAGICBRUSH is consistent on HIVE [41].
These suggest that instruction-guided image editing models could substantially benefit from training
on our MAGICBRUSH dataset, demonstrating its usefulness. (3) Text2LIVE [2] performs well in L1
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Table 2: Quantitative study on mask-free baselines on MAGICBRUSH test set. Multi-turn setting
evaluates the final target images that iteratively edited on the first source images in edit sessions. The
best results are marked in bold.

Settings Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Single-turn

Global Description-guided

Open-Edit [21] 0.1430 0.0431 0.8381 0.7632 0.2610
VQGAN-CLIP [8] 0.2200 0.0833 0.6751 0.4946 0.3879
SD-SDEdit [23] 0.1014 0.0278 0.8526 0.7726 0.2777
Text2LIVE [2] 0.0636 0.0169 0.9244 0.8807 0.2424
Null Text Inversion [24] 0.0749 0.0197 0.8827 0.8206 0.2737

Instruction-guided

HIVE [41] 0.1092 0.0341 0.8519 0.7500 0.2752
w/ MagicBrush 0.0658 0.0224 0.9189 0.8655 0.2812

InstructPix2Pix [4] 0.1122 0.0371 0.8524 0.7428 0.2764
w/ MagicBrush 0.0625 0.0203 0.9332 0.8987 0.2781

Multi-turn

Global Description-guided

Open-Edit [21] 0.1655 0.0550 0.8038 0.6835 0.2527
VQGAN-CLIP [8] 0.2471 0.1025 0.6606 0.4592 0.3845
SD-SDEdit [23] 0.1616 0.0602 0.7933 0.6212 0.2694
Text2LIVE [2] 0.0989 0.0284 0.8795 0.7926 0.2716
Null Text Inversion [24] 0.1057 0.0335 0.8468 0.7529 0.2710

Instruction-guided

HIVE [41] 0.1521 0.0557 0.8004 0.6463 0.2673
w/ MagicBrush 0.0966 0.0365 0.8785 0.7891 0.2796

InstructPix2Pix [4] 0.1584 0.0598 0.7924 0.6177 0.2726
w/ MagicBrush 0.0964 0.0353 0.8924 0.8273 0.2754

Table 3: Quantitative study on mask-provided baselines on MAGICBRUSH test set. L1, L2, and
CLIP-T are measured over the masked regions only. The best results are marked in bold.

Settings Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Single-turn GLIDE [25] 3.4973 115.8347 0.9487 0.9206 0.2249
Blended Diffusion [1] 3.5631 119.2813 0.9291 0.8644 0.2622

Multi-turn GLIDE [25] 11.7487 1079.5997 0.9094 0.8494 0.2252
Blended Diffusion [1] 14.5439 1510.2271 0.8782 0.7690 0.2619

and L2 evaluations, likely due to the addition of an extra editing layer that minimizes changes to
the source image. As a result, edited images fail to satisfy the instructions, as evidenced by the low
CLIP-T score. VQGAN-CLIP [8] achieves the highest CLIP-T score because it fine-tunes the model
during inference with CLIP as the direct supervision. However, the edited images may change too
significantly, leading to unfavorable results on other metrics.

Mask-provided Editing. Table 3 lists the results of two mask-provided methods. As observed
in the mask-free setting, the multi-turn scenario is more challenging than the single-turn scenario.
While both mask-provided methods achieve high scores under the CLIP-I and DINO metrics, they
fail to deliver satisfactory results according to the other three metrics (L1, L2, and CLIP-T) that
evaluate local regions. Notably, after tuning on MAGICBRUSH, InstructPix2Pix [4] achieves better
editing results than mask-provided Blended Diffusion [1] in terms of CLIP-I and DINO metrics. This
suggests that fine-tuning with our data could maintain good image quality.

4.3 Qualitative Evaluation

We present the results of the top-performing mask-free (Text2LIVE [2]) and mask-provided
(GLIDE [25]) methods in our qualitative analysis. We also compare the original and fine-tuned
checkpoints of InstructPix2Pix [4]. Figure 5 illustrates the iterative results of these four models

7



Text2LIVE GLIDE InstructPix2Pix
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“Dress him in a 
dinner jacket”

“Change the tennis racket 
into a baseball bat”

Fine-tuned 
InstructPix2Pix

Ground truth
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Global 
Description Instruction Instruction

Turn 1
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Turn 3

Figure 5: Qualitative evaluation of multi-turn editing scenario. We provide all baselines their desired
input formats (e.g., masks and local descriptions for GLIDE).

and ground truth images from MAGICBRUSH. Both Text2LIVE and GLIDE are unsuccessful in
editing the man’s face and clothes. The original InstructPix2Pix changes the images following the
instructions; however, the resulting images exhibit excessive modification and lack photorealism.
Fine-tuning InstructPix2Pix on MAGICBRUSH alleviates this issue, but the images remain notably
inferior to the ground truth ones. Please see Appendix D for more examples of qualitative evaluation.

4.4 Human Evaluation

We conduct comprehensive human evaluations to assess both consistency and image quality on
generated images. Our evaluations encompass three tasks: multi-choice image comparison, one-on-
one comparison, and individual image evaluation. We randomly sample 100 image examples from
test set for each task and hire 5 AMT workers as evaluators to perform the tasks. For each task, the
images are evenly assigned to evaluators and the averaged scores (if applicable) are reported.

Multi-choice Comparison. The multi-choice comparison involves four top-performing methods in
Table 2 and Table 3, including Text2LIVE, GLIDE, InstructPix2Pix, and fine-tuned InstructPix2Pix
on MAGICBRUSH. For each example, evaluators need to select the best edited image based on consis-
tency and image quality, respectively. The results in Table 4 indicate that fine-tuned InstructPix2Pix
attains the highest performance, significantly surpassing the other three methods. This outcome
validates the effectiveness of training on our MAGICBRUSH dataset. Interestingly, while Text2LIVE
achieves a high score in auto evaluation, its performance in human evaluation appears to be less
desirable, especially in terms of the instruction consistency. This indicates current automatic metrics
that focus on the overall image quality may not align well with human preferences, emphasizing the
need for future research to develop better automatic metrics.
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Table 4: Multi-choice comparison of four methods. The numbers represent the frequency of each
method being chosen as the best for each aspect.

Text2LIVE [2] GLIDE [25] InstructPix2Pix [4] Fine-tuned InstructPix2Pix

Consistency 0 16 33 51
Image Quality 9 15 27 49

Table 5: One-on-one comparisons between fine-tuned InstructPix2Pix and other methods including
InstructPix2Pix and Text2LIVE, as well as ground truth (GT). The numbers in the table indicate the
frequency of each method being chosen as the better option. To account for scenarios where two
methods perform equally, we include a “Tie” option in each question for comprehensive evaluation.

Settings Consistency Image Quality

Single-turn

Fine-tuned InstructPix2Pix InstructPix2Pix [4] Tie Fine-tuned InstructPix2Pix InstructPix2Pix [4] Tie
40 35 25 48 33 19

Fine-tuned InstructPix2Pix Text2LIVE [2] Tie Fine-tuned InstructPix2Pix Text2LIVE [2] Tie
68 4 28 61 19 20

Multi-turn

Fine-tuned InstructPix2Pix GT (Turn 1) Tie Fine-tuned InstructPix2Pix GT (Turn 1) Tie
13 72 15 19 64 17

Fine-tuned InstructPix2Pix GT (Turn 2) Tie Fine-tuned InstructPix2Pix GT (Turn 2) Tie
13 80 7 19 60 21

Fine-tuned InstructPix2Pix GT (Turn 3) Tie Fine-tuned InstructPix2Pix GT (Turn 3) Tie
11 80 9 6 75 19

One-on-one Comparison. The one-on-one comparison provides a detailed and nuanced evaluation of
the fine-tuned InstructPix2Pix by comparing it against strong baselines and ground truth. Evaluators
are asked to determine the preferred option based on consistency and image quality, respectively. We
divide the comparisons into two scenarios as mentioned in Section 3.1: (1) In the single-turn scenario,
we compare fine-tuned InstructPix2Pix and two other methods (InstructPix2Pix and Text2LIVE). As
shown in Table 5, fine-tuned InstructPix2Pix consistently outperforms the other two methods in terms
of both consistency and image quality. (2) In the multi-turn scenario, we compare the fine-tuned
InstructPix2Pix with ground truth images to observe how the quality of edited images varies across
different turns. The results reveal that the performance gap generally widens as the number of edit
turn increases. This finding highlights the challenges associated with error accumulation in current
top-performing models and underscores the difficulties posed by our dataset.

Individual Evaluation. The individual evaluation employs a 5-point Likert scale to measure the
quality of individual images generated by four specific models, gathering subjective user feedback.
Evaluators are asked to rate the images on a scale from 1 to 5, assessing both consistency and image
quality. Each evaluator receives an equal share of the images, specifically evaluating 80 images
in total, with 20 images from each of the four models. The results in Table 6 clearly demonstrate
that fine-tuned InstructPix2Pix outperforms Text2LIVE and GLIDE, and further improves upon the
performance of InstructPix2Pix. This finding highlights the advantages of training or fine-tuning
models using the MAGICBRUSH dataset.

Table 6: Individual evaluation using a 5-point Likert scale. The numbers in the table represent the
average scores calculated for each aspect.

Consistency Image Quality

Text2LIVE [2] 1.1 2.8
GLIDE [25] 1.8 2.8
InstructPix2Pix [4] 3.0 3.2
Fine-tuned InstructPix2Pix 3.1 3.6

5 Conclusion and Future Work

In this work, we present MAGICBRUSH, a large-scale and manually annotated dataset for instruction-
guided real image editing. Although extensive experiments show that InstructPix2Pix fine-tuned on

9



MAGICBRUSH achieves the best results, its edited images are still notably inferior compared to the
ground truth ones. This observation indicates the effectiveness of our dataset for training and the
gap between current methods and real-world editing needs. We hope MAGICBRUSH will contribute
to the development of more advanced models and human-preference-aligned evaluation metrics for
instruction-guided real image editing in the future.
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Appendices

A Overview

Our supplementary includes the following sections:

• Section B: Discussions. Discussions of Limitations, Alleviating Potential Model Bias,
Social Impacts, Ethical Considerations, and License of Assets.

• Section C: Implementation Details. Details for implementing baselines and fine-tuning
InstructPix2Pix with MAGICBRUSH.

• Section D: More Qualitative Study. More qualitative study including both single-turn and
multi-turn scenarios.

• Section E: Data Annotation. Details for dataset collection and image quality evaluation.

We share the following artifacts:

Table 7: Shared artifacts in this work, we protect the test split with a password to avoid web crawling
for model training.

Artifact Link License

Homepage https://osu-nlp-group.github.io/MagicBrush/ -

Code Repository https://github.com/OSU-NLP-Group/MagicBrush CC BY 4.0

Training and Dev Set https://huggingface.co/datasets/osunlp/MagicBrush CC BY 4.0

Test Set https://shorturl.at/alHMO (Password: MagicBrush) CC BY 4.0
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B Discussions

B.1 Limitations

Although our image annotation is based on a lot of manual effort and conducted on the powerful
editing platform (DALL-E 2), a small portion of edits (<5%) may contain minor extra modifications
that are not mentioned by the instruction or may still look slightly unnatural to some individuals. That
being said, we believe it would not affect the overall quality of MAGICBRUSH as the experiments
have shown that our dataset can largely enhance the model’s abilities of editing real images w.r.t the
given instruction.

While MAGICBRUSH supports various edit types on real images, it does not contain data for global
editing (e.g., style transfer) due to annotation built upon DALL-E 2. However, such edit turn could
be easily obtained automatically [4] due to its less photorealism and more artistic nature.

B.2 Alleviating the Potential Model Bias

After conducting an in-depth pilot exploration on various generative models, including commercial
image-editing platforms, we have found that DALL-E 2 is one of the best available editing models. It
is highly likely that users can obtain satisfactory images that meet their editing goals, provided they
carry out sufficient trials on the prompting and masking. However, solely using one model for ground
truth generation may result in the potential bias inherent in that model.

To alleviate this, we adopt the following strategies from two aspects: 1) Diversity of instruction:
Through clear guidance in our tutorial and frequent communication via email, we strongly encourage
workers to design diverse instruction. In practice, we reject some repetitive or trivial edits and suggest
alternatives to ensure the diversity. 2) Diversity of images: We carefully design a sampling strategy
to ensure the objects in the images are more balanced and decrease the chance of sampling simple
images with fewer objects. In this way, the editing largely varies since the edited regions are required
to be naturally blended with the context. With these efforts, MAGICBRUSH has less recurring edit
patterns and higher diversity, thus minimizing potential biases.

That being said, admittedly, it is challenging to eliminate the inherent biases completely. We commit
to remaining alert for potential biases in our dataset identified by the community, and will take prompt
rectification actions.

B.3 Social Impacts

MAGICBRUSH has the potential to significantly improve the capabilities of text-guided image editing
systems, enabling a broader range of users to easily manipulate images. On one hand, this could lead
to numerous positive social impacts: users can achieve their editing goals through instructions alone,
without the need for professional editing knowledge, such as using Photoshop or painting. Such
an effortless editing process can save users’ time spent on manual operation, resulting in increased
efficiency. Furthermore, it can facilitate image creation and manipulation for users with visual or
motor impairments, given they can rely on language instructions as input.

On the other hand, the potential risks associated with such advanced image editing systems deserve
attention. Malicious users could exploit editing tools to create realistic fake or harmful content,
leading to the spread of misinformation. It is essential to implement appropriate safeguards and
responsible AI frameworks when developing user-friendly image editing systems.

B.4 Ethical Considerations

The COCO [19] dataset focuses on common objects and context, rather than specific people or places.
In our annotation guidelines, we also forbid annotators from creating any identifiable information
(e.g., human faces). Furthermore, DALL-E 2 adheres to strict rules to exclude prompts related to
harmful, inappropriate, or sensitive content. As a result, MAGICBRUSH inherently minimizes the
potential for privacy or harmful concerns as it relies on images sourced from the COCO dataset and
annotations built upon DALL-E 2.

To ensure the collection of high-quality data and fair treatment of our crowdworkers, we have
implemented a meticulous payment plan for the AMT task. We conduct a pilot study to estimate the
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average time required to complete a session. It reveals that the duration ranges from 4 to 8 minutes,
depending on the number of edit turns performed by the workers within each session. This results
in a total annotation time of approximately 529 worker hours. This information also allows us to
appropriately adjust the payment, ensuring it exceeds the minimum wage amount in our state. As
a result, we offer an initial payment of 80 cents for the first edit turn in each session, along with
a bonus of 40 cents for each additional edit turn within the same session. This allows workers to
potentially earn up to $1.6 per session, encouraging their active participation and rewarding their
efforts accordingly. In total, the cost of creating the MAGICBRUSH dataset amounts to approximately
$11,000 which includes the payments made on AMT ($8,000) and DALL-E 2 API ($3,000) costs.

B.5 License of Assets

For baselines, VQGAN-CLIP [8], Text2LIVE [2], and Blended Diffusion [1] are under the MIT
License. SD-SDEdit [33, 23] is released under the Creative ML OpenRAIL-M License, and Instruct-
Pix2Pix [4] inherits this license as it is built upon Stable Diffusion. Null Text Inversion [24] and
GLIDE [25] are under the Apache-2.0 License.

For dataset, COCO [19] is under Creative Commons Attribution 4.0 License. According to DALL-E
2, we own the images created with DALL-E 2, including the right to reprint, sell, and merchandise.
We decide to release MAGICBRUSH under Creative Commons Attribution 4.0 License for easy access
in the research community. The license allows users to share and adapt the dataset for any purpose,
even commercially, as long as appropriate credit is given and any changes made are indicated. By
providing the dataset under this license, we hope to encourage researchers and practitioners to explore
and advance the field of text-guided image editing further.

C Implementation Details

C.1 COCO Image Sampling

Given the highly unbalanced distribution of objects in COCO, where 54.2% of images contain a
person, we employ a class-balanced sampling strategy for the 80 classes. In particular, for each class,
we select one image containing an object from the target class, ensuring it has no overlap with the
current image pool. This process is repeated as we move through each class. Notably, one COCO
image may contain multiple objects from different classes, so it is possible to sample images with
a person for non-person classes. To mitigate the over-representation of person class, we prioritize
selecting images without a person for non-person classes by reducing the sampling probability of
images containing a person by half.

C.2 Baseline Details

For all baselines, we adopt the default hyperparameters available in the official code repositories to
guarantee reproducibility and fairness. Specifically, for mask-free editing baselines, we consider:

(1) Open-Edit [21] is a GAN-based method pre-trained with reconstruction loss and fine-tuned on
the given image with consistency loss. It edits image by performing arithmetic operations on word
embeddings within a shared vector space with visual features.

(2) VQGAN-CLIP [8] fine-tunes VQGAN [12] with CLIP embedding [30] similarity between gener-
ated image and target text. Then it generates the image with the optimized VQGAN embedding.

(3) SD-SDEdit [23] is a tuning-free method built upon Stable Diffusion [33]. Based on the target
description, SDEdit adds stochastic differential equation noise to the source image and then denoises
the target image through that prior.

(4) Text2LIVE [2] fine-tunes Vision Transformer [10] to generate the edited object on the extra edited
layer with data augmentation and CLIP [30] supervision. The target image is the composite of the
extra edit layer and the original layer.

(5) Null Text Inversion [24] optimizes DDIM [36] trajectory to restore the source image and then
performs image editing on the denoising process with text-image cross-attention control [14].
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(6) InstructPix2Pix [4] is pre-trained with automatically curated instruction-following editing data,
initialized from Stable Diffusion [33]. It edits the source image by controlling the faithfulness to
instruction and similarity with the source image, without any test-time tuning.

(7) HIVE [41] is trained with more data synthesized using a method similar to InstructPix2Pix [4]
and is further fine-tuned with a reward model trained with human-ranked data.

For mask-provided baselines, we consider:

(1) GLIDE [25] is trained with 67M text-image pairs where all images are person-free. To edit, it fills
in the masked region of an image conditioned on the local description with CLIP [30] guidance.

(2) Blended Diffusion [1] resorts to CLIP [30] guidance during a masked region denoising process
and blends it with the context in the noisy source image at each denoising timestep to increase the
region-context consistency of the generated target image.

C.3 InstructPix2Pix Fine-tuning Details.

We continually fine-tune the checkpoint with the training set of MAGICBRUSH. Specifically, we
train 168 epochs on 2 × 40GB NVIDIA A100 GPUs with a total batch size of 64. Following prior
work [4], we use a 256 × 256 image resolution and the same training strategies and hyper-parameters.

C.4 ChatGPT Prompts

Table 8: Prompts on ChatGPT for global and local description generation.

Global
Description

Given the original caption and a edit instruction, write a caption after editing.

Original Caption: Painting of The Flying Scotsman train at York station
Edit Instruction: add airplane wings
Final Caption: Painting of The Flying Scotsman train with airplane wings at York
station

Original Caption: Old Boat at Sunderland Point by Steve Liptrot
Edit Instruction: remove the boat
Final Caption: Empty Sunderland Point by Steve Liptrot

Original Caption: "Charles Lindbergh ""Spirit of St. Louis"""
Edit Instruction: have it be about Beijing
Final Caption: "Charles Lindbergh ""Spirit of Beijing"""

Original Caption: [CAPTION]
Edit Instruction: [INSTRUCTION]
Final Caption:

Local
Description

Given the original caption and an edit instruction, write a local short description for
specific location to describe the object. If it’s removing, leave it blank.

Original Caption: Painting of The Flying Scotsman train at York station
Edit Instruction: add airplane wings
Local Caption: airplane wings

Original Caption: Old Boat at Sunderland Point by Steve Liptrot
Edit Instruction: remove the boat
Local Caption:

Original Caption: A demonic looking chucky like doll standing next to a
white clock.
Edit Instruction: Make the doll wear a hat
Local Caption: hat

Original Caption: [CAPTION]
Edit Instruction: [INSTRUCTION]
Local Caption:

17



To transform the edit instruction to global description and local description required by other baselines
and facilitate future research. Inspired by InstructPix2Pix [4], we instruct ChatGPT (davinci-turbo-
0301) to generate the target text formats given the input image caption and instruction. Specifically, as
shown in Tab 8, we provide clear instructions and three in-context learning examples [5] for ChatGPT
to learn the generation rules, thus generating the desired text formats for baselines.

D More Qualitative Study

Figure 7 shows the results of top-performing baselines in multi-turn editing scenarios. And the
observation is consistent with that shown in Figure 5.

In addition, we show more baselines in the single-turn editing scenario in Figure 6. Even in such a
relatively easier scenario, most baselines fail to edit precisely. Although InstructPix2Pix edits the
images following the instruction to some extent, it tends to modify the images too much, resulting in
the loss of some important details or incorrect changes.

Ground truth
(MagicBrush) InstructPix2Pix Fine-tuned 

InstructPix2Pix

Blended Diffusion GLIDE

Null Text Inversion SD-SDEdit

Text2LIVEVQGAN-CLIP“Make her 
outfit black”

Source Image

Ground truth
(MagicBrush) InstructPix2Pix Fine-tuned 

InstructPix2Pix

Blended Diffusion GLIDE

Null Text Inversion SD-SDEdit

Text2LIVEVQGAN-CLIP“Put a whale 
in the water”

Source Image

Figure 6: Qualitative evaluation of single-turn editing scenario. We provide all baselines their desired
input formats (e.g., masks and local descriptions for Blended Diffusion and GLIDE).
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Text2LIVE GLIDE InstructPix2Pix Fine-tuned 
InstructPix2Pix

Ground truth
(MagicBrush)

Mask & Local 
Description

Global 
Description Instruction Instruction

Turn 1

Turn 2

Turn 3

“Could we have a window 
next to the bed?”

“Put a pile of shoes 
next to the bed”

“The bed 
should be red”

“Make the 
ground forest”

Text2LIVE GLIDE InstructPix2Pix

“Make two 
parasailers”

Fine-tuned 
InstructPix2Pix

Ground truth
(MagicBrush)

Mask & Local 
Description

Global 
Description Instruction Instruction

Turn 1

Turn 2

Turn 3

“Have the sun rise 
instead of set”

Figure 7: Qualitative evaluation of multi-turn editing scenario. We provide all baselines their desired
input formats (e.g., masks and local descriptions for GLIDE).
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E Data Annotation

Figure 8: Illustration of the step-by-step instructions in annotation tutorial.

E.1 Annotation Tutorial

We conduct the data collection and deploy the interfaces on AMT. Our approach entails a meticulous
design of the entire process to streamline the procedure and enhance its efficiency. To facilitate
workers understanding and proper execution of the data annotation, we provide them with an elaborate
tutorial contained in a 5-page document (https://shorturl.at/bpBUW), along with a supplemen-
tary video demonstration (https://www.youtube.com/watch?v=husejlhNyfo). These links
remain accessible at all times for reference purposes.

In the tutorial, we ensure that each step of the interface is accompanied by detailed instructions,
making it self-contained and easy to follow. Figure 9 displays the interfaces used in our crowdsourcing
task for data collection, offering a visual representation of the user experience.

The annotation is divided into three phases: Preparation, Initial Editing, and Follow-up Editing. In
the Preparation phase, we provide clear instructions on how to access the source image, log in to
DALL-E 2, and upload the source image to prepare for editing.

During the Initial Editing phase, we clarify the terms “Edit Instruction” and “Global Description”,
ensuring workers understand their respective purposes.

• “Edit Instruction” is a directive that describes the suggested edits and how workers wish to alter the
image. We encourage workers to phrase their instructions as if they are speaking to a helper in a
simple and colloquial manner, such as ‘Let the dog drink the wine’.

• “Global Description” provides a comprehensive description of the image after the suggested edit
has been applied, e.g., ‘A dog lying down is holding a bottle of wine between its paws’. This
description is input into DALL-E 2 to generate the desired image. We also specify the expected
outcomes of this initial edit to guarantee all steps are covered and prevent any omissions.

In the Follow-up Editing phase, users are free to carry out follow-up edit turns on the image generated
in the first turn. The process remains similar to the second phase, facilitating a smooth continuation
of the annotation process.
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E.2 Monitoring the Annotation Process

Throughout the task, workers are encouraged to provide comments and feedback after each session.
Also, during the entire annotation process, we continuously check the data to ensure the quality.
Specifically, in the trial period, we checked all annotated examples in a batch with 10 sessions to
provide prompt feedback to each worker on data quality (both in image and instruction). Only
workers that can deliver satisfactory results will be advanced to the next stage, where they will be
asked to do more tasks on AMT. Then, we spot checked on 5 of each 100 sessions in the rest of
the annotation process. In checking, the sessions containing subpar images, with issues relating
to image quality and instruction consistency, are eliminated. Additionally, we maintained frequent
communication with the workers, providing timely guidance and requesting certain turns to be redone
if the quality is unsatisfactory. As time progresses, we observe a significant decrease in the frequency
of communication, and we find that all workers consistently pass the checks in the later batches of
data annotations. This indicates a notable improvement in the quality of the annotated data as the
process advances.

Colloquial edit instruction, 
imagine you are talking to someone who can help you edit the image

Global description for the entire image

Figure 9: Data collection interface on AMT.

E.3 Human Evaluation

We conduct multiple human evaluation tasks on AMT to assess the quality of our dataset (Section 3.3)
and evaluate the generated images from different models (Section 4.4). For these tasks, we design
three different types of interfaces. The first type (Figure 10) involves individual evaluation using a 5-
point Likert scale to measure the quality of the images. The second type (Figure 11) is a multi-choice
comparison task, where evaluators compare four top-performing methods in Table 2 and Table 3,
including Text2LIVE, GLIDE, InstructPix2Pix, and fine-tuned InstructPix2Pix on MAGICBRUSH.
The last type (Figure 12) is a one-on-one comparison task, providing a more nuanced evaluation
between fine-tuned InstructPix2Pix and other strong baselines as well as the ground truth. Both
consistency and image quality are assessed in each human evaluation task, with the original image
and the textual instruction provided at the beginning.

Figure 10: The interface of individual evaluation on AMT to assess the dataset quality as well as
generated images by different models.
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Figure 11: The interface of multi-choice comparison on AMT to evaluate generated images by
different models.

Figure 12: The interface of one-on-one comparison on AMT to assess generated images by different
models.

22


	Introduction
	Related Work
	Text-guided Image Editing
	Image Editing Datasets

	MagicBrush Dataset
	Problem Definition
	Dataset Annotation Pipeline
	Dataset Analysis and Quality Evaluation

	Experiments
	Experiment Setup
	Quantitative Evaluation
	Qualitative Evaluation
	Human Evaluation

	Conclusion and Future Work
	Overview
	Discussions
	Limitations
	Alleviating the Potential Model Bias
	Social Impacts
	Ethical Considerations
	License of Assets

	Implementation Details
	COCO Image Sampling
	Baseline Details
	InstructPix2Pix Fine-tuning Details.
	ChatGPT Prompts

	More Qualitative Study
	Data Annotation
	Annotation Tutorial
	Monitoring the Annotation Process
	Human Evaluation


