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A Appendix Overview495

Organization. The Appendix is organized as follows. We first provide a summary of notations in496

Appendix B. Then, we present the details of the theoretical analysis in the main paper in Appendix C.497

Next, we show additional experimental results in Appendix D, including a synthetic visualization498

for different feedback approaches in Appendix D.1, the risk and estimation error comparison on499

real-world datasets in Appendix D.2.3 and the early stopping experiments in Appendix D.2.6. We500

discuss the limitation, future direction, and social impact of the proposed work in Appendix F. We501

provide the link to the source code in Appendix G.502

B Summary of Notations503

Table 4: Summary of key notations with definitions

Notation Definition

(x, y) ∈ X ×Y Data points
D; p(x, y) Data distribution
Lθ Loss function of model fθ()
R True risk

R(fθ|D)
True risk evaluated on model f whose parameter θ is learned
from dataset D.

SL,SU Labeled set and unlabeled pool
Qt = {xt}nt The t-th quiz set
q(x), q∗(x) Test sample selection proposal and the optimal proposal
R̂q, R̂t Risk estimator indexed by the test proposal q or time step t

R̃ Integrated risk estimator

Ct, vt
Model confidence of ft and the weight coefficient for time step
t in final R̃

SFB Active feedback set
NL, NT , NFB Number of samples in learning, testing and feedback sets

d(·, ·), AL, ϵ
Diversity metric, diversity norm matrix, small positive value ϵ to
avoid singular issues

qFB(x), η
Feedback proposal, balancing parameter between the proposal-
loss term and the diversity term in the feedback proposal

λ
Balancing parameter for the risk estimation in unlabeled-
information-combined early stopping criterion

C Proof and Additional Analysis of Main Theoretical Results504

C.1 Proof of Theorem 1505

Proof. We start by presenting the asymptotic convergence of the active risk estimator and the solution506

for the optimal testing selection proposal q∗(x). From [19], we know that using the risk estimator R̂n,q507

we would get an unbiased estimate of the true risk R because it is essentially an importance sampling508

based estimator. Then from the central limit theorem, R̂0
n,q =

∑n
i=1 w

(i)l(i) and Wn =
∑n

i=1 w
(i)509

are asymptotically normally distributed with510

√
n

(
1

n
R̂0

n,q −R

)
n→∞−−−−→ N (0, var[w(i)l(i)]) (11)

√
n

(
1

n
Wn − 1

)
n→∞−−−−→ N (0, var[w(i)]) (12)

Then, with the multivariate delta method, we know that if Yn = (Yn1, ..., Ynk) is a sequence and511 √
n(Yn − µ)

n→∞−−−−→ N (0,Σ), then512

√
n(g(Yn)− g(µ))

n→∞−−−−→ N (0,▽g(y)⊤Σ▽ g(y)) (13)
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Here the function is g(x, y) = x
y with x = 1

n R̂
0
n,q and y = 1

nWn. The result is513

√
n

(
1
n R̂

0
n,q

1
nWn

−R

)
n→∞−−−−→ N (0, σ2

q ) (14)

where σ2
q =

∫ p(x)
q(x)

(∫
[L(f(x), y)−R(f)]2p(y|x)dy

)
p(x)dx.514

Then, the optimal test proposal is obtained by minimizing σ2
q . By introducing a Lagrange multiplier515

β for the constraint
∫
q(x)dx = 1, we have516

L(q, β) = σ2
q + β

(∫
q(x)dx− 1

)
(15)

∂L

∂q
= −

p(x)2
∫
[L(f(x), y)−R(f)]2p(y|x)dy

q(x)2
+ β = 0 (16)

Thus, we have q∗(x) ∝ p(x)
√∫

[L(f(x), y)−R(f)]2p(y|x)dy.517

Now, we provide the detailed proof for Theorem 1. As shown in Section 3.4, R̂ satisfies518

√
nt(R̂−R1) ∼ N

(
0, diag

[
σ2
1 , ..σ

2
T )

⊤]) (17)

Next, we apply the multi-variant delta method. Define g : RT → R, g(R̂) =
∑T

t=1 vtR̂Qt . Then,519

we have ▽g = (v1, ..., vt)
⊤. Given the diagonal covariance matrix, the final variance is:520

σ2
T = (v1, ..., vt)

σ2
1

...
σ2
T

 (v1, ..., vt)
⊤

=

T∑
t=1

∫
p(x)

qt(x)
v2t

(∫
[L(fT (x), y)−R(fT )]

2p(y|x)dy
)
p(x)dx (18)

When we perform the “final exam” estimation after gathering all quizzes {Q1, ...,QT }, the other521

factors including testing proposals are fixed. We analyze the optimal solution for vt by constructing522

the Lagrangian objective σ2
T + γ(

∑
t vt − 1) (where γ is a Lagrangian multiplier). By taking the523

derivative w.r.t each vt along with the Lagrangian, we have524

∂[
∑T

t=1 v
2
t (σ

2
t ) + γ(vt − 1/T )]

∂vt
= 0 (19)

which leads to vt =
Ct∑T
t=1 Ct

.525

The Corollary below provides an alternative view of Theorem 1.526

Corollary 1. If we do not change individual qt but still combine all available test samples, then527

adjusting their importance weight by w′(i)
t = vt × w

(i)
t gives the optimal estimator.528

Proof. In the alternative view, we have:529

R̃ =
R̃0

W ′ =

∑T
t=1

∑nt

i=1 vtw
(i)
t l

(i)
t∑T

t=1

∑nt

i=1 vtw
(i)
t

(20)

where w(t)
i = p(x(i))

qt(x(i))
. We can view the final estimate R̃ as a function of R̃0 and W ′ that has the form530

f(X,Y ) = X
Y . Then we directly analyze the expectation and variance of R̃ using the delta method:531

First we have532

E(f(X,Y )) = E[f(µX , µY ) + f ′
Y (µX , µY )(X − µX) + f ′

Y (µX , µY )(Y − µY ) +R]

≈ E[f(µX , µY )] + E[f ′
X(µX , µY )(X − µX)] + E[f ′

Y (µX , µY )(Y − µY )]

= E[f(µX , µY )] + f ′
X(µX , µY )E[(X − µX)] + f ′

Y (µX , µY )E[(Y − µY )]

= f(µX , µY ) (21)
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where µX = E[X] and µY = E[Y ]. Applying (21) on our estimate, and we get:533

E[R̃(fT )] = E

[∑T
t=1

∑n
i=1 vtw

(i)
t lit∑T

t=1

∑n
i=1 vtw

(i)
t

]
=

∑T
t=1 vtE[R̃0

t ]∑T
t=1 vtWn,t

= R

where we utilize
∑T

t=1 vt = 1 and E[ R̃
0
t

W ′
t
] = R. For the variance, we have:534

Var[f(X,Y )] = E[(f(X,Y )− E[f(X,Y )])2]

≈ E[(f(X,Y )− f(µX , µY ))
2]

≈ E[(f(µX , µY ) + f ′
X(µX , µY )(X − µX) + f ′

Y (µX , µY )(Y − µY )− f(µX , µY ))
2]

= E[f ′2
X (µX , µY )(X − µX)2 + 2f ′

X(µX , µY )(X − µX)f ′
Y (µX , µY )(Y − µY )

+ f ′2
Y (µX , µY )(Y − µY )

2]

= f ′2
X (µX , µY )Var[X] + 2f ′

X(µX , µY )f
′
Y (µX , µY )Cov[X,Y ] + f ′2

Y (µX , µY )Var[Y ]
(22)

Applying to our estimate leads to535

Var[R̃] ≈ R2Var[W ′] + Var[R̃0]− 2RCov[W ′, R̃0]

= R2(E[W ′2]− E2[W ′]) + (E[(R̃0)2]− E2[R̃0])− 2R(E[W ′R̃0]− E[R̃0]E[W ′])

= R2E[W ′2]− 2RE[W ′R̃0] + E[(R̃0)2]

=

T∑
t=1

∫
p(x)

qt(x)
v2t

(∫
[L(fT (x), y)−R(fT )]

2p(y|x)dy
)
p(x)dx (23)

where we utilize f(X,Y ) = X
Y → f ′

X = 1
Y , f ′

Y = − X
Y 2 , µX = R,µY = 1. Note that since536

we assume qt(x) are fixed, we have E[W ′R̃0] = Ep(y|x)Eq1 ...EqT [
∑T

t=1 vt
∑n

i=1(w
(i)
t )2l(x

(t)
t )] =537

Ep(y|x)[
∑T

t=1 vtEqt

∑n
i=1(w

(i)
t )2l(x

(t)
t )].538

C.2 Proposition 1539

We show two concrete examples for Proposition 1. In each case, the estimated introspective loss is540

analogous to an uncertainty measure.541

• The estimation of 0-1 loss is:542

Rθ =
1

|SU |
∑
x∈SU

∑
y

1(fθ(x) ̸= y)p(y|x; θ) (24)

which is the sum of the predicted probability of all classes other than the most probable543

class.544

• The estimation of cross-entropy loss is:545

Rθ =
1

|SU |
∑
x∈SU

∑
y

p(y|x; θ) log(p(y|x; θ)) (25)

which is the entropy of the predicted probability.546

When we use deep learning models, Rθ usually largely underestimates the risk over the entire pool.547

In other works such as [13, 14], the surrogate risk acts in a similar way. For the final risk estimator548

to be accurate, the introspective risk estimation or the surrogate risk first needs to be accurate,549

which somewhat beats the purpose of active risk estimation. However, we still try to improve this550

intermediate step without assuming that we have access to an unrealistically accurate estimation,551

leading to our proposed Rθ in Section 3.3.552
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C.3 Proof of Theorem 2 and Active Feedback Analysis553

In Theorem 2, we formalize the combined learning-testing objective as a joint optimization problem554

with the variable being a subset SFB that can be transferred from the testing set ST to the learning set555

SL. We define the process of selecting the subset as the “active feedback” process, which connects556

the learning and testing objectives through a balancing parameter C given in (8). Performing exact557

optimization of the subset along with a parameter C would require more detailed knowledge on558

the learning model and the AL strategy. We instead provide a general analysis to show that active559

feedback could indeed provide an optimal solution for the joint optimization problem, where C scales560

as O(1). Following our theoretical result, we empirically demonstrate the effectiveness of an intuitive561

feedback approach in the experimental sections (Section 4.3, Appendix D).562

Proof overview. We apply some generic generalization bound (e.g., [16] for CNN or similar models)563

to the learning objective (I) in the joint optimization problem given by (8), which gives O(1/
√
n).564

We then leverage the confidence interval to get a high probability bound for the testing objective565

(II), which also gives O(1/
√
n) [4, 9, 26]. We use the formalized results on the convergence of the566

estimate as introduced in [19]. With that, we continue to show that both the learning and testing567

objectives share the same dependency on n. These common dependencies on n give us the foundation568

to further analyze the feedback process. We offer an intuitive justification of active feedback as569

follows. The risk estimators are importance weighted estimates of the true risk. The estimate570

converges to the true risk asymptotically, so fewer samples might hurt the quality of the estimate (due571

to a large variance), but does not change the fact that the expected average of the estimate is still the572

true risk. With the confidence interval conversions, we can see that except for the change of constants,573

the objective’s dependency on the number of samples does not change. (This also provides guidance574

for the feedback proposal later: if we can keep the change of the estimate to the minimum, meanwhile575

using the samples discarded from the test set to improve the AL model as much as possible, it would576

be the ideal use of available labels.) Following these high-level ideas as described above, we present577

the detailed proof below.578

Proof. We first break the joint (I) learning-(II) testing objective into two parts and approach each part579

separately:580

R(fθ|(SL∪SFB)) ≤ RCNN (f∗
θ|(SL∪SFB)

) +O
(
1/
√
NL +NFB

)
≲ RCNN (f∗

θ|(SL)) +O
(
1/
√

NL +NFB

)
(26)

581

∥R− R̃({Q1,...,QT }\SFB)∥ ≤ ||R̃T ({Q1, ..., QT })− R̃T ({Q1, ..., QT } \ SFB)||
+ ||R̃T ({Q1, ..., QT })−R|| (27)

The learning objective. As mentioned earlier, (26) is a common generalization error bound for582

CNN or similar models. For example, given a training set SL with NL samples, we can draw from583

the basic bound (e.g., according to Theorem 2.1 in [16]):584

R(fθ|SL
) = ED[lfθ|SL

(·)] ≤ ESL
[lfθ|SL

(·)] + C ′

β′λ′

√
|θ|
NL

+

√
log(1/δ)

NL

 (28)

with probability of at least 1 − δ, where C ′, β′, and λ′ are constants and |θ| is the total number585

of trainable parameters in the network. In our case, we do not make further assumptions about586

the constants and |θ| is fixed for evaluating a certain model. Similarly, we can substitute NL with587

NL +NFB and arrive at:588

R(fθ|(SL∪SFB)) = ED[lfθ|(SL∪SFB)
(·)] ≤E(SL∪SFB)[lfθ|(SL∪SFB)

(·)]

+C ′

β′λ′

√
|θ|

NL +NFB
+

√
log(1/δ)

NL +NFB

 (29)

We notice that in both (28) and (29), we include the expected loss which is slightly different from589

the best possible AL model risks R(f∗
θ|(SL∪SFB)

) and R(f∗
θ|SL

). However, the difference is usually590
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on a smaller scale than (1/
√
NL − 1/

√
NL +NFB). In general, we assume that R(f∗

θ|(SL∪ST )) ≲591

R(f∗
θ|(SL∪SFB)

) ≲ R(f∗
θ|SL

) since more labeled samples can benefit learning (we do not need to592

assume a strictly monotonic case for the sake of this analysis). For most AL strategies, the difference593

between the expected empirical risk and the optimal risks given the learning set size is on a higher594

order of dependency on n than the learning bound itself. If we ignore the higher order terms, we595

can simplify the results as shown in (26). Then, the term and more importantly the change in the596

learning objective that is related to the assumed feedback SFB is only dependent on NFB through597

O(1/
√
NL +NFB).598

The testing objective. The relation in (27) can be further analyzed by taking a probabilistic view.599

If we assume the risks are bounded in the third moment, w.l.o.g., the two risk-difference terms can600

both be generalized to a slightly more specific high-probability confidence interval [4, 9, 26] than the601

plain central limit theorem result itself: with probability of at least 1− α, we have602

||R̃T ({Q1, ..., QT })− R̃T ({Q1, ..., QT } \ SFB)||

≤ 2

[
F−1
NT

(
1− α

2

) σ̃NT√
NT

− F−1
NT−NFB

(
1− α

2

) σ̃NT−NFB√
NT −NFB

]
(30)

||R̃T ({Q1, ..., QT })−R|| ≤ 2

[
F−1
NT

(
1− α

2

) σ̃NT√
NT

]
(31)

where F−1 is the inverse cumulative distribution function of the Student-t distribution and σ̃2 is the603

empirical variance. For the active feedback analysis, we only care about how NFB affects the testing604

objective, thus also obtaining an O(1/
√
NT −NFB) dependency.605

The detailed balancing between the two objectives (I) and (II) requires specific knowledge about606

the constants involved in the bounds. However, if we only focus on terms involving NFB, both607

dependencies on the sample numbers are on the 1/
√
n level, making it possible to be balanced608

by a constant factor C. Combining these results, we get the NFB term as O(1/
√
NL +NFB) +609

O(1/
√
NT −NFB) (absorbing O(1) terms that do not depend on NFB). The next key factor is that610

throughout the entire ATL process, we either keep NFB fixed or only change it at a linear rate (flexible611

NFB should be an interesting future direction). Combining with our previous assumption that NL and612

NT are of similar magnitudes, we know that an optimal balance could be achieved between (I) and613

(II) to minimize the joint learning-testing objective given in (8).614

D Additional Experiment Results615

In this section, we present the detailed experimental settings and additional experimental results.616

D.1 Synthetic Experiment617

Figure 4 shows how the proposed feedback strategy helps to encourage exploration. The background618

color shows the model’s predictive distribution. For each quiz, we display all the training samples619

obtained by an active learner (red and blue circles representing 2 classes) but only the current quiz620

(triangles) and feedback samples (squares, then added to circles in later AL rounds) from the active621

tester to make the visualization clear. Figure 4a shows that ATL selects a feedback sample in the622

bottom right corner because it is not included in the current knowledge base of the AL model. The623

AL model predicts it poorly in the quiz. In Figure 4b, we see that the AL model is guided by the624

feedback samples and starts to explore the bottom right corner. Once the AL model collects samples625

from the bottom right area, ATL stops to provide guidance for that region. In this way, the proposed626

feedback strategy manages to find the minority cluster at the other corner shortly as shown in Figure627

4c.628

In Figure 4d, to further demonstrate the effectiveness of the proposed feedback strategy, we compare629

it with the feedback samples selected using two other baselines: random feedback (in Figure 4f) and630

AL based feedback (in Figure 4e), when the samples at the bottom right corner are first discovered.631

First, we notice that those data samples are found by the AL model rather than through the feedback632

strategies. As a result, it happens at a much later quiz time compared with ATL. Therefore, they633

result in a less efficient learning process. Second, we observe that when an AL model discovers a634
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(f) Random Feedback Quiz 10

Figure 4: Effectiveness of active feedback for improving model training

Table 5: Test classification accuracy
Feedback Strategy Quiz 2 Quiz 3 Quiz 4 Quiz 9 Quiz 10
ATL 0.75 0.87 0.90 0.96 0.97
AL 0.75 0.83 0.84 0.84 0.88
Random 0.74 0.78 0.81 0.83 0.91

new area to learn, both baseline feedback strategies fail to provide support even though they have635

some test samples (i.e., the red point at the bottom right corner) available in the interesting region.636

Last, we can see that at around quiz 10, the AL model with the proposed ALT converges to a better637

decision boundary that captures the entire data distribution while the two other baselines both fail638

to correctly discover the predictive distribution at the two corners. As a result, ALT leads to a more639

accurate model (shown in Table 5) while maintaining lower estimation error in the end.640

D.2 Real-world Experiments641

In this section, we provide more results on the real-world datasets including MNIST, FashionMNIST642

and CIFAR10, mainly to demonstrate different feedback approaches and how we can implement early643

stopping in ATL.644

D.2.1 Experimental Settings645

In all experiments, we use a CNN model and standard data transformation for each dataset. In646

each AL training round, we run 10 epochs for MNIST and FashionMNIST and 50 epochs for647

CIFAR10. A threshold of 1× 10−5 is used for probability outputs as required for the proposal q(x)648

computation [13] to avoid 0 denominators.649

An important detail to note is that for ATL-NF results, we sample 50 additional data points during650

AL for fair comparison (550 in each round), which is actually very similar to ATL-RF. The results651

with only 500 data points per round will be shown in the following section D.2.2. Another detail652

worth mentioning is that although we set the initial budget to be 500 labels and add 500 training653

samples plus 100 testing samples in each round, the final total budget is 12, 450 on average instead of654

12, 500 because we allow replacement while sampling.655
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D.2.2 Random Hold-out Test and Random Feedback656

In this section, we discuss the issues with traditional hold-out validation/testing procedures during657

AL and compare the results using random sampling for both test sample selection and feedback658

selection with the proposed learning-testing-feedback process. In Table 6, random test is referring

Table 6: Risk estimation error comparison with random methods

Dataset Method
AL round 4 8 12 16 20

MNIST

Random Test 7.80± 13.4 6.61± 3.72 5.94± 7.25 3.15± 5.83 6.18± 2.41
Random Test & Feedback 30.4± 42.2 16.8± 16.1 5.34± 6.33 11.8± 10.6 5.62± 2.73
Random Test & Weighted 71.3± 31.9 19.1± 16.5 12.3± 12.2 10.0± 11.7 5.64± 1.64

ATL-NF 2.57 ± 1.17 0.79 ± 1.15 0.17 ± 0.15 0.56 ± 0.30 1.32 ± 0.37

Fashion
MNIST

Random Test 6.97± 11.2 5.29± 3.56 10.9± 6.55 5.40± 2.76 8.56± 7.57
Random Test & Feedback 12.7± 13.4 15.4± 16.0 12.7± 6.93 18.8± 20.9 32.7± 15.4
Random Test & Weighted 6.85± 14.8 3.01± 11.3 2.80± 11.1 4.58± 29.0 9.51± 9.13

ATL-NF 3.64 ± 1.61 0.67 ± 0.38 0.96 ± 0.16 0.98 ± 0.43 3.04 ± 1.37

CIFAR10

Random Test 20.5± 6.50 15.8± 10.3 13.0± 10.1 9.99± 6.58 9.89± 9.61
Random Test & Feedback 44.7± 36.4 16.4± 15.4 31.0± 12.8 11.7± 8.65 55.3± 19.0
Random Test & Weighted 43.5± 14.8 14.6± 11.3 15.1± 11.1 11.2± 29.0 48.7± 9.13

ATL-NF 8.83 ± 7.79 3.06 ± 5.04 4.95 ± 7.12 7.94 ± 5.22 6.20 ± 5.79

659
to randomly sampling 100 test samples after each 550-sample (additional 50 for fair comparison,660

same as ATL-NF) AL round and simply averaging the loss over these test samples. Random test661

& feedback is referring to sampling 100 test samples after each 500-sample AL round and then662

randomly selecting 50 for feedback. Random test & weighted is referring to the same process but663

the quizzes are weighted by 1/Rt. From Table 6, we can see that in the small-data regime, random664

sampling may not provide an accurate estimate of the true risk. However, in later AL rounds, the no665

feedback case (Random Test) can maintain an unbiased estimate, and we do see that some results666

are comparable with active risk estimation baselines without the ATL-integrate estimator. This is667

probably because existing active risk estimation baselines (ARE-quiz, AT-integrate, ASE-integrate)668

do not consider the biased selection and model change through the AL process. The methods that669

use surrogate models also suffers from the insufficient training of the surrogate model. However,670

random testing selection does not work well with the active feedback process. For Random Test &671

Feedback and Random Test & Weighted, we often see much worse estimation due to the feedback672

process involved.673

D.2.3 Additional Active Feedback Comparisons674

In this section, we show a more complete comparison between different feedback approaches. The675

feedback comparison consists of two parts: (1) baseline comparison including no feedback (ATL-NF),676

random feedback (ATL-RF), entropy-based feedback (ATL-EN) and (2) ablation study including677

loss-based feedback (ATL-LF), weighted loss-based feedback (ATL-WL) and the proposed weighted678

loss plus diversity feedback (ATL).679

Table 7: Hold-out test risk using different feedback criteria over 20 AL rounds

Dataset Method
AL round 4 8 12 16 20

MNIST

ATL-NF 0.92± 0.06 0.55± 0.08 0.46± 0.06 0.32± 0.04 0.22± 0.02
ATL-RF 0.92± 0.12 0.54± 0.02 0.41± 0.05 0.29± 0.03 0.21± 0.02
ATL-EN 0.90± 0.12 0.55± 0.06 0.41± 0.02 0.34± 0.06 0.23± 0.03
ATL-LF 0.89± 0.10 0.56± 0.04 0.41± 0.02 0.32± 0.07 0.20± 0.02
ATL-WL 0.86± 0.06 0.53± 0.06 0.40± 0.05 0.32± 0.07 0.22± 0.03

ATL 0.88 ± 0.07 0.53 ± 0.04 0.39 ± 0.03 0.26 ± 0.01 0.19 ± 0.03

Fashion
MNIST

ATL-NF 0.75± 0.03 0.69± 0.02 0.61± 0.02 0.57± 0.04 0.56± 0.03
ATL-RF 0.75± 0.04 0.68± 0.02 0.61± 0.01 0.58± 0.06 0.56± 0.04
ATL-EN 0.76± 0.02 0.67± 0.05 0.58± 0.02 0.59± 0.03 0.56± 0.02
ATL-LF 0.76± 0.04 0.65± 0.03 0.63± 0.01 0.56± 0.02 0.56± 0.04
ATL-WL 0.76± 0.03 0.65± 0.02 0.62± 0.01 0.56± 0.02 0.53± 0.02

ATL 0.74 ± 0.03 0.65 ± 0.04 0.59 ± 0.02 0.56 ± 0.03 0.51 ± 0.01

CIFAR10

ATL-NF 1.91± 0.04 1.76± 0.05 1.72± 0.01 1.66± 0.02 1.55± 0.03
ATL-RF 1.91± 0.03 1.77± 0.04 1.69± 0.03 1.60± 0.04 1.54± 0.07
ATL-EN 1.92± 0.09 1.76± 0.04 1.70± 0.03 1.66± 0.04 1.54± 0.02
ATL-LF 1.94± 0.04 1.75± 0.03 1.65± 0.01 1.59± 0.03 1.54± 0.01
ATL-WL 1.94± 0.04 1.75± 0.03 1.63± 0.01 1.63± 0.03 1.54± 0.01

ATL 1.90 ± 0.05 1.76 ± 0.02 1.65 ± 0.03 1.58 ± 0.02 1.53 ± 0.02

19



First, we show the hold-out test risk of the AL model throughout AL using different active feedback680

approaches as the indicator of the model performance. From Table 7, we see that in most occasions,681

all active feedback approaches can reduce the test risk compared to ATL-NF.

Table 8: Squared difference between the estimate and the true risk over 20 AL rounds (×10−3)

Dataset Method
AL round 4 8 12 16 20

MNIST

ATL-NF 2.57± 1.17 0.79± 1.15 0.17± 0.15 0.56± 0.30 1.32± 0.37
ATL-RF 26.8± 21.4 21.4± 17.0 3.54± 4.01 5.54± 3.21 7.62± 4.41
ATL-EN 23.6± 24.8 14.0± 15.8 13.8± 11.7 29.5± 21.7 21.8± 12.8
ATL-LF 15.6± 12.6 42.4± 36.9 48.5± 25.8 15.7± 14.8 10.9± 7.44
ATL-WL 16.5± 19.4 21.0± 24.3 7.36± 8.44 11.4± 12.7 7.59± 4.45

ATL 14.6 ± 22.1 16.9 ± 13.7 3.19 ± 2.63 4.15 ± 3.20 1.87 ± 1.41

Fashion
MNIST

ATL-NF 3.64± 1.61 0.67± 0.38 0.96± 0.16 0.98± 0.43 3.04± 1.37
ATL-RF 10.2± 9.30 4.41± 3.77 2.19± 5.53 5.69± 4.52 11.6± 7.51
ATL-EN 93.2± 23.4 50.2± 10.2 78.5± 32.4 76.2± 59.6 85.8± 25.9
ATL-LF 9.36± 10.2 27.2± 26.0 22.6± 28.3 14.6± 12.0 11.0± 15.2
ATL-WL 8.39± 8.97 7.52± 6.09 4.89± 6.50 7.29± 4.45 11.1± 7.02

ATL 2.50 ± 2.93 1.94 ± 2.25 1.78 ± 1.07 6.32 ± 5.41 5.03 ± 4.41

CIFAR10

ATL-NF 8.83± 7.79 3.06± 5.04 4.95± 7.12 7.94± 5.22 6.20± 5.79
ATL-RF 20.6± 17.6 19.1± 13.7 9.82± 8.03 33.6± 30.5 24.8± 32.4
ATL-EN 30.3± 17.0 45.8± 24.4 20.3± 17.4 36.8± 31.7 27.0± 27.1
ATL-LF 35.0± 27.9 45.8± 28.5 20.3± 10.1 57.2± 33.6 40.5± 34.0
ATL-WL 22.7± 19.7 25.0± 13.2 12.9± 21.5 52.2± 45.9 28.7± 16.3

ATL 11.6 ± 13.4 5.11 ± 3.45 8.81 ± 6.51 11.9 ± 16.7 6.57 ± 6.29

682

In Table 8, we show a full comparison of the squared error of risk estimation. All estimation results683

are based on the proposed ATL estimator R̃, where ATL-NF, ATL-RF, ATL-EN serve as baselines,684

meanwhile ATL-LF and ATL-WL serve as ablation studies since the proposed ATL utilizes the685

weighted loss as well. We see that all feedback approaches suffer from an increased estimation686

error, especially in the early stage when the number of test samples available is small. We see that687

the baseline methods suffer from increased estimation error. However, ATL can usually maintain a688

similar level of estimation error after 20 AL rounds. For ATL-LF, there is usually a larger variance of689

the estimation error. The potential reason for the unstable behavior of ATL-LF is that it only selects690

samples with larger losses in the feedback process. Although the importance mechanism can make691

up for some of the difference, there is still the potential risk of the estimate being biased. Further692

combining with the diversity metric, we achieve the best results with ATL.693

Concluding from both the risk results and the estimation error results, we show that the proposed694

feedback approach achieves a good balance in the performance-estimation trade-off. This is because695

we consider both the loss L and the importance weight q in the selection criterion. Overall, ATL696

achieves a similar model test risk as ATL-LF/ATL-WL, both of which are much better than ATL-NF697

and ATL-RF. ATL also achieves a much lower estimation error than ATL-RF, ATL-EN, and ATL-LF.698

D.2.4 Feedback Size Study699

We also provide a study on the size of the feedback set. As mentioned in the proof for Theorem700

2, we keep the size of feedback simple in this work. This is to be consistent with our theoretical701

analysis and the experiments show that the active feedback process is helpful in this generic setting.702

Further details about extending this will be mentioned in the future directions. However, even in the703

simple setting of fixed feedback size, we can see that the learning and testing performances do not704

consistently and monotonically change with respect to the feedback size. Although, from Table 9 and705

Table 10 below, we can see that in general, model risk (learning performance) is better when we use a706

larger feedback size, but at the same time the estimation error (testing performance) may become707

much worse. The model risk on CIFAR10 behaves differently with the feedback size, probably708

because the model performance is not good enough and adding difficult samples in this stage does709

not necessarily help with the generalization ability.710

D.2.5 Single Feedback Round Comparison711

In previous experiments, we add additional training points for the no feedback case (ATL-NF) to712

make fair comparison for the model risk. However, if we look at the risk change before and after a713

single feedback round, the difference is even more obvious.714
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Table 9: Hold-out test risk using different feedback criteria over 20 AL rounds

Dataset Feedback size
AL round 4 8 12 16 20

MNIST

83% 0.86± 0.09 0.53± 0.04 0.40± 0.08 0.30± 0.02 0.20± 0.03
67% 0.87± 0.08 0.52± 0.03 0.35± 0.03 0.30± 0.02 0.21± 0.02
50% 0.88± 0.07 0.53± 0.04 0.39± 0.03 0.26± 0.01 0.19± 0.03
25% 0.94± 0.06 0.54± 0.03 0.42± 0.08 0.35± 0.02 0.25± 0.02
20% 0.99± 0.04 0.56± 0.08 0.43± 0.06 0.38± 0.01 0.24± 0.02

Fashion
MNIST

83% 0.74± 0.02 0.67± 0.03 0.60± 0.03 0.54± 0.02 0.51± 0.03
67% 0.77± 0.04 0.68± 0.03 0.59± 0.03 0.56± 0.03 0.52± 0.02
50% 0.74± 0.03 0.65± 0.04 0.59± 0.02 0.56± 0.03 0.51± 0.01
25% 0.76± 0.02 0.70± 0.01 0.62± 0.02 0.59± 0.05 0.53± 0.03
20% 0.77± 0.02 0.71± 0.02 0.64± 0.02 0.61± 0.04 0.54± 0.04

CIFAR10

83% 1.92± 0.06 1.71± 0.02 1.67± 0.07 1.59± 0.04 1.57± 0.04
67% 1.96± 0.05 1.75± 0.02 1.64± 0.04 1.58± 0.04 1.58± 0.06
50% 1.90± 0.05 1.76± 0.02 1.65± 0.03 1.58± 0.02 1.53± 0.02
25% 1.94± 0.08 1.76± 0.03 1.70± 0.03 1.64± 0.04 1.59± 0.02
20% 1.91± 0.03 1.76± 0.02 1.73± 0.03 1.59± 0.02 1.63± 0.02

Table 10: Squared difference between the estimate and the true risk over 20 AL rounds (×10−3)

Dataset Feedback size
AL round 4 8 12 16 20

MNIST

83% 50.2± 39.8 21.0± 24.3 7.36± 8.44 11.4± 12.7 7.59± 4.45
67% 25.6± 23.4 29.3± 29.7 6.90± 8.05 6.24± 6.71 7.50± 5.07
50% 14.6± 22.1 16.9± 13.7 3.19± 2.63 4.15± 3.20 1.87± 1.41
25% 11.7± 11.5 10.0± 7.98 9.73± 11.4 4.76± 5.25 1.59± 1.96
20% 28.0± 24.4 11.8± 14.5 5.91± 3.82 4.31± 4.80 1.25± 1.36

Fashion
MNIST

83% 8.39± 8.97 7.52± 10.4 2.77± 3.58 3.87± 4.45 11.1± 7.02
67% 8.59± 8.77 8.60± 10.5 5.42± 5.96 4.05± 2.47 14.6± 13.8
50% 2.50± 2.93 1.94± 2.25 1.78± 1.07 6.32± 5.41 5.03± 4.41
25% 3.04± 4.00 2.38± 4.81 1.54± 1.18 6.40± 8.06 4.13± 3.99
20% 2.62± 1.57 1.56± 1.77 2.42± 4.52 5.65± 4.33 5.22± 3.27

CIFAR10

83% 54.5± 54.1 14.3± 7.75 56.1± 17.0 47.2± 34.3 62.2± 43.3
67% 24.6± 25.6 36.7± 20.5 24.1± 18.6 30.7± 40.8 36.2± 21.0
50% 11.6± 13.4 5.11± 3.45 8.81± 6.51 11.9± 16.7 6.57± 6.29
25% 4.88± 5.80 6.01± 8.22 6.80± 1.36 10.2± 13.4 4.48± 3.53
20% 5.44± 6.65 3.65± 3.44 11.2± 11.0 4.21± 1.36 5.82± 3.34

Table 11: Hold-out test risk before and after a specific feedback round

Dataset Method
AL round 4 8 12 16 20

MNIST ATL-before 0.91± 0.09 0.54± 0.04 0.41± 0.08 0.29± 0.02 0.21± 0.03
ATL-after 0.88 ± 0.07 0.53 ± 0.04 0.39 ± 0.03 0.26 ± 0.01 0.19 ± 0.03

Fashion
MNIST

ATL-before 0.77± 0.03 0.66± 0.03 0.61± 0.02 0.57± 0.03 0.53± 0.03
ATL-after 0.74 ± 0.03 0.65 ± 0.04 0.59 ± 0.02 0.56 ± 0.03 0.51 ± 0.01

CIFAR10 ATL-before 1.97± 0.07 1.82± 0.05 1.70± 0.03 1.67± 0.03 1.57± 0.04
ATL-after 1.90 ± 0.05 1.76 ± 0.02 1.65 ± 0.03 1.58 ± 0.02 1.53 ± 0.02

D.2.6 Early Stopping in AL715

In this section, we show how the ATL-based risk estimation can be readily used for early stopping716

in AL. In the above experiments, we observe a steady decrease of the estimated risk most of the717

times. However, we do find the decrease becomes more insignificant near the end of the 20 rounds718

of learning, especially for the MNIST and Fashion MNIST datasets. We observe that after a certain719

amount of AL rounds, the risk decrease is significantly small, and the corresponding test accuracy720

is also stabilized (MNIST around 94%, Fashion MNIST around 80%, CIFAR around 54%). This721

gives us the opportunity to apply early stopping in real-life AL applications. We here show the722

average stopping iteration and model performance (hold-out test accuracy) of the compared methods723

in Table 12. Following the same threshold value, by augmenting the moving average of active risk724

estimation given by (10) with stabilized prediction (SP), the combined method can stop at a similar725

testing accuracy as compared with the SP method, but with much lower variance in test accuracy.726

Based on the threshold setting, it is also possible to stop AL much earlier, saving the overall labeling727

budget.728
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Table 12: Average early stopping iteration and final test accuracy comparison (with variance)

Dataset Method Iteration Variance Test Accuracy Variance

MNIST SP 15 6.8 94.52% 6.0e− 5
Combined 11 1.2 94.08% 3.1e− 5

Fashion
MNIST

SP 16 4.4 81.32% 3.7e− 5
Combined 12.4 1.04 80.12% 2.4e− 5

CIFAR10 SP 12 2.8 53.87% 1.4e− 4
Combined 12.8 0.16 54.43% 8.9e− 5

E Details of Hardware for Experiments729

All experiments were run on clusters with either NVIDIA A6000 or NVIDIA A100 graphic cards730

and Intel Xeon Gold 6150 CPU processors. The runtime of the experiments varies depending on731

the number of repeat runs, but is usually on the scale of a few hours. For example, to get the 5 runs732

results of one ATL setting for 20 AL rounds on MNIST or Fashion MNIST may take about 6 to 8733

hours. The CIFAR10 experiments may take slightly longer.734

F Limitation, Future work, and Social Impact735

In this section, we first discuss some limitation of the proposed framework and identify some736

important future direction. We then discuss some potential social impact of our work.737

F.1 Limitation and Future Directions738

In this paper, we propose an integrated framework that combines active learning and testing. In the739

interactive framework, the exchange of training and testing information should be carefully guided.740

Although the proposed testing selection is statistically unbiased and the active feedback is backed by741

the high-level analysis, we still have room for improving the specification of methods in applicable742

settings, which we will introduce here as future directions:743

• From the learning perspective, we can improve upon the general setting in this paper. In744

this paper, we focus on introducing a general framework and working under the agnostic745

setting. However, using specific AL strategies can potentially provide advantages in certain746

use cases. There have been works that analyze AL label complexity bounds using either747

importance weighting mechanism in stream-based settings [5, 8] or other methods in pool-748

based settings [11].749

• Continuing on the results from D.2.4 and the discussion above, the feedback size is a very750

important factor in the process, especially if we allow the size to change during AL. Further751

investigating the relationship between the sample size and the combined learning-testing752

objective can potentially improve the framework.753

• We also propose the ATL framework under an AL-agnostic assumption. Given specific754

AL strategies, we might be able to also incorporate the learning or testing proposal in the755

construction of feedback proposal.756

F.2 Social Impact757

The proposed ATL framework considers the practical challenges of applying active learning in758

real-world settings, where both model training and evaluation require labeled data. It is a critical759

step towards realizing label-efficient learning in practice, which can benefit many critical domains760

where data annotation is highly costly. To this end, the proposed ATL framework has the potential to761

fundamentally address the data annotation crisis and further broaden the usage of AI to benefit the762

entire society.763

G Source Code764

The data and source code for replicating the results are provided in this link:765

https://drive.google.com/drive/folders/10s9j2oUEuNCM0KjxDT852PtfvvsaoAtZ?766

usp=sharing767

768
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