
Practical and Asymptotically Exact Conditional
Sampling in Diffusion Models

Luhuan Wu∗

Columbia University
lw2827@columbia.edu

Brian L. Trippe*

Columbia University
blt2114@columbia.edu

Christian A. Naesseth
University of Amsterdam
c.a.naesseth@uva.nl

David M. Blei
Columbia University

david.blei@columbia.edu

John P. Cunningham
Columbia University

jpc2181@columbia.edu

Abstract

Diffusion models have been successful on a range of conditional generation tasks
including molecular design and text-to-image generation. However, these achieve-
ments have primarily depended on task-specific conditional training or error-prone
heuristic approximations. Ideally, a conditional generation method should provide
exact samples for a broad range of conditional distributions without requiring
task-specific training. To this end, we introduce the Twisted Diffusion Sampler, or
TDS. TDS is a sequential Monte Carlo (SMC) algorithm that targets the conditional
distributions of diffusion models through simulating a set of weighted particles.
The main idea is to use twisting, an SMC technique that enjoys good computational
efficiency, to incorporate heuristic approximations without compromising asymp-
totic exactness. We first find in simulation and in conditional image generation
tasks that TDS provides a computational statistical trade-off, yielding more accu-
rate approximations with many particles but with empirical improvements over
heuristics with as few as two particles. We then turn to motif-scaffolding, a core
task in protein design, using a TDS extension to Riemannian diffusion models; on
benchmark tasks, TDS allows flexible conditioning criteria and often outperforms
the state-of-the-art, conditionally trained model.2

1 Introduction
Conditional sampling is an essential primitive in the machine learning toolkit. One begins with a
generative model that parameterizes a distribution pθ(x) on data x, and then augments the model to
include information y in a joint distribution pθ(x, y) = pθ(x)p(y | x). This joint distribution then
implies a conditional distribution pθ(x | y), from which desired outputs are sampled.

For example, in protein design, pθ(x) can represent a distribution of physically realizable protein
structures, y a substructure that imparts a desired biochemical function, and samples from pθ(x | y)
are then physically realizable structures that contain the substructure of interest [e.g. 34, 37].

Diffusion models are a class of generative models that have demonstrated success in conditional gen-
eration tasks [18, 27, 33, 37]. They parameterize distributions pθ(x) through an iterative refinement
process that builds up data from noise. When a diffusion model is used for conditional generation,
this refinement process is modified to account for conditioning at each step [9, 19, 27, 33].

∗Equal contribution, order by coin flip.
2Code: https://github.com/blt2114/twisted_diffusion_sampler

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/blt2114/twisted_diffusion_sampler

One approach is to incorporate the conditioning information into training [e.g. 9, 27]; one either
modifies the unconditional model to take y as input or trains a separate conditional model to predict
y from partially noised inputs. However, conditional training requires (i) assembling a large set of
paired examples of the data and conditioning information (x, y), and (ii) designing and training a
task-specific model when adapting to new conditioning tasks. For example, image inpainting and
class-conditional image generation can be both formalized as conditional sampling problems based
on the same (unconditional) image distribution pθ(x); however, the conditional training approach
requires training separate models on two curated sets of conditioning inputs.

To avoid conditional training, a separate line of work uses heuristic approximations that directly
operate on unconditional diffusion models: once an unconditional model pθ(x) is trained, it can
be flexibly combined with various conditioning criteria to generate customized outputs. These
approaches have been applied to inpainting problems [24, 33, 34], and other inverse problems [1, 6,
19, 32]. But it is unclear how well these heuristics approximate the exact conditional distributions
they are designed to mimic; for example on inpainting tasks they often fail to return outputs consistent
with both the conditioning information and unconditional model [40]. These concerns are critical
in domains that require accurate conditionals. In molecular design, for example, even a small
approximation error could result in atomic structures with chemically implausible bond distances.

This paper develops a practical and asymptotically exact method for conditional sampling from an
unconditional diffusion model. We use sequential Monte Carlo (SMC), a general tool for asymptoti-
cally exact inference in sequential probabilistic models [5, 10, 25]. SMC simulates an ensemble of
weighted trajectories, or particles, through a sequence of proposals and weighting mechanisms. These
weighted particles then form an asymptotically exact approximation to a desired target distribution.

The premise of this work is to recognize that the sequential structure of diffusion models permits
the application of SMC for sampling from conditional distributions pθ(x | y). We design an SMC
algorithm that leverages twisting, an SMC technique that modifies proposals and weighting schemes
to approach the optimal choices [15, 38]. While optimal twisting is intractable, we effectively
approximate it with recent heuristic approaches to conditional sampling [eg. 19], and correct the
errors by the weighting mechanisms. The resulting algorithm maintains asymptotic exactness to
pθ(x | y), and empirically it can outperform heuristics alone even with just two particles.

We summarize our contributions: (i) We propose a practical SMC algorithm, Twisted Diffusion
Sampler or TDS, for asymptotically exact conditional sampling from diffusion models; (ii) We show
that TDS applies to a range of conditional generation problems, and extends to Riemannian manifold
diffusion models; (iii) On MNIST inpainting and class-conditional generation tasks we demonstrate
TDS’s empirical improvements beyond heuristic approaches; and (iv) On protein motif-scaffolding
problems with short scaffolds TDS provides greater flexibility and achieves higher success rates than
the state-of-the-art conditionally trained model.

2 Background: Diffusion models and sequential Monte Carlo
Diffusion models. A diffusion model generates a data point x0 by iteratively refining a sequence of
noisy data xt, starting from pure noise xT . This procedure parameterizes a distribution of x0 as the
marginal of a length T Markov chain

pθ(x
0) =

∫
p(xT)

T∏
t=1

pθ(x
t−1 | xt)dx1:T , (1)

where p(xT) is an easy-to-sample noise distribution, and each pθ(x
t−1 | xt) is the transition distribu-

tion defined by the (T − t)th refinement step.

Diffusion models pθ are fitted to match a data distribution q(x0) from which we have samples. To
achieve this goal, a forward process q(x0)

∏T
t=1 q(x

t | xt−1) is set to gradually add noise to the
data, where q(xt | xt−1) = N

(
xt;xt−1, σ2

)
, and σ2 is a positive variance. To fit a diffusion model,

one finds θ such that pθ(xt−1 | xt) ≈ q(xt−1 | xt), which is the reverse conditional of the forward
process. If this approximation is accomplished for all t, and if Tσ2 is big enough that q(xT) may be
approximated as q(xT) ≈ N (0, Tσ2) =: p(xT), then we will have pθ(x

0) ≈ q(x0).

In particular, when σ2 is small enough then the reverse conditionals of q are approximately Gaussian,

q(xt−1 | xt) ≈ N
(
xt−1;xt + σ2∇xt log q(xt), σ2

)
, (2)

2

where q(xt) =
∫
q(x0)q(xt | x0)dx0 and∇xt log q(xt) is known as the (Stein) score [33]. To mirror

eq. (2), diffusion models parameterize pθ(x
t−1 | xt) via a score network sθ(x

t, t)

pθ(x
t−1 | xt) := N

(
xt−1;xt + σ2sθ(x

t, t), σ2
)
. (3)

When sθ(x
t, t) is trained to approximate∇xt log q(xt), we have pθ(x

t−1 | xt) ≈ q(xt−1 | xt).
Notably, approximating the score is equivalent to learning a denoising neural network x̂θ(x

t, t)
to approximate Eq[x0 | xt]. The reason is that by Tweedie’s formula [12, 28] ∇xt log q(xt) =
(Eq[x0 | xt] − xt)/tσ2 and one can set sθ(xt, t) := (x̂θ(x

t, t) − xt)/tσ2. The neural network
x̂θ(x

t, t) may be learned by denoising score matching (see [e.g. 18, 35]). For the remainder of paper
we drop the argument t in x̂θ and sθ when it is clear from context.

Appendix A generalizes the formulation above to diffusion process formulations that are commonly
used in practice.

Sequential Monte Carlo. Sequential Monte Carlo (SMC) is a general tool to approximately sample
from a sequence of distributions on variables x0:T , terminating at a final target of interest [5, 10, 14,
25]. SMC approximates these targets by generating a collection of K particles {xtk}Kk=1 across T
steps of an iterative procedure. The key ingredients are proposals rT (xT), {rt(xt | xt+1)}T−1

t=0 and
weighting functions wT (xT), {wt(xt, xt+1)}T−1

t=0 . At the initial step T , one draws K particles of
xTk ∼ rT (x

T) and sets wTk := wT (x
T
k), and sequentially repeats the following for t = T − 1, . . . , 0:

• resample {xt+1:T
k }Kk=1 ∼ Multinomial({xt+1:T

k }Kk=1; {w
t+1
k }Kk=1)

• propose xtk ∼ rt(x
t | xt+1

k), k = 1, · · · ,K
• weight wtk := wt(x

t
k, x

t+1
k), k = 1, · · · ,K

The proposals and weighting functions together define a sequence of intermediate target distributions,

νt(x
0:T) :=

1

Lt

[
rT (x

T)

T−1∏
t′=0

rt′(x
t′ | xt

′+1)
][
wT (x

T)

T−1∏
t′=t

wt′(x
t′ , xt

′+1)
]

(4)

where Lt is a normalization constant. A classic example that SMC applies is the state space model
[25, Chapter 1] that describes a distribution over a sequence of latent states x0:T and observations
y0:T . Each intermediate target νt is constructed to be the posterior p(x0:T | yt:T) given the first
T − t+ 1 observations, and the final target p(x0:T | y0:T) is the posterior given all observations.

The defining property of SMC is that the weighted particles at each t form discrete approximations
(
∑K
k′=1 w

t
k′)

−1
∑K
k=1 w

k
t δxt

k
(xt) (where δ is a Dirac measure) to νt(x

t) that become arbitrarily
accurate in the limit that many particles are used [5, Proposition 11.4]. So, by choosing rt and wt so
that ν0(x0) matches the desired distribution, one can guarantee arbitrarily low approximation error in
the large compute limit.

3 Twisted Diffusion Sampler: SMC sampling for diffusion model conditionals
Consider conditioning information y associated with a given likelihood function py|x0(y|x0). We
embed y in a joint model over x0:T and y as pθ(x0:T , y) = pθ(x

0:T)py|x0(y|x0), where y and x1:T

are conditionally independent given x0. Our goal is to sample from the conditional pθ(x0 | y).
In this section, we develop Twisted Diffusion Sampler (TDS), a practical SMC algorithm targeting
pθ(x

0 | y). First, we describe how the Markov structure of diffusion models permits a factorization of
an extended conditional distribution to which SMC applies. Then, we show how a diffusion model’s
denoising predictions support the application of twisting, an SMC technique in which one uses
proposals and weighting functions that approximate the “optimal” ones. Lastly, we extend TDS to
certain “inpainting” problems where py|x0(y|x0) is not smooth, and to Riemannian diffusion models.

3.1 Conditional diffusion sampling as an SMC procedure

The Markov structure of the diffusion model permits a factorization that is recognizable as the final
target of an SMC algorithm. We write the conditional distribution, extended to include x1:T , as

pθ(x
0:T | y) = pθ(x

0:T , y)

pθ(y)
=

1

pθ(y)

[
p(xT)

T−1∏
t=0

pθ(x
t | xt+1)

]
py|x0(y|x0) (5)

3

Algorithm 1: Twisted Diffusion Sampler (TDS)

1 for k = 1 : K

2 xTk ∼ p(xT), wk ← p̃Tk = p̃θ(y | xTk) // initial proposal and weight

3 for t = T − 1, · · · , 0
4 {xt+1

k , p̃t+1
k }Kk=1 ∼ Multinomial

(
{xt+1

k , p̃t+1
k }Kk=1; {wk}Kk=1

)
// resample

5 for k = 1 : K

6 s̃k = (x̂θ(x
t+1
k)− xt+1

k)/tσ2 +∇xt+1
k

log p̃t+1
k // conditional score approx.

7 xtk ∼ p̃θ(· | xt+1
k , y) := N

(
xt+1
k + σ2s̃k, σ̃

2
)

// proposal

8 p̃tk ← p̃θ(y | xtk) // twisting function (in eqs. (8), (13), or (14))

9 wk ← pθ(x
t
k|x

t+1
k)p̃tk/[p̃θ(x

t
k|x

t+1
k , y)p̃t+1

k] // weight

with the desired marginal, pθ(x0 | y). Comparing the diffusion conditional of eq. (5) to the SMC
target of eq. (4) suggests SMC can be used.

For example, consider a first attempt at an SMC algorithm. Set the proposals as rT (x
T) =

p(xT) and rt(x
t | xt+1) = pθ(x

t | xt+1) for 1 ≤ t ≤ T, and weighting functions as
wT (x

T) = wt(x
t, xt+1) = 1 for 1 ≤ t ≤ T and w0(x

0, x1) = py|x0(y|x0).

Substituting these choices into eq. (4) results in the desired final target ν0 = pθ(x
0:T | y) with

normalizing constant L0 = pθ(y). As a result, the associated SMC algorithm produces a final set
of K samples and weights {x0

k;w
0
k}Kk=1 that provides an asymptotically accurate approximation

PK(x0 | y) := (
∑K
k w0

k)
−1

∑K
k=1 w

0
kδx0

k
(x0) to the desired pθ(x

0 | y).

The approach above is simply importance sampling with proposal pθ(x0:T); with all intermediate
weights set to 1, one can skip resampling steps to reduce the variance of the procedure. Consequently,
this approach will be impractical if pθ(x0 | y) is too dissimilar from pθ(x

0) as only a small fraction
of unconditional samples will have high likelihood: the number of particles required for accurate
estimation of pθ(x0:T | y) is exponential in KL

[
pθ(x

0:T | y) ∥ pθ(x0:T)
]

[3].

3.2 Twisted diffusion sampler

Twisting is a technique in the SMC literature intended to reduce the number of particles required
for good approximation accuracy [15, 16]. Loosely, it introduces a sequence of twisting functions
that modify the naive proposals and weighting functions, so that the resulting intermediate targets
are closer to the final target of interests. We refer the reader to Naesseth et al. [25, Chapter 3.2] for
background on twisting in SMC.

Optimal twisting. Consider defining the twisted proposals r∗t by multiplying the naive proposals rt
described in Section 3.1 by pθ(y | xt) as

r∗T (x
T) ∝ p(xT)pθ(y|xT) and r∗t (x

t|xt+1) ∝ pθ(x
t|xt+1)pθ(y|xt) for 0 ≤ t < T. (6)

The factors pθ(y | xt) are the optimal twisting functions because they permit an SMC sampler that
draws exact samples from pθ(x

0:T | y) even when run with a single particle.

To see that a single particle is an exact sample, by Bayes rule, the proposals in eq. (6) reduce to

r∗T (x
T) = pθ(x

T | y) and r∗t (x
t | xt+1) = pθ(x

t | xt+1, y) for 0 ≤ t < T. (7)

As a result, if one samples xT ∼ r∗T (x
T) and xt ∼ r∗t (x

t | xt+1) for t = T − 1, . . . , 0, by (i) the law
of total probability and (ii) the chain rule of probability, one obtains x0 ∼ pθ(x

0 | y) as desired.

However, we cannot readily sample from each r∗t because pθ(y | xt) is not analytically tractable. The
challenge is that pθ(y | xt) =

∫
py|x0(y|x0)pθ(x

0 | xt)dx0 depends on xt through pθ(x
0 | xt). The

latter in turn requires marginalizing out x1, . . . , xt−1 from the joint density pθ(x
0:t−1 | xt), whose

form depends on t calls to the neural network x̂θ.

4

Tractable twisting. To avoid this intractability, we approximate the optimal twisting functions by

p̃θ(y | xt) := py|x0(y|x̂θ(xt)) ≈ pθ(y | xt), (8)

which is the likelihood function evaluated at x̂θ(xt), the denoising estimate of x0 at step t from the
diffusion model. This tractable twisting function p̃θ(y | xt) is the key ingredient needed to define the
Twisted Diffusion Sampler (TDS, Algorithm 1). We motivate and develop its components below.

The approximation in eq. (8) offers two favorable properties. First, p̃θ(y | xt) is computable because
it depends on xt only though one call to x̂θ, instead of an intractable integral over many calls as in
the case of optimal twisting. Second, p̃θ(y | xt) becomes an increasingly accurate approximation of
pθ(y | xt), as t decreases and pθ(x

0 | xt) concentrates on Epθ [x0 | xt], which x̂θ is fit to approximate;
at t = 0, where we can choose x̂θ(x

0) = x0, we obtain p̃θ(y | x0) = py|x0(y|x0).

We next use eq. (8) to develop a sequence of twisted proposals p̃θ(xt | xt+1, y), to approximate the
optimal proposals pθ(xt | xt+1, y) in eq. (7). Specifically, we define twisted proposals as

p̃θ(x
t | xt+1, y) := N

(
xt;xt+1 + σ2sθ(x

t+1, y), σ̃2
)
, (9)

where sθ(x
t+1, y) := sθ(x

t+1) +∇xt+1 log p̃θ(y | xt+1) (10)

is an approximation of the conditional score, sθ(xt+1, y) ≈ ∇xt+1 log pθ(x
t+1 | y), and σ̃2 is the

proposal variance. For simplicity one could choose σ̃2 = σ2 to match the variance of pθ(xt | xt+1).

Equation (9) builds on previous works (e.g. [33, 31]) that seek to approximate the reversal of a
conditional forward process. The gradient in eq. (10) is computed by back-propagating through
x̂θ(x

t+1). We further discuss this technique, which has been used before [e.g. in 19, 32], in Section 4.

Twisted targets and weighting functions. Because p̃θ(x
t | xt+1, y) will not in general coincide

with the optimal twisted proposal pθ(xt | xt+1), we must introduce non-trivial weighting functions
to ensure the resulting SMC sampler converges to the desired final target. In particular, we define
twisted weighting functions as

wt(x
t, xt+1) :=

pθ(x
t | xt+1)p̃θ(y | xt)

p̃θ(y | xt+1)p̃θ(xt | xt+1, y)
, t = 0, . . . , T − 1 (11)

and wT (x
T) := p̃θ(y | xT). The weighting functions in eq. (11) recover the optimal, constant

weighting functions if all other approximations at play are exact.

These tractable twisted proposals and weighting functions define intermediate targets that gradually
approach the final target ν0 = pθ(x

0:T | y). Substituting into eq. (4) each p̃θ(x
t | xt+1, y) in eq. (9)

for rt(xt | xt+1) and wt(x
t, xt+1) in eq. (11) and then simplifying we obtain the intermediate targets

νt(x
0:T) ∝ pθ(x

0:T | y)
[p̃θ(y | xt)
pθ(y | xt)

t−1∏
t′=0

p̃θ(x
t′ | xt′+1, y)

pθ(xt
′ | xt′+1, y)

]
. (12)

The right-hand bracketed term in eq. (12) can be understood as the discrepancy of νt from the final
target ν0 accumulated from step t to 0 (see Appendix A.3 for a derivation). As t approaches 0,
p̃θ(y | xt) improves as an approximation of pθ(y | xt), and the t-term product inside the bracket
consists of fewer terms – the latter accounts for the discrepancy between practical and optimal
proposals. Finally, at t = 0, because p̃θ(y | x0) = pθ(y | x0) by construction, eq. (12) reduces to
ν0(x

0:T) = pθ(x
0:T | y), as desired.

The TDS algorithm and asymptotic exactness. Together, the twisted proposals p̃θ(xt | xt+1, y) and
weighting functions wt(xt, xt+1) lead to Twisted Diffusion Sampler, or TDS (Algorithm 1). While
Algorithm 1 states multinomial resampling for simplicity, in practice other resampling strategies (e.g.
systematic [5, Ch. 9]) may be used as well. Under additional conditions, TDS provides arbitrarily
accurate estimates of pθ(x0 | y). Crucially, this guarantee does not rely on assumptions on the
accuracy of the approximations used to derive the twisted proposals and weights. Appendix A
provides the formal statement with complete conditions and proof.

Theorem 1. (Informal) Let PK(x0) = (
∑K
k′ wk′)

−1
∑K
k=1 wkδx0

k
(x0) denote the discrete measure

defined by the particles and weights returned by Algorithm 1 with K particles. Under regularity
conditions on the twisted proposals and weighting functions, PK(x0) converges setwise to pθ(x

0 | y)
as K approaches infinity.

5

3.3 TDS for inpainting, additional degrees of freedom

The twisting functions p̃θ(y | xt) := py|x0(y|x̂θ(xt)) we introduced above are one convenient option,
but are sensible only when py|x0(y|x̂θ(xt)) is differentiable and strictly positive. We now show
how alternative twisting functions lead to proposals and weighting functions that address inpainting
problems and more flexible conditioning specifications. In these extensions, Algorithm 1 still applies
with the new definitions of twisting functions. Appendix A provides additional details, including the
adaptation of TDS to variance preserving diffusion models [18].

Inpainting. Consider the case that x0 can be segmented into observed dimensions M and unobserved
dimensions M̄ such that we may write x0 = [x0

M, x0
M̄
] and let y = x0

M, and take py|x0(y|x0) =

δy(x
0
M). The goal, then, is to sample pθ(x

0 | x0
M = y) = pθ(x

0
M̄
| x0

M)δy(x
0
M). Here we define the

twisting function for each t > 0 as

p̃θ(y | xt,M) := N
(
y; x̂θ(x

t)M, tσ2
)
, (13)

and set twisted proposals and weights according to eqs. (9) and (11). The variance in eq. (13) is
chosen as tσ2 = Varpθ [x

t | x0] for simplicity; in general, choosing this variance to more closely
match Varpθ [y | xt] may be preferable. For t = 0, we define the twisting function analogously
with small positive variance, for example as p̃θ(y | x0) = N (y;x0

M, σ2). This choice of simplicity
changes the final target slightly; alternatively, the final twisting function, proposal, and weights may
be chosen to maintain asymptotic exactness (see Appendix A.4).

Inpainting with degrees of freedom. We next consider the case when we wish to condition on
some observed dimensions, but have additional degrees of freedom. For example in the context of
motif-scaffolding in protein design, we may wish to condition on a functional motif y appearing
anywhere in a protein structure, rather than having a pre-specified set of indices M in mind. To handle
this situation, we (i) letM be a set of possible observed dimensions, (ii) express our ambivalence in
which dimensions are observed as y using randomness by placing a uniform prior on p(M) = 1/|M|
for each M ∈M, and (iii) again embed this new variable into our joint model to define the degrees
of freedom likelihood by p(y | x0) =

∑
M∈M pθ(M, y | x0) = |M|−1

∑
M∈M p(y | x0,M).

Accordingly, we approximate pθ(y | xt) with the twisting function

p̃θ(y | xt) := |M|−1
∑

M∈M

p̃θ(y | xt,M), (14)

with each p̃θ(y | xt,M) defined as in eq. (13). Notably, eqs. (13) and (14) coincide when |M| = 1.

The sum in eq. (14) may be computed efficiently because each term depends on xt only through the
same denoising estimate x̂θ(xt), which must be computed only once. Since computation of x̂θ(xt) is
the expensive step, the overall run-time is not significantly increased by using even large |M|.

3.4 TDS on Riemannian manifolds

TDS extends to Riemannian diffusion models on with little modification. Riemannian diffusion
models [8] are structured like in the Euclidean case, but with conditionals defined by tangent normal
distributions parameterized with a score approximation followed by a manifold projection step (see
e.g. [4, 8]). When we assume that (as, e.g., in [39]) the model is associated with a denoising network
x̂θ, twisting functions are also constructed analogously. For conditional tasks defined by likelihoods,
p̃θ(y | xt) in eq. (8) applies. For inpainting (and by extension, degrees of freedom), we propose

p̃θ(y | xt) = T N x̂θ(xt)M(y; 0, tσ2), (15)

where T N x̂θ(xt)M(0, tσ2) is a tangent normal distribution centered on x̂θ(x
t)M. As in the Eu-

clidean case, p̃θ(xt | xt+1, y) is defined with conditional score approximation sθ(x
t, y) = sθ(x

t) +
∇xt log p̃(y | xt), which is computable by automatic differentiation. Appendix B provides details.

4 Related work
There has been much recent work on conditional generation using diffusion models. These prior
works demand either task specific conditional training, or involve unqualified approximations and
can suffer from poor performance in practice. We discuss additional related work in Appendix C.

Gradient guidance. We use gradient guidance to refer to a general approach that incorporates
conditioning information with gradients through the neural network x̂θ(x

t). For example, in an

6

Figure 1: Errors of conditional mean estimations with 2 SEM error bars averaged over 25 replicates.
TDS applies to all three tasks and provides increasing accuracy with more particles.

inpainting setting, Ho et al. [19] propose a Gaussian approximation N (y | x̂θ(xt)M, α) to pθ(y | xt).
This approximation motivates a modified transition distribution as in Equation (9), with the corre-
sponding approximation to the conditional score as sθ(xt, y) = sθ(x

t)−∇xt∥y − x̂θ(x
t)M∥2/α.

This approach coincides exactly with TDS applied to the inpainting task when a single particle is
used. Similar Gaussian approximations have been used by [6, 32] for other inverse problems.

Gradient guidance can also be used with non-Gaussian approximations; e.g. using py|x0(y|x̂θ(xt)) ≈
pθ(y | xt) for a given likelihood py|x0(y|x0). This choice again recovers TDS with one particle.

Empirically, these heuristics can have unreliable performance, e.g. in image inpainting problems [40].
By comparison, TDS enjoys the benefits of gradient guidance by using it in proposals, while also
providing a mechanism to eliminate approximation error by simulating additional particles.

Replacement method. The replacement method [33] is a method introduced for image inpainting
using only unconditional diffusion models. The idea is to replace the observed dimensions of
intermediate samples xtM, with a noisy version of observation x0

M. However, it is a heuristic
approximation and can lead to inconsistency between inpainted region and observed region [23].
Additionally, the replacement method applies only to inpainting problems. While recent work has
extended the replacement method to linear inverse problems [e.g. 22], the approach provides no
accuracy guarantees. It is unclear how to extend these methods to arbitrary differentiable likelihoods.

SMC samplers for diffusion models. Most closely related to the present work is SMC-Diff [34],
which uses SMC to provide asymptotically accurate conditional samples for the inpainting problem.
However, this prior work (i) is limited to the inpainting case, and (ii) provides asymptotic guarantees
only under the assumption that the learned diffusion model exactly matches the forward noising
process, which is rarely satisfied in practice. Also, SMC-Diff does not leverage twisting functions.

In concurrent work, Cardoso et al. [2] propose MCGdiff, an alternative SMC algorithm that uses the
framework of auxiliary particle filtering [26] to provide asymptotically exact conditional inference.
Compared to TDS, MCGdiff avoids computing gradients of the denoising network but applies only
to linear inverse problems, with inpainting as a special case.

5 Simulation study and conditional image generation
We first test the dependence of the accuracy of TDS on the number of particles in synthetic set-
tings with tractable exact conditionals in Section 5.1. Section 5.2 compares TDS to alternative
approaches on class-conditional image generation, and an image inpainting experiment is included in
Appendix D.2.2. See Appendix D for all additional details.

Our evaluation includes: (1) TDS; (2) TDS-IS, an importance sampler that uses TDS’s proposal; (3) IS,
a naive importance sampler described in Section 3.1; and (4) Gradient Guidance. For inpainting-type
problems we further include: (5) Replacement method; and (6) SMC-Diff.

Each SMC sampler forms an approximation to pθ(x
0 | y) with K weighted particles (

∑K
k′=1 wk′)

−1 ·∑K
k=1 wkδx0

k
. Gradient guidance and replacement method are considered to form a similar particle-

based approximation with K independent samples viewed as K particles with uniform weights.

Compute Cost: Compared to unconditional generation, TDS has compute cost that is (i) larger by a
constant factor due to the need to backpropogate through the denoising network when computing the
conditional score approximation and (ii) linear in the number of particles. As a result, the compute
cost at inference cost is potentially large relative for accurate inference to be achieved.

7

By comparison, conditional training methods provide fast inference by amortization [13], in which
most computation is done ahead of time. Hence they may be preferable for applications where
sampling time computation is a primary concern. On the other hand, TDS may be preferable when the
likelihood criterion is readily available (e.g. through an existing classifier on clean data) but training
an amortized model poses challenges; for example, the labeled data, neural-network engineering
expertise, and up-front compute resources required for amortization training can be prohibitive.

5.1 Applicability and precision of TDS in two dimensional simulations

We explore two questions in this section: (i) what sorts of conditioning information can be handled by
TDS and other methods, and (ii) how does the precision of TDS depend on the number of particles?

To study these questions, we first consider an unconditional diffusion model pθ(x0) approximation
of a bivariate Gaussian. For this choice, the marginals of the forward process are also Gaussian,
and so we may define pθ(x

0:T) with an analytically tractable score function without neural network
approximation. Consequently, we can analyze the performance without the influence of score network
approximation errors. And the choice of a two-dimensional diffusion permits close approximation of
exact conditional distributions by numerical integration that can then be used as ground truth.

We consider three test cases defining the conditional information: (1) Smooth likelihood: y is an
observation of the Euclidean norm of x with Laplace noise, with pθ(y | x0) = exp{|∥x0∥2 − y|}/2.
This likelihood is smooth almost everywhere.3 (2) Inpainting: y is an observation of the first
dimension of x0, with pθ(y | x0,M = 0) = δy(x

0
0). (3) Inpainting with degrees-of-freedom: y is

a an observation of either the first or second dimension of x0, withM = {0, 1} and pθ(y | x0) =
1
2 [δy(x

0
0) + δy(x

0
1)].. In all cases we fix y = 0 and consider estimating Epθ [x0 | y].

Figure 1 reports the estimation error for the mean of the desired conditional distribution, i.e.
∥
∑

wkx
0
k − Eq[x0 | y]∥2. TDS provides a computational-statistical trade-off: using more par-

ticles decreases mean square estimation error at the O(1/K) parametric rate (note the slopes of −1
in log-log scale) as expected from standard SMC theory [5, Ch. 11]. This convergence rate is shared
by TDS, TDS-IS, and IS in the smooth likelihood case, and by TDS, SMCDiff and in the inpainting
case; TDS-IS, IS and SMCDiff are applicable however only in these respective cases, whereas TDS
applicable in all cases. The only other method which applies to all three settings is Gradient Guidance,
which exhibits significant estimation error and does not improve with many particles.

5.2 Class-conditional image generation

We next study the performance of TDS on diffusion models with neural network approximations to the
score functions. In particular, we study the class-conditional image generation task, which involves
sampling an image from pθ(x

0 | y) ∝ pθ(x
0)py|x0(y|x0), where pθ(·) is a pretrained diffusion model

on images x0, y is a given image class, and py|x0(y|·) is the classification likelihood. To assess the
faithfulness of generation, we evaluate classification accuracy on predictions of conditional samples
x0 given y, made by the same classifier that specifies the likelihood. In all experiments, we follow
the standard practice of returning the denoising mean on the final sample [18].

On the MNIST dataset, we compare TDS to TDS-IS, Gradient Guidance, and IS. Figure 2a compares
the conditional samples of TDS and Gradient Guidance given class y = 7. Samples from Gradient
Guidance have noticeable artifacts, and most of them do not resemble the digit 7; by contrast, TDS
produces authentic and correct digits.

Figure 2b presents an ablation study of the effect of # of particles K on MNIST. For all SMC samplers,
more particles improve the classification accuracy, with K = 64 leading to nearly perfect accuracy.
The performance of Gradient Guidance is constant with respect to K (in expectation). Notably, for
fixed K, TDS and TDS-IS have comparable performance and outperform Gradient guidance and IS.

We next apply TDS to higher dimension datasets. Figure 2c shows samples from TDS (K = 16)
using a pre-trained diffusion model and a pretrained classifier on the ImageNet dataset (256×256×3
dimensions). These samples are qualitatively good and capture the class label. Appendix D.2.3
provides more samples, comparision to Classifier Guidance [9], and results for the CIFAR-10 dataset.

3This likelihood is smooth except at the point x = (0, 0).

8

TDS Gradient Guidance

(a) MNIST: samples by TDS (K = 64)
and Gradient Guidance given class ‘7’.
TDS samples are randomly selected out
of 64 particles in a single SMC run.

1 2 4 8 16 32 64
of Particles (K)

20

60

100

Cl
as

s.
Ac

cu
ra

cy
 (%

)

TDS
TDS-IS
Gradient
Guidance
IS

(b) MNIST: classification accuracy vs.
K. Results are averaged over 1,000
runs with error bars denoting 2 stan-
dard errors.

(c) ImageNet: samples
by TDS (K = 16) given
class ‘brambling’ from 4
independent SMC runs.

Figure 2: Image class-conditional generation task.

TDS can be extended by exponentiating twisting functions with a twist scale. This extension is
related to the existing literature of Classifier Guidance that considers re-scaling the gradient of the
log classification probability. See Appendix D.2.1 for details and ablation study.

6 Case study in computational protein design: the motif-scaffolding problem
The biochemical functions of proteins are typically imparted by a small number of atoms, known
as a motif, that are stabilized by the overall protein structure, known as the scaffold [36]. A central
task in protein design is to identify stabilizing scaffolds in response to motifs expected to confer
function. We here describe an application of TDS to this task, and compare TDS to the state-of-the-art
conditionally-trained model, RFdiffusion. See additional details in Appendix E.

Given a generative model supported on designable protein structures pθ(x0), suitable scaffolds may
be constructed by solving a conditional generative modeling problem [34]. Complete structures
are first segmented into a motif x0

M and a scaffold x0
M̄
, i.e. x0 = [x0

M, x0
M̄
]. Putative compatible

scaffolds are then identified by (approximately) sampling from pθ(x
0
M̄
| x0

M) [34].

While the conditional generative modeling approach to motif-scaffolding has produced functional,
experimentally validated structures for certain motifs [37], the general problem remains open. More-
over, current methods for motif-scaffolding require one to specify the location of the motif within the
primary sequence of the full scaffold; this choice can require expert knowledge and trial and error.

We hypothesized that improved motif-scaffolding could be achieved through accurate conditional
sampling. To this end, we applied TDS to FrameDiff, a Riemannian diffusion model that param-
eterizes protein backbones as a collection of N rigid bodies (known as residues) in the manifold
SE(3)N [39].4 Each of the N elements of SE(3) consists of a rotation matrix and a translation that
parameterize the locations of the backbone atoms of each residue.

Likelihood, twisting, and degrees of freedom. The basis of our approach to the motif scaffolding
problem is analogous to the inpainting case described in Section 3.3. We let py|x0(y|x0) = δy(x

0
M),

where y ∈ SE(3)M describes the coordinates of backbone atoms of an M = |M| residue motif. As
such, to define twisting function we adopt the Riemannian TDS formulation described in Section 3.4.

To eliminate the requirement that the placement of the motif within the scaffold be pre-specified, we
incorporate the motif placement as a degree of freedom. We (i) treat the indices of the motif within
the chain as a mask M, (ii) letM be a set of possible masks of size equal to the length of the motif,
and (iii) apply Equation (14) to average over these possible masks.

For some scaffolding problems, it is known that all motif residues must appear with contiguous
indices. In this case we chooseM to be the set of all possible contiguous masks. However, when
motif residues are only known to appear in two or more possibly discontiguous blocks, the number
of possible placements can be too large and we choose M by randomly sampling at most some
maximum number (# Motif Locs.) of masks.

We similarly eliminate the global translation and rotation of the motif as a degree of freedom. The
motivation is that restricting to one possible pose of the motif narrows the conditional distribution,

4https://github.com/jasonkyuyim/se3_diffusion

9

https://github.com/jasonkyuyim/se3_diffusion

1 2 4 8 16
Particles

0

5

10

15

20

25

Su
cc

es
s r

at
e

(%
)

1 10 10010000
Motif Locs.

1 10 100 1000
Motif Rots.

0.5 0.75 1.0 2.0 3.0
Twist Scale

(a) TDS motif-scaffolding success rate (test case 5IUS) improves with
more particles, and degrees of freedom, and twist-scale.

Scaffold TDS & RF

size FrameDiff diffusion

<100 res. 9 3

≥ 100 res. 2 8

Overall 11 11

(b) # problems with higher success
rate

Figure 3: Protein motif-scaffolding case study results

thereby making inference more challenging. For translation, we use a likelihood that is invariant to
the motif’s center-of-mass and placement in the final scaffold by choosing py|x0(y|x) = δPy(PxM)
where P is a projection matrix that removes the center of mass of a vector [see e.g. 39, section 3.3].
For rotation, we average the likelihood across some number (# Motif Rots.) of possible rotations.

Ablation study. We first examine the impact of several parameters of TDS on success rate in an in
silico self-consistency evaluation [34]. We begin with single problem (5IUS) in the benchmark set
introduced by [37], before testing on the full set. Figure 3a (Left) shows that success rate increases
monotonically with the number of particles. Non-zero success rates in this setting required accounting
for multiple motif locations; Figure 3a (Left) uses 1,000 possible motif locations and 100 rotations.

We tested the impact of the degrees of freedom by evaluating the success rate of TDS (K=1) with
increasing motif locations and 100 rotations (Figure 3a Center Left), and increasing rotations and
1,000 locations (Figure 3a Center Right). The success rate was 0% without accounting for either
degree of freedom, and increased with larger numbers of locations and rotations. We also explored
including a heuristic twist scale as considered for image tasks (Section 5.2); in this case, the twist
scale is a multiplicative factor on the logarithm of the twisting function. Figure 3a (Right) shows
larger twist scales gave higher success rates on this test case, where we use 8 particles, 1,000 possible
motif locations and 100 rotations. However, this trend is not monotonic for all problems (Figure P).

Evaluation on full benchmark. We next evaluate on TDS on a benchmark set of 24 motif-scaffolding
problems [37] and compare to the previous state of the art, RFdiffusion. RFdiffusion operates on
the same rigid body representation of protein backbones as FrameDiff. TDS is run with K=8, twist
scale=2, and 100 rotations and 1,000 motif location degrees of freedom (100,000 combinations total).

Overall, TDS (applied to FrameDiff) and RFdiffusion have comparable performance (Figure 3b);
each provides a success rate higher than the other in 11/24 cases; on two problems both methods
have a 0% success rate (full results in Figure O). This performance is obtained despite the fact that
FrameDiff, unlike RFdiffusion, is not trained to perform motif scaffolding. The division between
problems on which each method performs well is primarily explained by total scaffold length, with
TDS providing higher success rates on smaller scaffolds.

We suspect the shift in performance with scaffold length owes properties of the underlying diffusion
models. First, long backbones generated unconditionally by RFdiffusion are designable with higher
frequency than those generated by FrameDiff [39]. Second, unlike RFdiffusion, FrameDiff can not
condition on the fixed motif sequence.

7 Discussion
We propose TDS, a practical and asymptotically exact conditional sampling algorithm for diffusion
models. We compare TDS to other approaches and demonstrate the effectiveness and flexibility
of TDS on image class conditional generation and inpainting tasks. On protein motif-scaffolding
problems with short scaffolds, TDS outperforms the current (conditionally trained) state of the art.

A limitation of TDS is its requirement for additional computes to simulate multiple particles. While
we observe improved performance with just two particles in some cases, the optimal number is
problem dependent. Moreover, the computational efficiency depends on how closely the twisting
functions approximate exact conditionals, which depends on the unconditional model and conditioning
information. Lastly, choosing twisting functions for generic constraints may be challenging. Our
future work will focus on addressing these limitations and improving the computational efficiency.

10

Acknowledgements
We thank Hai-Dang Dau, Arnaud Doucet, Joe Watson, and David Juergens for helpful discussion,
Jason Yim for discussions and code, and David Baker for additional guidance.

References
[1] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum,

Jonas Geiping, and Tom Goldstein. Universal guidance for diffusion models. arXiv preprint
arXiv:2302.07121, 2023.

[2] Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, and Eric Moulines. Monte Carlo
guided diffusion for Bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023.

[3] Sourav Chatterjee and Persi Diaconis. The sample size required in importance sampling. The
Annals of Applied Probability, 2018.

[4] Gregory Chirikjian and Marin Kobilarov. Gaussian approximation of non-linear measurement
models on Lie groups. In 53rd IEEE Conference on Decision and Control. IEEE, 2014.

[5] Nicolas Chopin and Omiros Papaspiliopoulos. An introduction to sequential Monte Carlo.
Springer, 2020.

[6] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye.
Diffusion posterior sampling for general noisy inverse problems. In International Conference
on Learning Representations, 2023.

[7] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, , Philip J Leung,
Timothy Huddy, Sam Pellock, Doug Tischer, F Chan, Brian Koepnick, H Nguyen, Alex Kang,
B Sankaran, Asim K. Bera, Neil P. King, and David Baker. Robust deep learning-based protein
sequence design using ProteinMPNN. Science, 2022.

[8] Valentin De Bortoli, Emile Mathieu, Michael John Hutchinson, James Thornton, Yee Whye
Teh, and Arnaud Doucet. Riemannian score-based generative modelling. In Advances in Neural
Information Processing Systems, 2022.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis.
Advances in Neural Information Processing Systems, 2021.

[10] Arnaud Doucet, Nando De Freitas, and Neil James Gordon. Sequential Monte Carlo methods
in practice. Springer, 2001.

[11] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce, reuse, recycle: Composi-
tional generation with energy-based diffusion models and MCMC. In International Conference
on Machine Learning, 2023.

[12] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 2011.

[13] Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In
Proceedings of the Annual Meeting of the Cognitive Science Society, 2014.

[14] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing). IET,
1993.

[15] Pieralberto Guarniero, Adam M Johansen, and Anthony Lee. The iterated auxiliary particle
filter. Journal of the American Statistical Association, 2017.

[16] Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet. Controlled sequen-
tial Monte Carlo. Annals of Statistics, 2020.

11

[17] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, 2020.

[19] Jonathan Ho, Tim Salimans, Alexey A Gritsenko, William Chan, Mohammad Norouzi, and
David J Fleet. Video diffusion models. In Advances in Neural Information Processing Systems,
2022.

[20] John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A A Kohl, Andy Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David A. Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska,
Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior,
Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure
prediction with AlphaFold. Nature, 2021.

[21] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Advances in Neural Information Processing Systems,
2022.

[22] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. In Advances in Neural Information Processing Systems, 2022.

[23] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[24] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano
Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations. In
International Conference on Learning Representations, 2021.

[25] Christian A Naesseth, Fredrik Lindsten, and Thomas B Schön. Elements of sequential Monte
Carlo. Foundations and Trends in Machine Learning, 2019.

[26] Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle filters. Journal
of the American Statistical Association, 1999.

[27] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

[28] Herbert Robbins. An empirical Bayes approach to statistics. In 3rd Berkeley Symposium on
Mathematical Statistics, 1956.

[29] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 Conference Proceedings, 2022.

[30] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[31] Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. Conditional
simulation using diffusion Schrödinger bridges. In Uncertainty in Artificial Intelligence, 2022.

[32] Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023.

[33] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

12

[34] Brian L Trippe, Jason Yim, Doug Tischer, Tamara Broderick, David Baker, Regina Barzilay,
and Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3D for the
motif-scaffolding problem. In International Conference on Learning Representations, 2023.

[35] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
Computation, 2011.

[36] Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson, Karla M Castro,
Robert Ragotte, Amijai Saragovi, Lukas F Milles, Minkyung Baek, Ivan Anishchenko, Wei
Yang, Derrick R Hicks, Marc Exposit, Thomas Schlichthaerle, Jung-Ho Chun, Nathaniel
Dauparas, Justas Bennett, Basile I M Wicky, Andrew Muenks, Frank DiMaio, Bruno Correia,
Sergey Ovchinnikov, and David Baker. Scaffolding protein functional sites using deep learning.
Science, 2022.

[37] Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
Baek, and David Baker. De novo design of protein structure and function with RFdiffusion.
Nature, 2023.

[38] Nick Whiteley and Anthony Lee. Twisted particle filters. The Annals of Statistics, 2014.

[39] Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina
Barzilay, and Tommi Jaakkola. SE(3) diffusion model with application to protein backbone
generation. In International Conference on Machine Learning, 2023.

[40] Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi Jaakkola, and Shiyu Chang. Towards co-
herent image inpainting using denoising diffusion implicit models. In International Conference
on Machine Learning, 2023.

13

Appendix

A Twisted Diffusion Sampler additional details . 14

B Riemannian Twisted Diffusion Sampler . 18

C Additional Related Work . 20

D Empirical results additional details. 20

E Motif-scaffolding application details . 28

A Twisted Diffusion Sampler additional details
In this section we provide additional details on TDS. Appendix A.1 describes its generalization
to alternative common formulations of diffusion models. Appendix A.2 describes the choices of
proposal variance and resampling strategy. Appendix A.3 provides a derivation of Equation (12).
Appendix A.4 describes modifications to the final step of TDS in inpainting and inpainting with
degrees of freedom applications. And Appendix A.5 provides a full statement and proof of Theorem 1.

A.1 Diffusion models with non-constant noise variance and variance-preserving scaling

TDS as developed in Section 3 assumed noise with constant variance σ2 added at each timestep. This
choice corresponds to a particular discretization of a “variance exploding” (VE) diffusion model
[33]. Here we describe generalizations of TDS to non-constant variance schedules, and to variance
preserving (VP) diffusion models [18]. We adopt the VP formulation in our experiments; though it
introduces additional notation, it is known to work well in practice [33].

TDS algorithm for variance exploding diffusion models. VE diffusion models define the forward
process q by

q(x1:T | x0) :=

T∏
t=1

q(xt | xt−1), q(xt | xt−1) := N (xt;xt−1, σ2
t). (16)

where σ2
t is an increasing sequence of variances such that q(xT) ≈ N (0, σ̄2

T), with σ̄2
t :=

∑t
t′=1 σ

2
t′

for t = 1, · · · , T . And so one can set p(xT) = N (0, σ̄2
T) to match q(xT). Notably, Equation (16)

implies the conditional q(xt | x0) = N (xt;x0, σ̄2
t).

The reverse diffusion process pθ is parameterized as

pθ(x
0:T) := p(xT)

1∏
t=T

pθ(x
t−1 | xt), pθ(x

t−1 | xt) := N (xt−1;xt + σ2
t sθ(x

t, t), σ2
t)

where the score network sθ is modeled through a denoiser network x̂θ by sθ(x
t, t) := (x̂θ(x

t, t; θ)−
xt)/σ̄2

t . Note that the constant schedule is a special case where σ2
t = σ2, and σ̄2

t = tσ2 for all t.

The TDS algorithm for general VE models is described in Algorithm 1, where tσ2 in Line 6 is
replaced by σ̄2

t and σ2 in Line 7 is replaced by σ2
t .

Extension to variance preserving diffusion models. Another widely used diffusion framework is
variance preserving (VP) diffusion models [18]. VP models define the forward process q by

q(x1:T | x0) :=

T∏
t=1

q(xt | xt−1), q(xt | xt−1) := N (xt;
√

1− σ2
t x
t−1, σ2

t)

where σ2
t is a sequence of increasing variances chosen such that q(xT) ≈ N (0, 1), and so one

can set p(xT) = N (0, 1). Define αt := 1 − σ2
t , ᾱt :=

∏t
t′=1 αt′ , and σ̄2

t := 1 − ᾱt. Then the
marginal conditional of eq. (16) is q(xt | x0) = N (xt;

√
ᾱtx

0, σ̄2
t). The reverse diffusion process pθ

is parameterized as

pθ(x
0:T) := p(xT)

1∏
t=T

pθ(x
t−1 | xt), pθ(x

t−1 | xt) := N (xt−1;
1
√
αt

xt +
σ2
t√
αt

sθ(x
t, t), σ2

t)

14

where sθ is now defined through the denoiser x̂θ by sθ(x
t, t) := (

√
ᾱtx̂θ(x

t, t; θ)− xt)/σ̄2
t .

TDS in Algorithm 1 extends to VP models as well, where the conditional score approximation in
Line 6 is changed to s̃k ← (

√
ᾱt+1x̂θ(x

t+1
k) − xt+1

k)/σ̄2
t+1 +∇xt+1

k
log p̃t+1

k , and the proposal in

Line 7 is changed to xtk ∼ p̃θ(· | xt+1
k , y) := N

(
1√
αt+1

xt+1
k +

σ2
t+1√
αt+1

s̃k, σ̃
2
)
.

A.2 TDS parameters

Proposal variance. The proposal distribution in Line 7 of Algorithm 1 is associated with a variance
parameter σ̃2. In general, this parameter can be dependent on the time step, i.e. replacing σ̃2 by some
σ̃2
t+1 in Line 7. Unless otherwise specified, we set σ̃2

t+1 := Varpθ [x
t | xt+1] the variance of the

unconditional diffusion model (typically learned along with the score network during training).

Resampling strategy. The mulinomial resampling strategy in Line 4 of Algorithm 1 can be replaced
by other strategies, see [25, Chapter 2] for an overview. In our experiments, we use the systematic
resampling strategy.

In addition, one can consider setting an effective sample size (ESS) threshold (between 0 and 1), and
only when the ESS is smaller than this threshold, the resampling step is triggered. ESS thresholds for
resampling are commonly used to improve efficiency of SMC algorithms [see e.g. 25, Chapter 2.2.2],
but for simplicity we use TDS with resampling at every step unless otherwise specified.

A.3 Derivation of Equation (12)

Equation (12) illustrated how the extended intermediate targets νt(x
0:T) provide approximations

to the final target pθ(x0:T | y) that become increasingly accurate as t approaches 0. We obtain
Equation (12) by substituting the proposal distributions in Equation (9) and weights in Equation (11)
into Equation (4) and simplifying.

νt(x
0:T) ∝

[
p(xT)

T−1∏
t′=0

p̃θ(x
t′ | xt

′+1, y)

][
p̃(y | xT)

T−1∏
t′=t

pθ(x
t′ | xt′+1)p̃θ(y | xt

′
)

p̃θ(y | xt′+1)p̃θ(xt
′ | xt′+1, y)

]
Rearrange and cancel pθ and p̃θ terms.

=

[
p(xT)

T−1∏
t′=t

pθ(x
t′ | xt

′+1)

][
p̃θ(y | xt)

t−1∏
t′=0

p̃θ(x
t′ | xt

′+1, y)

]
Group pθ terms by chain rule of probability.

= pθ(x
t:T)p̃θ(y | xt)

t−1∏
t′=0

p̃θ(x
t′ | xt

′+1, y)

Apply Bayes’ rule and note that pθ(y | xt:T) = pθ(y | xt).

∝ pθ(x
t:T | y) p̃θ(y | x

t)

p(y | xt)

t−1∏
t′=0

p̃θ(x
t′ | xt

′+1, y)

Note that pθ(x0:T | y) = pθ(x
t:T | y)

t′−1∏
t=0

pθ(x
t′ | xt

′+1, y).

= pθ(x
0:T | y)

[
p̃θ(y | xt)
p(y | xt)

t−1∏
t′=0

p̃θ(x
t′ | xt′+1, y)

pθ(xt
′ | xt′+1, y)

]
.

The final line is the desired expression in Equation (12).

A.4 Inpainting and degrees of freedom final steps for asymptotically exact target

The final (t = 0) twisting function for inpainting and inpainting with degrees of freedom described in
Section 3.3 do not satisfy the assumption of Theorem 2 that p̃θ(y | x0) = py|x0(y|x0). This choice
introduces error in the final target of TDS relative to the exact conditional pθ(x0:T | y).

15

For inpainting, to maintain asymptotic exactness one may instead choose the final proposal and
weights as

p̃θ(x
0 | x1, y;M) := δy(x

0
M)pθ(x

0
M̄ | x

1) and w0(x
0, x1) = 1.

One can verify the resulting final target is pθ(x0 | x0
M = y) according to eq. (4).

Similarly, for inpainting with degrees of freedom, one may define the final proposal and weight as

p̃θ(x
0 | x1, y,M) :=

∑
M∈M

pθ(x
0
M | x1,M)∑

M′∈M pθ(x0
M′ | x1,M′)

δy(x
0
M)pθ(x

0
M̄ | x

1) and w0(x
0, x1) = 1.

A.5 Asymptotic accuracy of TDS – additional details and full theorem statement

In this section we (i) characterize sufficient conditions on the model and twisting functions under
which TDS provides arbitrarily accurate estimates as the number of particles is increased and (ii)
discuss when these conditions will hold in practice for the twisting function p̃θ(y | xt) introduced in
Section 3.

We begin with a theorem providing sufficient conditions for asymptotic accuracy of TDS.
Theorem 2. Let pθ(x0:T) be a diffusion generative model (defined by eqs. (1) and (3)) with

pθ(x
t | xt+1) = N

(
xt | xt+1 + σ2

t+1sθ(x
t+1), σ2

t+1I
)
,

with variances σ2
1 , . . . , σ

2
T . Let p̃θ(y | xt) be twisting functions, and

rt(x
t | xt+1) = N

(
xt | xt+1 + σ2

t+1[sθ(x
t+1) +∇xt+1 log p̃θ(y | xt+1)], σ̃2

t+1

)
be proposals distributions for t = 0, . . . , T − 1, and let PK =

∑K
k=1 w

0
kδx0

k
for weighted particles

{(x0
k, w

0
k)}Kk=1 returned by Algorithm 1 with K particles. Assume

(a) the final twisting function is the likelihood, p̃θ(y | x0) = py|x0(y|x0),

(b) the first twisting function p̃θ(y | xT), and the ratios of subsequent twisting functions
p̃θ(y | xt)/p̃θ(y | xt+1) are positive and bounded,

(c) each log p̃θ(y | xt) with t > 0 is continuous and has bounded gradients in xt, and

(d) the proposal variances are larger than the model variances, i.e. for each t, σ̃2
t > σ2

t .

Then PK converges setwise to pθ(x
0 | y) with probability one, that is for every set A,

limK→∞ PK(A) =
∫
A
pθ(x

0 | y)dx0.

The assumptions of Theorem 2 are readily satisfied in common applications.

• Assumption (a) may be satisfied by construction by choosing p̃θ(y | x0) = py|x0(y|x0) by
defining x̂θ(x

0, t = 0) = x0.

• Assumption (b) is satisfied if (i) py|x0(y|x) is smooth in x and everywhere positive and
(ii) p̃θ(y | xt) = py|x0(y|x̂θ(xt)) where x̂θ(x

t) takes values in some compact domain.
An alternative sufficient condition for Assumption (b) is for py|x0(y|x) to be positive and
bounded away from zero; this latter condition will hold when, for example, py|x0(y|x) is a
classifier fit with regularization.

• Assumption (c) is the strongest assumption. It will be satisfied, for example, if (i)
p̃θ(y | xt) = py|x0(y|x̂θ(xt)), and (ii) py|x0(y|x) and x̂θ(x

t) are smooth in x and xt, with
uniformly bounded gradients. While smoothness of x̂θ(·, t) can be encouraged by the use of
skip-connections and regularization, x̂θ(·, t) may present sharp transitions, particularly for t
close to zero.

• Assumption (d), that the proposal variances satisfy σ̃2
t > σ2

t is likely not needed for the
result to hold. However, this assumption permits usage of existing SMC theoretical results
in the proof; in practice, our experiments use σ̃2

t = σ2
t , but alternatively the assumption

could be met by inflating each σ̃2
t by some arbitrarily small δ without markedly impacting

the behavior of the sampler.

16

Proof of Theorem 2: Theorem 2 characterizes a set of conditions under which SMC algorithms
converge. We restate this result below in our own notation.
Theorem 3 (Chopin and Papaspiliopoulos [5] – Proposition 11.4). Let {(x0

k, w
0
k)}Kk=1 be the particles

and weights returned at the last iteration of a sequential Monte Carlo algorithm with K particles
using multinomial resampling. If each weighting function wt(x

t, xt+1) is positive and bounded, then
for every bounded, ν0-measurable function ϕ of xt

lim
K→∞

K∑
k=1

w0
kϕ(x

0
k) =

∫
ϕ(x0)ν0(x

0)dx0.

with probability one.

An immediate consequence of Theorem 3 is the setwise convergence of the discrete measures,
P̂K =

∑K
k=1 w

0
kδx0

k
. This can be seen by taking for each ϕ(x) = I[x ∈ A] for any ν0-measurable

set A. The theorem applies both in the Euclidean setting, where each xtk ∈ RD, as well as the
Riemannian setting.

We now proceed to prove Theorem 2.

Proof. To prove the theorem we show (i) the x0 marginal final target ν0 is pθ(x0 | y) and then (ii)
PK converges setwise to ν0.

We first show (i) by manipulating ν0 in Equation (4) to obtain pθ(x
0:T | y). From Equation (4) we

first have

ν0(x
0:T) =

1

L0

[
r(xT)

T−1∏
t=0

rt(x
t | xt+1)

][
wT (x

T)

T−1∏
t=0

wt′(x
t, xt+1)

]
Substitute in weights from eq. (11).

=
1

L0

[
p(xT)

T−1∏
t=0

rt(x
t | xt+1)

][
p̃θ(y | xT)

T−1∏
t=0

pθ(x
t | xt+1)p̃θ(y | xt)

p̃θ(y | xt+1)rt(xt | xt+1)

]
Rearrange pθ and rt terms, and cancel out rt terms.

=
1

L0

[
p(xT)

T−1∏
t=0

pθ(x
t | xt+1)

][
p̃θ(y | xT)

T−1∏
t=0

������
rt(x

t | xt+1)p̃θ(y | xt)
p̃θ(y | xt+1)������

rt(x
t | xt+1)

]
Collapse pθ terms.

=
1

L0
pθ(x

0:T)

[
T−1∏
t=0

p̃θ(y | xt)
p̃θ(y | xt+1)

]
p̃θ(y | xT)

Cancel out p̃θ terms.

=
1

L0
pθ(x

0:T)p̃θ(y | x0)

Recognize p̃θ(y | x0) = py|x0(y|x0) by Assm.(a) and apply Bayes′ rule with L0 = pθ(y).

= pθ(x
0:T | y).

The final line reveals that once we marginalize out x1:T we obtain ν0(x
0) = p(x0 | y) as desired.

We next show that PK converges to ν0 with probability one by applying Theorem 3. To apply
Theorem 3 it is sufficient to show that the weights at each step are upper bounded, as they are defined
through (ratios of) probabilities and hence are positive. Since there are a finite number of steps
T, it is enough to show that each wt is bounded. The inital weight is the initial twisting function,
wT (x

T) = p̃θ(y | xT), which is bounded by Assumption (b). So we proceed to intermediate weights.

To show that the weighting functions at subsequent steps are bounded, we decompose the log-
weighting functions as

logwt(x
t, xt+1) = log

p̃θ(y | xt)
p̃θ(y | xt+1)

+ log
pθ(x

t | xt+1)

rt(xt | xt+1)
,

17

and show independently that log p̃θ(y | xt)/p̃θ(y | xt+1) and log pθ(x
t | xt+1)/rt(x

t | xt+1) are
bounded. The first term log p̃θ(y | xt)/p̃θ(y | xt+1) is again bounded by Assumption (b), and we
proceed to the second.

That log pθ(xt | xt+1)/rt(x
t | xt+1) is bounded follows from Assumptions (c) and (d). First write

pθ(x
t | xt+1) = N

(
xt | µ̂, σ2

t+1I
)

with µ̂ = xt+1 + σ2
t+1sθ(x

t+1), and

rt(x
t | xt+1) = N

(
xt | µ̂ψ, σ̃2

t+1I
)
,

for µ̂ψ = µ̂+ σ2
t+1∇xt+1 log p̃θ(y | xt+1). The log-ratio then simplifies as

log
pθ(x

t | xt+1)

rt(xt | xt+1)
= log

|2πσ2
t+1I|−1/2 exp{−(2σ2

t+1)
−1∥µ̂− xt∥2}

|2πσ̃2
t+1I|−1/2 exp{−(2σ̃2

t+1)
−1∥µ̂ψ − xt∥2}

Rearrange and let C = log |2πσ2
t+1I|−1/2/|2πσ̃2

t+1I|−1/2

=
−1
2

[
σ−2
t+1∥µ̂− xt∥2 − σ̃−2

t+1∥µ̂ψ − xt∥2
]
+ C

Expand and rearrange ∥µ̂ψ − xt∥2 = ∥µ̂− xt∥2 + 2⟨µ̂ψ − µ̂, µ̂− xt⟩+ ∥µ̂ψ − µ̂∥2

=
−1
2

[
(σ−2
t+1 − σ̃−2

t+1)∥µ̂− xt∥2 − 2σ̃−2
t+1⟨µ̂ψ − µ̂, µ̂− xt⟩ − σ̃2

t+1∥µ̂ψ − µ̂∥2
]
+ C

Let C ′=C − 1

2
σ̃2
t+1∥µ̂ψ − µ̂∥2 and rearrange. Note that ∥µ̂ψ−µ̂∥2<∞ by Assm. (c).

=
−1
2

(σ−2
t+1 − σ̃−2

t+1)∥µ̂− xt∥2 + σ̃−2
t+1⟨µ̂ψ − µ̂, µ̂− xt⟩+ C ′

Apply Cauchy-Schwarz

≤ −1
2

(σ−2
t+1 − σ̃−2

t+1)∥µ̂− xt∥2 + σ̃−2
t+1∥µ̂ψ − µ̂∥ · ∥µ̂− xt∥+ C ′

Upper-bounding using that maxx
−a
2

x2 + bx =
b2

2a
for a = σ−2

t+1 − σ̃−2
t+1 > 0 by Assm. (d).

≤ 1

2

(σ̃−2
t+1∥µ̂ψ − µ̂∥)2

σ−2
t+1 − σ̃−2

t+1

+ C ′

=
σ̃−4
t+1

2(σ−2
t+1 − σ̃−2

t+1)
∥µ̂ψ − µ̂∥2 + C ′

Note that µ̂ψ = µ̂+ σ2
t+1∇xt+1 log p̃θ(y | xt+1).

=
σ̃−4
t+1

2(σ−2
t+1 − σ̃−2

t+1)
σ4
t+1∥∇xt+1 log p̃θ(y | xt+1)∥2 + C ′

≤ C ′′.

The final line follows from Assumption (c), that the gradients of the twisting functions are bounded.
The above derivation therefore provides that each wt is bounded, concluding the proof.

B Riemannian Twisted Diffusion Sampler
This section provides additional details on the extension of TDS to Riemannian diffusion models
introduced in Section 3. We first introduce the tangent normal distribution. We then provide with
background on Riemannian diffusion models, which we parameterize with the tangent normal. Then
we describe the extension of TDS to these models. Finally we show how Algorithm 1 modifies to this
setting.

The tangent normal distribution. Just as the Gaussian is the parametric family underlying Eu-
clidean diffusion models in Equation (3), the tangent normal (see e.g. [4, 8]) underlies generation in
Riemannian diffusion models so we review it here.

18

We take the tangent normal to be the distribution is implied by a two step procedure. Given a variable
x in the manifold, the first step is to sample a variable ȳ in Tx, the tangent space at x; if {h1, . . . , hD}
is an orthonormal basis of Tx one may generate

ȳ = µ+

D∑
d=1

σϵd · hd,

with ϵd
i.i.d.∼ N (0, 1), and σ2 > 0 a variance parameter. The second step is to project ȳ back onto

the manifold to obtain y = expx{ȳ} where expx{·} denotes the exponential map at x. The resulting
distribution of y is denoted as T N x(µ, σ

2). By construction, Tx is a Euclidean space with its origin
at x, so when ∥µ∥2 = 0, T N x(µ, σ

2) is centered on x. And since the geometry of a Riemannian
manifold is locally Euclidean, when σ2 is small the exponential map is close to the identity map and
the tangent normal is essentially a narrow Gaussian distribution in the manifold at x. Finally, we use
T N x(y;µ, σ

2) to denote the density of the tangent normal evaluated at y.

Because this procedure involves a change of variables from ȳ to y (via the exponential map), to
compute the tangent normal density one computes

T N x(y;µ, σ
2) = N (exp−1

x {y};µ, σ2)

∣∣∣∣ ∂∂y exp−1
x {y}

∣∣∣∣
where exp−1

x {y} is the inverse of the exponential map (from the manifold into Tx), and∣∣∣ ∂∂y exp−1
x {y}

∣∣∣ is the determinant of the Jacobian of the exponential map; when the manifold

lives in a higher dimensional subset of R, we take
∣∣∣ ∂∂y exp−1

x {y}
∣∣∣ to be the product of the positive

singular values of the Jacobian.

Riemannian diffusion models and the tangent normal distribution. Riemannian diffusion
models proceeds through a geodesic random walk [8]. At each step t, one first samples a variable x̄t

in Txt+1 ; if {h1, . . . , hD} is an orthonormal basis of Txt+1 one may generate

x̄t = σ2
t+1sθ(x

t+1) +

D∑
d=1

σt+1ϵd · hd,

with ϵd
i.i.d.∼ N (0, 1). One then projects x̄t back onto the manifold to obtain xt = expxt+1{x̄t}

where expx{·} denotes the exponential map at x.

This is equivalent to sampling xt from a tangent normal distribution as

xt ∼ p(xt | xt+1) = T N xt+1

(
xt;σ2

t+1sθ(x
t+1), σ2

t+1

)
.

TDS for Riemannian diffusion models. To extend TDS, appropriate analogues of the twisted
proposals and weights are all that is needed. For this extension we require that the diffusion model is
also associated with a manifold-valued denoising estimate x̂θ as will be the case when, for example,
sθ(x

t, t) := ∇xt log q(xt | x0 = x̂θ) for x̂θ = x̂θ(x
t, t). In contrast to the Euclidean case, a

relationship between a denoising estimate and a computationally tractable score approximation may
not always exist for arbitrary Riemannian manifolds; however for Lie groups when the the forward
diffusion is the Brownian motion, tractable score approximations do exist [39, Proposition 3.2].

For the case of positive and differentiable py|x0(y|x0), we again choose twisting functions
p̃θ(y | xt) := py|x0(y|x̂θ(xt)).

Next are the inpainting and inpainting with degrees of freedom cases. Here, assume that x0 lives
on a multidimensional manifold (e.g. SE(3)N) and the unmasked observation y = x0

M with M ⊂
{1, . . . , N} on a lower-dimensional sub-manifold (e.g. SE(3)|M|, with |M| < N). In this case,
twisting functions are constructed exactly as in Section 3.3, except with the normal density in
Equation (13) replaced with a Tangent normal as

p̃θ(y | xt)=T N x̂θ(xt)M(y; 0, σ̄2
t).

For all cases, we propose the twisted proposal as

p̃θ(x
t | xt+1, y)=T N xt+1

(
xt;σ2

t+1sθ(x
t+1, y), σ̃2

t+1

)
(17)

19

where as in the Euclidean case sθ(x
t, y) = sθ(x

t) +∇xt log p̃(y | xt).
Weights at intermediate steps are computed as in the Euclidean case (Equation (11)):

wt(x
t, xt+1) : =

pθ(x
t | xt+1)p̃θ(y | xt)

p̃θ(y | xt+1)p̃θ(xt | xt+1, y)

=
T N xt+1(xt;σ2

t+1sθ(x
t+1), σ2

t+1)p̃θ(y | xt)
p̃θ(y | xt+1)T N xt+1(xt;σ2

t+1sθ(x
t+1, y), σ̃2

t+1)
.

While the proposal and target contribute identical Jacobian determinant terms that cancel out, they
remain in the twisting functions.

Adapting the TDS algorithm to the Riemannian setting. To translate the TDS algorithm to the
Riemannian setting we require only two changes.

The first is on Algorithm 1 Line 6. Here we assume that the unconditional score is computed through
the transition density function:

sθ(x
t+1) := ∇xt+1 log qt+1|0(x

t+1 | x̂θ) for x̂θ = x̂θ(x
t+1).

Note that the gradient above ignores the dependence of x̂θ on xt+1.

The conditional score approximation in Line 6 is then replaced with

s̃k ← p̃θ(· | xt+1
k , y) := ∇xt+1

k
log qt+1|0(x

t+1
k | x̂θ) +∇xt+1

k
log p̃t+1

k for x̂θ = x̂θ(x
t+1
k).

Notably, s̃k is a Txt+1
k

-valued Riemannian gradient.

The second change is to make the proposal on Algorithm 1 Line 7 a tangent normal, as defined in
eq. (17).

C Additional Related Work
Training with conditioning information. Several approaches involve training a neural network
to directly sample from a conditional diffusion models. These approaches include (i) conditional
training with embeddings of conditioning information, e.g. for denoising images [30], and text-to-
image generation [27], (ii) conditioning training with a subset of the state space, e.g. for protein
design [37], and image inpainting [29], (iii) classifier-guidance [9, 33], an approach for generating
samples of a desired class, which requires training a time-dependent classifier to approximate, for
each t, pθ(y | xt), and training such a time-dependent classifier may be inconvenient and costly),
and (iv) classifier-free guidance [17], an approach that builds on classifier-guidance without training
a classifier, and instead trains a diffusion model with class information as additional input.

Langevin and Metropolis-Hastings steps. Some prior work has explored using Markov chain
Monte Carlo steps in sampling schemes to better approximate conditional distributions. For example
unadjusted Langevin dynamics [19, 33] or Hamiltonian Monte Carlo [11] in principle permit asymp-
totically exact sampling in the limit of many steps. However these strategies are only guaranteed
to target the conditional distributions of the joint model under the (unrealistic) assumption that the
unconditional model exactly matches th forward process, and in practice adding such steps can
worsen the resulting samples, presumably as a result of this approximation error [21]. By contrast,
TDS does not require the assumption that the learned diffusion model exactly matches the forward
noising process.

D Empirical results additional details
D.1 Synthetic diffusion models on two dimensional problems

Forward process. Our forward process is variance preserving (as described in Appendix A) with
T = 100 steps and a quadratic variance schedule. We set σ2

t = σ2
min + (tT)

2σ2
max with σ2

min = 10−5

and σ2
max = 10−1.

Unconditional target distributions and likelihood. We evaluate the different methods with two
different unconditional target distributions:

20

Figure D: Errors of conditional mean estimations with 2 SEM error bars averaged over 25 replicates
on mixture of Gaussians unconditional target. TDS applies to all three tasks and provides increasing
accuracy with more particles.

1. A bivariate Gaussian with mean at (12 ,
1
2) and covariance 0.9 and

2. A Gaussian mixture with three components with mixing proportions [0.3, 0.5, 0.2], means
[(1.54,−0.29), (−2.18, 0.57), (−1.09,−1.40)], and 0.2 standard deviations.

We evaluate on conditional distributions defined by the three likelihoods described in Section 5.1.

Figure D provides results analogous to those in Figure 1 but with the mixture of Gaussians uncon-
ditional target. In this second example we evaluate a with a variation of the inpainting degrees of
freedom case wherein we consider y = 1 andM = {[1], [2]}, so that py|x0(y|x0) = δy(x

0
1)+δy(x

0
2).

D.2 Image conditional generation experiments

We perform extensive ablation studies on class-conditional generatoin task and inpainting task using
the small-scale MNIST dataset (28×28×1 dimensions) in Appendix D.2.1 and Appendix D.2.2. And
we show TDS’s applicability to higher-dimensional datasets, namely CIFAR10 (32××3 dimensions)
and ImageNet256 (256× 256× 3 dimensions) in Appendix D.2.3.

D.2.1 Class-conditional generation on MNIST

Set-up. For MNIST, we set up a diffusion model using the variance preserving framework. The
model architecture is based on the guided diffusion codebase5 with the following specifications:
number of channels = 64, attention resolutions = "28,14,7", number of residual blocks = 3, learn
sigma (i.e. to learn the variance of pθ(xt−1 | xt)) = True, resblock updown = True, dropout = 0.1,
variance schedule = "linear". We trained the model for 60k epochs with a batch size of 128 and a
learning rate of 10−4 on 60k MNIST training images. The model uses T = 1, 000 for training and
T = 100 for sampling.

The classifier used for class-conditional generation and evaluation is a pretrained ResNet50 model.6
This classifier is trained on the same set of MNIST training images used by diffusion model training.

In addition we include a variation called TDS-truncate that truncates the TDS procedure at t = 10
and returns the prediction x̂θ(x

10).

Sample plots. To supplement the sample plot conditioned on class 7 in Figure 2a, we present
samples conditioned on each of the remaining 9 classes and from other methods. We observe that
samples from Gradient Guidance have noticeable artifacts, whereas the other 4 methods produce
authentic and correct digits. However, most samples from IS or TDS-IS are identical due to the
collapse of importance weights. By contrast, samples from TDS and TDS-truncate have greater
diversity, with the latter exhibiting slightly more variations

Ablation study on twist scales. We consider exponentiating and re-normalizing twisting functions
by a twist scale γ, i.e. setting new twisting functions to p̃θ(y | xt; γ) ∝ py|x0(y|x̂θ(xt))γ . In
particular, when t = 0, we set py|x0(y|x0; γ) ∝ py|x0(y|x0)γ . This modification suggests that the
targeted conditional distribution is now

pθ(x
0 | y; γ) ∝ pθ(x

0)py|x0(y|x0)γ .

5https://github.com/openai/guided-diffusion
6Downloaded from https://github.com/VSehwag/minimal-diffusion

21

https://github.com/openai/guided-diffusion
https://github.com/VSehwag/minimal-diffusion

TDS TDS-truncate TDS-IS Gradient Guidance IS

Figure E: MNIST class-conditional generation. 16 randomly chosen conditional samples from 64
particles in a single run, given class y. From top to bottom, y = 0, 1, 2, 3, 4, 5, 6, 8, 9.

22

1 2 4 8 16 32 64
of Particles (K)

50

75

100

Cl
as

s.
Ac

cu
ra

cy
 (%

) TDS

1 2 4 8 16 32 64
of Particles (K)

TDS-IS

1 2 4 8 16 32 64
of Particles (K)

Gradient Guidance
Twist Scale

1
2
3
4
10

(a) Classification accuracy (measured by the neural network classifier) v.s. number of particles K, under different
twist scales. Results are averaged over 1,000 random runs with error bands indicating 2 standard errors. Across
the panels we see that for all the methods, the larger the twist scale (i.e. the darker the line color), the higher the
classification accuracy. For TDS and TDS-IS, this improvement is more significant for smaller value of K,

1 2 3 4 10
Twist Scale

50

75

100

Hu
m

an
-ra

te
d

Ac
cu

ra
cy

 (%
)

TDS K=64
TDS K=2
TDS-IS K=64
TDS-IS K=2
Gradient Guidance

(b) Human-rated classification accuracy v.s. twist scale, for TDS (K = 64, 2), TDS-IS (K = 64, 2) and
Gradient Guidance. Results are averaged over 640 randomly chosen samples with error bands indicating 2
standard errors. For TDS (K = 64), increasing the twist scale generally decreases the human-rated accuracy. For
remaining methods, a moderate increase in twist scale improves the human-rated accuracy; however, excessively
large twist scale can hurt the accuracy.

Figure F: MNIST class-conditional generation: classification accuracy under different twist scales,
computed by a neural network classifier (top panel) and a human (bottom panel).

By setting γ > 1, the classification likelihood becomes sharper, which is potentially helpful for
twisting the samples towards a specific class. The TDS algorithm (and likewise TDS-IS and Gradient
Guidance) still apply with this new definition of twisting functions. The use of twist scale is similar
to the guidance scale introduced in the literature of Classifier Guidance, which is used to multiply the
gradient of the log classification probability [9].

In Figure F, we examine the effect of varying twist scales on classification accuracy of TDS, TDS-IS
and Gradient Guidance. We consider two ways to evaluate the accuracy. First, classification accuracy
computed by a neural network classifier, where the evaluation setup is the same as in Section 5.2.
Second, the human-rated classification accuracy, where a human (one of the authors) checks if a
generated digit has the right class and does not have artifacts. Since human evaluation is expensive,
we only evaluate TDS, TDS-IS (both with K = 64, 2) and Gradient Guidance. In each run, we
randomly sample one particle out of K particles according to the associated weights. We conduct 64
runs for each class label, leading to a total of 640 samples for human evaluation.

Figure Fa depicts the classification accuracy measured by a neural network classifier. We observe
that in general larger twist scale improves the classification accuracy. For TDS and TDS-IS, the
improvement is more significant for smaller number of particles K used.

Figure Fb depicts the human-rated accuracy. In this case, we find that larger twist scale is not
necessarily better. A moderately large twist scale (γ = 2, 3) generally helps increasing the accuracy,
while an excessively large twist scale (γ = 10) decreases the accuracy. An exception is TDS with
K = 64 particles, where any γ > 1 leads to worse accuracy compared to the case of γ = 1. Study on
twist scale aside, we find that using more particles K help improving human-rated accuracy (recall
that Gradient Guidance is a special case of TDS with K = 1): given the same twist scale, TDS with
K = 1, 2 or 64 has increasing accuracy. In addition, both TDS and TDS-IS with K = 64 and γ = 1

23

Twist scale=1 Twist scale=2 Twist scale=3 Twist scale=4 Twist scale=10

(a) TDS (K = 64). # of good-quality samples counted by human is 62, 61, 63, 60, 62, from left to right.

Twist scale=1 Twist scale=2 Twist scale=3 Twist scale=4 Twist scale=10

(b) TDS (K = 2). # of good-quality samples counted by human 49, 51, 51, 46, 45, from left to right.

Twist scale=1 Twist scale=2 Twist scale=3 Twist scale=4 Twist scale=10

(c) TDS-IS (K = 64). # of good-quality samples counted by a human is 62, 61, 64, 64, 61, from left to
right.

Twist scale=1 Twist scale=2 Twist scale=3 Twist scale=4 Twist scale=10

(d) TDS-IS (K = 2). # of good-quality samples counted by a human is 49, 52, 53, 52, 48, from left to
right.

Twist scale=1 Twist scale=2 Twist scale=3 Twist scale=4 Twist scale=10

(e) Gradient Guidance. # of good-quality samples counted by a human is 31, 38, 41, 39, 34, from left to
right.

Figure G: MNIST class-conditional generation: random samples selected from 64 random runs
conditioned on class 6 under different twist scales. Top to bottom: TDS (K = 64), TDS (K = 2),
TDS-IS (K = 64), TDS-IS (K = 2) and Gradient Guidance. In general, moderately large twist
scales improve the sample quality. However, overly large twist scale (e.g. 10) would distort the digit
shape with more artifacts, though retaining useful features that may allow a neural network classifier
to identity the class. 24

100 75 50 25 0
Time Step t

0

32

64

Ef
fe

ct
. S

am
pl

e
Si

ze

TDS
TDS-IS
IS

Figure H: ESS trace avg. over 100 runs (K = 64)

have almost perfect accuracy. The effect of K on human-rated accuracy is consistent with previous
findings with neural network classifier evaluation in Section 5.2.

We note that there is a discrepancy on the effects of twist scales between neural network evaluation
and human evaluation. We suspect that when overly large twist scale is used, the generated samples
may fall out of the data manifold; however, they may still retain features recognizable to a neural
network classifier, thereby leading to a low human-rated accuracy but a high classifier-rated accuracy.
To validate this hypothesis, we present samples conditioned on class 6 in Figure G. For example, in
Figure Ge, Gradient Guidance with γ = 1 has 31 good-quality samples out of 64, and the rest of the
samples often resamble the shape of other digits, e.g. 3,4,8; and Gradient Guidance with γ = 10 has
34 good-quality samples, but most of the remaining samples resemble 6 with many artifacts.

Effective sample size. Effective sample size (ESS) is a common metric used to diagnose the
performance of SMC samplers, which is defined as (

∑K
k=1 w

t
k)

2/(
∑K
k=1(w

t
k)

2) for K weighted
particles {xtk, wtk}Kk=1. Note that ESS is always bounded between 0 and K.

Figure H depicts the ESS trace comparison of TDS, TDS-IS, and IS. TDS has a general upward trend
of ESS approaching K = 64. Though in the final few steps ESS of TDS drops by a half, it is still
higher than that of TDS-IS and IS that deteriorates to around 1 and 6 respectively. In practice, one
can use the TDS-truncate variant introduced above to avoid the ESS drop in the final few steps.

D.2.2 Image inpainting on MNIST

The inpainting task is to sample images from pθ(x
0 | x0

M = y) given observed part x0
M = y. Here we

segment x0 = [x0
M, x0

M̄
] into observed dimensions M and unobserved dimensions M̄, as described

in Section 3.3.

In this experiment, we consider two types of observed dimensions: (1) M = “half”, where the left half
of an image is observed, and (2) M = “quarter”, where the upper left quarter of an image is observed.

We run TDS, TDS-IS, Gradient Guidance, SMC-Diff, and Replacement method to inpaint 10,000
validation images. We also include TDS-truncate that truncates the TDS procedure at t = 10 and
returns x̂θ(x10).

Twisting function variance schedule. We use a flexible variance schedule {σ̂2
t } to extend the

twisting functions in eq. (13) to

p̃θ(y | xt,M) := N (y | x̂θ(xt)M, σ̂2
t).

Ideally, σ̂2
t should match Varpθ [y | xt,M]. In TDS, we choose σ̂2

t =
(σ̄2

t /ᾱt)·τ2

σ̄2
t /ᾱt+τ2 where τ2 = 0.12

is the estimated sample variance of the training data (averaged over pixels). This choice is inspired
from Song et al. [32, Appendix A.3]: if the data distribution is q(x0) = N (0, τ2), and q(xt | x0) =

N (xt |
√
ᾱtx

0, σ2
t), then by Bayes rule Varq[x

0 | xt] = (σ̄2
t /ᾱt)·τ2

(σ̄2
t /ᾱt)+τ2 .

25

Changing σ̂2
t has a similar effect as using a twist scale to exponentiate the twisting functions in

Appendix D.2.1. In particular, for a Gaussian distribution, exponentiating the distribution corresponds
to re-scaling the variance: N (x | µ, (σ/√γ)2) ∝ N (x | µ, σ2)γ .

Metrics. We consider 3 metrics. (1) We use the effective sample size (ESS) to compare the particle
efficiency among different SMC samplers (namely TDS, TDS-IS, and SMC-Diff).

(2) In addition, we ground the performance of a sampler in the downstream task of classifying a
partially observed image x0

M = y: we use a classifier to predict the class ẑ of an inpainted image x0,
and compute the accuracy against the true class z∗ of the unmasked image (z∗ is provided in MNIST
dataset). This prediction is made by the same classifier used in Section 5.2.

Consider K weighted particles {x0
k;w

0
k}Kk=1 drawn from a sampler conditioned on x0

M = y and
assume the weights are normalized. We define the Bayes accuracy (BA) as

1 {ẑ(y) = z∗} , with ẑ(y) := argmax
z=1:10

K∑
k=1

w0
kp(z;x

0
k),

where ẑ(y) is viewed as an approximation to the Bayes optimal classifier ẑ∗(y) given by

ẑ∗(y) := argmax
z=1:10

pθ(z | x0
M = y) = argmax

z=1:10

∫
pθ(x

0 | x0
M = y)p(z;x0)dx0. (18)

(In eq. (18) we assume the classifier py|x0(·|x0) is the optimal classifier on full images.)

(3) We also consider classification accuracy (CA) defined as the following

K∑
k=1

w0
k1{ẑ(x0

k) = z∗}, with ẑ(x0
k) := argmax

z=1:10
py|x0(z|x0

k).

BA and CA evaluate different aspects of a sampler. BA is focused on the optimal prediction among
multiple particles, whereas CA is focused on the their weighted average prediction.

Comparison results of different methods. Figure I depicts the ESS trace, BA and CA for different
samplers. The overall observations are similar to the observations in the class-conditional generation
task in Section 5.2, except that SMC-Diff and Replacement methods are not available there.

Replacement has the lowest CA and BA across all settings. Comparing TDS to SMC-Diff, we find
that SMC-Diff’s ESS is consistently greater than TDS; however, SMC-Diff is outperformed by TDS
in terms of both CA and BA.

We also note that despite Gradient Guidance’s CA is lower, its BA is comparable to TDS. This result
is due to that as long as Gradient Guidance generates a few good-quality samples out of K particles,
the optimal prediction can be accurate, thereby resulting in a high BA.

Ablation study on twisting function variance schedule. We compare the following three options:

1. DPS: σ̂t := 2∥x̂θ(xt)M − y∥2σ2
t , adapted from the DPS method [6, Algorithm 1],

2. ΠGDM: σ̂t := σ2
t /
√
ᾱt, adapted from the ΠGDM method [32, Algorithm 1],

3. TDS: σ̂2
t =

(σ̄2
t /ᾱt)·τ2

(σ̄2
t /ᾱt)+τ2 where τ2 = 0.12.

Figure J shows the classification accuracy of TDS, TDS-IS and Gradient Guidance with different twist
scale schemes. We find that our choice has similar performance to that of ΠGDM, and outperforms
DPS in most cases. Exceptions are when M = “quarter” and for large K, TDS with twist scale choice
of ΠGDM or DPS has higher CA, as is shown in the left panel in Figure Jb.

D.2.3 Class-conditional generation on ImageNet and CIFAR-10

ImageNet. We compare TDS (with # of particles K = 1, 16) to Classifier Guidance (CG) using
the same unconditional model from https://github.com/openai/guided-diffusion/tree/
main. CG uses a classifier trained on noisy inputs taken from this repository as well. For TDS, we

26

https://github.com/openai/guided-diffusion/tree/main
https://github.com/openai/guided-diffusion/tree/main

100 75 50 25 0
Time Step t

0

32

64

Ef
fe

ct
. S

am
pl

e
Si

ze

(a) M = “half”. ESS trace.

1 2 4 8 16 32 64
Particles K

60

80

100

Cl
as

s.
Ac

cu
ra

cy
 (%

)

1 2 4 8 16 32 64
Particles K

60

80

100

Ba
ye

s A
cc

ur
ac

y
(%

)

TDS
TDS-truncate
TDS-IS
Gradient
Guidance
SMC-Diff
Replacement

(b) M = “half”. Class. accuracy (left), and Bayes accuracy (right) v.s. K.

100 75 50 25 0
Time Step t

0

32

64

Ef
fe

ct
. S

am
pl

e
Si

ze

(c) M = “quarter”. ESS trace.

1 2 4 8 16 32 64
Particles K

20

50

80

Cl
as

s.
Ac

cu
ra

cy
 (%

)
1 2 4 8 16 32 64

Particles K
20

50

80

Ba
ye

s A
cc

ur
ac

y
(%

)

TDS
TDS-truncate
TDS-IS
Gradient
Guidance
SMC-Diff
Replacement

(d) M = “quarter”. Class. accuracy (left), and Bayes accuracy (right) v.s. K.

Figure I: MNIST image inpainting. Results for observed dimension M = “half” are shown in the top
panel, and M = “quarter” in the bottom panel. (i) Left column: ESS traces are averaged over 100
different images inpainted by TDS, TDS-IS, and SMC-Diff, all with K = 64 particles. TDS’s ESS is
generally increasing untill the final 20 steps where it drops to around 1, suggesting significant particle
collapse in the end of generation trajectory. TDS-IS’s ESS is always around 1. SMC-Diff has higher
particle efficiency compared to TDS. (ii) Right column: Classification accuracy and Bayes accuracy
are averaged over 10,000 images. In general increasing the number of particles K would improve the
performance of all samplers. TDS and TDS-truncate have the highest accuracy among all given the
same K. (iii) Finally, comparison of top and bottom panels shows that in a harder inpainting problem
where M = “quarter”, TDS’s has a higher ESS but lower CA and BA.

Method Classification Accuracy ↑ FID ↓ Inception Score ↑
TDS (K = 16) 99.90% 26.65 64.03
TDS (K = 1) 99.63% 26.05 44.45
Classifier Guidance 99.17% 14.03 100.33
Unconditional model n/a 26.21 39.70

Table 1: ImageNet. Comparison of sample quality. The top three methods are evaluated on 16k
samples generated with 100 steps. The unconditional model performance is provided in [9], which is
evaluated on 50k samples generated with 250 steps.

use the same classifier evaluated at timestep = 0 to mimic a standard trained classifier. We generate
16 images for each of the 1000 class labels, using 100 sampling steps. TDS uses a twist scale of 10,
and CG uses a guidance scale of 10. Notably, given a fixed class, TDS (K = 16) generates correlated
samples in a single SMC run, and TDS (K = 1) and CG generate 16 independent samples.

In Figure K, we observe that TDS can faithfully capture the class and have comparable image quality
to CG’s , although with less diversity than CG and TDS (K = 1).

Figure L shows more samples given randomly selected classes. We also reported results of the
unconditional model from the original paper [9] that are evaluated on 50k samples with 250 sampling
steps in Appendix D.2.3. TDS and CG provide similar classification accuracy. TDS has similar FIDs
compared to the unconditional model and better inception score. CG’s FID and inception score are
better than TDS. We suspect this difference is attributed to the sample correlation (and hence less
diversity) within particles in a single run of TDS (K = 16).

CIFAR-10. We ran TDS (K = 16) with the twist scale = 1 and 100 sampling steps using diffusion
model from https://github.com/openai/improved-diffusion and classifier from https:
//github.com/VSehwag/minimal-diffusion/tree/main. TDS generates faithful and diverse

27

https://github.com/openai/improved-diffusion
https://github.com/VSehwag/minimal-diffusion/tree/main
https://github.com/VSehwag/minimal-diffusion/tree/main

1 2 4 8 16 32 64
Particles K

85.0

87.5

90.0

92.5

95.0

Cl
as

s.
Ac

cu
ra

cy
 (%

) TDS

1 2 4 8 16 32 64
Particles K

85

90

95
TDS-IS

1 2 4 8 16 32 64
Particles K

86

88

90
Gradient Guidance

Twist Scale
DPS

GDM
Ours

(a) M = “half”. Classification accuracy under different twist scale schemes.

1 2 4 8 16 32 64
Particles K

50

60

70

Cl
as

s.
Ac

cu
ra

cy
 (%

) TDS

1 2 4 8 16 32 64
Particles K

50
55
60
65

TDS-IS

1 2 4 8 16 32 64
Particles K

50

52

54

Gradient Guidance

Twist Scale
DPS

GDM
Ours

(b) M = “quarter”. Classification accuracy under different twist scale schemes.

Figure J: MNIST image inpainting: Ablation study on twist scales. Top: observed dimensions M =
“half”. Bottom: M = “quarter”. In most case, the performance of our choice of twist scale is similar
to that of ΠGDM, and is better compared to DPS.

(a) TDS (P=16) (b) TDS (P=1) (c) Classifier Guidance

Figure K: 256×256 ImageNet. Samples from TDS and Classifier Guidance given class ‘brambling’.

images, see Figure M. However, we found TDS can occasionally generate incorrect samples for the
class ‘truck’ (the last panel in Figure M).

Finally, we present the ESS trace plot of the three image datasets in Figure N. We see there is a
sudden ESS drop in the final stage for MINST, sometimes for CIFAR10, but usually not on ImageNet.
Mechanically, the drop in ESS implies a large discrepancy between the final and intermediate target
distributions. We suspect such discrepancies might arise from irregularities in the denoising network
near t = 0. In practice, one can consider early truncating the TDS procedure to prevent such ESS
drops and promote particle diversity, as is studied in Appendices D.2.1 and D.2.2.

E Motif-scaffolding application details
Unconditional model of protein backbones. We here use the FrameDiff, a diffusion generative
model described by Yim et al. [39]. FrameDiff parameterizes protein N -residue protein backbones as
a collection of rigid bodies defined by rotations and translations as x0 = [(R1, z1), . . . , (RN , zN)] ∈

28

Figure L: 256×256 ImageNet. 15 random class samples. Top to bottom: TDS(P=16), TDS(P=1),
Classifier Guidance.

(a) airplane (b) deer (c) horse (d) ship (e) truck (f) failure mode

Figure M: CIFAR10. Samples from TDS with K = 16 particles given different class labels (within a
single SMC run). In most cases TDS generate authentic and diverse images. The last panel presents a
failure mode for the class ‘truck’.

100 75 50 25 0
Time step t

0

4

8

12

16

Ef
fe

ct
. s

am
pl

e
siz

e MNIST

100 75 50 25 0
Time step t

CIFAR-10

100 75 50 25 0
Time step t

Imagenet

Figure N: 2 example effective sample size traces of TDS (K = 16, 100 sampling steps) on MNIST,
CIFAR-10 and ImageNet models, respectively.

SE(3)N . SE(3) is the special Euclidean group in three dimensions (a Riemannian manifold). Each
Rn ∈ SO(3) (the special orthogonal group in three dimensions) is a rotation matrix and each zn ∈ R3

in a translation. Together, Rn and zn describe how one obtains the coordinates of the three backbone
atoms C, Cα, and N for each residue by translating and rotating the coordinates of an idealized residue
with Cα carbon and the origin. The conditioning information is then a motif y = x0

M ∈ SE(3)|M|

for some M ⊂ {1, . . . , N}. FrameDiff is a continuous time diffusion model and includes the number
of steps as a hyperparmeter; we use 200 steps in all experiments. We refer the reader to [39] for
details on the neural network architecture, and details of the forward and reverse diffusion processes.

Twisting functions for motif scaffolding. To define a twisting function, we use a tangent normal
approximation to pθ(y | xt) as introduced in eq. (15). In this case the tangent normal factorizes across
each residue and across the rotational and translational components. The translational components
are represented in R3, and so are treated as in the previous Euclidean cases, using the variance
preserving extension described in Appendix A. For the rotational components, represented in the
special orthogonal group SO(3), the tangent normal may be computed as described in Appendix B,
using the known exponential map on SO(3). In particular, we use as the twisting function

p̃θ(y | xt,M) =

|M|∏
m=1

N (yTm; x̂θ(x
t)TMm

, 1− ᾱt)T N x̂θ(xt)RMm
(yRm; 0, σ̄2

t),

29

where yTm, x̂θ(x
t)TMm

∈ R3 represent the translations associated with the mth residue of the motif
and its prediction from xt, and yRm, x̂θ(x

t)RMm
∈ SO(3) represent the analogous quantities for the

rotational component. Next, 1 − ᾱt = Varq[x
t | x0] and σ̄2

t is the time of the Brownian motion
associated with the forward process at step t [39]. For further simplicity, our implementation further
approximates log density of the tangent normal on rotations using the squared Frobenius norm of
the difference between the rotations associated with the motif and the denoising prediction (as in
[37]), which becomes exact in the limit that σ̄t approaches 0 but avoids computation of the inverse
exponential map and its Jacobian.

Motif rotation and translation degrees of freedom. We similarly seek to eliminate the rotation
and translation of the motif as a degree of freedom. We again represent our ambivalence about the
rotation of the motif with randomness, augment our joint model to include the rotation with a uniform
prior, and write

py|x0(y|x0) =

∫
p(R)py|x0(y|x0, R) for py|x0(y|x0, R) = δRy(x

0)

and with p(R) the uniform density (Haar measure) on SO(3), and Ry represents rotating the rigid
bodies described by y by R. For computational tractability, we approximate this integral with a Monte
Carlo approximation defined by subsampling a finite number of rotations,R = {Rk} (with |R| =#
Motif Rots. in total). Altogether we have

p̃θ(y | xt) = |R|−1 · |M|−1
∑
R∈R

∑
M∈M

p̃θ(Ry | xt,M).

The subsampling above introduces the number of motif locations and rotations subsampled as
a hyperparameter. Notably the conditional training approach does not immediately address these
degrees of freedom, and so prior work randomly sampled a single value for these variables [34, 36, 37].

Evaluation details. We use self-consistency evaluation approach for generated backbones [34] that
(i) uses fixed backbone sequence design (inverse folding) to generate a putative amino acid sequence
to encode the backbone, (ii) forward folds sequences to obtain backbone structure predictions, and
(iii) judges the quality of initial backbones by their agreement (or self-consistency) with predicted
structures. We inherit the specifics of our evaluation and success criteria set-up following [37],
including using ProteinMPNN [7] for step (i) and AlphaFold [20] on a single sequence (no multiple
sequence alignment) for (ii).

In this evaluation we use ProteinMPNN [7] with default settings to generate 8 sequences for each
sampled backbone. Positions not indicated as resdesignable in [37, Methods Table 9] are held fixed.
We use AlphaFold [20] for forward folding. We define a “success” as a generated backbone for
which at least one of the 8 sequences has backbone atom with both scRMSD < 1 Å on the motif and
scRMSD < 2 Å on the full backbone.

We benchmarked TDS on 24/25 problems in the benchmark set introduced [37, Methods Table 9]. A
25th problem (6VW1) is excluded because it involves multiple chains, which cannot be represented
by FrameDiff. FrameDiff requires specifying a total length of scaffolds. In all replicates, we fixed the
scaffold the median of the Total Length range specified by Watson et al. [37, Methods Table 9].
For example, 116 becomes 125 and 62-83 becomes 75.

As discussed in the main text, in our handling of the motif-placement degree of freedom we restrict
the number of possible placements considered for discontiguous motifs. To select these placements
we (i) restrict to masks which place the motif indices in a pre-specified order that we do not permute
and do not separate residues that appear contiguously in source PDB file, and (ii) when there are still
too many possible placements sub-sample randomly to obtain the set of masksM of at most some
maximum size (# Motif Locs.). We do not enforce the spacing between segments specified in the
“contig” description described by [37].

Resampling. In all motif-scaffolding experiments, we use systematic resampling. An effective
sample size threshold is used K/2 in all cases, that is, we trigger resampling steps only when the
effective sample size falls below this level.

30

6E
XZ

_m
ed

6E
XZ

_s
ho

rt
1Y

CR
5T

RV
_m

ed
6E

6R
_m

ed
3I

XT
6E

6R
_lo

ng
6E

6R
_s

ho
rt

2K
L8

6E
XZ

_lo
ng

5T
RV

_s
ho

rt
4Z

YP 5IU
S

1Q
JG

7M
RX

_6
0

5W
N9

1P
RW 1B
CF

7M
RX

_8
5

5T
PN

7M
RX

_1
28

5T
RV

_lo
ng

5Y
UI

4J
HW

100

101

102

Su
cc

es
s R

at
e

(%
) TDS (K=8) TDS (K=1) RFdiffusion

Figure O: Results on full motif-scaffolding benchmark set. The y-axis is the fraction of successes
across at least 200 replicates. Error bars are ±2 standard errors of the mean. Problems with scaffolds
shorter than 100 residues are bolded. TDS (K=8) outperforms the state-of-the-art (RFdiffusion) on
most problems with short scaffolds.

Figure P: Increasing the twist scale has a different impact across motif-scaffolding benchmark
problems.

E.1 Additional Results

Impact of twist scale on additional motifs. Figure 3a showed monotonically increasing success
rates with the twist scale. However, this trend does not hold for every problem. Figure P demonstrates
this by comparing the success rates with different twist-scales on five additional benchmark problems.

Effective sample size varies by problem. Figure Q shows two example effective sample size traces
over the course of sample generation. For 6EXZ-med resampling was triggered 38 times (with 14 in
the final 25 steps), and for 5UIS resampling was triggered 63 times (with 13 in the final 25 steps).
The traces are representative of the larger benchmark.

Application of TDS to RFdiffusion: We also tried applying TDS to RFdiffusion [37]. RFdiffusion
is a diffusion model that uses the same backbone structure representation as FrameDiff. However,
unlike FrameDiff, RFdiffusion trained with a mixture of conditional examples, in which a segment of
the backbone is presented as input as a desired motif, and unconditional training examples in which
the only a noised backbone is provided. Though in our benchmark evaluation provided the motif
information as explicit conditioning inputs, we reasoned that TDS should apply to RFdiffusion as
well (with conditioning information not provided as input). However, we were unable to compute
numerically stable gradients (with respect to either the rotational or translational components of the
backbone representation); this lead to twisted proposal distributions that were similarly unstable
and trajectories that frequently diverged even with one particle. We suspect this instability owes to
RFdiffusion’s structure prediction pretraining and limited fine-tuning, which may allow it to achieve
good performance without having fit a smooth score-approximation.

31

Figure Q: Effective sample size traces for two motif-scaffolding examples (Left) 6EXZ-med and
(Right) 5IUS. In both case K = 8 and a resampling threshold of 0.5K is used. Dashed red lines
indicate resampling times.

32

	Introduction
	Background: Diffusion models and sequential Monte Carlo
	Twisted Diffusion Sampler: SMC sampling for diffusion model conditionals
	Conditional diffusion sampling as an SMC procedure
	Twisted diffusion sampler
	TDS for inpainting, additional degrees of freedom
	TDS on Riemannian manifolds

	Related work
	Simulation study and conditional image generation
	Applicability and precision of TDS in two dimensional simulations
	Class-conditional image generation

	Case study in computational protein design: the motif-scaffolding problem
	Discussion
	Appendix
	Twisted Diffusion Sampler additional details
	Riemannian Twisted Diffusion Sampler
	Additional Related Work
	Empirical results additional details
	Motif-scaffolding application details

