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Abstract

Generative Flow Networks (GFlowNets), a class of generative models over discrete1

and structured sample spaces, have been previously applied to the problem of2

inferring the marginal posterior distribution over the directed acyclic graph (DAG)3

of a Bayesian Network, given a dataset of observations. Based on recent advances4

extending this framework to non-discrete sample spaces, we propose in this paper5

to approximate the joint posterior over not only the structure of a Bayesian Network,6

but also the parameters of its conditional probability distributions. We use a single7

GFlowNet whose sampling policy follows a two-phase process: the DAG is first8

generated sequentially one edge at a time, and then the corresponding parameters9

are picked once the full structure is known. Since the parameters are included in the10

posterior distribution, this leaves more flexibility for the local probability models11

of the Bayesian Network, making our approach applicable even to non-linear12

models parametrized by neural networks. We show that our “Joint Structure and13

Parameters” sampling method, called JSP-GFN, offers an accurate approximation14

of the joint posterior, while comparing favorably against existing methods on both15

simulated and real data.16

1 Introduction17

As a compact representation for complex probabilistic models, Bayesian Networks are a framework18

of choice in many fields, such as computational biology (Friedman et al., 2000; Sachs et al., 2005)19

and medical diagnosis (Lauritzen and Spiegelhalter, 1988). When the directed acyclic graph (DAG)20

structure of the Bayesian Network—which specifies the possible conditional dependences among21

the observed variables—is known, it can be used to perform probabilistic inference for queries of22

interest with a variety of exact or approximate methods (Koller and Friedman, 2009). However, if23

this graphical structure is unknown, one may want to infer it based on a dataset of observations D.24

In addition to being a challenging problem due to the super-exponentially large search space, learning25

a single DAG structure from data may also lead to confident but incorrect predictions (Madigan et al.,26

1994), especially in cases where the evidence is limited. In order to avoid model misspecification,27

it is therefore essential to quantify the epistemic uncertainty about the structure of the Bayesian28

Network. This can be addressed by taking a Bayesian perspective on structure learning and inferring29

the posterior distribution P (G | D) over graphs given our observations. This (marginal) posterior30

can be approximated using methods based on Markov chain Monte Carlo (MCMC; Madigan et al.,31

1995) or variational inference (Cundy et al., 2021; Lorch et al., 2021). However, all of these methods32

rely on the computation of the marginal likelihood P (D | G), which can only be done efficiently in33

closed form for limited classes of models, such as linear Gaussian (Geiger and Heckerman, 1994),34

discrete models with Dirichlet prior (Heckerman et al., 1995), or non-linear models parametrized35

with a Gaussian Process (von Kügelgen et al., 2019).36
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While there exists a vast literature on Bayesian structure learning to approximate the marginal37

posterior distribution, inferring the joint posterior P (G, θ | D) over both the DAG structure G of the38

Bayesian Network and the parameters θ of its conditional probability distributions—the probability of39

each variable given its parents—has received comparatively little attention. The main difficulty arises40

from the mixed sample space of the joint posterior distribution, with both discrete components (the41

graph G) and continuous components (the parameters θ), where the dimensionality of the latter may42

even depend on G. However, modeling the posterior distribution over θ has the notable advantage that43

the conditional probability distributions can be more flexible (e.g., parametrized by neural networks):44

in general, computing P (D | G, θ) is easier than computing the marginal P (D | G), lifting the need45

to perform intractable marginalizations.46

Since they provide a framework for generative modeling of discrete and composite objects, Generative47

Flow Networks (GFlowNets; Bengio et al., 2021a,b) proved to be an effective method for Bayesian48

structure learning. In Deleu et al. (2022), the problem of generating a sample DAG from the marginal49

posterior P (G | D) was treated as a sequential decision process, where edges are added one at50

a time, starting from the empty graph over d variables, following a learned transition probability.51

Nishikawa-Toomey et al. (2023) have also proposed to use a GFlowNet to infer the joint posterior52

P (G, θ | D); however, they used it in conjunction with Variational Bayes to update the distribution53

over θ, getting around the difficulty of modeling a continuous distribution with a GFlowNet.54

In this paper, we propose to infer the joint posterior over graphical structures G and parameters of55

the conditional probability distributions θ of a Bayesian Network using a single GFlowNet called56

JSP-GFN (for Joint Structure and Parameters GFlowNet), leveraging recent advances extending57

GFlowNets to continuous sample spaces (Lahlou et al., 2023). JSP-GFN expands the scope of58

applications for Bayesian structure learning with GFlowNets while preserving and extending the59

overall framework. The generation of a sample (G, θ) from the approximate posterior now follows a60

two-phase process, where the DAG G is first constructed by inserting one edge at a time, and then the61

corresponding parameters θ are chosen once the structure is completely known. To enable efficient62

learning of the sampling distribution, we introduce new conditions closely related to the ones derived63

in Deleu et al. (2022), based on the subtrajectory balance conditions (Malkin et al., 2022), and show64

that they guarantee that the GFlowNet does represent P (G, θ | D) once they are completely satisfied.65

We validate empirically that JSP-GFN provides an accurate approximation of the posterior when66

those conditions are approximately satisfied by the learned sampling model, and compares favorably67

against existing methods on simulated and real data.68

2 Background69

Notations. Throughout this paper, we will work with directed graphs G = (V,E), where V is a set70

of nodes, and E ⊆ V × V is a set of (directed) edges. For a node X ∈ V , we denote by PaG(X)71

the set of parents of X in G, and ChG(X) the set of its children. For two nodes X,Y ∈ V , X → Y72

represents a directed edge (X,Y ) ∈ E (denoted X → Y ∈ G), and X ⇝ Y represents a directed73

path from X to Y , following the edges in E (denoted X ⇝ Y ∈ G).74

In the context of GFlowNets (see Section 2.2), an undirected path in a directed graph G = (V, E)75

between two states s0, sn ∈ V is a sequence of vertices (s0, s1, . . . , sn) where either (si, si+1) ∈ E76

or (si+1, si) ∈ E (i.e., following the edges of the graph, regardless of their orientations).77

2.1 Bayesian structure learning78

A Bayesian Network is a probabilistic model over d random variables {X1, . . . , Xd}, whose joint79

distribution factorizes according to a directed acyclic graph (DAG) G as80

P (X1, . . . , Xd | θ,G) =

d∏

i=1

P
(
Xi | PaG(Xi); θi

)
, (1)

where θ = {θ1, . . . , θd} represents the parameters of the conditional probability distributions (CPDs)81

involved in this factorization. When the structure G is known, a Bayesian Network offers a rep-82

resentation of the joint distribution that may be convenient for probabilistic inference (Koller and83

Friedman, 2009), as well as learning its parameters θ using a dataset D = {x(1), . . . ,x(N)}, where84

each x(j) represents an observation of the d random variables {X1, . . . , Xd}.85
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Figure 1: Structure of the Generative Flow Network to approximate the joint posterior distribution
P (G, θ | D). A graph G and parameters θ are constructed as follows: starting from the empty graph
G0, (1) the graph G is first generated one edge at a time (blue), as in (Deleu et al., 2022). Then once
we select the action indicating that we stop adding edges to the graph, (2) we generate the parameters
θ (red), conditioned on the graph G. Finally, given G and θ, (3) we receive a reward R(G, θ) (green).

However, when the structure of the Bayesian Network is unknown, we can also learn the DAG G86

from data (Spirtes et al., 2000; Chickering, 2002). Using a Bayesian perspective, we may want to87

either model the (marginal) posterior distribution P (G | D) over only the DAG structures, or the88

joint posterior P (G, θ | D) over both the structure G, as well as the parameters of the CPDs θ.89

2.2 Generative Flow Networks90

A Generative Flow Network (GFlowNet; Bengio et al., 2021a,b) is a generative model over a91

structured sample space X . The structure of the GFlowNet is described by a DAG G whose vertex92

set is the state space S, where X ⊆ S. This should not be confused with the DAG in a Bayesian93

Network: in fact, each state in G could itself represent the structure of a Bayesian Network (Deleu94

et al., 2022). A sample x ∈ X is constructed sequentially by following the edges of G, starting at a95

special initial state s0, until we reach the state x. We define a special terminal state sf , a transition96

to which indicates the end of the sequential process. The states in X are those for which there is97

a directed edge x → sf ; they are called complete states1 and correspond to valid samples of the98

distribution induced by the GFlowNet. A path s0 ⇝ sf in G is called a complete trajectory. An99

example of the structure of a GFlowNet is given in Section 3.1 and Figure 1.100

Every complete state x ∈ X is associated with a reward R(x) ≥ 0, indicating the unnormalized101

probability of x. We use the convention R(s) = 0 for any state s ∈ S\X , since they do not102

correspond to valid samples of the distribution. Bengio et al. (2021a) showed that if there exists103

a function Fϕ(s → s′) ≥ 0 defined over the edges of G, called a flow, that satisfies the following104

flow-matching conditions105

∑

s∈PaG(s′)

Fϕ(s→ s′)−
∑

s′′∈ChG(s′)

Fϕ(s
′ → s′′) = R(s′) (2)

for all the non-terminal states s′ ∈ S , then the GFlowNet induces a distribution over complete states106

proportional to the reward. More precisely, starting from the initial state s0, if we sample a complete107

trajectory (s0, s1, . . . , sT−1, x, sf ) following the forward transition probability, defined as108

P (st+1 | st) ∝ Fϕ(st → st+1), (3)

with the conventions sT = x and sT+1 = sf , then the marginal probability that a trajectory sampled109

following P terminates in x ∈ X is proportional to R(x). The flow function Fϕ(s → s′) may be110

parametrized by a neural network and optimized to minimize the error in (2), yielding a transition111

model that can be used to approximately sample from the distribution on X proportional to R.112

1Bengio et al. (2021b) also call these states terminating; we follow the naming conventions of Deleu et al.
(2022) here to avoid ambiguity, as it is closely related to our work.
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2.3 Structure learning with GFlowNets113

Since GFlowNets are particularly well-suited to specifying distributions over composite objects,114

Deleu et al. (2022) used this framework in the context of Bayesian structure learning to approximate115

the (marginal) posterior distribution over DAGs P (G | D). Their model, called DAG-GFlowNet,116

operates on the state-space of DAGs, where each graph is constructed sequentially by adding one117

edge at a time, starting from the empty graph with d nodes, while enforcing the acyclicity constraint118

at every step of the generation (i.e., an edge is not added if it would introduce a cycle). Its structure is119

illustrated at the top of Figure 1, where it forms the part of the graph shown in blue.120

Instead of working with flows Fϕ(G→ G′), as in Section 2.2, DAG-GFlowNet directly learns the121

forward transition probability Pϕ(G
′ | G) that satisfies the following alternative detailed balance122

conditions for any transition G→ G′ (i.e., G′ is the result of adding a single edge to G):123

R(G′)PB(G | G′)Pϕ(sf | G) = R(G)Pϕ(G
′ | G)Pϕ(sf | G′), (4)

where PB(G | G′) is a fixed distribution over the parent states of G′ (e.g., uniform distribution124

over parents). Deleu et al. (2022) showed that since all the states are complete here, satisfying125

the conditions (4) for all G → G′ still induces a distribution over DAGs ∝ R(G). Therefore, to126

approximate the posterior distribution P (G | D), they used R(G) = P (D | G)P (G) as the reward127

of G. In particular, this requires evaluating the marginal likelihood P (D | G) efficiently, which is128

feasible only for limited classes of models (e.g., linear Gaussian; Geiger and Heckerman, 1994).129

3 Joint Bayesian inference of structure and parameters130

Although Generative Flow Networks have been primarily applied to model distributions over discrete131

objects such as DAGs, Lahlou et al. (2023) showed that similar ideas could also be applied to132

continuous objects, and discrete-continuous hybrids. Building on top of DAG-GFlowNet, we propose133

here to approximate the joint posterior P (G, θ | D) over both the structure of the Bayesian Network134

G, but also the parameters of its conditional probability distributions θ. Unlike in VBG though135

(Nishikawa-Toomey et al., 2023), we use a single GFlowNet to approximate this joint posterior. We136

call this model JSP-GFN, for Joint Structure and Parameters Bayesian inference with a GFlowNet.137

3.1 Structure of the GFlowNet138

Unlike in DAG-GFlowNet, where we model a distribution only over DAGs, here we need to define a139

GFlowNet whose complete states are pairs (G, θ), where G is a DAG and θ is a set of (continuous-140

valued) parameters whose dimension may depend on G. Complete states are obtained through two141

phases (Figure 1): the DAG G is first constructed one edge at a time, following Deleu et al. (2022),142

and then the corresponding parameters θ are generated, conditioned on G. We denote by (G, ·)143

states where the DAG G has no parameters θ associated to it (states in blue in Figure 1); they are144

intermediate states during the first phase of the GFlowNet, and do not correspond to valid samples of145

the induced distribution. Using the notations of Section 2.2, (G, θ) ∈ X , whereas (G, ·) ∈ S\X .146

Starting at the empty graph (G0, ·), the DAG is constructed one edge at a time during the first phase,147

following the forward transition probabilities Pϕ(G
′ | G). This first phase ends when a special “stop”148

action is selected with Pϕ, indicating that we stop adding edges to the graph; the role of this “stop”149

action is detailed in Section 3.4. Then during the second phase, we generate θ conditioned on G,150

following the forward transition probabilities Pϕ(θ | G).2 All the complete states (G, θ), for a fixed151

graph G and any set of parameters θ, can be seen as forming an (infinitely wide) tree rooted at (G, ·).152

Since we want this GFlowNet to approximate the joint posterior P (G, θ | D) ∝ P (D, θ,G), it is153

natural to define the reward function of a complete state (G, θ) as154

R(G, θ) = P (D | θ,G)P (θ | G)P (G), (5)

where the likelihood model P (D | θ,G) may be arbitrary (e.g., a neural network), and decomposes155

according to (1), P (θ | G) is the prior over parameters, and P (G) the prior over graphs. When the156

dataset D is large, we can use a mini-batch approximation to the reward, estimated on a subset of D.157

We prove that this yields an unbiased stochastic training objective in Appendix D.2.158

2Since the states of the GFlowNet here are pairs of objects, Pϕ(θ | G) (resp. Pϕ(G
′ | G)) is an abuse of

notation, and represents Pϕ((G, θ) | (G, ·)) (resp. Pϕ((G
′, ·) | (G, ·))).
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3.2 Subtrajectory Balance conditions159

To obtain a generative process that samples pairs of (G, θ) proportionally to the reward, the GFlowNet160

needs to satisfy some conditions such as (4). However, we saw in Section 2.3 that satisfying this161

particular formulation of the detailed balance conditions in (4) yields a distribution ∝ R(·) only if all162

the states are complete; unfortunately, this is not the case here since there exists states of the form163

(G, ·) corresponding to graphs without their associated parameters. Instead, we use a generalization164

of detailed balance to undirected paths of arbitrary length, called the Subtrajectory Balance conditions165

(SubTB; Malkin et al., 2022); we give a brief overview of SubTB in Appendix C.2.166

More precisely, we consider SubTB for any undirected path of the form (G, θ)← (G, ·)→ (G′, ·)→167

(G′, θ′) in the GFlowNet (see Figure C.2), where G′ is therefore the result of adding a single edge to G.168

Since both ends of these undirected paths of length 3 are complete states, we show in Appendix C.3.1169

that the SubTB conditions corresponding to undirected paths of this form can be written as170

R(G′, θ′)PB(G | G′)Pϕ(θ | G) = R(G, θ)Pϕ(G
′ | G)Pϕ(θ

′ | G′). (6)

Note that the SubTB condition above is very similar to the detailed balance condition in (4) used in171

DAG-GFlowNet, where the probability of terminating Pϕ(sf | G) has been replaced by Pϕ(θ | G), in172

addition to the reward now depending on both G and θ. Moreover, while it does not seem to appear in173

(6), the terminal state sf of the GFlowNet is still present implicitly, since we are forced to terminate174

once we have reached a complete state (G, θ), and therefore Pϕ(sf | G, θ) = 1 (see App. C.3.1).175

Although there is no guarantee in general that satisfying the SubTB conditions would yield a176

distribution proportional to the reward, unlike with the detailed balance conditions (Bengio et al.,177

2021b), the following theorem shows that the GFlowNet does induce a distribution ∝ R(G, θ) if the178

SubTB conditions in (6) are satisfied for all pairs (G, θ) and (G′, θ′).179

Theorem 3.1. If the SubTB conditions in (6) are satisfied for all undirected paths of length 3 between180

any (G, θ) and (G′, θ′) of the form (G, θ)← (G, ·)→ (G′, ·)→ (G′, θ′), then we have181

P⊤
ϕ (G, θ) ≜ Pϕ(G | G0)Pϕ(θ | G) ∝ R(G, θ),

where Pϕ(G | G0) is the marginal probability of reaching G from the initial state G0 with any182

(complete) trajectory τ = (G0, G1, . . . , GT−1, G):183

Pϕ(G | G0) ≜
∑

τ :G0⇝G

T−1∏

t=0

Pϕ(Gt+1 | Gt),

using the conventions GT = G, and Pϕ(G0 | G0) = 1.184

The proof of this theorem is available in Appendix C.3.3. The marginal distribution P⊤
ϕ (G, θ) is also185

called the terminating state probability in Bengio et al. (2021b).186

3.3 Learning objective187

One way to find the parameters ϕ of the forward transition probabilities that enforce the SubTB188

conditions in (6) for all (G, θ) and (G′, θ′) is to transform this condition into a learning objective. For189

example, we could minimize a non-linear least squares objective (Bengio et al., 2021a,b) of the form190

L(ϕ) = Eπ[∆
2(ϕ)], where the residuals ∆(ϕ) depend on the conditions in (6), and π is an arbitrary191

sampling distribution of complete states (G, θ) and (G′, θ′), with full support; see Malkin et al. (2023)192

for a discussion of the effect of π on training GFlowNets, and Appendix D.1 for further details.193

In addition to the SubTB conditions for undirected paths of length 3 given in Section 3.2, we can194

also derive similar SubTB conditions for other undirected paths, for example those of the form195

(G, θ) ← (G, ·) → (G, θ̃), where θ and θ̃ are two possible sets of parameters associated with the196

same graph G (see also Figure C.2). When the reward function R(G, θ) is differentiable wrt. θ,197

which is the case here, we show in Appendix C.3.2 that we can write the SubTB conditions for these198

undirected paths of length 2 in differential form as199

∇θ logPϕ(θ | G) = ∇θ logR(G, θ). (7)

This condition is equivalent to the notion of score matching (Hyvärinen, 2005) to model unnormalized200

distributions, since R(G, θ) here corresponds to the unnormalized posterior distribution P (θ | G,D),201
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where the normalization is over θ. We also show in Appendix C.3.2 that incorporating this information202

about undirected paths of length 2, via the identity in (7), amounts to preventing backpropagation203

through θ and θ′ (e.g., backpropagation with the reparametrization trick) in the objective204

L(ϕ) = Eπ



(
log

R
(
G′,⊥(θ′)

)
PB(G | G′)Pϕ

(
⊥(θ) | G

)

R
(
G,⊥(θ)

)
Pϕ(G′ | G)Pϕ

(
⊥(θ′) | G′)

)2

 , (8)

where ⊥ denotes the “stop-gradient” operation. This is aligned with the recommendations of Lahlou205

et al. (2023) to avoid backpropagation through the reward in continuous GFlowNets.206

3.4 Parametrization of the forward transition probabilities207

In Section 3.1, we saw that the process of generating (G, θ) follows two phases: first we construct G208

one edge at a time, until we sample a specific “stop” action, at which point we sample θ, conditioned209

on G. All these actions are sampled using the forward transition probabilities Pϕ(G
′ | G) during the210

first phase, and Pϕ(θ | G) during the second one. Following Deleu et al. (2022), we parametrize211

these forward transition probabilities using a hierarchical model: we first decide whether we want to212

stop the first phase or not, with probability Pϕ(stop | G); then, conditioned on this first decision, we213

either continue adding an edge to G to reach G′ with probability Pϕ(G
′ | G,¬stop) (phase 1), or214

sample θ with probability Pϕ(θ | G, stop) (phase 2). This hierarchical model can be written as215

Pϕ(G
′ | G) =

(
1− Pϕ(stop | G)

)
Pϕ(G

′ | G,¬stop) (9)

Pϕ(θ | G) = Pϕ(stop | G)Pϕ(θ | G, stop). (10)

We use neural networks to parametrize each of the three components necessary to define the forward216

transition probabilities. Unlike in DAG-GFlowNet though, which uses a linear Transformer to define217

Pϕ(stop | G) and Pϕ(G
′ | G,¬stop), we use a combination of graph network (Battaglia et al., 2018)218

and self-attention blocks (Vaswani et al., 2017) to encode information about the graph G, which219

appears in the conditioning of all the quantities of interest. This common backbone returns a graph220

embedding g of G, as well as 3 embeddings ui,vi,wi for each node Xi in G221

g, {ui,vi,wi}di=1 = SelfAttentionϕ
(
GraphNetϕ(G)

)
.

We can parametrize the probability of selecting the “stop” action using g with Pϕ(stop | G) = fϕ(g),222

where fϕ is a neural network with a sigmoid output; note that if we can’t add any edge to G without223

creating a cycle, we force the end of the first phase by setting Pϕ(stop | G) = 1. Inspired by Lorch224

et al. (2021), the probability of moving from G to G′ by adding the edge Xi → Xj is parametrized by225

Pϕ(G
′ | G,¬stop) ∝mij exp

(
u⊤
i vj

)
, (11)

where mij is a binary mask indicating whether adding Xi → Xj is a valid action (i.e., if it is not226

already present in G, and if it doesn’t introduce a cycle; Deleu et al., 2022). Finally, the probability227

of selecting the parameters θi of the CPD for the variable Xi is parametrized with a multivariate228

Normal distribution with diagonal covariance (unless specified otherwise)229

Pϕ(θi | G, stop) = N
(
θi | µϕ(wi),σ

2
ϕ(wi)

)
, (12)

where µϕ and σ2
ϕ are two neural networks, with appropriate non-linearities to guarantee that σ2

ϕ(wi)230

is a well-defined diagonal covariance matrix. Note that Pϕ(θi | G, stop) effectively approximates231

the posterior distribution P (θi | G,D) once fully trained. Moreover, in addition to being an232

approximation of the joint posterior P (G, θ | D), the GFlowNet also provides an approximation233

of the marginal posterior P (G | D), by only following the first phase of the generation process (to234

generate G) until the “stop” action is selected, and not continuing into the generation of θ.235

4 Related work236

Bayesian Structure Learning. There is a vast literature applying Markov chain Monte Carlo237

(MCMC) methods to approximate the marginal posterior P (G | D) over the graphical structures of238

Bayesian Networks (Madigan et al., 1995; Friedman and Koller, 2003; Giudici and Castelo, 2003;239

Viinikka et al., 2020). However, since the parameter space in which θ lives depends on the graph240
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structure G, approximating the joint posterior P (G, θ | D) using MCMC requires additional trans-241

dimensional updates (Fronk, 2002), and has therefore received less attention than the marginal case.242

Variational methods have been proposed to approximate the marginal posterior too (Annadani et al.,243

2021; Charpentier et al., 2022). Similar to MCMC though, approximating the joint posterior has also244

been less studied than its marginal counterpart, with the notable exceptions of DiBS (Lorch et al.,245

2021) and BCD Nets (Cundy et al., 2021). We provide an extensive qualitative comparison between246

our method JSP-GFN and prior variational inference and GFlowNet methods in Appendix A.247

Generative Flow Networks. While they were initially developed to encourage the discovery of248

diverse molecules (Bengio et al., 2021a), GFlowNets proved to be a more general framework to249

describe distributions over composite objects that can be constructed sequentially (Bengio et al.,250

2021b). The objective of the GFlowNet is to enforce a conservation law such as the flow-matching251

conditions in (2), indicating that the total amount of flow going into any state is equal to the total252

outgoing flow, with some residual given by the reward. Alternative conditions, sometimes bypassing253

the need to work with flows altogether, have been proposed in order to learn these models more254

efficiently (Malkin et al., 2022; Madan et al., 2022; Pan et al., 2023). By amortizing inference,255

and thus treating it as an optimization problem, GFlowNets find themselves deeply rooted in the256

variational inference literature (Malkin et al., 2023; Zimmermann et al., 2022), and are connected to257

other classes of generative models (Zhang et al., 2022). Beyond Bayesian structure learning (Deleu258

et al., 2022), GFlowNets have also applications in modeling Bayesian posteriors for variational EM259

(Hu et al., 2023), combinatorial optimization (Zhang et al., 2023), biological sequence design (Jain260

et al., 2022), as well as scientific discovery at large (Jain et al., 2023).261

Closely related to our work, Nishikawa-Toomey et al. (2023) proposed to learn the joint posterior262

P (G, θ | D) over structures and parameters with a GFlowNet, combined with Variational Bayes to263

circumvent the challenge of learning a distribution over continuous quantities θ with a GFlowNet.264

Atanackovic et al. (2023) also used a GFlowNet called DynGFN to approximate the posterior of a265

dynamical system. Similar to (Nishikawa-Toomey et al., 2023) though, they used the GFlowNet only266

to approximate the distribution over graphs G, making the parameters θ a deterministic function of G267

(i.e., P (θ | G,D) ≈ δ(θ | G;ϕ)). Here, we leverage the recent advances extending these models to268

general sample spaces (Lahlou et al., 2023), including continuous spaces (Li et al., 2023), in order to269

model the joint posterior within a single GFlowNet.270

5 Experimental results271

5.1 Joint posterior over small graphs272

We can evaluate the accuracy of the approximation returned by JSP-GFN by comparing it with273

the exact joint posterior distribution P (G, θ | D). Computing this exact posterior can only be274

done in limited cases: those where (1) the posterior over parameters P (θ | G,D) can be computed275

analytically, and (2) for a small enough d such that all the DAGs over d nodes can be enumerated in276

order to compute P (G | D). We consider here Bayesian Networks over d = 5 nodes, following a277

linear Gaussian model. We generate 20 different datasets of N = 100 observations from randomly278

generated Bayesian Networks. Details about data generation are available in Appendix D.3.1.279

With this model, we consider two variants of JSP-GFN. The first one, called JSP-GFN (diag), where280

Pϕ(θi | G, stop) in (12) is parametrized as a Normal distribution with a diagonal covariance matrix;281

this adds a modeling bias since here the exact posterior P (θi | G,D) is a Normal distribution with282

full covariance (see Appendix D.6.1). To control for this bias, the second model called JSP-GFN283

(full) assumes that (12) has a full covariance matrix, as in VBG (Nishikawa-Toomey et al., 2023).284

The quality of the joint posterior approximations is evaluated separately for G and θ. For the graphs,285

we compare the approximation and the exact posterior on different marginals of interest, also called286

features (Friedman and Koller, 2003); e.g., the edge feature corresponds to the marginal probability of287

a specific edge being in the graph (see Appendix D.3.2). Figure 2 (a) shows a comparison between the288

edge features computed with the exact posterior and with JSP-GFN (diag), proving that JSP-GFN can289

accurately approximate the edge features of the exact posterior, despite the modeling bias discussed290

above. Compared to other methods in Figure 2 (b), both versions of JSP-GFN offer significantly291

more accurate approximations of the posterior, at least relative to the edge features. This observation292

still holds on the path and Markov features (Deleu et al., 2022); see Appendix D.3.2.293
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r = 0.9984

Edge features EG,θ

[
− logP (θ | G,D)

]
RMSE Pearson’s r

MH-MC3 0.357± 0.022 0.067± 0.143 5.39± 1.41× 102

Gibbs-MC3 0.357± 0.022 0.028± 0.127 9.02± 1.54× 105

B-GES* 0.263± 0.070 0.635± 0.180 1.56± 0.97× 102

B-PC* 0.305± 0.057 0.570± 0.138 1.57± 0.87× 102

DiBS 0.312± 0.038 0.737± 0.071 9.49± 7.34× 103

BCD Nets 0.215± 0.055 0.819± 0.097 7.04± 3.21× 101

VBG 0.237± 0.037 0.816± 0.064 1.24± 0.49× 102

JSP-GFN (diag) 0.018± 0.005 0.998± 0.001 −4.91± 0.51× 100

JSP-GFN (full) 0.019± 0.007 0.998± 0.001 −5.00± 0.52× 100

(b) Quantitative comparison with the exact posterior

Figure 2: Comparison with the exact posterior distribution, on small graphs with d = 5 nodes. (a)
Comparison of the edge features computed with the exact posterior (x-axis) and the approximation
given by JSP-GFN (y-axis); each point corresponds to an edge Xi → Xj for each of the 20 datasets.
(b) Quantitative evaluation of different methods for joint posterior approximation, both in terms of
edge features and cross-entropy of sampling distribution and true posterior P (θ | G,D); all values
correspond to the mean and 95% confidence interval across the 20 experiments. For the edge features,
we report the root mean-square error (RMSE) and Pearson’s correlation coefficient between the
features computed with the exact posterior and the approximations.

To evaluate the performance of the different methods as an approximation of the posterior over θ, we294

also estimate the cross-entropy between the sampling distribution of θ given G and the exact posterior295

P (θ | G,D). This measure will be minimized if the model correctly samples parameters from the296

true P (θ | G,D); details about this metric are given in Appendix D.3.3. In Figure 2 (b), we observe297

that again both versions of JSP-GFN sample parameters θ that are significantly more probable under298

the exact posterior compared to other methods.299

5.2 Gaussian Bayesian Networks from simulated data300

To evaluate whether our observations hold on larger graphs, we also evaluated the performance of301

JSP-GFN on data simulated from larger Gaussian Bayesian Networks, with d = 20 variables. In302

addition to linear CPDs, as in Section 5.1, we experimented with non-linear Gaussian Bayesian303

Networks, where the CPDs are parametrized by neural networks. Following Lorch et al. (2021), we304

parametrized the CPDs of each variable with a 2-layer MLP, for a total of |θ| = 2, 220 parameters.305

For both experimental settings, we used datasets of N = 100 observations simulated from (randomly306

generated) Bayesian Networks; additional details about the experimental setups are provided in307

Appendix D.4.308

We compared JSP-GFN against two methods based on MCMC (MH-MC3 & Gibbs-MC3; Madigan309

et al., 1995) and DiBS (Lorch et al., 2021) on both experiments, as well as two bootstrapping310

algorithms (B-GES* & B-PC*; Friedman et al., 1999), BCD Nets (Cundy et al., 2021) and VBG311

(Nishikawa-Toomey et al., 2023) for the experiment with linear Gaussian CPDs, as they are not312

applicable for non-linear CPDs. Details about these different algorithms can be found in Appendix D.313

In Figure 3 (a-b), we report the performance of these joint posterior approximations in terms of314

the (expected) negative log-likelihood (NLL) on held-out observations. We observe that JSP-GFN315

achieves a lower NLL than any other method on linear Gaussian models and is competitive on316

non-linear Gaussian models.317

We chose the NLL over some other metrics, typically comparing with the ground-truth graphs used for318

data generation, since it is more representative of the performance of these methods on downstream319

tasks (i.e., predictions on unseen data), and measures the quality of the joint posterior instead of320

only the marginal over graphs. This choice is aligned with the shortcomings of these other metrics321

highlighted by Lorch et al. (2022), and it is further justified in Appendix D.4.3. Nevertheless, we also322

report the expected Structural Hamming Distance (SHD), as well as the area under the ROC curve323

(AUROC) in Appendix D.4.3 for completeness. To complement these metrics, and in order to assess324

the quality of the approximation of the posterior in the absence of reference P (G, θ | D), we also325

show in Figure 3 (c) how the terminating state log-probability logP⊤
ϕ (G, θ) of JSP-GFN correlates326
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Figure 3: Evaluation of JSP-GFN on Gaussian Bayesian Networks. (a-b) Comparison of the negative
log-likelihood (NLL) on N ′ = 100 held-out observations for different Bayesian structure learning
methods, aggregated across 20 experiments on different datasets D. (c) Linear correlation between
the log-reward (x-axis) and the terminating state log-probability (y-axis) for 1, 000 samples (G, θ)
from JSP-GFN; the color of each point indicates the number of edges in the correponding graph. ∆
represents the slope of a linear function fitted using RANSAC (Fischler and Bolles, 1981).

with the log-reward for a non-linear Gaussian model. Indeed, as stated in Theorem 3.1, we should327

ideally have logP⊤
ϕ (G, θ) perfectly correlated with logR(G, θ) with slope 1, as328

logP⊤
ϕ (G, θ) ≈ logP (G, θ | D) = logR(G, θ)− logP (D). (13)

We can see that there is indeed a strong linear correlation across multiple samples (G, θ) from JSP-329

GFN, with a slope ∆ close to 1, suggesting that the GFlowNet is again an accurate approximation of330

the joint posterior, at least around the modes it captures. Details about how logP⊤
ϕ (G, θ) is estimated331

are available in Appendix D.4.2.332

5.3 Learning biological structures from real data333

We finally evaluated JSP-GFN on real-world biological data for two separate tasks: the discovery of334

protein signaling networks from flow cytometry data (Sachs et al., 2005), as well as the discovery335

of a small gene regulatory network from gene expression data. The flow cytometry dataset consists336

of N = 4, 200 measurements of d = 11 phosphoproteins from 7 different experiments, meaning337

that this dataset contains a mixture of both observational and interventional data. Furthermore, this338

dataset has been discretized into 3 states, representing the level of activity (Eaton and Murphy, 2007).339

For the gene expression dataset, we used a subset of N = 2, 628 observations of d = 61 genes from340

(Sethuraman et al., 2023). Details about the experimental setups are available in Appendix D.5.341

At this scale, using the whole dataset D to evaluate the reward becomes impractical, especially for342

non-linear models. Fortunately, we show in Appendix D.2 that we can use an (unbiased) estimate343

of the reward, based on mini-batches of data, in place of R(G, θ) in the loss function (8). In both344

experiments, we used non-linear models, where all the CPDs are parametrized with a 2-layer MLP.345

Figure D.3 shows a similar correlation plot as Figure 3 (c), along with an evaluation of the NLL346

on unseen observations and interventions. Beyond the ability of JSP-GFN to work with real data,347

these experiments allow us to highlight some of its other capacities: (1) handling discrete and (2)348

interventional data (flow cytometry), as well as (3) learning a distribution over larger graphs (gene349

expression). See Appendix D.5.2 for further analysis and discussion.350

6 Conclusion351

We have presented JSP-GFN, an approach to approximate the joint posterior distribution over the352

structure of a Bayesian Network along with its parameters using a single GFlowNet. We have shown353

that our method faithfully approximates the joint posterior on both simulated and real data, and354

compares favorably against existing Bayesian structure learning methods. In line with Appendix B,355

future work should consider using more expressive distributions, such as those parametrized by356

normalizing flows or diffusion processes, to approximate the posteriors over continuous parameters,357

which would enable Bayesian inference over parameters in more complex generative models.358
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Appendix480

Disclaimer for reviews. Early experiments on the approximation of the joint posterior P (G, θ | D)481

over structures and parameters, applied to small graphs, can be found in a recently published paper482

(not referenced here, to preserve anonymity). These experiments were similar to, but a strict subset of,483

Section 5.1 (with d ≤ 5), and served as an illustrative example for a broader work; the approximation484

of the joint posterior was not a contribution of this already published work. In that regard, the current485

submission should be treated as original work.486

A Positioning JSP-GFN in the Bayesian structure learning literature487

We give a comparison between our method JSP-GFN, and various methods based on variational488

inference in Table A.1. We also include methods based on GFlowNets, namely DAG-GFlowNet489

(Deleu et al., 2022) and VBG (Nishikawa-Toomey et al., 2023), as they are effectively variational490

methods (Malkin et al., 2023; Zimmermann et al., 2022).491

Table A.1: Comparison of different methods based on variational inference and GFlowNets for
Bayesian structure learning. See the text for a detailed description of each category.

Joint Non DAG Discrete Max. Sampler Mini
G & θ Linear Support Obs. Parents Batch

VCN (Annadani et al., 2021) ✗ ✗ ✗ ✗ ✓ ✗
BCD Nets (Cundy et al., 2021) ✓ ✗ ✓ ✗ ✗ ✓ ✗
DiBS (Lorch et al., 2021) ✓ ✓ ✗ ✓ ✗ ✗ ✓
TRUST (Wang et al., 2022) ✗ ✗ ✓ ✗ ✗
VI-DP-DAG (Charpentier et al., 2022) ✗ ✓ ✓ ✗ ✗ ✓ ✗
AVICI (Lorch et al., 2022) ✗ ✓ ✗ ✗ ✓ ✗
DAG-GFlowNet (Deleu et al., 2022) ✗ ✗ ✓ ✓ ✓ ✓ ✗
VBG (Nishikawa-Toomey et al., 2023) ✓ ✓ ✓ ✓ ✗

JSP-GFN (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Joint G & θ. This category indicates whether the model can approximate the joint posterior492

distribution P (G, θ | D) over both graphical structures G and parameters of the CPDs θ, or if493

they are limited to approximating the marginal posterior P (G | D). As we have seen in Section 1,494

approximations of the marginal posteriors limit the classes of models these methods can be applied495

to, namely those where the marginal likelihood can be computed analytically.496

Non-Linear. This indicates whether the model can be applied to Bayesian Networks whose CPDs497

are parametrized by a non-linear function (e.g., a neural network). While most methods approximating498

the marginal distribution may be applied to non-linear CPDs parametrized by a Gaussian Process (von499

Kügelgen et al., 2019), we only consider here methods that explicitly handle non-linearity (e.g., this500

eliminates DAG-GFlowNet (Deleu et al., 2022), since the authors only considered a linear Gaussian501

and discrete settings). Annadani et al. (2021) mentioned the extension of VCN to non-linear causal502

models as future work. While VBG (Nishikawa-Toomey et al., 2023) has only been applied to linear503

Gaussian models, the framework may also be applicable to non-linear models.504

DAG Support. This indicates whether the posterior approximation is guaranteed to have support505

over the space of DAGs. VCN (Annadani et al., 2021) and DiBS (Lorch et al., 2021) only encourage506

acyclicity via a prior term, inspired by continuous relaxations of the acyclicity constraint (Zheng507

et al., 2018), meaning the those methods may return graphs containing cycles; for example in practice,508

Deleu et al. (2022) reports that 1.50% of the graphs returned by DiBS contain cycles (for d = 11).509

AVICI (Lorch et al., 2022) uses a similar prior term when applied to Structural Causal Models510

(SCMs), although in general this framework does not enforce acyclicity by design, to allow flexibility511

on other domains (e.g., for modeling gene regulatory networks; Sethuraman et al., 2023). TRUST512

(Wang et al., 2022) guarantees acyclicity via a distribution over variable orders, that can be learned513

using Sum-Product Networks.514
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Discrete Observations. This indicates whether the posterior approximation may be applied to515

Bayesian Networks with discrete random variables. Although VCN (Annadani et al., 2021) was only516

applied to linear Gaussian models, the authors mention that this approach is also applicable to discrete517

random variables. Similarly, while there is no experiment in (Lorch et al., 2021) applying DiBS to a518

discrete domain, this extension can be found in the official code released. AVICI (Lorch et al., 2022)519

assumes access to a generative model P (D | G), making it possibly applicable to discrete domains as520

well. Since it builds on DAG-GFlowNet (Deleu et al., 2022), VBG (Nishikawa-Toomey et al., 2023)521

should also inherit its properties, and therefore may also be applicable to discrete random variables.522

Similarly, since TRUST (Wang et al., 2022) may use DiBS as its underlying routine for structure523

learning, it should also inherit the properties of DiBS.524

Maximum Parents. This category indicates whether a maximum number of parents can be specified525

for each variable in the DAGs returned by each method. Although this is a very common constraint526

used in the structure learning literature to improve efficiency (Koller and Friedman, 2009), none of527

the variational methods for Bayesian structure learning allow for such a (hard) constraint. Some528

methods may introduce a sparsity-inducing prior (Lorch et al., 2021; Cundy et al., 2021), or use529

post-processing of the sampled DAGs (Charpentier et al., 2022) to reduce the number of edges530

in the sampled graphs. This can be naturally added in a GFlowNet, by masking out the actions531

adding certain edges that would violate this constraint; in fact, in the official code released for both532

DAG-GFlowNet (Deleu et al., 2022) and VBG (Nishikawa-Toomey et al., 2023) (both using the same533

environment), this option is available.534

Sampler. This category indicates whether one can sample graphs and parameters from the model535

once fully trained. DiBS (Lorch et al., 2021) uses a particle-based approach (Liu and Wang, 2016) to536

approximate the posterior (marginal, or joint), and therefore the number of particles is fixed ahead537

of time; once fully trained, it is impossible to sample new pairs of graphs and parameters from this538

model. TRUST (Wang et al., 2022) can also use Gadget (an MCMC approach to Bayesian structure539

learning; Viinikka et al., 2020) as its routine for structure learning, and therefore this would allow540

sampling from the trained model.541

Mini-Batch. This indicates whether the model can be updated with mini-batch of observations542

from D, or if the full dataset must be used. DiBS (Lorch et al., 2021) uses mini-batch updates543

for their experiments on protein signaling networks, where the number of datapoints N = 7466544

is large. Note that unlike JSP-GFN here, neither DAG-GFlowNet (Deleu et al., 2022) nor VBG545

(Nishikawa-Toomey et al., 2023) may be updated using mini-batches, since the maginalization over θ546

makes all observations in D mutually dependent (conditioned on G). See Appendix D.2 for details547

on how to use mini-batch training with JSP-GFN.548

B Broader impact & limitations549

B.1 Broader impact550

While structure learning of Bayesian Networks constitutes one of the foundations of causal discovery551

(also known as causal structure learning), it is important to emphasize that shy of any assumptions,552

the relationships learned from observations in a Bayesian Network are in general not causal, but553

merely statistical associations. As such, care must be taken interpreting the graphs sampled with554

JSP-GFN (or any other Bayesian structure learning method considered in this paper) as being causal.555

This is especially true when applying structure learning methods to the problem of scientific discovery556

(Jain et al., 2023). Assumptions that would allow causal interpretation of the graphs include using557

interventional data (as in Section 5.3), or parametric assumptions.558

Although the graphs returned by JSP-GFN are not guaranteed to be causal, treating structure learning559

from a Bayesian perspective allows us to view identification of the causal relationships in a softer560

way. Indeed, instead of returning a single graph which could be harmful from a causal perspective561

(notably due to the lack of data, see also Section 1), having a posterior distribution over Bayesian562

Networks allows us to average out any possible model that can explain the data.563
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s s′

PF (s
′ | s)

PB(s | s′)
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R(
s)

PF (s0 ⇝ sf )

PB(s0 ⇝ sT )

sm . . . sn

PF (sm ⇝ sn)

PB(sm ⇝ sn)

sk

. . . sm

. . . sn

(a) Detailed Balance (b) Trajectory Balance (c) Subtrajectory Balance
(d) Generalized

Subtrajectory Balance

Figure C.1: Illustration of the different GFlowNet objectives. (a) The detailed balance condition
operates at the level of transitions s→ s′, whereas (b) the trajectory balance condition operates on
complete trajectories s0 ⇝ sf . (c) The subtrajectory balance condition operates on partial trajectories
sm ⇝ sn, and can be (d) generalized to undirected paths with a common ancestor sk. We use
PF (sm ⇝ sn) to denote the product of PF along the path sm ⇝ sn (and similarly for PB).

B.2 Limitations564

Expressivity of the posterior approximation. Throughout this paper, we use Normal distributions565

(with a diagonal covariance, except for JSP-GFN (full) in Section 5.1) to parametrize the approxima-566

tion of the posterior over parameters Pϕ(θ | G, stop) (see Section 3.4). This limits its expressivity to567

unimodal distributions only, and is an assumption which is commonly used with Bayesian neural568

networks. However in general, the posterior distribution P (θ | G,D) may be highly multimodal,569

especially when the model is non-linear (the posterior is Normal when the model is linear Gaussian,570

see Appendix D.6.1). To see this, consider a non-linear model whose CPDs are parametrized by a571

2-layer MLP (as in Sections 5.2 and 5.3). The weights and biases of both layers can be transformed572

in such a way that the hidden units get permuted, while preserving the outputs; in other words, there573

are many sets of parameters θ leading to the same likelihood function, and under mild assumptions574

on the priors P (θ | G) and P (G), they would have the same posterior probability P (θ | G,D).575

To address this issue of unimodality, we can use more expressive posterior approximations Pϕ(θ |576

G, stop), such as ones parametrized with diffusion-based models, or with normalizing flows; both of577

these models are drop-in replacements in JSP-GFN, since their likelihood can be explicitly computed.578

An alternative is also to consider multiple steps of a continuous GFlowNet (Lahlou et al., 2023),579

instead of a single one, to generate θ.580

Biological plausibility of the acyclicity assumption. One of the strengths of JSP-GFN, and DAG-581

GFlowNet before it (Deleu et al., 2022), is the capacity to obtain a distribution over the DAG structure582

of a Bayesian Network (and its parameters). The acyclicity assumption is particularly important in583

order to properly define the likelihood model in (1). However in some domains, such as biological584

systems, there may exist some feedback processes that cannot be captured by acyclic graphs (Mooij585

et al., 2020). In particular, the DAGs found in Section 5.3 and Appendix D.5 must be carefully586

interpreted. As a general framework though, the GFlowNet used in JSP-GFN can be adapted to ignore587

the acyclic nature of the graphs sampled by ignoring parts of the mask m in Sec. 3.4. Alternatively,588

we can view the generation of a cyclic graph by unrolling it, as in Atanackovic et al. (2023).589

C Details about Generative Flow Networks590

Throughout this section, we will use both PF and Pϕ (to emphasize the parametrization on ϕ, as591

in the main text) to denote equally the forward transition probability—the notation PF being more592

commonly used in the literature on GFlowNet (Bengio et al., 2021b).593

C.1 Alternative conditions594

GFlowNets were initially introduced using the flow-matching conditions (Bengio et al., 2021a),595

as described in Section 2.2. However, there have been multiple alternative conditions that, once596

satisfied, also offer the same guarantees as the original flow-matching conditions (namely, a GFlowNet597

satisfying any of those conditions would sample complete states proportionally to the reward).598

One of those alternative conditions are the detailed balance conditions (Bengio et al., 2021b), inspired599

by the literature on Markov chains. These conditions are given for any transition s → s′ in the600
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GFlowNet as601

F (s)PF (s
′ | s) = F (s′)PB(s | s′) (C.1)

where F (s) is a flow function, that may also be parametrized by a neural network. The detailed602

balance condition is illustrated in Figure C.1 (a). Bengio et al. (2021b) showed that if the detailed603

balance conditions are satisfied for all the transitions s→ s′ in the GFlowNet, then the distribution604

induced by the GFlowNet is also proportional to R(s). Deleu et al. (2022) adapted the detailed605

balance conditions in the case where all the states of the GFlowNet are complete, in order to avoid606

having to learn a separate flow function (see Section 2.3).607

Another alternative condition called the detailed balance conditions (Malkin et al., 2022), operates608

not at the level of transitions, but at the level of complete trajectories. For a complete trajectory609

τ = (s0, s1, . . . , sT , sf ), the trajectory balance condition is given by610

Z

T∏

t=1

PF (st+1 | st) = R(sT )

T−1∏

t=1

PB(st | st+1), (C.2)

with the convention sT+1 = sf , and where Z is the partition function of the distribution (i.e.,611

Z =
∑

x∈X R(x)); in practice, Z is a parameter of the model that is being learned alongside the612

forward and backward transition probabilities. The trajectory balance condition is illustrated in613

Figure C.1 (b). Again, if the trajectory balance conditions are satisfied for all complete trajectories in614

the GFlowNet, then the induced distribution is proportional to R(s).615

C.2 Subtrajectory balance conditions616

Also introduced in (Malkin et al., 2022), the subtrajectory balance conditions are a generalization of617

both the detailed balance and trajectory balance conditions to partial trajectories of arbitrary length.618

For a partial trajectory τ = (sm, sm+1, . . . , sn), the subtrajectory balance condition is given by619

F (sm)

n−1∏

t=m

PF (st+1 | st) = F (sn)

n−1∏

t=m

PB(st | st+1), (C.3)

where again F (s) is a flow function (as in (C.1)). This condition encompasses both conditions in620

Appendix C.1, since we can recover the detailed balance condition in (C.1) with partial trajectories of621

length 1 (i.e., transitions), and also the trajectory balance condition in (C.2) with complete trajectories622

(note that F (s0) = Z; Bengio et al., 2021b). The subtrajectory balance condition is illustrated in623

Figure C.1 (c). Madan et al. (2022) also proposed to combine subtrajectory balance conditions for624

partial trajectories of different lengths to create a novel objective called SubTB(λ), inspired by625

TD(λ) in the reinforcement learning literature.626

This subtrajectory balance condition in (C.3) can also be generalized to undirected paths going “back627

and forth” (Malkin et al., 2022). For an undirected path between sm and sn, this (generalized)628

subtrajectory balance condition can be written as629

F (sm)

m−1∏

t=k

PB(st | st+1)

n−1∏

t=k

PF (st+1 | st) = F (sn)

n−1∏

t=k

PB(st | st+1)

m−1∏

t=k

PF (st+1 | st),

(C.4)
where sk is a common ancestor of both sm and sn. This condition is illustrated in Figure C.1 (d).630

While these subtrajectory balance conditions (generalized or not) offer more flexibility, they are631

guaranteed to yield a GFlowNet inducing a distribution proportional to R(s) only if these conditions632

are satisfied for all the partial trajectories of any length. In particular, they provide no guarantee in633

general if those conditions are satisfied for all partial trajectories of fixed length, which is the case634

in this paper (see Section 3.2). Although this result may be extended with weaker assumptions, we635

prove in Appendix C.3.3 that the GFlowNet does induce a distribution ∝ R(s) in our case.636

C.3 Proofs637

C.3.1 Subtrajectory balance conditions for undirected paths of length 3638

Consider an undirected path of length 3 of the form (G, θ) ← (G, ·) → (G′, ·) → (G′, θ′), where639

G′ is the result of adding a new edge to the DAG G (see Figure C.2). Since the state (G, ·) is a640
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G · G′ ·

G θ̃ G θ G′ θ′

R(G, θ) R(G′, θ′)R(G, θ̃)

Undirected paths of length 3

R(G′, θ′)PB(G | G′)Pϕ(θ | G) = R(G, θ)Pϕ(G
′ | G)Pϕ(θ

′ | G′)

Undirected paths of length 2 (differential form)

∇θ logPϕ(θ | G) = ∇θ logR(G, θ)

Figure C.2: Illustration of the undirected paths of length 3 (red) and of length 2 (blue) considered in
this paper, and their corresponding subtrajectory balance conditions.

common ancestor of both complete states (G, θ) and (G′, θ′), we can write the subtrajectory balance641

conditions (C.4) as642

F (G, θ)PB(G | θ)PF (G
′ | G)PF (θ

′ | G′) = F (G′, θ′)PB(G
′ | θ′)PB(G | G′)PF (θ | G), (C.5)

where we abuse the notation PB(G | θ) again to denote PB

(
(G, ·) | (G, θ)

)
. In fact, since the643

complete state (G, θ) ∈ X has only a single parent state (G, ·), we necessarily have PB(G | θ) = 1644

(and similarly for (G′, θ′)). Furthermore, we can use the observation from (Deleu et al., 2022) to645

write the flow F (G, θ) of a complete state (G, θ) as a function of its reward646

F (G, θ) =
R(G, θ)

PF

(
sf | (G, θ)

) . (C.6)

We can simplify (C.6) even further by observing that in the GFlowNet used here, sf is the only child647

of the complete state (G, θ) ∈ X . In other words, a complete state (G, θ) is not directly connected to648

any other (G, θ̃); this is the (infinitely wide) tree structure rooted at (G, ·) mentioned in Section 3.1.649

Since sf is the only child of (G, θ), we then necessarily have PF

(
sf | (G, θ)

)
= 1, and therefore650

F (G, θ) = R(G, θ). With these simplifications, (C.5) becomes651

R(G, θ)PF (G
′ | G)PF (θ

′ | G′) = R(G′, θ′)PB(G | G′)PF (θ | G), (C.7)

which is the subtrajectory balance condition in (6).652

C.3.2 Integrating undirected paths of length 2653

Similar to Appendix C.3.1, we consider here an undirected of length 2 of the form (G, θ)← (G, ·)→654

(G, θ̃) (see Figure C.2). Since (G, ·) is a common ancestor (a common parent in this case) of both655

complete states (G, θ) and (G, θ̃), we can write the subtrajectory balance conditions (C.4) as656

F (G, θ)PB(G | θ)PF (θ̃ | G) = F (G, θ̃)PB(G | θ̃)PF (θ | G). (C.8)

Using the same simplifications as in Appendix C.3.1 (PB(G | θ) = PB(G | θ̃) = 1), we get the657

following subtrajectory balance conditions for the undirected paths of length 2658

R(G, θ)PF (θ̃ | G) = R(G, θ̃)PF (θ | G). (C.9)

Note that these conditions are effectively redundant if the SubTB conditions over undirected paths of659

length 3 (6) are satisfied for all possible pairs of complete states (G, θ) and (G′, θ′). Indeed, if we660

write these conditions between (G, θ) and (G′, θ′) on the one hand, and between (G, θ̃) and (G′, θ′)661

on the other hand (with a fixed G′ and θ′)662

R(G′, θ′)PB(G | G′)PF (θ | G) = R(G, θ)PF (G
′ | G)PF (θ

′ | G) (C.10)

R(G′, θ′)PB(G | G′)PF (θ̃ | G) = R(G, θ̃)PF (G
′ | G)PF (θ

′ | G), (C.11)

we get the same subtrajectory balance conditions over undirected paths of length 2 as in (C.9):663

R(G, θ)

PF (θ | G)
=

R(G′, θ′)PB(G | G′)
PF (G′ | G)PF (θ′ | G′)

=
R(G, θ̃)

PF (θ̃ | G)
. (C.12)

However, since the SubTB conditions (6) are only satisfied approximately in practice, it might664

be advantageous to also satisfy (C.9) in addition to those in (6). The equation above provides an665

alternative way to express (C.9). Indeed, (C.12) shows that the function666

fG(θ) ≜ logR(G, θ)− logPF (θ | G) (C.13)
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is constant, albeit with a constant that depends on the graph G. Since this function is differentiable,667

this is equivalent to ∇θfG(θ) = 0, and therefore we get the differential form of the subtrajectory668

balance conditions in (7)669

∇θ logPF (θ | G) = ∇θ logR(G, θ). (C.14)
As we saw in Section 3.3, one way to enforce the SubTB conditions over undirected paths of length 3670

is to create a learning objective that encourages these conditions to be satisfied, and optimizing it671

using gradient methods. The learning objective has the form L(ϕ) = Eπ[∆̃
2(ϕ)], where ∆̃(ϕ) is a672

non-linear residual term673

∆̃(ϕ) = log
R(G′, θ′)PB(G | G′)Pϕ(θ | G)

R(G, θ)Pϕ(G′ | G)Pϕ(θ′ | G′)
. (C.15)

Suppose that the parameters ϕ of the GFlowNet are such that the subtrajectory balance conditions in674

(C.14) are satisfied for any (G, θ). Although this assumption is unlikely to be satisfied in practice, they675

will eventually be approximately satisfied over the course of optimization, given the discussion above676

about the relation between (C.9) and (C.7). Since θ and θ′ depend on ϕ (via the reparametrization677

trick since they are sampled on-policy, see Section 5), taking the derivative of ∆̃2(ϕ), we get678

d

dϕ
∆̃2(ϕ) = ∆̃(ϕ) · d

dϕ

[
logR(G′, θ′) + logPϕ(θ | G) (C.16)

− logR(G, θ)− logPϕ(G
′ | G)− logPϕ(θ

′ | G′)
]
.

Using the law of total derivatives, we have679

d

dϕ

[
logPϕ(θ | G)− logR(G, θ)

]
=

[
∂

∂θ
logPϕ(θ | G)− ∂

∂θ
logR(G, θ)

]

︸ ︷︷ ︸
=0

dθ

dϕ
+

∂

∂ϕ
logPϕ(θ | G)

(C.17)

=
∂

∂ϕ
logPϕ(θ | G), (C.18)

and similarly for the terms in (G′, θ′). The derivative of the objective then becomes680

d

dϕ
∆̃2(ϕ) = ∆̃(ϕ)

[
∂

∂ϕ
logPϕ(θ | G)− ∂

∂ϕ
logPϕ(θ

′ | G′)− d

dϕ
logPϕ(G

′ | G)

]
. (C.19)

An alternative way to obtain the same derivative in (C.17) is to take dθ/dϕ = 0 instead, meaning that681

we would not differentiate through θ (and θ′). Using the stop-gradient operation ⊥, this shows that682

the following objective683

L(ϕ) ≜ Eπ

[
∆(ϕ)2

]
= Eπ



(
log

R
(
G′,⊥(θ′)

)
PB(G | G′)Pϕ

(
⊥(θ) | G

)

R
(
G,⊥(θ)

)
Pϕ(G′ | G)Pϕ

(
⊥(θ′) | G′)

)2

 (C.20)

takes the same value and has the same gradient (C.19) as the objective in (C.15) when the subtrajectory684

balance conditions (in differential form) over undirected paths of length 2 are satisfied.685

While optimizing (C.20) alone leads to eventually satisfying the subtrajectory balance conditions over686

undirected paths of length 2, it may be advantageous to explicitly encourage this behavior, especially687

in cases where d is larger and/or for non-linear models. We can incorporate some penalty to the loss688

function, such as689

L̃(ϕ) = L(ϕ) + λ

2
Eπ

[∥∥∇θ logPϕ(θ | G)−∇θ logR(G, θ)
∥∥2 (C.21)

+
∥∥∇θ′ logPϕ(θ

′ | G′)−∇θ′ logR(G′, θ′)
∥∥2
]

C.3.3 Marginal distribution over complete states690

Theorem 3.1. If the SubTB conditions in (6) are satisfied for all undirected paths of length 3 between691

any (G, θ) and (G′, θ′) of the form (G, θ)← (G, ·)→ (G′, ·)→ (G′, θ′), then we have692

P⊤
ϕ (G, θ) ≜ Pϕ(G | G0)Pϕ(θ | G) ∝ R(G, θ),
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where Pϕ(G | G0) is the marginal probability of reaching G from the initial state G0 with any693

(complete) trajectory τ = (G0, G1, . . . , GT−1, G):694

Pϕ(G | G0) ≜
∑

τ :G0⇝G

T−1∏

t=0

Pϕ(Gt+1 | Gt),

using the conventions GT = G, and Pϕ(G0 | G0) = 1.695

Proof. We assume that the SubTB conditions are satisfied for all undirected paths of length 3 between696

any (G, θ) and (G′, θ′), that is697

R(G′, θ′)PB(G | G′)Pϕ(θ | G) = R(G, θ)Pϕ(G
′ | G)Pϕ(θ

′ | G′). (C.22)

Let G ̸= G0 be a fixed DAG different from the initial state, and θ a set of corresponding parameters.698

Let τ = (G0, . . . , GT−1, G) be an arbitrary trajectory from G0 to G, where we use the convention699

GT = G. For any t < T , if θt is a fixed set of parameters associated with Gt, then the SubTB700

conditions above can written for every timestep as701

R(Gt+1, θt+1)PB(Gt | Gt+1)Pϕ(θt | Gt) = R(Gt, θt)Pϕ(Gt+1 | Gt)Pϕ(θt+1 | Gt+1), (C.23)

again, using the convention θT = θ. Taking the product of the ratio between Pϕ and PB over the702

trajectory τ , we get703

T−1∏

t=0

Pϕ(Gt+1 | Gt)

PB(Gt | Gt+1)
=

T−1∏

t=0

Pϕ(θt | Gt)R(Gt+1, θt+1)

R(Gt, θt)Pϕ(θt+1 | Gt+1)
(C.24)

=
Pϕ(θ0 | G0)R(G, θ)

R(G0, θ0)Pϕ(θ | G)
(C.25)

Moreover, the backward transition probability PB , defined only over the transitions of the GFlowNet,704

induces a distribution over the trajectories from G0 to G (Bengio et al., 2021b), meaning that705

∑

τ :G0⇝G

T−1∏

t=0

PB(Gt | Gt+1) = 1. (C.26)

Therefore, we have706

Pϕ(G | G0)Pϕ(θ | G) = Pϕ(θ | G)

( ∑

τ :G0⇝G

T−1∏

t=0

Pϕ(Gt+1 | Gt)

)
(C.27)

=
Pϕ(θ0 | G0)

R(G0, θ0)
R(G, θ)

( ∑

τ :G0⇝G

T−1∏

t=0

PB(Gt | Gt+1)

)
(C.28)

=
Pϕ(θ0 | G0)

R(G0, θ0)
R(G, θ) (C.29)

We saw in Appendix C.3.2 that Pϕ(θ0 | G0)/R(G0, θ0) is independent of the value of θ0 if the707

SubTB conditions are satisfied for all undirected paths of length 3 (see (C.12)). This concludes the708

proof: Pϕ(G | G0)Pϕ(θ | G) ∝ R(G, θ).709

D Additional experiments & experimental details710

In addition to Bayesian structure learning methods based on variational inference (Lorch et al.,711

2021; Cundy et al., 2021) or GFlowNets (Nishikawa-Toomey et al., 2023), we also consider 2712

baseline methods based on MCMC, and 2 methods based on bootstrapping (Friedman et al., 1999),713

as introduced in (Lorch et al., 2021). Metropolis-Hastings MC3 (MH-MC3) samples both graphical714

structures and parameters jointly at each move, whereas Metropolis-within-Gibbs MC3 (Gibbs-MC3)715

alternates between updates of the structure, and updates of the parameters; note that MC3 here refers716

to the Structure MCMC algorithm (Madigan et al., 1995). In terms of bootstrapping methods, we717

consider a variant (called B-GES*) based on GES (Chickering, 2002), and another (called B-PC*)718

based on PC (Spirtes et al., 2000). However, since this would yield an approximation of the marginal719

posterior P (G | D) only, the parameter sample θ corresponding to a DAG G correspond to the720

parameter inferred by P (θ | G,D) (see Appendix D.6.1).721
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D.1 Sampling distribution722

In Section 3.3, we saw that the learning objective of JSP-GFN can be written as L(ϕ) = Eπ[∆
2(ϕ)],723

where π is a sampling distribution over (G, θ) and (G′, θ′) with full support. We use a combination724

of on-policy (π = Pϕ) and off-policy (π is different from Pϕ) in order to train the GFlowNet: taking725

inspiration from (Deleu et al., 2022), transitions G→ G′ are sampled off-policy from a replay buffer,726

whereas their corresponding parameters θ and θ′ are sampled on-policy using our current Pϕ(θ | G).727

Therefore, a key difference with Deleu et al. (2022) is that the reward R(G, θ) in (5) is calculated728

“lazily” when the loss is evaluated (i.e., only once θ and θ′ are known), as opposed to being computed729

during the interaction with the state space and stored in the replay buffer alongside the transitions.730

D.2 Mini-batch training731

Throughout the paper, we have assumed that we had access to the full dataset of observations D in732

order to compute the reward R(G, θ) in (5). However, beyond the capacity to have an arbitrary likeli-733

hood model P (D | θ,G) (e.g., non-linear), another advantage of approximating the joint posterior734

P (G, θ | D) is that we can train the GFlowNet using mini-batches of observations. Concretely, for a735

mini-batch B of M observations sampled uniformly at random from the dataset D, we can define736

log R̂B(G, θ) = logP (θ | G) + logP (G) +
N

M

∑

x(m)∈B

logP (x(m) | G, θ), (D.1)

which is an unbiased estimate of the log-reward. The following proposition shows that minimizing737

the estimated loss based on (D.1) wrt. the parameters ϕ of the GFlowNet also minimizes the original738

objective in Section 3.3.739

Proposition D.1. Suppose that B is a mini-batch of M observations sampled uniformly at random740

from the dataset D, and let L̂B(ϕ) be the learning objective defined in Section 3.3, where the reward741

has been replaced by the estimate R̂B(G, θ) in (D.1). Then we have L(ϕ) ≤ EB
[
L̂B(ϕ)

]
.742

Proof. We will first show that log R̂B(G, θ) defined in (D.1) is an unbiased estimate of the log-reward743

logR(G, θ) under a uniform distribution of the mini-batches B. We can observe that by conditional744

independence of the observations x(n) given G and θ, we have745

logP (D | θ,G) =

N∑

n=1

logP (x(n) | θ,G) = NEx

[
logP (x | θ,G)

]
, (D.2)

where the expectation is taken wrt. the uniform distribution over the observations inD. It is important746

to note that we can decompose the likelihood term as in (D.2) because the observations are mutually747

independent given G and θ; if we were only conditioning on G (i.e., using the marginal likelihood,748

as in (Deleu et al., 2022)), then those observations would not be conditionally independent in general.749

Similarly, we have750

EB


 ∑

x(m)∈B
logP (x(m) | θ,G)


 = MEx

[
logP (x | θ,G)

]
. (D.3)

Therefore, it shows that the estimate of the log-reward is unbiased:751

EB
[
log R̂B(G, θ)

]
=

N

M
EB


 ∑

x(m)∈B
logP (x(m) | θ,G)


+ logP (θ | G) + logP (G) (D.4)

= logP (D | θ,G) + logP (θ | G) + logP (G) = logR(G, θ). (D.5)

Recall that the estimate of the loss is defined as L̂B(ϕ) = Eπ

[
∆̂2

B(ϕ)
]
, where the residual is defined752

by753

∆̂B(ϕ) = log
R̂B
(
G,⊥(θ)

)
PB(G | G′)Pϕ

(
⊥(θ) | G

)

R̂B
(
G′,⊥(θ′)

)
Pϕ(G′ | G)Pϕ

(
⊥(θ′) | G′) . (D.6)
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Taking the expectation of this estimated loss wrt. a random mini-batch B, we get754

EB
[
L̂B(ϕ)

]
= Eπ

[
EB
[
∆̂2

B(ϕ)
]]

(D.7)

≥ Eπ

[
EB
[
∆̂B(ϕ)

]2]
(D.8)

= Eπ

[
∆2(ϕ)

]
(D.9)

= L(ϕ), (D.10)

where we used the convexity of the square function and Jensen’s inequality in (D.8), and the755

unbiasedness of log R̂B(G, θ) (as well as log R̂B(G′, θ′)) in (D.9); recall that ∆(ϕ) is given in (C.20)756

(see also (8)).757

Note that in the proof of Proposition D.1 above, we only used the convexity of the square function758

to conclude, but no other property of this function; in practice, we use the Huber loss instead of the759

square loss for stability, which is also a convex function. In the case of the square loss, we can get a760

stronger result in terms of unbiasedness of the gradient estimator.761

Proposition D.2. The mini-batch gradient estimator is unbiased, i.e., ∇ϕL(ϕ) = EB
[
∇ϕL̂B(ϕ)

]
.762

Therefore, the local and global minima of the expected mini-batch loss coincide with those of the763

full-batch loss.764

Proof. We now show that the gradient estimator is unbiased. We observe that765

∇ϕ∆(ϕ) = ∇ϕ∆̂B(ϕ) (D.11)

since only the terms corresponding to the rewards differ between ∆(ϕ) and ∆̂B(ϕ), and they do not766

depend on ϕ. Therefore,767

EB
[
∇ϕL̂B(ϕ)

]
= EB

[
∇ϕ[∆̂B(ϕ)

2]
]

= 2 · EB
[
∆̂B(ϕ)∇ϕ∆̂B(ϕ)

]

= 2 · EB
[
∆̂B(ϕ)

]
∇ϕ∆(ϕ)

= 2∆(ϕ)∇ϕ∆(ϕ)

= ∇ϕ

[
∆(ϕ)2]

= ∇ϕL(ϕ),
as desired. This implies the expected mini-batch loss and full-batch loss differ by a constant and have768

the same set of local and global minima. This constant happens to equal769

VarB

[
log

R̂B(G, θ)

R̂B(G′, θ′)

]
,

and showing the difference equals this constant yields an alternative proof.770

D.3 Joint posterior over small graphs771

D.3.1 Data generation & modeling772

Data generation. We follow the same data generation process as in (Deleu et al., 2022; Lorch et al.,773

2021). More precisely, we first sample a graph from an Erdös-Rényi model (Erdős and Rényi, 1960)774

over d = 5 nodes, with d edges on average (a setting typically referred to as ER1). Once the structure775

of the graph G⋆ is known, we sample the parameters θ⋆ of the linear Gaussian model randomly from776

a standard Normal distribution N (0, 1). The linear Gaussian model is defined as777

Xi =
∑

Xj∈PaG(Xi)

θ⋆ijXj + εi, (D.12)

where θ⋆ij ∼ N (0, 1), and εi ∼ N (0, 0.01); this defines all the CPDs necessary for (1). Finally, we778

use ancestral sampling to generate N = 100 observations to create the dataset D.779
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Figure D.1: Comparison of the marginals over graphs in terms of features computed with the exact
posterior (x-axis) and the approximation given by JSP-GFN (y-axis). (a-c) Comparison with JSP-GFN
(diag); (d-f) comparison with JSP-GFN (full). Each point corresponds to a pair of variables (Xi, Xj)
for each of the 20 datasets.

Modeling. We use a linear Gaussian Bayesian Network to model the data, where the CPD for the780

variable Xi can be written as P
(
Xi | PaG(Xi); θi

)
= N (µi, σ

2), where781

µi =

d∑

j=1

1
(
Xj ∈ PaG(Xi)

)
θijXj , (D.13)

and where σ2 = 0.01 is a fixed variance across variables, matching the variance used for data782

generation. We place a unit Normal prior over the parameters θij of the model: P (θij | G) = N (0, 1).783

This model differs from the widely used BGe score (Geiger and Heckerman, 1994) in that σ2 is784

treated as a hyperparameter here, instead of a parameter of the model, and therefore the resulting785

log-reward is not score equivalent (i.e., placing the same reward for Markov equivalent DAGs;786

Koller and Friedman, 2009). We used a uniform prior over graphs. Under this model, the posterior787

distribution P (θ | G,D) can be computed analytically, and the proof is available in Appendix D.6.1.788

D.3.2 Comparing JSP-GFN with the exact posterior against features789

In Section 5.1, we evaluated the accuracy of the posterior approximation returned by JSP-GFN by790

comparing them on the edge features, i.e., the marginal distribution of an edge Xi → Xj is present791

in the graph:792

P (Xi → Xj | D) = EP (G|D)

[
1(Xi → Xj ∈ G)

]
, (D.14)

where the expectation in (D.14) is either over the true (marginal) posterior P (G | D) (for the x-axis793

of Figure 2), or over the distribution P⊤
ϕ induced by the GFlowNet (discarding θ, see Section 3.4, for794

the y-axis). Besides edge features, there exists other marginals of interest (Friedman and Koller, 2003;795

Deleu et al., 2022), such as the path feature and the Markov feature. The path feature corresponds to796

the marginal probability of a path Xi ⇝ Xj being present in the graph, and the Markov feature is the797
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Table D.1: Quantitative comparison between different Bayesian structure learning algorithms and
the exact posterior on small graphs with d = 5 nodes. For each feature, the root meas-square error
(RMSE) and Pearson’s correlation coefficient between the features computed with the posterior
approximation and the exact posterior are reported. Values are reported as the mean and 95%
confidence interval across 20 different datasets.

Edge features Path features Markov features

RMSE Pearson’s r RMSE Pearson’s r RMSE Pearson’s r

MH-MC3 0.357± 0.022 0.067± 0.143 0.368± 0.027 0.045± 0.179 0.341± 0.017 0.064± 0.217
Gibbs-MC3 0.357± 0.022 0.028± 0.127 0.367± 0.026 0.150± 0.162 0.341± 0.018 0.062± 0.159
B-GES* 0.263± 0.070 0.635± 0.180 0.302± 0.080 0.544± 0.230 0.129± 0.022 0.955± 0.026
B-PC* 0.305± 0.057 0.570± 0.138 0.349± 0.058 0.471± 0.154 0.354± 0.072 0.821± 0.087
DiBS 0.312± 0.038 0.737± 0.071 0.357± 0.041 0.710± 0.079 0.504± 0.052 0.643± 0.093
BCD Nets 0.215± 0.055 0.819± 0.097 0.266± 0.057 0.774± 0.109 0.327± 0.040 0.850± 0.067
VBG 0.237± 0.037 0.816± 0.064 0.284± 0.027 0.799± 0.050 0.434± 0.058 0.738± 0.091

JSP-GFN (diag) 0.018± 0.005 0.998± 0.001 0.022± 0.005 0.998± 0.001 0.019± 0.006 0.999± 0.001
JSP-GFN (full) 0.019± 0.007 0.998± 0.001 0.021± 0.007 0.998± 0.002 0.020± 0.008 0.999± 0.001

marginal probability of a node Xi being in the Markov blanket of Xj . In other words798

P (Xi ⇝ Xj | D) = EP (G|D)

[
1(Xi ⇝ Xj ∈ G)

]
(D.15)

P (Xi ∈ MB(Xj) | D) = EP (G|D)

[
1(Xi ∈ MBG(Xj))

]
, (D.16)

where MBG(Xj) denotes the Markov blanket of Xj in G. For the posterior approximation returned799

by JSP-GFN (and other methods), the expectations appearing in (D.15) & (D.16) are computed under800

the posterior approximation, and can be estimated using a Monte Carlo estimate over sample DAGs801

from the model.802

In Figure D.1, we show a similar plot as in Figure 2 (a) for all these features, for both models803

JSP-GFN (diag) and JSP-GFN (full). We observe that for all features, the approximation of the804

posterior given by JSP-GFN is very accurate (as confirmed by the Pearson’s correlation coefficients).805

Interestingly, the more expressive model JSP-GFN (full) seems to perform slightly worse than JSP-806

GFN (diag); this is also confirmed in part by the quantitative measures in Table D.1. This can be807

explained by the additional number of parameters of the neural network ϕ necessary to output the808

higher dimensional full covariance matrix (more precisely, a lower-triangular matrix corresponding809

to its Cholesky decomposition). In Table D.1, we show a quantitative comparison across the different810

Bayesian structure learning methods on the three features, in terms of RMSE and Pearson’s correlation811

coefficient. Similar to Section 5.1, we observe that JSP-GFN provides a more accurate posterior812

approximation (at least in terms of its marginal over G) than other methods.813

D.3.3 Evaluation of the posterior approximations over parameters814

In order to evaluate the quality of the posterior approximation over θ, we measure how likely sample815

parameters from the approximation are under the exact posterior distribution P (θ | G,D). More816

precisely, we compute the cross-entropy between the posterior approximation Pϕ(G, θ) and the817

exact joint posterior P (G, θ | D): given a distribution Pϕ(G, θ) approximating the joint posterior818

P (G, θ | D), we estimate819

−EPϕ(G,θ)

[
logP (θ | G,D)

]
≈ − 1

K

K∑

k=1

logP (θ(k) | G(k),D), (D.17)

where {(G(k), θ(k))}Kk=1 are K samples of the posterior approximation Pϕ(G, θ). We use this820

measure as it can be estimated from samples.821

D.4 Gaussian Bayesian Networks from simulated data822

D.4.1 Data generation & modeling823

Data generation. For the linear Gaussian experiment, the data generation process follows the824

process described for small graphs in Appendix D.3.1, except that we sample ground truth graphs G⋆825
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from an Erdös-Rényi model with 2d edges on average (a setting commonly referred to as ER2), for826

d = 20 variables.827

For the non-linear Gaussian experiment, the data generation process is also similar, except that the828

CPDs are parametrized using a 2-layer MLP with 5 hidden units and a ReLU activation function829

(Lorch et al., 2021) with randomly generated weights. We also sample N = 100 observations to830

create the dataset D.831

Modeling. We use a Gaussian Bayesian Network to model the data, where the CPD for the variable832

Xi can be written as P (Xi | PaG(Xi); θi) = N (µi, σ
2), where833

µi = MLP(MiX; θi), (D.18)

where Mi = diag
(
1(X1 ∈ PaG(Xi)), . . . ,1(Xd ∈ PaG(Xi))

)
and X = (X1, . . . , Xd). The834

variance σ2 = 0.01 is fixed across variables, and matches the variance used for data generation.835

Following Lorch et al. (2021) and matching the data generation process, we use a 2-layer MLP with836

5 hidden units and a ReLU activation function, for a total of |θ| = 2, 220 parameters. The priors over837

parameters P (θ | G) and over graphs P (G) follow the ones described in Appendix D.3.1.838

D.4.2 Estimation of the log-terminating state probability839

When the graphs are larger, it becomes impossible to compare the posterior approximation returned by840

JSP-GFN with the exact joint posterior P (G, θ | D) directly, since the latter becomes intractable (even841

with a linear Gaussian model) due to the super-exponential size of the sample space. Alternatively,842

since the terminating state probability P⊤
ϕ (G, θ) of JSP-GFN should ideally be equal to the joint843

posterior (see Theorem 3.1), we have844

logP⊤
ϕ (G, θ) ≈ logP (G, θ | D) = logR(G, θ)− logP (D), (D.19)

where logP (D) is a constant corresponding to the log-partition function. Therefore, we can compare845

the log-terminating state probability logP⊤
ϕ (G, θ) with the log-reward logR(G, θ) (which we can846

compute analytically) for different samples (G, θ), and find a linear relation. This evaluation strategy847

was introduced in (Bengio et al., 2021a).848

However, recall from Theorem 3.1 that the terminating state probability is defined as849

P⊤
ϕ (G, θ) = Pϕ(G | G0)Pϕ(θ | G) = Pϕ(θ | G)

∑

τ :G0⇝G

T−1∏

t=0

Pϕ(Gt+1 | Gt), (D.20)

where the summation is over all the possible trajectories τ = (G0, G1, . . . , GT ) from G0 to GT = G.850

If G is a DAG with K edges, then there are K! such trajectories (i.e., the K edges could be added851

in any order), meaning that this sum is also intractable. We can leverage the fact that the backward852

transition probability PB(Gt | Gt+1) induces a distribution over the trajectories G0 ⇝ G (Bengio853

et al., 2021b) to write Pϕ(G | G0) as854

Pϕ(G | G0) =
∑

τ :G0⇝G

Pϕ(τ) (D.21)

=
∑

τ :G0⇝G

PB(τ)

PB(τ)
Pϕ(τ) (D.22)

= K! · Eτ∼PB

[
Pϕ(τ)

]
, (D.23)

where PB(τ) = 1/K!, since the backward transition probability here is fixed to be uniform over855

parent states. This suggests a way to get an unbiased estimate of Pϕ(G | G0), hence of P τ
ϕ (G, θ),856

based on Monte-Carlo estimation:857

Pϕ(G | G0) ≈
K!

M

M∑

m=1

Pϕ(τ
(m)), (D.24)

where {τ (m)}Mm=1 are trajectories from G0 to G, sampled by removing one edge at time uniformly at858

random, starting at G (i.e., following the backward transition probabilities PB).859
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While (D.24) provides an unbiased estimate of Pϕ(G | G0), in practice the variance of this estimate860

will be large due to the combinatorially large space of trajectories, and therefore due to the wide range861

of values Pϕ(τ) may take. In order to reduce the variance, we can first identify some trajectories862

that would contribute the most to the sum in (D.21), and complement them with some randomly863

sampled trajectories as in (D.24). In other words, if we have access to a subset Ttop of B trajectories864

τ : G0 ⇝ G that have a large Pϕ(τ), then865

Pϕ(G | G0) =
∑

τ∈Ttop

Pϕ(τ) +
∑

τ /∈Ttop

Pϕ(τ) ≈
∑

τ∈Ttop

Pϕ(τ) +
K!−B

M

M∑

m=1

Pϕ(τ
(m)), (D.25)

where the sample trajectories {τ (m)}Mm=1 can be obtained using rejection sampling, with a uniform866

proposal as above. The estimate in (D.25) is still unbiased, but with a lower variance. We can use867

beam-search to find the “top-scoring” trajectories in Ttop, with a beam-size B. More precisely, we868

need to run beam-search, starting at G0, in such a way that the trajectories are guaranteed to end at G.869

We can achieve this by constraining the set of actions one can take at each step of expansion to move870

from a graph Gt to Gt+1 = Gt ∪ {e} (using this notation to denote that Gt+1 is the result of adding871

the edge e to Gt), with the following score:872

P̃ϕ(Gt+1 | Gt) = 1(e ∈ G)Pϕ(Gt+1 | Gt). (D.26)

In other words, we only keep transitions corresponding to adding edges that are in G. Note that even873

though P̃ϕ is not a properly defined probability distribution (it does not sum to 1), we can still use874

this scoring function to run beam-search in order to find “top-scoring” trajectories.875

D.4.3 Additional comparisons with the ground-truth graphs876

In Section 5.2, we compare JSP-GFN against other Bayesian structure learning in terms of their877

negative log-likelihood on held-out data. In addition to the negative log-likelihood though, there878

exists standard metrics in the structure learning literature that compare the posterior approximation879

with the ground truth graphs G⋆ used for data generation. For example, the expected SHD, that is880

estimated from graphs {G1, . . . , Gk} sampled from the posterior approximation as881

E−SHD ≈ 1

n

n∑

k=1

SHD(Gk, G
⋆), (D.27)

where SHD(G,G⋆) counts the number of edges changes (adding, removing, reversing an edge)882

necessary to move from G to G⋆. There is also the area under the ROC curve (AUROC) that883

compares the edge marginals estimated from the posterior approximation (i.e., the edge features, see884

Appendix D.3.2) and the target G⋆. We report these metrics in Figure D.2.885

Although these metrics are used in the Bayesian structure learning literature, they also suffer from a886

number of drawbacks (Lorch et al., 2022). Namely, these metrics do not properly assess the quality887

of the posterior approximation (i.e., how close the approximation is the the true P (G, θ | D)), but888

merely how close the sampled graphs are from G⋆. In general, and especially when the data is limited,889

the graphs sampled from the true posterior have no reason a priori to match exactly G⋆. Moreover,890

the expected SHD tends to favour overly sparse graphs on the one hand, or posterior approximations891

that collapse completely at G⋆ on the other hand, both situations indicating a poor approximation of892

the true P (G, θ | D).893

D.5 Learning biological structures from real data894

D.5.1 Modeling895

Protein signaling networks from flow cytometry data. Since the flow cytometry data has been896

discretized, we use a non-linear model with Categorical observations. The CPDs are parametrized897

using a 2-layer MLP with 16 hidden units and a ReLU activation function, i.e., Xi | PaG(Xi) ∼898

Categorical(πi), where899

πi = MLP
(
MiX; θi), (D.28)

where X encodes the discrete inputs as one-hot encoded values, and the MLP has a softmax900

activation function for the output layer. In total, the model has |θ| = 6, 545 parameters. The priors901

over parameters P (θ | G) and over graphs P (G) follow the ones described in Appendix D.3.1.902
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Figure D.2: (a-b) Comparison of JSP-GFN with other Bayesian structure learning methods in terms
of the expected-SHD to the ground truth graphs G⋆ used for data generation. (c-d) Comparison in
terms of Area Under the ROC curve (AUROC) to the ground truth graphs G⋆.

Gene regulatory networks from gene expression data. Gene expression data is composed of903

either non-zero continuous data (when a gene is expressed) or (exactly) zero values (when the gene904

is inhibited). To capture this type of observations, we model CPDs of the Bayesian Network as905

zero-inflated Normal distributions:906

P (Xi | PaG(Xi); θi) = αiδ0(Xi) + (1− αi)N (µi, σ
2
i ) (D.29)

where µi is the result of a 2-layer MLP with 16 hidden units, as in (D.28). The parameters of the907

CPDs contain the parameters of the MLP, as well as the mixture parameter αi and the variance of the908

observation noise σ2
i , for a total of |θ| = 61, 671 parameters. The priors over parameters P (θ | G)909

and over graphs P (G) follow the ones described in Appendix D.3.1.910

D.5.2 Experimental results & analysis911

To measure the quality of the posterior approximation returned by JSP-GFN, we compare in Fig-912

ure D.3 the terminating state log-probability logP⊤
ϕ (G, θ), estimated using the same procedure as913

in Appendix D.4.2, with the log-reward logR(G, θ), similar to Figure 3. We observe that there is914

correlation between these two quantities; unlike in Figure 3 though, we observe that the slope is not915

close to 1, suggesting that JSP-GFN underestimates the probability of (G, θ). We also observe that the916

graphs are “clustered” together; this can be explained by the fact that the posterior approximation is917
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Figure D.3: Performance of JSP-GFN on real-world biological data. (a) Comparison of the terminat-
ing state log-probability logP⊤

ϕ (G, θ) returned by JSP-GFN with the log-reward logR(G, θ) on a
subsample of N = 100 datapoints of the flow cytometry datasetD. (b) Same comparison with the full
dataset D of size N = 4, 200. (c) Comparison of JSP-GFN with methods based on MCMC on both
flow cytometry data and gene expression data, in terms of negative (interventional) log-likelihood on
held-out data.

concentrated at only a few graphs, since the size of the dataset D is large. To confirm this observation,918

we show in Figure D.3 (a) a similar plot on a subsample of N = 100 datapoints randomly sampled919

from D, matching the experimental setting of Section 5.2. In this case, we observe a much closer920

linear fit, with a slope closer to 1.921

In addition to the comparison to the log-reward, we also compare in Figure D.3 (c) JSP-GFN with922

2 methods based on MCMC in terms of the negative log-likelihood on held-out data. We can see923

that JSP-GFN is competitive, and even out-performs MCMC on the more challenging problem of924

the discovery of gene regulatory networks from gene expression data, where the dimensionality of925

the problem is much larger (d = 61). Note that the values reported for the discovery of protein926

signaling networks from flow cytometry data correspond to the negative interventional log-likelihood,927

on interventions unseen in D.928

D.6 Proofs929

D.6.1 Posterior of the linear Gaussian model930

Recall that the CPD for the linear Gaussian model can be written as931

P
(
Xi | PaG(Xi); θi

)
= N (µi, σ

2) where µi =

d∑

j=1

1
(
Xj ∈ PaG(Xi)

)
θijXj , (D.30)

and where σ2 is a fixed hyperparameter. Moreover, we assume that the parameters have a unit Normal932

prior associated to them, meaning that933

P (θij | G) =

{
N (µ0, σ

2
0) if Xj → Xi ∈ G

δ0 otherwise, (D.31)

where µ0 = 0, σ2
0 = 1, and δ0 is the Dirac measure at 0, indicating that this parameter is always934

inactive.935

We want to compute the posterior distribution P (θi | G,D); this is sufficient, since we know that936

the parameters of the different CPDs are mutually conditionally independent given G and D. Let937

X ∈ RN×d be the design matrix of the dataset D (i.e., the observations x(n) concatenated row-wise),938

and by abuse of notation, we denote by Xi the ith column of this design matrix. Let Di be a diagonal939

matrix, dependent on G, defined as940

Di = diag
(
1
(
X1 ∈ PaG(Xi)

)
, . . . ,1

(
Xd ∈ PaG(Xi)

))
. (D.32)

We can rewrite the complete model above as941

P (θi | G) = N (Diµ0, σ
2
0Di) (D.33)

P
(
Xi | PaG(Xi); θi

)
= N (XDiθi, σ

2IN ). (D.34)
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We abuse the notation above by treating a Dirac distribution at 0 as the limiting case of a Normal942

distribution with variance 0. Given this form, we can easily identify that the posterior over θi is a943

Normal distribution944

P (θi | G,D) = N (µ̄i, Σ̄i) where

µ̄i = Σ̄i

[
1

σ2
0

Diµ0 +
1

σ2
DiX

⊤Xi

]

Σ̄−1
i =

1

σ2
0

D−1
i +

1

σ2
DiX

⊤XDi

(D.35)

where we used the conventions 1/0 =∞ and 0×∞ = 0. The masked entries of Di will correspond945

to zeroed-out entries in µ̄i, and to rows and columns of Σ̄i being equal to zero, effectively reducing946

the dimensionality of the distribution to the number of parents of Xi in G (e.g., this has an impact on947

the normalization constant of this distribution). In the limit case where Xi has no parent in G, we948

recover P (θi | G,D) = δ0.949
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