
A Revisit of Optimistic Online Learning

In this section, we briefly review some important properties in the classical optimistic online learning
algorithms. Some of the propositions in this section will be frequently used in the proof of the regret
bound.

For convenience, we will use ψ(·) to denote the negative entropy function, i.e., ψ : ∆n → R,
ψ(p) = ∑n

i=1 pi log pi. Note that log stands for the natural logarithm function with base e.

For a vector norm ∥·∥, its dual norm is defined as:
∥y∥∗ = max

x
{⟨x, y⟩ : ∥x∥ ≤ 1} .

Proposition A.1. Let L be a vector in n-dimensional space. If p∗ = arg min
p∈∆n

{⟨p, L⟩+ ψ (p)}, then

p∗ can be written as:

p∗ =
exp (−L)
∥exp (−L)∥1

and vice versa.

Proof. Write L = (L1, L2, . . . , Ln). By definition, we know that p∗ is the solution to the following
convex optimization problem:

minimize
p1, p2, . . . , pn

n

∑
i=1

piLi +
n

∑
i=1

pi log pi

subject to
n

∑
i=1

pi = 1,

∀i, pi ≥ 0
The Lagrangian is

L(p, u, v) =
n

∑
i=1

piLi +
n

∑
i=1

pi log pi −
n

∑
i=1

ui pi + v

(
n

∑
i=1

pi − 1

)
From KKT conditions, we know that the stationarity is:

Li + 1 + log pi − ui + v = 0. (1)
The complementary slackness is:

ui pi = 0.
The primal feasibility is

∀i, pi ≥ 0;
n

∑
i=1

pi = 1.

The dual feasibility is
ui ≥ 0.

If ui ̸= 0 then pi = 0, from stationarity we know ui = −∞, but that violates the dual feasibility. So
we can conclude that ui = 0 for all i ∈ [n], thus pi ∝ exp(−Li) and the result follows.

Now we present a generalized version of the optimistic multiplicative weight algorithm called
optimisitically follow the regularized leader (Opt-FTRL) in Algorithm 3. In the algorithm, mt has the
same meaning as m(t) for notation consistency.

Algorithm 3 Optimistic follow-the-regularized-leader
Input: The closed convex domain X.
Output: Step size λ, loss gradient prediction m.

Initialize L0 ← 0, choose appropriate m1.
for t = 1, . . . , T do

Choose xt = arg min
x∈X

{λ ⟨Lt−1 + mt, x⟩+ ψ(x)}.

Observe loss lt, update Lt = Lt−1 + lt.
Compute mt+1 using observations till now.

end for
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Now we study a crucial property that leads to the fast convergence of the algorithm, called the Regret
bounded by Variation in Utilities (RVU in short). For simplicity, we only consider the linear loss
function lt(x) = ⟨lt, x⟩. (There is a little abuse of notation here.)

Definition A.2 (Regret bounded by Variations in Utilities (RVU), Definition 3 in Syrgkanis et al.
[46]). Consider an online learning algorithm A with regret R(T) = o(T), we say that it has the
property of regret bound by variation in utilities if for any linear loss sequence l1, l2, . . . , lT , there
exists parameters α > 0, 0 < β ≤ γ such that the algorithm output decisions x1, x2, . . . , xT , xT+1
that satisfy:

T

∑
i=1
⟨li, xi⟩ −min

x∈X

T

∑
i=1
⟨li, x⟩ ≤ α + β

T−1

∑
i=1
∥li+1 − li∥2

∗ − γ
T−1

∑
i=1
∥xi+1 − xi∥2 ,

where ∥·∥∗ is the dual norm of ∥·∥.

We do not choose the norm to be any specific one here. In fact, Syrgkanis et al. [46] have already
shown that the above optimistic follow-the-regularized-leader algorithm has the RVU property with
respect to any norm ∥·∥ in which the negative entropy function ψ is 1-strongly convex. So, from
Pinsker’s inequality, for l2 norms the following result holds:

Proposition A.3 (Proposition 7 in Syrgkanis et al. [46]). If we choose mt = lt−1 in the optimistic
follow-the-regularized-leader algorithm with step size λ ≤ 1/2, then it has the regret bound by
variation in utilities property with the parameters α = log n/λ, β = λ and γ = 1/(4λ), where n is
the dimension of X.

B Regret Bound and Time Complexity of Our Algorithm

B.1 Ideal Samplers

We assume that after the execution of our algorithm, the sequences we get are {(xt, yt)}T+1
t=1 and

{(gt, ht)}T+1
t=1 , respectively. We denote ut := exp (−Aht)

∥exp (−Aht)∥1
and vt := exp (A⊺gt)

∥exp (A⊺gt)∥1
to be the

corresponding Gibbs distribution, we will first assume that the Gibbs oracle in our algorithm has no
error (i.e. ϵG = 0) until Theorem B.5 is proved.

Observation B.1. The sequence {ut}T
t=1 can be seen as the decision result of applying optimistic

FTRL algorithm to the linear loss function Aηt with linear prediction function Aηt−1, and similarly
for {vt}T+1

t=1 with the loss function −A⊺ζt, the prediction function −A⊺ζt−1.

Proof. By symmetry, we only consider ut. Since ut =
exp (−Aht)
∥exp (−Aht)∥1

, from Proposition A.1 we can
write

ut = arg min
u∈∆m

{⟨Aht, u⟩+ ψ(u)} .

Then we notice the iteration of Algorithm 1 gives

ht = λ

(
t−1

∑
i=1

ηi

)
+ ληt−1.

So from the definition of the Algorithm 3, we know that our observation holds.

This observation, together with Proposition A.3, gives the following inequalities. For any u ∈ ∆m,
v ∈ ∆n, we have:

T

∑
t=1
⟨ut − u, Aηt⟩ ≤

log m
λ

+ λ
T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 − 1

4λ

T−1

∑
t=1
∥ut+1 − ut∥2 , (2)

T

∑
t=1
⟨vt − v,−A⊺ζt⟩ ≤

log n
λ

+ λ
T−1

∑
t=1
∥A⊺(ζt+1 − ζt)∥2 − 1

4λ

T−1

∑
t=1
∥vt+1 − vt∥2 . (3)
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However, we find that the loss function is slightly different from what we expect.

Let us consider the difference qt := A(vt − ηt) and pt := −A⊺(ut − ζt), we have the decomposi-
tion of the regret:

T

∑
t=1
⟨ut − u, Avt⟩ =

T

∑
t=1
⟨ut − u, Aηt⟩+

T

∑
t=1
⟨ut − u, qt⟩ .

Notice that E[qt] = E[pt] = 0, we have:
Lemma B.2.

E

[
T

∑
t=1
⟨ut − u, qt⟩

]
= 0, E

[
T

∑
t=1
⟨vt − v, pt⟩

]
= 0

Proof. By symmetry, we only prove the case for u. It suffices to prove that for every t,
E [⟨ut − u, qt⟩] = 0. Since u is fixed, E [⟨u, qt⟩] = ⟨u, E [qt]⟩ = 0.

Now consider E [⟨ut, qt⟩], notice that given η1, . . . , ηt−1 then ut is a constant. We have:

E [⟨ut, qt⟩] = E [E [⟨ut, qt⟩ |η1, η2, . . . , ηt−1]]

= E [⟨ut, E [qt|η1, η2, . . . , ηt−1]⟩]
= E [⟨ut, 0⟩] = 0.

Now we are going to bound the term ∑T−1
t=1 ∥A(ηt+1 − ηt)∥2.

Lemma B.3.
T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 ≤ 6 + 3

T−1

∑
t=1
∥vt+1 − vt∥2 , (4)

T−1

∑
t=1
∥A⊺(ζt+1 − ζt)∥2 ≤ 6 + 3

T−1

∑
t=1
∥ut+1 − ut∥2 . (5)

Proof. Recall that by rescaling we have ∥A∥ ≤ 1. Hence,

T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 ≤

T−1

∑
t=1
∥ηt+1 − ηt∥2 .

Write ηt+1 − ηt = (ηt+1 − vt+1) + (vt+1 − vt) + (vt − ηt). Using the triangle inequality of the l1
norm and the Cauchy inequality (a + b + c)2 ≤ 3

(
a2 + b2 + c2), we get

T−1

∑
t=1
∥ηt+1 − ηt∥2 ≤ 6

T

∑
t=1
∥ηt − vt∥2 + 3

T−1

∑
t=1
∥vt+1 − vt∥2 . (6)

Similarly, we have:
T−1

∑
t=1
∥ζt+1 − ζt∥2 ≤ 6

T

∑
t=1
∥ζt − ut∥2 + 3

T−1

∑
t=1
∥ut+1 − ut∥2 . (7)

Observing that in our algorithm we collect T independent and identically distributed samples and
take their average, we have:

E

[
T

∑
t=1
∥ζt − ut∥2

]
≤ 1,

E

[
T

∑
t=1
∥ηt − vt∥2

]
≤ 1.

Combining the result above, we just get the desired equation.
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We also need the following lemma to guarantee that the sum of the regret is always non-negative.
Lemma B.4. The sum of the regrets of two players in Algorithm 1 is always non-negative. In other
words:

max
u∈∆m

max
v∈∆n

(
T

∑
t=1
⟨ut − u, Avt⟩+

T

∑
t=1
⟨vt − v,−A⊺ut⟩

)
≥ 0.

Proof.

max
u∈∆m

max
v∈∆n

(
T

∑
t=1
⟨ut − u, Avt⟩+

T

∑
t=1
⟨vt − v,−A⊺ut⟩

)

= max
u∈∆m

max
v∈∆n

(
T

∑
t=1
⟨−u, Avt⟩+

T

∑
t=1
⟨v, A⊺ut⟩

)

=max
v∈∆n

T

∑
t=1
⟨v, A⊺ut⟩ − min

u∈∆m

T

∑
t=1
⟨u, Avt⟩ ≥ 0

The last step is because

max
v∈∆n

T

∑
t=1
⟨v, A⊺ut⟩ ≥

〈
A

T

∑
t=1

vt/T,
T

∑
t=1

ut

〉
,

and

min
u∈∆m

T

∑
t=1
⟨u, Avt⟩ ≤

〈
A

T

∑
t=1

vt,
T

∑
t=1

ut/T

〉
.

Combining the result above, we finally have the following theorem.

Theorem B.5. Suppose that in our Algorithm 1, we choose the episode T = Θ̃(1/ε), and choose a
constant learning rate λ that satisfies λ <

√
3/6. Then with probability at least 2/3 the total regret

of the algorithm is Õ(1). To be more clear, we have:

T
(

max
v∈∆n
⟨v, A⊺û⟩ − min

u∈∆m
⟨u, Av̂⟩

)
≤ 36λ +

3 log(mn)
λ

,

and so our algorithm returns an ε-approximate Nash equilibrium.

Proof. Adding the inequalities (2) and (3) together, we get
T

∑
t=1
⟨ut − u, Aηt⟩+

T

∑
t=1
⟨vt − v,−A⊺ζt⟩ ≤

log m
λ

+
log n

λ

+ λ
T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 − 1

4λ

T−1

∑
t=1
∥vt+1 − vt∥2

+ λ
T−1

∑
t=1
∥A⊺(ζt+1 − ζt)∥2 − 1

4λ

T−1

∑
t=1
∥ut+1 − ut∥2 .

(8)

Taking expectation, and using the inequalities (6) we have

E

[
λ

T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 − 1

4λ

T−1

∑
t=1
∥vt+1 − vt∥2

]

≤
(

3λ− 1
4λ

)
E

[
T−1

∑
t=1
∥vt+1 − vt∥2

]
+ 6λ ·E

[
T

∑
t=1
∥ηt − vt∥2

]
≤ 6λ.
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Similarly we can prove

E

[
λ

T−1

∑
t=1
∥A⊺(ζt+1 − ζt)∥2 − 1

4λ

T−1

∑
t=1
∥ut+1 − ut∥2

]
≤ 6λ.

So, taking expectations of Equation (8), and using the above inequalities and the Lemma B.2, we get

E

[
max
u∈∆m

T

∑
t=1
⟨ut − u, Avt⟩+ max

v∈∆n

T

∑
t=1
⟨vt − v,−A⊺ut⟩

]
≤ 12λ +

log(mn)
λ

. (9)

Using the fact that

E[û] · T =
T

∑
t=1

E[ut],

E[v̂] · T =
T

∑
t=1

E[vt],

we have

E

[
max
v∈∆n
⟨v, A⊺û⟩ − min

u∈∆m
⟨u, Av̂⟩

]
· T ≤ 12λ +

log(mn)
λ

. (10)

By Lemma B.4, we know that the regret is always non-negative. So applying Markov’s inequality,
we know with probability at least 2/3, the following inequality holds:

max
v∈∆n
⟨v, A⊺û⟩ − min

u∈∆m
⟨u, Av̂⟩ ≤ 1

T

(
36λ +

3 log(mn)
λ

)
.

B.2 Samplers with Errors

Theorem B.6 (Restatement of Theorem 3.2). Suppose that in our Algorithm 1, we choose the episode
T = Õ(1/ε), and choose a constant learning rate λ that satisfies 0 < λ <

√
3/6. The quantum

implementation of the oracle in the algorithm will return T independent and identically distributed
samples from a distribution that is ϵG-close to the desired distribution in total variational distance in
quantum time TQ

G .

Then with probability at least 2/3 the total regret of the algorithm is Õ(1 + ϵG/ε) and the algorithm
returns an Õ(ε + ϵG)-approximate Nash equilibrium in quantum time Õ(TQ

G /ε).

Proof. We will follow similar steps of proof for Theorem B.5. Since the sampling is not from the
ideal distribution, we must bound the terms where ηt and ζt take place.

Notice that in this case, we have

∥A(vt −E[ηt])∥ ≤ ∥vt −E[ηt]∥ ≤ ϵG.

So for the term qt in Lemma B.2 we now have the bound:

E

[
T

∑
t=1
⟨ut − u, A(vt − ηt)⟩

]

= E

[
T

∑
t=1
⟨ut − u, A(vt −E[ηt])⟩

]
+ E

[
T

∑
t=1
⟨ut − u, A(E[ηt]− ηt)⟩

]

= E

[
T

∑
t=1
⟨ut − u, A(vt −E[ηt])⟩

]
≤ 2TϵG,

where the last step is by Hölder’s inequality.
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Then for the other term, we have

E

[
T

∑
t=1
∥ηt − vt∥2

]
≤ 2 ·E

[
T

∑
t=1
∥ηt −E[ηt]∥2

]
+ 2 ·E

[
T

∑
t=1
∥vt −E[ηt]∥2

]
≤ 2 + 2Tϵ2

G.

So following the similar steps of proof for Theorem B.5, and using the above bounds, we can get

E

[
max
u∈∆m

T

∑
t=1
⟨ut − u, Avt⟩+ max

v∈∆n

T

∑
t=1
⟨vt − v,−A⊺ut⟩

]

≤ 24λ + 24λTϵ2
G +

log(mn)
λ

+ 4TϵG.

Again using linearity of expectation and Markov’s inequality, we conclude that with probability at
least 2/3

T
(

max
v∈∆n
⟨v, A⊺û⟩ − min

u∈∆m
⟨u, Av̂⟩

)
≤ 72λ +

3 log(mn)
λ

+ 72Tλϵ2
G + 12TϵG.

C Consistent Quantum Amplitude Estimation

Theorem C.1 (Consistent phase estimation, [2, 47]). Suppose U is a unitary operator. For every
positive reals ϵ, δ, there is a quantum algorithm (a unitary quantum circuit) A such that, on input
O
(
log
(
ϵ−1))-bit random string s, it holds that

• For every eigenvector |ψθ⟩ of U (where U|ψθ⟩ = exp(iθ)|ψθ⟩), with probability ≥ 1− ϵ:

⟨ψθ |⟨ f (s, θ)|A|ψθ⟩|0⟩ ≥ 1− ϵ;

• f (s, θ) is a function of s and θ such that | f (s, θ)− θ| < δ,

with time complexity Õ
(
δ−1) · poly

(
ϵ−1).

Theorem C.2 (Consistent quantum amplitude estimation). Suppose U is a unitary operator such that

U|0⟩A|0⟩B =
√

p|0⟩A|ϕ0⟩B +
√

1− p|1⟩A|ϕ1⟩B.

where p ∈ [0, 1] and |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. Then for every positive
reals ϵ, δ, there is a quantum algorithm that, on input O

(
log
(
ϵ−1))-bit random string s, outputs

f (s, p) ∈ [0, 1] such that
Pr [| f (s, p)− p| ≤ δ] ≥ 1− ϵ,

with time complexity Õ
(
δ−1) · poly

(
ϵ−1).

Proof. Suppose U is a unitary operator such that

U|0⟩A|0⟩B =
√

p|0⟩A|ϕ0⟩B +
√

1− p|1⟩A|ϕ1⟩B.

Let
Q = −U(I − 2|0⟩A⟨0| ⊗ |0⟩B⟨0|)U†(I − 2|0⟩A⟨0| ⊗ IB).

Similar to the analysis in Brassard et al. [9], we have

U|0⟩A|0⟩B =
−i√

2

(
exp

(
iθp
)
|ψ+⟩AB − exp

(
−iθp

)
|ψ−⟩AB

)
,

where sin2(θp
)
= p (0 ≤ θp < π/2), and

|ψ±⟩AB =
1√
2
(|0⟩A|ϕ0⟩B ± i|1⟩A|ϕ1⟩B).
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Note that |ψ±⟩AB are eigenvectors of Q, i.e., Q|ψ±⟩AB = exp
(
±i2θp

)
|ψ±⟩AB.

Now applying the algorithm A of consistent phase estimation of Q by Theorem C.1 on state
U|0⟩A|0⟩B ⊗ |0⟩C (with an O

(
log
(
ϵ−1))-bit random string s), we obtain

A(U|0⟩A|0⟩B ⊗ |0⟩C) =
−i√

2

(
exp

(
iθp
)
A(|ψ+⟩AB|0⟩C)− exp

(
−iθp

)
A(|ψ−⟩AB|0⟩C)

)
.

Since each of |ψ±⟩AB is an eigenvector of Q, it holds that, with probability ≥ 1− ϵ,

⟨ψ±|AB⟨ f
(
s,±2θp

)
|CA(|ψ±⟩AB|0⟩C) ≥ 1− ϵ.

which implies that A(U|0⟩A|0⟩B ⊗ |0⟩C) is O
(√

ϵ
)
-close to

−i√
2

(
exp

(
iθp
)
|ψ+⟩AB| f

(
s, 2θp

)
⟩C − exp

(
−iθp

)
|ψ−⟩AB| f

(
s,−2θp

)
⟩C
)

in trace distance, where
∣∣ f (s,±2θp

)
∓ 2θp

∣∣ < δ. Measuring register C, we denote the outcome as γ,
which will be either f

(
s, 2θp

)
or f

(
s,−2θp

)
. Finally, output sin2(γ/2) as the estimate of p (which

is consistent). Since sin2(·) is even and 2-Lipschitz, the additive error is bounded by∣∣∣sin2
(γ

2

)
− p

∣∣∣ ≤ 2
∣∣∣∣∣∣γ

2

∣∣∣− ∣∣θp
∣∣∣∣∣ < δ.

Note that A makes Õ
(
δ−1) · poly

(
ϵ−1) queries to Q, thus our consistent amplitude estimation has

quantum time complexity Õ
(
δ−1) · poly

(
ϵ−1).

Theorem C.3 (Error-Reduced Consistent quantum amplitude estimation). Suppose U is a unitary
operator such that

U|0⟩A|0⟩B =
√

p|0⟩A|ϕ0⟩B +
√

1− p|1⟩A|ϕ1⟩B.

where p ∈ [0, 1] and |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. Then for every positive
integers r and positive real δ, there is a quantum algorithm that, on input O(r)-bit random string s,
outputs f ∗(s, p) ∈ [0, 1] such that

Pr [| f ∗(s, p)− p| ≤ δ] ≥ 1−O(exp(−r)),

with time complexity Õ
(
δ−1) · poly(r).

Proof. Consider that we divide the input random string s into r strings s1, s2, . . . , sr of length O(1).
For each i ∈ [r], we use Theorem C.2 with input string si and parameter ϵ = 1/10. So we get, for
each i ∈ [r],

Pr [| f (si, p)− p| ≤ δ] ≥ 9
10

.

Now we set f ∗(s, p) to be the median of the estimations f (si, p) for i ∈ [r]. We claim it satisfies the
desired property. To show that, we define random variables Xi for i ∈ [r] as follows:

Xi =

{
1, if | f (si, p)− p| ≤ δ,
0, otherwise.

Noticing E [∑r
i=1 Xi] ≥ 9r/10, and by Chernoff bound, we have:

Pr

[
r

∑
i=1

Xi <
r
2

]
≤ exp

(
− 8r

45

)
.

Thus with probability at least 1− exp(−8r/45), we know that at least half of the estimations fall
into the interval [p− δ, p + δ], and then f ∗(s, p) returns a correct answer.

20



D Details and Proofs of Fast Quantum Multi-Gibbs Sampling

We present the detailed version of the fast quantum multi-Gibss sampling. Here, we use the shorthand
OGibbs

p = OGibbs
p (1, 0), and it also means the distribution of the sample.

We first define the notion of amplitude-encoding (a unitary operator that encodes a vector in its
amplitudes).
Definition D.1 (Amplitude-encoding). A unitary operator V is said to be a β-amplitude-encoding of
a vector u ∈ Rn with non-negative entries, if

⟨0|CV|0⟩C|i⟩A|0⟩B =

√
ui
β
|i⟩A|ψi⟩B

for all i ∈ [n].

Then, as shown in Algorithm 4, we can construct a quantum multi-Gibbs sampler for a vector u if an
amplitude-encoding of the vector u is given. To complete the proof of Theorem 4.2, we only have to
construct an amplitude-encoding of Az (see Appendix D.2 for details).

Algorithm 4 Quantum Multi-Gibbs Sampling implementing OGibbs
u (k, ϵG)

Input: Sample count k, a β-amplitude-encoding V of vector u ∈ Rn, polynomial P2β ∈ R[x] that
satisfies Lemma 4.1 with parameter ϵP = kϵ2

G/300n.
Output: k independent samples i1, i2, . . . , ik.

1: Obtain Oũ : |i⟩|0⟩ 7→ |i⟩|ũi⟩ using Õ(β) queries to V, where ui ≤ ũi ≤ ui + 1, by consistent
quantum amplitude estimation (Theorem C.3).

2: Find the k largest ũi’s by quantum k-maximum finding (Theorem D.3) and let S be the set of
their indexes. This can be done with Õ(

√
nk) queries to Oũ.

3: Compute ũ∗ = min
i∈S

ũi, and W = (n− k) exp(ũ∗) + ∑
i∈S

exp(ũi).

4: for ℓ = 1, . . . , k do
5: Prepare the quantum state

|uguess⟩ = ∑
i∈S

√
exp(ũi)

W
|i⟩+ ∑

i/∈S

√
exp(ũ∗)

W
|i⟩.

6: Obtain Uu = (V†
CAB ⊗ ID)(VDAB ⊗ IC) being a block-encoding of diag(u)/β. Similarly,

obtain Umax
ũ being a block-encoding of diag(max{ũ, ũ∗})/2β.

7: Obtain U− being a block-encoding of diag(u−max{ũ, ũ∗})/4β by the LCU (Linear-
Combination-of-Unitaries) technique (Theorem D.6), using O(1) queries to Uu and Umax

ũ .

8: Obtain Uexp being a block-encoding of P2β(diag(u−max{ũ, ũ∗})/4β) by the QSVT tech-
nique (Theorem D.7), using O(β log(ϵ−1

P )) queries to U−.
9: Post-select |ũpost⟩ = ⟨0|⊗aUexp|uguess⟩|0⟩⊗a by quantum amplitude amplification (Theo-

rem D.8), and obtain |ũGibbs⟩ = |ũpost⟩/∥|ũpost⟩∥. (Suppose Uexp has a ancilla qubits.)

10: Measure |ũGibbs⟩ in the computational basis and let iℓ ∈ [n] be the outcome.
11: end for
12: Return i1, i2, . . . , ik.

D.1 Useful Theorems

Theorem D.2 (Quantum state preparation, [23, 32]). There is a data structure implemented on QRAM
maintaining an array a1, a2, . . . , aℓ of positive numbers that supports the following operations.

• Initialization: For any value c, set ai ← c for all i ∈ [ℓ].

• Assignment: For any index i and value c, set ai ← c.
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• State Preparation: Prepare a quantum state

|a⟩ = ∑
i∈[ℓ]

√
ai
∥a∥1

|i⟩.

Each operation costs polylog(ℓ) time.

Theorem D.3 (Quantum k-maximum finding, Theorem 6 of Dürr et al. [19]). Given k ∈ [n] and
quantum oracle Ou for an array u1, u2, . . . , un, i.e., for every i ∈ [n],

Ou|i⟩|0⟩ = |i⟩|ui⟩,

there is a quantum algorithm that, with probability ≥ 0.99, finds a set S ⊆ [n] of cardinality |S| = k
such that ui ≥ uj for every i ∈ S and j /∈ S, using O

(√
nk
)

queries to Ou.

We now recall the definition of block-encoding, a crucial concept in quantum singular value transfor-
mation [20], which is used in line 9 to 12 in Algorithm 4.
Definition D.4 (Block-encoding). Suppose A is a linear operator on b qubits, α, ϵ ≥ 0 and a is a
positive integer. A (b + a)-qubit unitary operator U is said to be an (α, ϵ)-block-encoding of A, if∥∥α⟨0|⊗aU|0⟩⊗a − A

∥∥
op ≤ ϵ.

Definition D.5 (State Preparation Pair, Definition 28 of Gilyén et al. [20]). Let y ∈ Rn be a vector,
specially in this context the number of coordinates starts from 0. Suppose ∥y∥1 ≤ β. Let ϵ be a
positive real. We call a pair of unitaries (PL, PR) acting on b qubits a (β, ϵ)-state-preparation pair for
y if

PL|0⟩⊗b =
2b−1

∑
j=0

cj|j⟩,

PR|0⟩⊗b =
2b−1

∑
j=0

dj|j⟩,

such that:
m−1

∑
j=0

∣∣∣βc∗j dj − yj

∣∣∣ ≤ ϵ

and for j ∈ [2b], j ≥ m, we require c∗j dj = 0.

We now state a theorem about linear combination of unitary operators, introduced by Berry et al.
[5] and Childs and Wiebe [15]. The following form is from Gilyén et al. [20]. Again we restrict
ourselves to the case of real linear combinations.
Theorem D.6 (Linear Combination of Unitaries, Lemma 29 of Gilyén et al. [20]). Let ϵ be a
positive real number and y ∈ Rn be a vector as in Definition D.5 with (β, ϵ1) state preparation
pair (PL, PR). Let

{
Aj
}m−1

j=0 be a set of linear operators on s qubits, and forall j, we have Uj as an

(α, ϵ2)-block-encoding of Aj acting on a + s qubits. Let

W =

(
m−1

∑
j=0
|j⟩⟨j| ⊗Uj

)
+

(
I −

m−1

∑
j=0
|j⟩⟨j|

)
⊗ Ia+s,

Then we can implement a (αβ, αϵ1 + αβϵ2)-block-encoding of A = ∑m−1
j=0 yj Aj, with one query

from P†
L , PR, and W.

Theorem D.7 (Eigenvalue transformation, Theorem 31 of Gilyén et al. [20]). Suppose U is an
(α, ϵ)-block-encoding of an Hermitian operator A. For every δ > 0 and real polynomial P ∈ R[x]
of degree d such that |P(x)| ≤ 1/2 for all x ∈ [−1, 1], there is an efficiently computable quantum
circuit Ũ, which is a

(
1, 4d
√

ϵ/α + δ
)
-block-encoding of P(A/α), using O(d) queries to U.
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Finally, for quantum amplitude amplification without knowing the exact value of the amplitude, we
need the following theorem:
Theorem D.8 (Quantum amplitude amplification, Theorem 3 of Brassard et al. [9]). Suppose U is a
unitary operator such that

U|0⟩A|0⟩B =
√

p|0⟩A|ϕ0⟩B +
√

1− p|1⟩A|ϕ1⟩B.

where p ∈ [0, 1] is unknown and |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. There is a
quantum algorithm that outputs |0⟩A|ϕ0⟩B with probability ≥ 0.99, using O

(
1/
√

p
)

queries to U.

D.2 Main Proof

We generalize Theorem 4.2 as follows.
Theorem D.9. Algorithm 4 will produce k independent and identical distributed samples from a
distribution that is ϵG-close to OGibbs

u in total variation distance, in quantum time Õ
(

β
√

nk
)

.

It is immediate to show Theorem 4.2 from Theorem D.9 by constructing a β-amplitude-encoding V
of Az. To see this, let u = Az, then ui = (Az)i ∈ [0, β]. By Theorem D.2, we can implement a
unitary operator UQRAM

z such that

UQRAM
z : |0⟩C|0⟩B 7→ |0⟩C ∑

j∈[n]

√
zj

β
|j⟩B + |1⟩C|ϕ⟩B.

Using two queries to OA, we can construct a unitary operator O′A such that

O′A : |0⟩E|i⟩A|j⟩B 7→
(√

Ai,j|0⟩E +
√

1− Ai,j|1⟩E
)
|i⟩A|j⟩B.

Let
V =

(
|0⟩C⟨0| ⊗O′A + |1⟩C⟨1| ⊗ IEAB

)(
UQRAM

z ⊗ IEA

)
. (11)

It can be verified (see Proposition D.10) that

⟨0|C⟨0|EV|0⟩C|0⟩E|i⟩A|0⟩B = ∑
j∈[n]

√
Ai,jzj

β
|i⟩A|j⟩B,

and thus ⟨0|C⟨0|EV|0⟩C|0⟩E|i⟩A|0⟩B =
√

ui/β|i⟩A|ψi⟩B for some |ψi⟩. Therefore, V is a β-
amplitude-encoding of Az.

Now, we will show Theorem D.9 in the following.

Proof of Theorem D.9. Now we start to describe our algorithm. By our consistent quantum amplitude
estimation (Theorem C.3), we choose an O(r)-bit random string s, then we can obtain a quantum
algorithm Oû such that, with probability 1−O(exp(−r)), for every i ∈ [n], it computes f ∗(s, ui/β)

with Õ
(
δ−1) · poly(r) queries to V, where f ∗(s, p) is a function that only depends on s and p, and

it holds that
| f ∗(s, p)− p| ≤ δ

for every p ∈ [−1, 1]. Here, r, δ are parameters to be determined. Note that
ui
β

= ∥⟨0|CV|0⟩C|i⟩A|0⟩B∥2,

so when applying consistent quantum amplitude estimation, we just use a controlled-XOR gate
conditioned on the index and with A the target system, before every query to V.

By quantum k-maximum finding algorithm (Theorem D.3), we can find a set S ⊆ [n] with
|S| = k such that f ∗(s, ui/β) ≥ f ∗

(
s, uj/β

)
for every i ∈ S and j /∈ S with probability

0.99 − O
(√

nk exp(−r)
)

, using O
(√

nk
)

queries to Oû. To obtain a constant probability, it

is sufficient to choose r = Θ(log(n)).
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For each i ∈ S, again applying our consistent quantum amplitude estimation (Theorem C.3), we can
obtain the value of f ∗(s, ui/β) with probability 1−O(exp(−r)), using Õ

(
δ−1) · poly(r) queries

to V; then we set

ûi = β f ∗
(

s,
ui
β

)
for all i ∈ S, with success probability 1−O(k exp(−r)) and using Õ

(
kδ−1) · poly(r) queries to V

in total. It can be seen that |ûi − ui| ≤ βδ for every i ∈ S.

Let ũi = ûi + βδ, and then we store ũi for all i ∈ S in the data structure as in Theorem D.2 (which
costs O(k) QRAM operations). Then, we calculate

W = (n− k) exp(ũ∗) + ∑
i∈S

exp(ũi)

by classical computation in Õ(k) time, where

ũ∗ = min
i∈S

ũi.

By Theorem D.2, we can prepare the quantum state

|uguess⟩ = ∑
i∈S

√
exp(ũi)

W
|i⟩+ ∑

i/∈S

√
exp(ũ∗)

W
|i⟩

in Õ(1) time.

Now we introduce another system D, and then let

Uu = (V†
CAB ⊗ ID)(VDAB ⊗ IC).

It can be shown (see Proposition D.11) that Uu is a (1, 0)-block-encoding of diag(u)/β. By QRAM
access to ũi, we can implement a unitary operator

Vũ : |i⟩A|0⟩B 7→ |i⟩A

(√
max{ũi, ũ∗}

2β
|0⟩B +

√
1− max{ũi, ũ∗}

2β
|1⟩B

)

in Õ(1) time by noting that max{ũi, ũ∗} = ũi if i ∈ S and ũ∗ otherwise. We introduce one-qubit
system C, and let

Umax
ũ =

(
V†

ũ ⊗ IC

)
(SWAPBC ⊗ IA)(Vũ ⊗ IC).

It can be shown that Umax
ũ is a (1, 0)-block-encoding of diag(max{ũ, ũ∗})/2β. Applying the

LCU technique (Theorem D.6), we can obtain a unitary operator U− that is a (1, 0)-block-encoding
of diag(u−max{ũ, ũ∗})/4β, using O(1) queries to Uu and Umax

ũ . By the QSVT technique
(Theorem D.7 and Lemma 4.1), we can construct a unitary operator Uexp that is a (1, 0)-block-
encoding of P2β(diag(u−max{ũ, ũ∗})/4β), using O(β log(ϵ−1

P )) queries to U−, where∣∣∣∣P2β(x)− 1
4

exp(2βx)
∣∣∣∣ ≤ ϵP

for every x ∈ [−1, 0] and ϵP ∈ (0, 1/2) is to be determined. Suppose Uexp has an a-qubit ancilla
system, and let |ũpost⟩ = ⟨0|⊗aUexp|uguess⟩|0⟩⊗a. Note that

|ũpost⟩ = ∑
i∈S

P2β

(
ui − ũi

4β

)√
exp(ũi)

W
|i⟩+ ∑

i/∈S
P2β

(
ui − ũ∗

4β

)√
exp(ũ∗)

W
|i⟩.

It can be shown (Proposition D.12) that ∥|ũpost⟩∥2 ≥ Θ(k/n); thus by quantum amplitude amplifi-
cation (Theorem D.8), we can obtain

|ũGibbs⟩ =
|ũpost⟩
∥|ũpost⟩∥
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using O(
√

n/k) queries to Uexp. By measuring |ũGibbs⟩ on the computational basis, we return the
outcome as a sample from the distribution ũGibbs; it can be shown (Proposition D.13) that the total
variation distance between ũGibbs and OGibbs

u is bounded by

dTV

(
ũGibbs,OGibbs

u

)
≤
√

88nϵP
k exp(−2βδ)

.

By taking δ = 1/2β and ϵP = kϵ2
G/300n, we can produce one sample from ũGibbs, using

Õ(β
√

n/k) queries to Uu and Umax
ũ , with Õ(β

√
nk)-time precomputation.

Finally, by applying k times the above procedure (with the precomputation processed only once), we
can produce k independent and identically distributed samples from ũGibbs that is ϵGibbs-close to the
Gibbs distribution OGibbs

u , with total time complexity

Õ
(

β
√

nk
)
+ k · Õ

(
β

√
n
k

)
= Õ

(
β
√

nk
)

.

D.3 Technical Lemmas

Proposition D.10. Let V defined by Equation (11), we have

⟨0|C⟨0|DV|0⟩C|0⟩D|i⟩A|0⟩B = ∑
j∈[n]

√
Ai,jzj

β
|i⟩A|j⟩B.

Proof.

V|0⟩C|0⟩D|i⟩A|0⟩B

=
(
|0⟩C⟨0| ⊗O′A + |1⟩C⟨1| ⊗ IAB

)|0⟩C|0⟩D|i⟩A ∑
j∈[n]

√
zj

β
|j⟩B + |1⟩C|0⟩D|i⟩A|ϕ⟩B


=|0⟩C ∑

j∈[n]

(√
Ai,j|0⟩D +

√
1− Ai,j|1⟩D

)√ zj

β
|i⟩A|j⟩B + |1⟩C|0⟩D|i⟩A|ϕ⟩B

=|0⟩C|0⟩D ∑
j∈[n]

√
Ai,jzj

β
|i⟩A|j⟩B + |0⟩C|1⟩D ∑

j∈[n]

√(
1− Ai,j

)
zj

β
|i⟩A|j⟩B + |1⟩C|0⟩D|i⟩A|ϕ⟩B.

Proposition D.11. In the proof of Theorem D.9, Uu is a (1, 0)-block-encoding of diag(u)/β.

Proof. To see this, for every i, j ∈ [n],

⟨0|C⟨0|D⟨j|A⟨0|BUu|0⟩C|0⟩D|i⟩A|0⟩B
=⟨0|C⟨0|D⟨j|A⟨0|B(V†

CAB ⊗ ID)(VDAB ⊗ IC)|0⟩C|0⟩D|i⟩A|0⟩B
=
(√

uj/β⟨0|C⟨0|D⟨j|A⟨ψj|B + ⟨1|C⟨0|D⟨gj|AB

)(√
ui/β|0⟩C|0⟩D|i⟩A|ψi⟩B + |0⟩C|1⟩D|gi⟩AB

)
= ⟨j|i⟩A

ui
β

.

Proposition D.12. In the proof of Theorem D.9, if δ = 1/2β, E = ∑j∈[n] exp
(
uj
)
, and ϵP =

kϵ2
G/300n, then

Θ
(

k
n

)
≤ E

16W
− 2ϵP ≤ ∥|upost⟩∥2 ≤ E

16W
+ 3ϵP.
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Proof. We first give an upper bound for W in terms of ui and ũ∗. Notice that ũi ≤ ui + 2βδ for all
i ∈ S, we have:

W = (n− k) exp(ũ∗) + ∑
i∈S

exp(ũi) ≤ exp(2βδ)

(
(n− k) exp(u∗) + ∑

i∈S
exp(ui)

)
.

Note that

(n− k) exp(u∗) + ∑
i∈S

exp(ui)

∑
i∈[n]

exp(ui)
≤ n− k

k
+ 1 =

n
k

,

then we have

E
W
≥ ∑

i∈[n]

exp(ui)

exp(2βδ)((n− k) exp(u∗) + ∑i∈S exp(ui))
≥ k

n
exp(−2βδ). (12)

With this, noting that (a− b)2 ≥ a2 − 2ab for any real a and b, we have

∥|upost⟩∥2 = ∑
i∈S

(
P2β

(
ui − ũi

4β

))2 exp(ũi)

W
+ ∑

i/∈S

(
P2β

(
ui − ũ∗

4β

))2 exp(ũ∗)
W

≥ ∑
i∈S

((
1
4

exp
(

ui − ũi
2

))2
− 2ϵP

)
exp(ũi)

W

+ ∑
i/∈S

((
1
4

exp
(

ui − ũ∗

2

))2
− 2ϵP

)
exp(ũ∗)

W

=
1

16

(
∑
i∈S

exp(ui − ũi)
exp(ũi)

W
+ ∑

i/∈S
exp(ui − ũ∗)

exp(ũ∗)
W

)

− 2ϵP

(
∑
i∈S

exp(ũi)

W
+ ∑

i/∈S

exp(ũ∗)
W

)

≥ E
16W

− 2ϵP

≥ Θ
(

k
n

)
.

On the other hand, a similar argument using the inequality (a + b)2 ≤ a2 + 3ab for positive real
a ≥ b gives

∥|upost⟩∥2 ≤ E
16W

+ 3ϵP.

These yield the proof.

Proposition D.13. In the proof of Theorem D.9, the total variation distance between the two
distributions ũGibbs and OGibbs

u is bounded by

dTV

(
ũGibbs,OGibbs

u

)
≤
√

88nϵP
k exp(−2βδ)

.

Proof. Define E = ∑
j∈[n]

exp
(
uj
)
. Let

|uGibbs⟩ = ∑
i∈[n]

√
exp(ui)

E
∣∣i〉
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be the intended quantum state with amplitudes the same as the Gibbs distribution OGibbs
u . The inner

product between |ũpost⟩ and |uGibbs⟩ can be bounded by:

⟨ũpost|uGibbs⟩ = ∑
i∈S

P2β

(
ui − ũi

4β

)√
exp(ũi)

W

√
exp(ui)

E

+ ∑
i/∈S

P2β

(
ui − ũ∗

4β

)√
exp(ũ∗)

W

√
exp(ui)

E

≥ ∑
i∈S

(
1
4

exp
(

ui − ũi
2

)
− ϵP

)√
exp(ũi)

W

√
exp(ui)

E

+ ∑
i/∈S

(
1
4

exp
(

ui − ũi
2

)
− ϵP

)√
exp(ũ∗)

W

√
exp(ui)

E

≥ 1
4
√

WE

(
∑

i∈[n]
exp(ui)

)
− ϵP.

The last step is by Cauchy’s inequality. By Proposition D.12 and Equation (12), we have

|⟨ũGibbs|uGibbs⟩|2 =
|⟨ũpost|uGibbs⟩|2

∥|ũpost⟩∥2 ≥ E

16W ∥|ũpost⟩∥2 −
ϵP

2 ∥|ũpost⟩∥2

≥ E

16W
(

E
16W

+ 3ϵP

) − ϵP

2 ∥|ũpost⟩∥2

≥ 1− 48ϵP
E/W

− 8ϵP
E/W − 32ϵP

≥ 1− 48nϵP
k exp(−2βδ)

− 8nϵP
k exp(−2βδ)− 32nϵP

≥ 1− 88nϵP
k exp(−2βδ)

.

Finally, we have

dTV

(
ũGibbs,OGibbs

u

)
≤ 1

2
tr
(∣∣∣|ũGibbs⟩⟨ũGibbs| − |uGibbs⟩⟨uGibbs|

∣∣∣)
=

√
1− |⟨ũGibbs|uGibbs⟩|2

≤
√

88nϵP
k exp(−2βδ)

,

which is bounded by ϵG by the choice of ϵP.

27


	Revisit of Optimistic Online Learning
	Regret Bound and Time Complexity of Our Algorithm
	Ideal Samplers
	Samplers with Errors

	Consistent Quantum Amplitude Estimation
	Details and Proofs of Fast Quantum Multi-Gibbs Sampling
	Useful Theorems
	Main Proof
	Technical Lemmas


