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Abstract

We propose the first online quantum algorithm for solving zero-sum games with
Õ(1) regret under the game setting.1 Moreover, our quantum algorithm computes
an ε-approximate Nash equilibrium of an m× n matrix zero-sum game in quantum
time Õ(

√
m + n/ε2.5). Our algorithm uses standard quantum inputs and generates

classical outputs with succinct descriptions, facilitating end-to-end applications.
Technically, our online quantum algorithm “quantizes” classical algorithms based
on the optimistic multiplicative weight update method. At the heart of our algorithm
is a fast quantum multi-sampling procedure for the Gibbs sampling problem, which
may be of independent interest.

1 Introduction

Nash equilibrium is one of the most important concepts in game theory. It characterizes and predicts
rational agents’ behaviors in non-cooperative games, finding a vast host of applications ranging from
analyzing wars [45] and designing auctions [35], to optimizing networks [43].

It was shown in Daskalakis et al. [16], Chen and Deng [12] that finding a Nash equilibrium is
PPAD-hard for general games. Nevertheless, computing the Nash equilibrium for specific types of
games, such as zero-sum games, is particularly interesting. A zero-sum game requires that the utility
of one player is the opposite of the other’s, a condition that often appears in, for example, chess
games. Von Neumann’s minimax theorem [51] promises that every finite two-player zero-sum game
has optimal mixed strategies.

1Throughout this paper, Õ(·) suppresses polylogarithmic factors such as log(n) and log(1/ε), and O∗(·)
hides quasi-polylogarithmic factors such as no(1) and (1/ε)o(1).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Zero-Sum Games. For a two-player zero-sum game represented by an m× n matrix A, the Nash
equilibrium is the solution pair (x, y) to the following min-max problem:

min
x∈∆m

max
y∈∆n

x⊺Ay,

where x ∈ ∆m and y ∈ ∆n are m- and n-dimensional probability distributions, respectively. Usually,
we are satisfied with an approximate Nash equilibrium rather than an exact one. An ε-approximate
Nash equilibrium is a solution pair (x, y) such that:

max
y′∈∆n

x⊺Ay′ − min
x′∈∆m

x′⊺Ay ≤ ε.

Online Learning. Since the matrix A of the zero-sum game usually has a large dimension in
practice, it is common that we trade accuracy for space and time efficiency. Thus, online learning
becomes increasingly significant in these scenarios. Online learning studies the situation when data
is only available in sequential order and aims at making good decisions in this setup. In evaluating
online learning algorithms, regret is an important criterion that measures how good an algorithm is
compared with the optimal static loss (see more details in Section 2.3).

The idea of the online learning algorithms for zero-sum games stems from repeated play in game
theory, e.g., fictitious play [11]. Specifically, we simulate the actions of two players for multiple
rounds. In each round, players make decisions using a no-regret learning algorithm, considering
the opponent’s previous actions. For example, a famous algorithm of this type was proposed
in Grigoriadis and Khachiyan [22] inspired by the exponential Hedge algorithm. The algorithm has
regret Õ(

√
T) and T rounds, establishing the convergence rate of Õ(1/

√
T).

It takes about two decades before the next improvement in Daskalakis et al. [17] to happen, where
the authors proposed a strongly-uncoupled algorithm, achieving Õ(1) total regret if both players
use the algorithm. They used the technique of minimizing non-smooth functions using smoothed
approximations proposed in Nesterov [37], and this technique was later developed in Nesterov
[38], Nemirovski [36] for broader classes of problems. Later, it was found in Syrgkanis et al. [46]
that the optimistic multiplicative weight algorithm also leads to Õ(1) total regret with regret bounded
by variation in utilities; this algorithm was recently extended to correlated equilibria in multi-player
general-sum games in Anagnostides et al. [3]. It was proved in Hsieh et al. [30] that optimistic mirror
descent with a time-varying learning rate can also achieve Õ(1) total regret for multi-players. Our
quantum algorithm follows the overall idea of the optimistic multiplicative weight update and the
regret bounded by variation methods [46].

Quantum Computing and Learning. Quantum computing has been rapidly advancing in recent
years. Specifically, many machine learning problems are known to have significant quantum speedups,
e.g., support vector machines [42], principal component analysis [34], classification [31, 33], etc.
The combination of quantum computing and online learning has recently become a popular topic.
For instance, online learning tools have been applied to solving semidefinite programs (SDPs) with
quantum speedup in the problem dimension and the number of constraints [7, 50, 8, 49]. In addition,
as an important quantum information task, the online version of quantum state learning has been
systematically developed with good theoretical and empirical guarantees [1, 52, 14, 13].

For finding the Nash equilibrium of zero-sum games, a quantum algorithm was proposed in van
Apeldoorn and Gilyén [48] by “quantizing” the classical algorithm in Grigoriadis and Khachiyan
[22], achieving a quadratic speedup in the dimension parameters m and n. At the same time, quantum
algorithms for training linear and kernel-based classifiers were proposed in Li et al. [33], which have
similar problem formulations to zero-sum games. Recently, an improved quantum algorithm for
zero-sum games was proposed in Bouland et al. [6] using dynamic Gibbs sampling. All of the above
quantum algorithms are based on the multiplicative weight update method, and as a consequence,
they all share the O(

√
T) regret bound.

2The complexity given in Bouland et al. [6] is Õ(
√

m + n/ε2.5 + 1/ε3), wherein the former term√
m + n/ε2.5 dominates the complexity. See Footnote 4 and Remark 4.4 for discussions.

3Here, we require that the input matrix A satisfies ∥A∥ ≤ 1, while other works require |Ai,j| ≤ 1.
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Table 1: Online Algorithms for ε-Approximate Nash Equilibria of Zero-Sum Games.

Approach Type Regret Update Cost Per Round Classical/Quantum Time Complexity

[22] Classical Õ(
√

T) Õ(m + n) Õ((m + n)/ε2)
[48] Quantum Õ(

√
T) Õ(

√
m + n/ε) Õ(

√
m + n/ε3)

[6] Quantum Õ(
√

T) Õ(
√

m + n/ε0.5) Õ(
√

m + n/ε2.5) 2

[46] Classical Õ(1) Õ(mn) Õ(mn/ε)
[10] Classical Õ(1) Õ(

√
mn(m + n)) Õ(mn +

√
mn(m + n)/ε)

Our result 3 Quantum Õ(1) Õ(
√

m + n/ε1.5) Õ(
√

m + n/ε2.5)

1.1 Main Result

Our result in this paper establishes a positive answer to the following open question: Does there exist
a learning algorithm with Õ(1) regret allowing quantum speedups?

Inspired by the optimistic follow-the-regularized-leader algorithm proposed in Syrgkanis et al. [46],
we propose a sample-based quantum online learning algorithm for zero-sum games with O(log(mn))
total regret, which is near-optimal. If we run this algorithm for T rounds, it will compute an Õ(1/T)-
approximate Nash equilibrium with high probability, achieving a quadratic speedup in dimension
parameters m and n. Formally, we have the following quantum online learning algorithm:

Theorem 1.1 (Online learning for zero-sum games). Suppose T ≤ Õ(m + n). There is a quantum
online algorithm for zero-sum game A ∈ Rm×n with ∥A∥ ≤ 1 such that it achieves a total
regret of O(log(mn)) with high probability after T rounds, while each round takes quantum time
Õ(T1.5√m + n).

Our algorithm does not need to read all the entries of the input matrix A at once. Instead, we assume
that our algorithm can query its entries when necessary. The input model is described as follows:

• Classically, given any i ∈ [m], j ∈ [n], the entry Ai,j can be accessed in Õ(1) time.

• Quantumly, we assume that the entry Ai,j can be accessed in Õ(1) time coherently.

This is the standard quantum input model for zero-sum games adopted in previous literature [33, 48, 6].
See more details in Section 2.4.

In addition, same as prior works [48, 6], our algorithm outputs purely classical vectors with succinct
descriptions because they are sparse (with at most T2 nonzero entries). Overall, using standard
quantum inputs and generating classical outputs significantly facilitate end-to-end applications of our
algorithm in the near term.

As a direct corollary, we can find an ε-approximate Nash equilibrium by taking T = Õ(1/ε),
resulting in a quantum speedup stated as follows. A detailed comparison to previous literature is
presented in Table 1.

Corollary 1.2 (Computing Nash equilibrium). There is a quantum online algorithm for zero-sum
game A ∈ Rm×n with ∥A∥ ≤ 1 that, with high probability, computes an ε-approximate Nash
equilibrium in quantum time Õ(

√
m + n/ε2.5).4

Quantum Lower Bounds. In the full version of [33], they showed a lower bound Ω(
√

m + n) for
the quantum query complexity of computing an ε-approximate Nash equilibrium of zero-sum games
for constant ε . Therefore, our algorithm is tight in terms of m and n.

4In fact, a condition of ε = Ω((m + n)−1) is required in our quantum algorithm. Nevertheless, our claim
still holds because when ε = O((m + n)−1), we can directly apply the classical algorithm in Grigoriadis and
Khachiyan [22] with time complexity Õ((m + n)/ε2) ≤ Õ(

√
m + n/ε2.5).
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1.2 Our Techniques

Our quantum online algorithm is a stochastic modification of the optimistic multiplicative weight
update proposed by Syrgkanis et al. [46]. We choose to “quantize” the optimistic online algorithm
because it has a better convergence rate for zero-sum games than general multiplicative weight update
algorithms. During the update of classical online algorithms, the update term (gradient vector) is
computed in linear time by arithmetic operations. However, we observe that it is not necessary to
know the exact gradient vector. This motivates us to apply stochastic gradient methods for updates so
that certain fast quantum samplers can be utilized here and bring quantum speedups.

Specifically, in our quantum online algorithm, we need to establish an upper bound on the expectation
of the total regret of our stochastic update rule, and also deal with errors that may appear from noisy
samplers. To reduce the variance of the gradient estimator, we need multiple samples (from Gibbs
distributions) at a time. To this end, we develop a fast quantum multi-Gibbs sampler that produces
multiple samples by preparing and measuring quantum states.

Sample-Based Optimistic Multiplicative Weight Update. Optimistic online learning adds a
“prediction loss” term to the cumulative loss for regularized minimization, giving a faster convergence
rate than the non-optimistic versions for zero-sum games. Arora et al. [4] surveyed the use of the
multiplicative weight update method in various domains, but little was known for the optimistic
learning method at that time. Daskalakis et al. [17] proposed an extragradient method that largely
resembles the optimistic multiplicative weight. Syrgkanis et al. [46] gave a characterization of this
update rule—RVU (Regret bounded by Variation in Utilities) property, which is very useful in proving
regret bounds. Subsequently, the optimistic learning method is applied to other areas, including
training GANs [18] and multi-agent learning [40].

However, when implementing the optimistic learning methods, we face a fundamental difficulty—we
cannot directly access data from quantum states without measurement. To resolve this issue, we
get samples from the desired distribution and use them to estimate the actual gradient. This idea
is commonly seen in previous literature on quantum SDP solvers [7, 50, 8, 49]. Then we prove
the regret bound (see Theorem 3.2) of our algorithm by showing that it has a property similar to
the RVU property [46]. Moreover, we need multiple samples to obtain a small “variance” of the
stochastic gradient (by taking the average of the samples), to ensure that the expected regret is
bounded. Our fast quantum multi-Gibbs sampler produces the required samples and ensures further
quantum speedups. In a nutshell, we give an algorithm (Algorithm 1) which modifies the optimistic
multiplicative weight algorithm in Syrgkanis et al. [46] to fit the quantum implementation. This is the
first quantum algorithm that implements optimistic online learning to the best of our knowledge.

Fast Quantum Multi-Gibbs Sampling. The key to our sample-based approach is to obtain multiple
samples from the Gibbs distribution after a common preprocessing step. For a vector p ∈ Rn with
maxi∈[n] |pi| ≤ β, a sample from the Gibbs distribution with respect to p is a random variable j ∈ [n]

such that Pr [j = l] = exp(pl)
∑n

i=1 exp(pi)
. Gibbs sampling on a quantum computer was first studied in Poulin

and Wocjan [41], and was later used as a subroutine in quantum SDP solvers [7, 50, 8, 49]. However,
the aforementioned quantum Gibbs samplers produce one sample from an n-dimensional Gibbs
distribution in quantum time Õ(β

√
n); thus, we can produce k samples in quantum time Õ(βk

√
n).

Inspired by the recent work Hamoudi [26] about preparing multiple samples of quantum states,
we develop a fast quantum Gibbs sampler (Theorem 4.2) which produces k samples from a Gibbs
distribution in quantum time Õ(β

√
nk). Our quantum multi-Gibbs sampling may have potential

applications in sample-based approaches for optimization tasks that require multiple samples.

Technically, the main idea is based on quantum rejection sampling [24, 39], where the target quantum
state |u⟩ is obtained by post-selection from a quantum state |uguess⟩ that is easy to prepare (see
Section 4). The algorithm has the following steps (Here we assume β = O(1) for simplicity): To
bring |uguess⟩ closer to the target |u⟩, we find the k (approximately) most dominant amplitudes
of |u⟩ by quantum k-maximum finding [19] in quantum time Õ(

√
nk). In quantum k-maximum

finding, we need to estimate the amplitudes of |u⟩ and compare them coherently, which requires the
estimation should be consistent. To address this issue, we develop consistent quantum amplitude
estimation (see Appendix C) for our purpose based on consistent phase estimation [2, 47], which
is of independent interest. Then, we correct the tail amplitudes of |uguess⟩ by quantum singular
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value transformation [20], resulting in an (approximate) target state with amplitude Ω(
√

k/n) (see
Appendix D for details). Finally, we post-select the target state by quantum amplitude amplification [9]
in quantum time Õ(

√
n/k). This follows that k samples of the target quantum state can be obtained

in k · Õ(
√

n/k) = Õ(
√

nk) time.

We believe that our technique can be extended to a wide range of distributions whose mass function
is monotonic and satisfies certain Lipschitz conditions.

2 Preliminaries

2.1 General Mathematical Notations

For convenience, we use [n] to denote the set {1, 2, . . . , n}. We use ei to denote a vector whose
i-th coordinate is 1 and other coordinates are 0. For a vector v ∈ Rn, vi is the i-th coordinate of
v. For a function f : R → R, we write f (v) to denote the result of f applied to its coordinates,
i.e., f (v) = ( f (v1), f (v2), . . . , f (vn)). We use ∆n to represent the set of n-dimensional probability
distributions, i.e., ∆n := {v ∈ Rn : ∑n

i=1 vi = 1, ∀i ∈ [n], vi ≥ 0}. Here the i-th coordinate
represents the probability of event i takes place. We use ∥·∥ for vector norms. The l1 norm ∥·∥1 for
a vector v ∈ Rn is defined as ∥v∥1 := ∑n

i=1 |vi|. For two n-dimensional probability distributions
p, q ∈ ∆n, their total variance distance is defined as: dTV(p, q) = 1

2 ∥p− q∥1 = 1
2 ∑n

i=1 |pi − qi| .
We will use A ∈ Rm×n to denote a matrix with m rows and n columns. Ai,j is the entry of A in the
i-th row and j-th column. ∥A∥ denotes the operator norm of matrix A. For a vector v ∈ Rn, we use
diag(v) to denote the diagonal matrix in Rn×n whose diagonal entries are coordinates of v with the
same order.

2.2 Game Theory

Let us consider two players, Alice and Bob, playing a zero-sum game represented by a matrix
A ∈ Rm×n with entries Ai,j, where [m] is the labeled action set of Alice and [n] of Bob. Usually,
Alice is called the row player and Bob is called the column player. Ai,j is the payoff to Bob and
−Ai,j is the payoff to Alice when Alice plays action i and Bob plays action j. Both players want to
maximize their payoff when they consider their opponent’s strategy.

Consider the situation that both players’ actions are the best responses to each other. In this case, we
call the actions form a Nash equilibrium. A famous minimax theorem by von Neumann [51] states that
we can exchange the order of the min and max operation and thus the value of the Nash equilibrium
of the game can be properly defined. To be more exact, we have: minx∈∆m maxy∈∆n x⊺Ay =
maxy∈∆n minx∈∆m x⊺Ay. Here the value of the minimax optimization problem is called the value of
the game. Our goal is to find an approximate Nash equilibrium for this problem. More formally, we
need two probabilistic vectors x ∈ ∆m, y ∈ ∆n such that the following holds: maxy′∈∆n x⊺Ay′ −
minx′∈∆m x′⊺Ay ≤ ε. We will call such a pair (x, y) an ε-approximate Nash Equilibrium for the
two-player zero-sum game A. Computing an ε-approximate Nash for a zero-sum game is not as
hard as for a general game. For a general game, approximately computing its Nash equilibrium is
PPAD-hard [16, 12].

Here, we emphasize an important observation that will be used throughout our paper: we can add a
constant or multiply by a positive constant on all A’s entries without changing the solution pair of
the Nash equilibrium. This is because, in the definition of the Nash equilibrium, the best response
is always in comparison with other possible actions, so only the order of the utility matters. Thus
without loss of generality, we can always rescale A to (A + c1)/2 where 1 is an m× n matrix with
all entries being 1 with c being the largest absolute value of A’s entries, and let A′ = A/ ∥A∥ to
guarantee that A has non-negative entries and has operator norm no more than 1.

2.3 Online Learning

2.3.1 Notions of online learning

In general, online learning focuses on making decisions in an uncertain situation, where a decider is
not aware of the current loss and is required to make decisions based on observations of previous
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losses. To be more exact, we fix the number of rounds T and judge the performance of the algorithm
(in the following of this subsection we use “decider” with the same meaning as the “algorithm”)
in these T rounds. Assume that the decider is allowed to choose actions in the domain X, usually
a convex subset of a finite-dimensional Euclidean space. Let t ∈ [T] denote the current number
of rounds. At round t, the decider chooses an action xt ∈ X. (The action may depend on the
decider’s previous observation of the loss functions li for all i ∈ [t− 1].) Then the decider will get
the loss lt(xt) for the current round. We assume that the decider can also observe the full information
of lt, i.e., the formula of the function. We judge the performance of the algorithm by its regret:
R(T) = ∑T

i=1 lt(xt)−minx∈X ∑T
i=1 lt(x). Intuitively, the regret shows how far the total loss in T

rounds caused by the algorithm is from the optimal static loss.

2.3.2 Online learning in zero-sum games

To demonstrate how to compute the approximate Nash equilibrium using online learning algorithms,
we present a useful proposition here. It states that from any sublinear regret learning algorithm A
with regret R(T), we can find an O(R(T)/T)-approximate Nash equilibrium of the zero-sum game
in T rounds.

To be more precise, let us consider the following procedure. Let A be the matrix for the two-player
zero-sum game. The algorithm starts with some initial strategies u0 ∈ ∆m, v0 ∈ ∆n for the two
players. Then at each round t, for each player, it makes decisions with previous observations of
the opponent’s strategy. In particular, the row player is required to choose his/her action ut ∈ ∆m
after considering the previous loss functions gi(x) = v⊺i A⊺x for i ∈ [t− 1]. Similarly, the column
player chooses his/her action vt ∈ ∆n with respect to the previous loss functions hi(y) = −u⊺

i Ay
for i ∈ [t− 1]. After both players choose their actions at this round t, they will receive their loss
functions gt(x) := v⊺t A⊺x and ht(y) = −u⊺

t Ay, respectively.

Suppose after T rounds, the regret of the row player with respect to the loss functions gt(x) is R(T),
and the regret of the column player with loss functions ht(y) is R′(T). We can write the total regret
R(T) +R′(T) explicitly: R(T) +R′(T) = T(maxv∈∆n ⟨v, A⊺û⟩ −minu∈∆m ⟨u, Av̂⟩), where the
average strategy is defined as û = ∑T

i=1 ui/T, v̂ = ∑T
i=1 vi/T. This pair is a good approximation of

the Nash equilibrium for the game A if the regret is o(T).

2.4 Quantum Computing

In quantum mechanics, a d-dimensional quantum state is described by a unit vector v =
(v0, v1, . . . , vd−1)

⊺, usually denoted as |v⟩ with the Dirac symbol |·⟩, in a complex Hilbert space Cd.
The computational basis of Cd is defined as {|i⟩}d−1

i=0 , where |i⟩ = (0, . . . , 0, 1, 0, . . . , 0)⊺ with the
i-th (0-indexed) entry being 1 and other entries being 0. The inner product of quantum states |v⟩ and
|w⟩ is defined by ⟨v|w⟩ = ∑d−1

i=0 v∗i wi, where z∗ denotes the conjugate of complex number z. The
norm of |v⟩ is defined by ∥|v⟩∥ =

√
⟨v|v⟩. The tensor product of quantum states |v⟩ ∈ Cd1 and

|w⟩ ∈ Cd2 is defined by |v⟩ ⊗ |w⟩ = (v0w0, v0w1, . . . , vd1−1wd2−1)
⊺ ∈ Cd1d2 , denoted as |v⟩|w⟩

for short.

A quantum bit (qubit for short) is a quantum state |ψ⟩ in C2, which can be written as |ψ⟩ = α|0⟩+
β|1⟩ with |α|2 + |β|2 = 1. An n-qubit quantum state is in the tensor product space of n Hilbert spaces
C2, i.e., (C2)⊗n = C2n

with the computational basis {|0⟩, |1⟩, . . . , |2n − 1⟩}. To obtain classical
information from an n-qubit quantum state |v⟩, we measure |v⟩ on the computational basis and
obtain outcome i with probability p(i) = |⟨i|v⟩|2 for every 0 ≤ i < 2n. The evolution of a quantum
state |v⟩ is described by a unitary transformation U : |v⟩ 7→ U|v⟩ such that UU† = U†U = I,
where U† is the Hermitian conjugate of U, and I is the identity operator. A quantum gate is a unitary
transformation that acts on 1 or 2 qubits, and a quantum circuit is a sequence of quantum gates.

Throughout this paper, we assume the quantum oracle OA for a matrix A ∈ Rm×n, which is a unitary
operator such that for every row index i ∈ [m] and column index j ∈ [n], OA|i⟩|j⟩|0⟩ = |i⟩|j⟩|Ai,j⟩.
Intuitively, the oracle OA reads the entry Ai,j and stores it in the third register; this is potentially
stronger than the classical counterpart when the query is a linear combination of basis vectors, e.g.,
∑k αk|ik⟩|jk⟩ with ∑k |αk|2 = 1. This is known as the superposition principle in quantum computing.
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Note that this input model for matrices is commonly used in quantum algorithms, e.g., linear system
solvers [28] and semidefinite programming solvers [7, 50, 8, 49].

A quantum (query) algorithm A is a quantum circuit that consists a sequence of unitary operators
G1, G2, . . . , GT , each of which is either a quantum gate or a quantum oracle. The quantum time com-
plexity of A is measured by the number T of quantum gates and quantum oracles in A. The execution
of A on n qubits starts with quantum state |0⟩⊗n, then it performs unitary operators G1, G2, . . . , GT
on the quantum state in this order, resulting in the quantum state |ϕ⟩ = GT . . . G2G1|0⟩⊗n. Finally,
we measure |ϕ⟩ on the computational basis |i⟩ for 0 ≤ i < 2n, giving a classical output i with
probability |⟨i|ϕ⟩|2.

3 Quantum Algorithm for Online Zero-Sum Games by Sample-Based
Optimistic Multiplicative Weight Update

Now, we present our quantum algorithm for finding an approximate Nash equilibrium for zero-
sum games (Algorithm 1). This algorithm is a modification of the optimistic multiplicative weight
algorithm [46], in which we use stochastic gradients to estimate true gradients. This modification
utilizes the quantum advantage of Gibbs sampling (as will be shown in Section 4). It is the source of
quantum speedups in the algorithm and also the reason that we call the algorithm sample-based. To
this end, we first give the definition of Gibbs sampling oracles.
Definition 3.1 (Approximate Gibbs sampling oracle). Let p ∈ Rn be an n-dimensional vector,
ϵ > 0 be the approximate error. We let OGibbs

p (k, ϵ) denote the oracle which produces k independent
samples from a distribution that is ϵ-close to the Gibbs distribution with parameter p in total variation
distance. Here, for a random variable j taking value in [n] following the Gibbs distribution with
parameter p, we have Pr [j = l] = exp(pl)/∑n

i=1 exp(pi).

Algorithm 1 Sample-Based Optimistic Multiplicative Weight Update for Matrix Games

Input: A ∈ Rm×n, additive approximation ε, approximate Gibbs sampling oracle OGibbs with error
ϵG, total episode T, learning rate λ ∈ (0,

√
3/6).

Output: (û, v̂) as the approximate Nash equilibrium of the matrix game A.
1: Initialize û← 0m, v̂← 0n, x1 ← 0m, y1 ← 0n.
2: Set g1 ← x1, h1 ← y1.
3: for t = 1, . . . , T do
4: Get T independent samples it

1, it
2, . . . , it

T from the Gibbs sampling oracle OGibbs
−Aht

(T, ϵG).

5: Choose the action ζt = ∑T
N=1 eitN

/T.

6: Update xt+1 ← xt + λζt, gt+1 ← xt+1 + λζt. û← û + 1
T ζt.

7: Get T independent samples jt1, jt
2, . . . , jt

T from the Gibbs sampling oracle OGibbs
A⊺gt

(T, ϵG).

8: Choose the action ηt = ∑T
N=1 ejtN

/T.

9: Update yt+1 ← yt + ληt, ht+1 ← yt+1 + ληt, v̂← v̂ + 1
T ηt.

10: end for
11: return (û, v̂).

Suppose the zero-sum game is represented by matrix A ∈ Rm×n with ∥A∥ ≤ 1. Our sample-
based optimistic multiplicative weight update algorithm is given in Algorithm 1. Algorithm 1 is
inspired by the classical optimistic follow-the-regularized-leader algorithm (see Appendix A for more
information). In that classical algorithm, the update terms are essentially E[ζt] and E[ηt], which are
computed deterministically by matrix arithmetic operations during the update. In contrast, we do
this probabilistically by sampling from the Gibbs distributions and ζt and ηt in Line 5 and Line 10
are the corresponding averages of the samples. For this to work, we need to bound the expectation
of the total regret (see Appendix B) based on the RVU property (Definition A.2). Technically, the
l1 variances of ζt and ηt turn out to be significant in the analysis. To reduce the variances, we
need multiple independent samples identically distributed from Gibbs distributions (see Line 4 and
Line 7 in Algorithm 1). Because of the randomness from Gibbs sampling oracles, the total regret
R(T) +R′(T) of Algorithm 1 is a random variable. Nevertheless, we can bound the total regret by
O(log(mn)) with high probability as follows.
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Theorem 3.2. Let ϵG = 1/T. After T rounds of playing the zero-sum game A by Algorithm 1, the
total regret will be bounded by

R(T) +R′(T) ≤ 144λ +
3 log(mn)

λ
+ 12,

with probability at least 2/3. Then, for any constant λ ∈ (0,
√

3/6), the total regret is O(log(mn)).
Moreover, if we choose T = Θ̃(1/ε), then Algorithm 1 will return an ε-approximate Nash equilibrium
of the game A.

The proof of Theorem 3.2 is deferred to Appendix B.2. Combining Theorem 3.2 and our fast quantum
multi-Gibbs sampler in Theorem 4.2 (which will be developed in the next section), we obtain a
quantum algorithm for finding an ε-approximate Nash equilibrium of zero-sum games.

Corollary 3.3. If we choose T = Θ̃(1/ε) and use quantum multi-Gibbs sampling (Algorithm 2)
with ϵG = 1/T, then Algorithm 1 will return an ε-approximate Nash equilibrium in quantum time
Õ(
√

m + n/ε2.5).

4 Fast Quantum Multi-Gibbs Sampling

In Algorithm 1, the vectors ht and gt updated in each round are used to generate independent samples
from Gibbs distributions OGibbs

−Aht
and OGibbs

A⊺gt
. Here, ht and gt are supposed to be stored in classical

registers. To allow quantum speedups, we store ht and gt in quantum-read classical-write random
access memory (QRAM) [21], which is commonly used in prior work [49, 6]. Specifically, a QRAM
can store/modify an array a1, a2, . . . , aℓ of classical data and provide quantum (read-only) access to
them, i.e., a unitary operator UQRAM is given such that UQRAM : |i⟩|0⟩ 7→ |i⟩|ai⟩. Without loss of
generality (see Remark 4.3), suppose we have quantum oracle OA for A ∈ Rn×n with Ai,j ∈ [0, 1],
and QRAM access to a vector z ∈ Rn with zi ≥ 0. We also need the polynomial approximation of
the exponential function for applying the QSVT technique [20]:
Lemma 4.1 (Polynomial approximation, Lemma 7 of [48]). Let β ≥ 1 and ϵP ∈ (0, 1/2). There
is a classically efficiently computable polynomial Pβ ∈ R[x] of degree O(β log(ϵ−1

P )) such that∣∣Pβ(x)
∣∣ ≤ 1 for x ∈ [−1, 1], and maxx∈[−1,0]

∣∣∣Pβ(x)− 1
4 exp(βx)

∣∣∣ ≤ ϵP.

Then, we can produce multiple samples from OGibbs
Az efficiently by Algorithm 2 on a quantum

computer. Algorithm 2 is inspired by Hamoudi [26] about preparing multiple samples of a quantum
state, with quantum access to its amplitudes. However, we do not have access to the exact values of
the amplitudes, which are (Az)i in our case. To resolve this issue, we develop consistent quantum
amplitude estimation (see Appendix C) to estimate (Az)i with a unique answer (Line 1). After having
prepared an initial quantum state |uguess⟩, we use quantum singular value decomposition [20] to
correct the tail amplitudes (Line 6), and finally obtain the desired quantum state |ũGibbs⟩ by quantum
amplitude amplification [9] (Line 7). We have the following (see Appendix D for its proof):
Theorem 4.2 (Fast quantum multi-Gibbs sampling). For k ∈ [n], if we set ϵP = Θ(kϵ2

G/n), then
Algorithm 2 will produce k independent and identical distributed samples from a distribution that is
ϵG-close to OGibbs

Az in total variation distance, in quantum time Õ(β
√

nk).
Remark 4.3. If A ∈ Rm×n is not a square matrix, then by adding 0’s we can always enlarge A to an
(m + n)-dimensional square matrix. For OGibbs

−Aht
as required in Algorithm 1, we note that OGibbs

(1−A)ht

indicates the same distribution as OGibbs
−Aht

, where 1 has the same size as A with all entries being 1.
From the above discussion, we can always convert A to another matrix satisfying our assumption,
i.e., with entries in the range [0, 1].
Remark 4.4. The description of the unitary operator Uexp defined by the polynomial P2β can be
classically computed to precision ϵP in time Õ(β3) by Haah [25], which is Õ(1/ε3) in our case
as β ≤ λT = Θ̃(1/ε) is required in Corollary 3.3. This extra cost can be neglected because
Õ(
√

m + n/ε2.5) dominates the complexity whenever ε = Ω((m + n)−1).
Remark 4.5. Our multi-Gibbs sampler is based on maximum finding and consistent amplitude
estimation, with a guaranteed worst-case performance in each round. In comparison, the dynamic
Gibbs sampler in [6] maintains a hint vector, resulting in an amortized time complexity per round.
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Algorithm 2 Quantum Multi-Gibbs Sampling OGibbs
Az (k, ϵG)

Input: Quantum oracle OA for A ∈ Rn×n, QRAM access to z ∈ Rn with ∥z∥1 ≤ β, polynomial
P2β with parameters ϵP by Lemma 4.1, number k of samples. We write u = Az.

Output: k independent samples i1, i2, . . . , ik.
1: Obtain Oũ : |i⟩|0⟩ 7→ |i⟩|ũi⟩ by consistent quantum amplitude estimation such that ui ≤ ũi ≤

ui + 1.
2: Find the set S ⊆ [n] of indexes of the k largest ũi by quantum k-maximum finding, with access

to Oũ.
3: Obtain ũi for all i ∈ S from Oũ, then compute ũ∗ = min

i∈S
ũi and W = ∑

i∈S
exp(ũi) +

(n− k) exp(ũ∗).
4: for ℓ = 1, . . . , k do
5: Prepare the quantum state |uguess⟩ = ∑i∈S

√
exp(ũi)

W |i⟩+ ∑i/∈S

√
exp(ũ∗)

W |i⟩.
6: Obtain unitary Uexp such that ⟨0|⊗aUexp|0⟩⊗a = diag

(
P2β(u−max{ũ, ũ∗})

)
/4β by

QSVT.
7: Post-select |ũGibbs⟩ ∝ ⟨0|⊗aUexp|uguess⟩|0⟩⊗a by quantum amplitude amplification.
8: Let iℓ be the measurement outcome of |ũGibbs⟩ in the computational basis.
9: end for

10: return i1, i2, . . . , ik.

5 Discussion

In our paper, we propose the first quantum online algorithm for zero-sum games with near-optimal
regret. This is achieved by developing a sample-based stochastic version of the optimistic multi-
plicative weight update method [46]. Our core technical contribution is a fast multi-Gibbs sampling,
which may have potential applications in other quantum computing scenarios.

Our result naturally gives rise to some further open questions. For instance: Can we improve
the dependence on ε for the time complexity? And can we further explore the combination of
optimistic learning and quantum computing into broader applications? Now that many heuristic
quantum approaches for different machine learning problems have been realized, e.g.in Havlíček
et al. [29], Saggio et al. [44], Harrigan et al. [27], can fast quantum algorithms for zero-sum games
be realized in the near future?
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A Revisit of Optimistic Online Learning

In this section, we briefly review some important properties in the classical optimistic online learning
algorithms. Some of the propositions in this section will be frequently used in the proof of the regret
bound.

For convenience, we will use ψ(·) to denote the negative entropy function, i.e., ψ : ∆n → R,
ψ(p) = ∑n

i=1 pi log pi. Note that log stands for the natural logarithm function with base e.

For a vector norm ∥·∥, its dual norm is defined as:
∥y∥∗ = max

x
{⟨x, y⟩ : ∥x∥ ≤ 1} .

Proposition A.1. Let L be a vector in n-dimensional space. If p∗ = arg min
p∈∆n

{⟨p, L⟩+ ψ (p)}, then

p∗ can be written as:

p∗ =
exp (−L)
∥exp (−L)∥1

and vice versa.

Proof. Write L = (L1, L2, . . . , Ln). By definition, we know that p∗ is the solution to the following
convex optimization problem:

minimize
p1, p2, . . . , pn

n

∑
i=1

piLi +
n

∑
i=1

pi log pi

subject to
n

∑
i=1

pi = 1,

∀i, pi ≥ 0
The Lagrangian is

L(p, u, v) =
n

∑
i=1

piLi +
n

∑
i=1

pi log pi −
n

∑
i=1

ui pi + v

(
n

∑
i=1

pi − 1

)
From KKT conditions, we know that the stationarity is:

Li + 1 + log pi − ui + v = 0. (1)
The complementary slackness is:

ui pi = 0.
The primal feasibility is

∀i, pi ≥ 0;
n

∑
i=1

pi = 1.

The dual feasibility is
ui ≥ 0.

If ui ̸= 0 then pi = 0, from stationarity we know ui = −∞, but that violates the dual feasibility. So
we can conclude that ui = 0 for all i ∈ [n], thus pi ∝ exp(−Li) and the result follows.

Now we present a generalized version of the optimistic multiplicative weight algorithm called
optimisitically follow the regularized leader (Opt-FTRL) in Algorithm 3. In the algorithm, mt has the
same meaning as m(t) for notation consistency.

Algorithm 3 Optimistic follow-the-regularized-leader
Input: The closed convex domain X.
Output: Step size λ, loss gradient prediction m.

Initialize L0 ← 0, choose appropriate m1.
for t = 1, . . . , T do

Choose xt = arg min
x∈X

{λ ⟨Lt−1 + mt, x⟩+ ψ(x)}.

Observe loss lt, update Lt = Lt−1 + lt.
Compute mt+1 using observations till now.

end for

14



Now we study a crucial property that leads to the fast convergence of the algorithm, called the Regret
bounded by Variation in Utilities (RVU in short). For simplicity, we only consider the linear loss
function lt(x) = ⟨lt, x⟩. (There is a little abuse of notation here.)

Definition A.2 (Regret bounded by Variations in Utilities (RVU), Definition 3 in Syrgkanis et al.
[46]). Consider an online learning algorithm A with regret R(T) = o(T), we say that it has the
property of regret bound by variation in utilities if for any linear loss sequence l1, l2, . . . , lT , there
exists parameters α > 0, 0 < β ≤ γ such that the algorithm output decisions x1, x2, . . . , xT , xT+1
that satisfy:

T

∑
i=1
⟨li, xi⟩ −min

x∈X

T

∑
i=1
⟨li, x⟩ ≤ α + β

T−1

∑
i=1
∥li+1 − li∥2

∗ − γ
T−1

∑
i=1
∥xi+1 − xi∥2 ,

where ∥·∥∗ is the dual norm of ∥·∥.

We do not choose the norm to be any specific one here. In fact, Syrgkanis et al. [46] have already
shown that the above optimistic follow-the-regularized-leader algorithm has the RVU property with
respect to any norm ∥·∥ in which the negative entropy function ψ is 1-strongly convex. So, from
Pinsker’s inequality, for l2 norms the following result holds:

Proposition A.3 (Proposition 7 in Syrgkanis et al. [46]). If we choose mt = lt−1 in the optimistic
follow-the-regularized-leader algorithm with step size λ ≤ 1/2, then it has the regret bound by
variation in utilities property with the parameters α = log n/λ, β = λ and γ = 1/(4λ), where n is
the dimension of X.

B Regret Bound and Time Complexity of Our Algorithm

B.1 Ideal Samplers

We assume that after the execution of our algorithm, the sequences we get are {(xt, yt)}T+1
t=1 and

{(gt, ht)}T+1
t=1 , respectively. We denote ut := exp (−Aht)

∥exp (−Aht)∥1
and vt := exp (A⊺gt)

∥exp (A⊺gt)∥1
to be the

corresponding Gibbs distribution, we will first assume that the Gibbs oracle in our algorithm has no
error (i.e. ϵG = 0) until Theorem B.5 is proved.

Observation B.1. The sequence {ut}T
t=1 can be seen as the decision result of applying optimistic

FTRL algorithm to the linear loss function Aηt with linear prediction function Aηt−1, and similarly
for {vt}T+1

t=1 with the loss function −A⊺ζt, the prediction function −A⊺ζt−1.

Proof. By symmetry, we only consider ut. Since ut =
exp (−Aht)
∥exp (−Aht)∥1

, from Proposition A.1 we can
write

ut = arg min
u∈∆m

{⟨Aht, u⟩+ ψ(u)} .

Then we notice the iteration of Algorithm 1 gives

ht = λ

(
t−1

∑
i=1

ηi

)
+ ληt−1.

So from the definition of the Algorithm 3, we know that our observation holds.

This observation, together with Proposition A.3, gives the following inequalities. For any u ∈ ∆m,
v ∈ ∆n, we have:

T

∑
t=1
⟨ut − u, Aηt⟩ ≤

log m
λ

+ λ
T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 − 1

4λ

T−1

∑
t=1
∥ut+1 − ut∥2 , (2)

T

∑
t=1
⟨vt − v,−A⊺ζt⟩ ≤

log n
λ

+ λ
T−1

∑
t=1
∥A⊺(ζt+1 − ζt)∥2 − 1

4λ

T−1

∑
t=1
∥vt+1 − vt∥2 . (3)
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However, we find that the loss function is slightly different from what we expect.

Let us consider the difference qt := A(vt − ηt) and pt := −A⊺(ut − ζt), we have the decomposi-
tion of the regret:

T

∑
t=1
⟨ut − u, Avt⟩ =

T

∑
t=1
⟨ut − u, Aηt⟩+

T

∑
t=1
⟨ut − u, qt⟩ .

Notice that E[qt] = E[pt] = 0, we have:
Lemma B.2.

E

[
T

∑
t=1
⟨ut − u, qt⟩

]
= 0, E

[
T

∑
t=1
⟨vt − v, pt⟩

]
= 0

Proof. By symmetry, we only prove the case for u. It suffices to prove that for every t,
E [⟨ut − u, qt⟩] = 0. Since u is fixed, E [⟨u, qt⟩] = ⟨u, E [qt]⟩ = 0.

Now consider E [⟨ut, qt⟩], notice that given η1, . . . , ηt−1 then ut is a constant. We have:

E [⟨ut, qt⟩] = E [E [⟨ut, qt⟩ |η1, η2, . . . , ηt−1]]

= E [⟨ut, E [qt|η1, η2, . . . , ηt−1]⟩]
= E [⟨ut, 0⟩] = 0.

Now we are going to bound the term ∑T−1
t=1 ∥A(ηt+1 − ηt)∥2.

Lemma B.3.
T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 ≤ 6 + 3

T−1

∑
t=1
∥vt+1 − vt∥2 , (4)

T−1

∑
t=1
∥A⊺(ζt+1 − ζt)∥2 ≤ 6 + 3

T−1

∑
t=1
∥ut+1 − ut∥2 . (5)

Proof. Recall that by rescaling we have ∥A∥ ≤ 1. Hence,

T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 ≤

T−1

∑
t=1
∥ηt+1 − ηt∥2 .

Write ηt+1 − ηt = (ηt+1 − vt+1) + (vt+1 − vt) + (vt − ηt). Using the triangle inequality of the l1
norm and the Cauchy inequality (a + b + c)2 ≤ 3

(
a2 + b2 + c2), we get

T−1

∑
t=1
∥ηt+1 − ηt∥2 ≤ 6

T

∑
t=1
∥ηt − vt∥2 + 3

T−1

∑
t=1
∥vt+1 − vt∥2 . (6)

Similarly, we have:
T−1

∑
t=1
∥ζt+1 − ζt∥2 ≤ 6

T

∑
t=1
∥ζt − ut∥2 + 3

T−1

∑
t=1
∥ut+1 − ut∥2 . (7)

Observing that in our algorithm we collect T independent and identically distributed samples and
take their average, we have:

E

[
T

∑
t=1
∥ζt − ut∥2

]
≤ 1,

E

[
T

∑
t=1
∥ηt − vt∥2

]
≤ 1.

Combining the result above, we just get the desired equation.
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We also need the following lemma to guarantee that the sum of the regret is always non-negative.
Lemma B.4. The sum of the regrets of two players in Algorithm 1 is always non-negative. In other
words:

max
u∈∆m

max
v∈∆n

(
T

∑
t=1
⟨ut − u, Avt⟩+

T

∑
t=1
⟨vt − v,−A⊺ut⟩

)
≥ 0.

Proof.

max
u∈∆m

max
v∈∆n

(
T

∑
t=1
⟨ut − u, Avt⟩+

T

∑
t=1
⟨vt − v,−A⊺ut⟩

)

= max
u∈∆m

max
v∈∆n

(
T

∑
t=1
⟨−u, Avt⟩+

T

∑
t=1
⟨v, A⊺ut⟩

)

=max
v∈∆n

T

∑
t=1
⟨v, A⊺ut⟩ − min

u∈∆m

T

∑
t=1
⟨u, Avt⟩ ≥ 0

The last step is because

max
v∈∆n

T

∑
t=1
⟨v, A⊺ut⟩ ≥

〈
A

T

∑
t=1

vt/T,
T

∑
t=1

ut

〉
,

and

min
u∈∆m

T

∑
t=1
⟨u, Avt⟩ ≤

〈
A

T

∑
t=1

vt,
T

∑
t=1

ut/T

〉
.

Combining the result above, we finally have the following theorem.

Theorem B.5. Suppose that in our Algorithm 1, we choose the episode T = Θ̃(1/ε), and choose a
constant learning rate λ that satisfies λ <

√
3/6. Then with probability at least 2/3 the total regret

of the algorithm is Õ(1). To be more clear, we have:

T
(

max
v∈∆n
⟨v, A⊺û⟩ − min

u∈∆m
⟨u, Av̂⟩

)
≤ 36λ +

3 log(mn)
λ

,

and so our algorithm returns an ε-approximate Nash equilibrium.

Proof. Adding the inequalities (2) and (3) together, we get
T

∑
t=1
⟨ut − u, Aηt⟩+

T

∑
t=1
⟨vt − v,−A⊺ζt⟩ ≤

log m
λ

+
log n

λ

+ λ
T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 − 1

4λ

T−1

∑
t=1
∥vt+1 − vt∥2

+ λ
T−1

∑
t=1
∥A⊺(ζt+1 − ζt)∥2 − 1

4λ

T−1

∑
t=1
∥ut+1 − ut∥2 .

(8)

Taking expectation, and using the inequalities (6) we have

E

[
λ

T−1

∑
t=1
∥A(ηt+1 − ηt)∥2 − 1

4λ

T−1

∑
t=1
∥vt+1 − vt∥2

]

≤
(

3λ− 1
4λ

)
E

[
T−1

∑
t=1
∥vt+1 − vt∥2

]
+ 6λ ·E

[
T

∑
t=1
∥ηt − vt∥2

]
≤ 6λ.
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Similarly we can prove

E

[
λ

T−1

∑
t=1
∥A⊺(ζt+1 − ζt)∥2 − 1

4λ

T−1

∑
t=1
∥ut+1 − ut∥2

]
≤ 6λ.

So, taking expectations of Equation (8), and using the above inequalities and the Lemma B.2, we get

E

[
max
u∈∆m

T

∑
t=1
⟨ut − u, Avt⟩+ max

v∈∆n

T

∑
t=1
⟨vt − v,−A⊺ut⟩

]
≤ 12λ +

log(mn)
λ

. (9)

Using the fact that

E[û] · T =
T

∑
t=1

E[ut],

E[v̂] · T =
T

∑
t=1

E[vt],

we have

E

[
max
v∈∆n
⟨v, A⊺û⟩ − min

u∈∆m
⟨u, Av̂⟩

]
· T ≤ 12λ +

log(mn)
λ

. (10)

By Lemma B.4, we know that the regret is always non-negative. So applying Markov’s inequality,
we know with probability at least 2/3, the following inequality holds:

max
v∈∆n
⟨v, A⊺û⟩ − min

u∈∆m
⟨u, Av̂⟩ ≤ 1

T

(
36λ +

3 log(mn)
λ

)
.

B.2 Samplers with Errors

Theorem B.6 (Restatement of Theorem 3.2). Suppose that in our Algorithm 1, we choose the episode
T = Õ(1/ε), and choose a constant learning rate λ that satisfies 0 < λ <

√
3/6. The quantum

implementation of the oracle in the algorithm will return T independent and identically distributed
samples from a distribution that is ϵG-close to the desired distribution in total variational distance in
quantum time TQ

G .

Then with probability at least 2/3 the total regret of the algorithm is Õ(1 + ϵG/ε) and the algorithm
returns an Õ(ε + ϵG)-approximate Nash equilibrium in quantum time Õ(TQ

G /ε).

Proof. We will follow similar steps of proof for Theorem B.5. Since the sampling is not from the
ideal distribution, we must bound the terms where ηt and ζt take place.

Notice that in this case, we have

∥A(vt −E[ηt])∥ ≤ ∥vt −E[ηt]∥ ≤ ϵG.

So for the term qt in Lemma B.2 we now have the bound:

E

[
T

∑
t=1
⟨ut − u, A(vt − ηt)⟩

]

= E

[
T

∑
t=1
⟨ut − u, A(vt −E[ηt])⟩

]
+ E

[
T

∑
t=1
⟨ut − u, A(E[ηt]− ηt)⟩

]

= E

[
T

∑
t=1
⟨ut − u, A(vt −E[ηt])⟩

]
≤ 2TϵG,

where the last step is by Hölder’s inequality.
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Then for the other term, we have

E

[
T

∑
t=1
∥ηt − vt∥2

]
≤ 2 ·E

[
T

∑
t=1
∥ηt −E[ηt]∥2

]
+ 2 ·E

[
T

∑
t=1
∥vt −E[ηt]∥2

]
≤ 2 + 2Tϵ2

G.

So following the similar steps of proof for Theorem B.5, and using the above bounds, we can get

E

[
max
u∈∆m

T

∑
t=1
⟨ut − u, Avt⟩+ max

v∈∆n

T

∑
t=1
⟨vt − v,−A⊺ut⟩

]

≤ 24λ + 24λTϵ2
G +

log(mn)
λ

+ 4TϵG.

Again using linearity of expectation and Markov’s inequality, we conclude that with probability at
least 2/3

T
(

max
v∈∆n
⟨v, A⊺û⟩ − min

u∈∆m
⟨u, Av̂⟩

)
≤ 72λ +

3 log(mn)
λ

+ 72Tλϵ2
G + 12TϵG.

C Consistent Quantum Amplitude Estimation

Theorem C.1 (Consistent phase estimation, [2, 47]). Suppose U is a unitary operator. For every
positive reals ϵ, δ, there is a quantum algorithm (a unitary quantum circuit) A such that, on input
O
(
log
(
ϵ−1))-bit random string s, it holds that

• For every eigenvector |ψθ⟩ of U (where U|ψθ⟩ = exp(iθ)|ψθ⟩), with probability ≥ 1− ϵ:

⟨ψθ |⟨ f (s, θ)|A|ψθ⟩|0⟩ ≥ 1− ϵ;

• f (s, θ) is a function of s and θ such that | f (s, θ)− θ| < δ,

with time complexity Õ
(
δ−1) · poly

(
ϵ−1).

Theorem C.2 (Consistent quantum amplitude estimation). Suppose U is a unitary operator such that

U|0⟩A|0⟩B =
√

p|0⟩A|ϕ0⟩B +
√

1− p|1⟩A|ϕ1⟩B.

where p ∈ [0, 1] and |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. Then for every positive
reals ϵ, δ, there is a quantum algorithm that, on input O

(
log
(
ϵ−1))-bit random string s, outputs

f (s, p) ∈ [0, 1] such that
Pr [| f (s, p)− p| ≤ δ] ≥ 1− ϵ,

with time complexity Õ
(
δ−1) · poly

(
ϵ−1).

Proof. Suppose U is a unitary operator such that

U|0⟩A|0⟩B =
√

p|0⟩A|ϕ0⟩B +
√

1− p|1⟩A|ϕ1⟩B.

Let
Q = −U(I − 2|0⟩A⟨0| ⊗ |0⟩B⟨0|)U†(I − 2|0⟩A⟨0| ⊗ IB).

Similar to the analysis in Brassard et al. [9], we have

U|0⟩A|0⟩B =
−i√

2

(
exp

(
iθp
)
|ψ+⟩AB − exp

(
−iθp

)
|ψ−⟩AB

)
,

where sin2(θp
)
= p (0 ≤ θp < π/2), and

|ψ±⟩AB =
1√
2
(|0⟩A|ϕ0⟩B ± i|1⟩A|ϕ1⟩B).
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Note that |ψ±⟩AB are eigenvectors of Q, i.e., Q|ψ±⟩AB = exp
(
±i2θp

)
|ψ±⟩AB.

Now applying the algorithm A of consistent phase estimation of Q by Theorem C.1 on state
U|0⟩A|0⟩B ⊗ |0⟩C (with an O

(
log
(
ϵ−1))-bit random string s), we obtain

A(U|0⟩A|0⟩B ⊗ |0⟩C) =
−i√

2

(
exp

(
iθp
)
A(|ψ+⟩AB|0⟩C)− exp

(
−iθp

)
A(|ψ−⟩AB|0⟩C)

)
.

Since each of |ψ±⟩AB is an eigenvector of Q, it holds that, with probability ≥ 1− ϵ,

⟨ψ±|AB⟨ f
(
s,±2θp

)
|CA(|ψ±⟩AB|0⟩C) ≥ 1− ϵ.

which implies that A(U|0⟩A|0⟩B ⊗ |0⟩C) is O
(√

ϵ
)
-close to

−i√
2

(
exp

(
iθp
)
|ψ+⟩AB| f

(
s, 2θp

)
⟩C − exp

(
−iθp

)
|ψ−⟩AB| f

(
s,−2θp

)
⟩C
)

in trace distance, where
∣∣ f (s,±2θp

)
∓ 2θp

∣∣ < δ. Measuring register C, we denote the outcome as γ,
which will be either f

(
s, 2θp

)
or f

(
s,−2θp

)
. Finally, output sin2(γ/2) as the estimate of p (which

is consistent). Since sin2(·) is even and 2-Lipschitz, the additive error is bounded by∣∣∣sin2
(γ

2

)
− p

∣∣∣ ≤ 2
∣∣∣∣∣∣γ

2

∣∣∣− ∣∣θp
∣∣∣∣∣ < δ.

Note that A makes Õ
(
δ−1) · poly

(
ϵ−1) queries to Q, thus our consistent amplitude estimation has

quantum time complexity Õ
(
δ−1) · poly

(
ϵ−1).

Theorem C.3 (Error-Reduced Consistent quantum amplitude estimation). Suppose U is a unitary
operator such that

U|0⟩A|0⟩B =
√

p|0⟩A|ϕ0⟩B +
√

1− p|1⟩A|ϕ1⟩B.

where p ∈ [0, 1] and |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. Then for every positive
integers r and positive real δ, there is a quantum algorithm that, on input O(r)-bit random string s,
outputs f ∗(s, p) ∈ [0, 1] such that

Pr [| f ∗(s, p)− p| ≤ δ] ≥ 1−O(exp(−r)),

with time complexity Õ
(
δ−1) · poly(r).

Proof. Consider that we divide the input random string s into r strings s1, s2, . . . , sr of length O(1).
For each i ∈ [r], we use Theorem C.2 with input string si and parameter ϵ = 1/10. So we get, for
each i ∈ [r],

Pr [| f (si, p)− p| ≤ δ] ≥ 9
10

.

Now we set f ∗(s, p) to be the median of the estimations f (si, p) for i ∈ [r]. We claim it satisfies the
desired property. To show that, we define random variables Xi for i ∈ [r] as follows:

Xi =

{
1, if | f (si, p)− p| ≤ δ,
0, otherwise.

Noticing E [∑r
i=1 Xi] ≥ 9r/10, and by Chernoff bound, we have:

Pr

[
r

∑
i=1

Xi <
r
2

]
≤ exp

(
− 8r

45

)
.

Thus with probability at least 1− exp(−8r/45), we know that at least half of the estimations fall
into the interval [p− δ, p + δ], and then f ∗(s, p) returns a correct answer.
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D Details and Proofs of Fast Quantum Multi-Gibbs Sampling

We present the detailed version of the fast quantum multi-Gibss sampling. Here, we use the shorthand
OGibbs

p = OGibbs
p (1, 0), and it also means the distribution of the sample.

We first define the notion of amplitude-encoding (a unitary operator that encodes a vector in its
amplitudes).
Definition D.1 (Amplitude-encoding). A unitary operator V is said to be a β-amplitude-encoding of
a vector u ∈ Rn with non-negative entries, if

⟨0|CV|0⟩C|i⟩A|0⟩B =

√
ui
β
|i⟩A|ψi⟩B

for all i ∈ [n].

Then, as shown in Algorithm 4, we can construct a quantum multi-Gibbs sampler for a vector u if an
amplitude-encoding of the vector u is given. To complete the proof of Theorem 4.2, we only have to
construct an amplitude-encoding of Az (see Appendix D.2 for details).

Algorithm 4 Quantum Multi-Gibbs Sampling implementing OGibbs
u (k, ϵG)

Input: Sample count k, a β-amplitude-encoding V of vector u ∈ Rn, polynomial P2β ∈ R[x] that
satisfies Lemma 4.1 with parameter ϵP = kϵ2

G/300n.
Output: k independent samples i1, i2, . . . , ik.

1: Obtain Oũ : |i⟩|0⟩ 7→ |i⟩|ũi⟩ using Õ(β) queries to V, where ui ≤ ũi ≤ ui + 1, by consistent
quantum amplitude estimation (Theorem C.3).

2: Find the k largest ũi’s by quantum k-maximum finding (Theorem D.3) and let S be the set of
their indexes. This can be done with Õ(

√
nk) queries to Oũ.

3: Compute ũ∗ = min
i∈S

ũi, and W = (n− k) exp(ũ∗) + ∑
i∈S

exp(ũi).

4: for ℓ = 1, . . . , k do
5: Prepare the quantum state

|uguess⟩ = ∑
i∈S

√
exp(ũi)

W
|i⟩+ ∑

i/∈S

√
exp(ũ∗)

W
|i⟩.

6: Obtain Uu = (V†
CAB ⊗ ID)(VDAB ⊗ IC) being a block-encoding of diag(u)/β. Similarly,

obtain Umax
ũ being a block-encoding of diag(max{ũ, ũ∗})/2β.

7: Obtain U− being a block-encoding of diag(u−max{ũ, ũ∗})/4β by the LCU (Linear-
Combination-of-Unitaries) technique (Theorem D.6), using O(1) queries to Uu and Umax

ũ .

8: Obtain Uexp being a block-encoding of P2β(diag(u−max{ũ, ũ∗})/4β) by the QSVT tech-
nique (Theorem D.7), using O(β log(ϵ−1

P )) queries to U−.
9: Post-select |ũpost⟩ = ⟨0|⊗aUexp|uguess⟩|0⟩⊗a by quantum amplitude amplification (Theo-

rem D.8), and obtain |ũGibbs⟩ = |ũpost⟩/∥|ũpost⟩∥. (Suppose Uexp has a ancilla qubits.)

10: Measure |ũGibbs⟩ in the computational basis and let iℓ ∈ [n] be the outcome.
11: end for
12: Return i1, i2, . . . , ik.

D.1 Useful Theorems

Theorem D.2 (Quantum state preparation, [23, 32]). There is a data structure implemented on QRAM
maintaining an array a1, a2, . . . , aℓ of positive numbers that supports the following operations.

• Initialization: For any value c, set ai ← c for all i ∈ [ℓ].

• Assignment: For any index i and value c, set ai ← c.
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• State Preparation: Prepare a quantum state

|a⟩ = ∑
i∈[ℓ]

√
ai
∥a∥1

|i⟩.

Each operation costs polylog(ℓ) time.

Theorem D.3 (Quantum k-maximum finding, Theorem 6 of Dürr et al. [19]). Given k ∈ [n] and
quantum oracle Ou for an array u1, u2, . . . , un, i.e., for every i ∈ [n],

Ou|i⟩|0⟩ = |i⟩|ui⟩,

there is a quantum algorithm that, with probability ≥ 0.99, finds a set S ⊆ [n] of cardinality |S| = k
such that ui ≥ uj for every i ∈ S and j /∈ S, using O

(√
nk
)

queries to Ou.

We now recall the definition of block-encoding, a crucial concept in quantum singular value transfor-
mation [20], which is used in line 9 to 12 in Algorithm 4.
Definition D.4 (Block-encoding). Suppose A is a linear operator on b qubits, α, ϵ ≥ 0 and a is a
positive integer. A (b + a)-qubit unitary operator U is said to be an (α, ϵ)-block-encoding of A, if∥∥α⟨0|⊗aU|0⟩⊗a − A

∥∥
op ≤ ϵ.

Definition D.5 (State Preparation Pair, Definition 28 of Gilyén et al. [20]). Let y ∈ Rn be a vector,
specially in this context the number of coordinates starts from 0. Suppose ∥y∥1 ≤ β. Let ϵ be a
positive real. We call a pair of unitaries (PL, PR) acting on b qubits a (β, ϵ)-state-preparation pair for
y if

PL|0⟩⊗b =
2b−1

∑
j=0

cj|j⟩,

PR|0⟩⊗b =
2b−1

∑
j=0

dj|j⟩,

such that:
m−1

∑
j=0

∣∣∣βc∗j dj − yj

∣∣∣ ≤ ϵ

and for j ∈ [2b], j ≥ m, we require c∗j dj = 0.

We now state a theorem about linear combination of unitary operators, introduced by Berry et al.
[5] and Childs and Wiebe [15]. The following form is from Gilyén et al. [20]. Again we restrict
ourselves to the case of real linear combinations.
Theorem D.6 (Linear Combination of Unitaries, Lemma 29 of Gilyén et al. [20]). Let ϵ be a
positive real number and y ∈ Rn be a vector as in Definition D.5 with (β, ϵ1) state preparation
pair (PL, PR). Let

{
Aj
}m−1

j=0 be a set of linear operators on s qubits, and forall j, we have Uj as an

(α, ϵ2)-block-encoding of Aj acting on a + s qubits. Let

W =

(
m−1

∑
j=0
|j⟩⟨j| ⊗Uj

)
+

(
I −

m−1

∑
j=0
|j⟩⟨j|

)
⊗ Ia+s,

Then we can implement a (αβ, αϵ1 + αβϵ2)-block-encoding of A = ∑m−1
j=0 yj Aj, with one query

from P†
L , PR, and W.

Theorem D.7 (Eigenvalue transformation, Theorem 31 of Gilyén et al. [20]). Suppose U is an
(α, ϵ)-block-encoding of an Hermitian operator A. For every δ > 0 and real polynomial P ∈ R[x]
of degree d such that |P(x)| ≤ 1/2 for all x ∈ [−1, 1], there is an efficiently computable quantum
circuit Ũ, which is a

(
1, 4d
√

ϵ/α + δ
)
-block-encoding of P(A/α), using O(d) queries to U.
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Finally, for quantum amplitude amplification without knowing the exact value of the amplitude, we
need the following theorem:
Theorem D.8 (Quantum amplitude amplification, Theorem 3 of Brassard et al. [9]). Suppose U is a
unitary operator such that

U|0⟩A|0⟩B =
√

p|0⟩A|ϕ0⟩B +
√

1− p|1⟩A|ϕ1⟩B.

where p ∈ [0, 1] is unknown and |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. There is a
quantum algorithm that outputs |0⟩A|ϕ0⟩B with probability ≥ 0.99, using O

(
1/
√

p
)

queries to U.

D.2 Main Proof

We generalize Theorem 4.2 as follows.
Theorem D.9. Algorithm 4 will produce k independent and identical distributed samples from a
distribution that is ϵG-close to OGibbs

u in total variation distance, in quantum time Õ
(

β
√

nk
)

.

It is immediate to show Theorem 4.2 from Theorem D.9 by constructing a β-amplitude-encoding V
of Az. To see this, let u = Az, then ui = (Az)i ∈ [0, β]. By Theorem D.2, we can implement a
unitary operator UQRAM

z such that

UQRAM
z : |0⟩C|0⟩B 7→ |0⟩C ∑

j∈[n]

√
zj

β
|j⟩B + |1⟩C|ϕ⟩B.

Using two queries to OA, we can construct a unitary operator O′A such that

O′A : |0⟩E|i⟩A|j⟩B 7→
(√

Ai,j|0⟩E +
√

1− Ai,j|1⟩E
)
|i⟩A|j⟩B.

Let
V =

(
|0⟩C⟨0| ⊗O′A + |1⟩C⟨1| ⊗ IEAB

)(
UQRAM

z ⊗ IEA

)
. (11)

It can be verified (see Proposition D.10) that

⟨0|C⟨0|EV|0⟩C|0⟩E|i⟩A|0⟩B = ∑
j∈[n]

√
Ai,jzj

β
|i⟩A|j⟩B,

and thus ⟨0|C⟨0|EV|0⟩C|0⟩E|i⟩A|0⟩B =
√

ui/β|i⟩A|ψi⟩B for some |ψi⟩. Therefore, V is a β-
amplitude-encoding of Az.

Now, we will show Theorem D.9 in the following.

Proof of Theorem D.9. Now we start to describe our algorithm. By our consistent quantum amplitude
estimation (Theorem C.3), we choose an O(r)-bit random string s, then we can obtain a quantum
algorithm Oû such that, with probability 1−O(exp(−r)), for every i ∈ [n], it computes f ∗(s, ui/β)

with Õ
(
δ−1) · poly(r) queries to V, where f ∗(s, p) is a function that only depends on s and p, and

it holds that
| f ∗(s, p)− p| ≤ δ

for every p ∈ [−1, 1]. Here, r, δ are parameters to be determined. Note that
ui
β

= ∥⟨0|CV|0⟩C|i⟩A|0⟩B∥2,

so when applying consistent quantum amplitude estimation, we just use a controlled-XOR gate
conditioned on the index and with A the target system, before every query to V.

By quantum k-maximum finding algorithm (Theorem D.3), we can find a set S ⊆ [n] with
|S| = k such that f ∗(s, ui/β) ≥ f ∗

(
s, uj/β

)
for every i ∈ S and j /∈ S with probability

0.99 − O
(√

nk exp(−r)
)

, using O
(√

nk
)

queries to Oû. To obtain a constant probability, it

is sufficient to choose r = Θ(log(n)).

23



For each i ∈ S, again applying our consistent quantum amplitude estimation (Theorem C.3), we can
obtain the value of f ∗(s, ui/β) with probability 1−O(exp(−r)), using Õ

(
δ−1) · poly(r) queries

to V; then we set

ûi = β f ∗
(

s,
ui
β

)
for all i ∈ S, with success probability 1−O(k exp(−r)) and using Õ

(
kδ−1) · poly(r) queries to V

in total. It can be seen that |ûi − ui| ≤ βδ for every i ∈ S.

Let ũi = ûi + βδ, and then we store ũi for all i ∈ S in the data structure as in Theorem D.2 (which
costs O(k) QRAM operations). Then, we calculate

W = (n− k) exp(ũ∗) + ∑
i∈S

exp(ũi)

by classical computation in Õ(k) time, where

ũ∗ = min
i∈S

ũi.

By Theorem D.2, we can prepare the quantum state

|uguess⟩ = ∑
i∈S

√
exp(ũi)

W
|i⟩+ ∑

i/∈S

√
exp(ũ∗)

W
|i⟩

in Õ(1) time.

Now we introduce another system D, and then let

Uu = (V†
CAB ⊗ ID)(VDAB ⊗ IC).

It can be shown (see Proposition D.11) that Uu is a (1, 0)-block-encoding of diag(u)/β. By QRAM
access to ũi, we can implement a unitary operator

Vũ : |i⟩A|0⟩B 7→ |i⟩A

(√
max{ũi, ũ∗}

2β
|0⟩B +

√
1− max{ũi, ũ∗}

2β
|1⟩B

)

in Õ(1) time by noting that max{ũi, ũ∗} = ũi if i ∈ S and ũ∗ otherwise. We introduce one-qubit
system C, and let

Umax
ũ =

(
V†

ũ ⊗ IC

)
(SWAPBC ⊗ IA)(Vũ ⊗ IC).

It can be shown that Umax
ũ is a (1, 0)-block-encoding of diag(max{ũ, ũ∗})/2β. Applying the

LCU technique (Theorem D.6), we can obtain a unitary operator U− that is a (1, 0)-block-encoding
of diag(u−max{ũ, ũ∗})/4β, using O(1) queries to Uu and Umax

ũ . By the QSVT technique
(Theorem D.7 and Lemma 4.1), we can construct a unitary operator Uexp that is a (1, 0)-block-
encoding of P2β(diag(u−max{ũ, ũ∗})/4β), using O(β log(ϵ−1

P )) queries to U−, where∣∣∣∣P2β(x)− 1
4

exp(2βx)
∣∣∣∣ ≤ ϵP

for every x ∈ [−1, 0] and ϵP ∈ (0, 1/2) is to be determined. Suppose Uexp has an a-qubit ancilla
system, and let |ũpost⟩ = ⟨0|⊗aUexp|uguess⟩|0⟩⊗a. Note that

|ũpost⟩ = ∑
i∈S

P2β

(
ui − ũi

4β

)√
exp(ũi)

W
|i⟩+ ∑

i/∈S
P2β

(
ui − ũ∗

4β

)√
exp(ũ∗)

W
|i⟩.

It can be shown (Proposition D.12) that ∥|ũpost⟩∥2 ≥ Θ(k/n); thus by quantum amplitude amplifi-
cation (Theorem D.8), we can obtain

|ũGibbs⟩ =
|ũpost⟩
∥|ũpost⟩∥
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using O(
√

n/k) queries to Uexp. By measuring |ũGibbs⟩ on the computational basis, we return the
outcome as a sample from the distribution ũGibbs; it can be shown (Proposition D.13) that the total
variation distance between ũGibbs and OGibbs

u is bounded by

dTV

(
ũGibbs,OGibbs

u

)
≤
√

88nϵP
k exp(−2βδ)

.

By taking δ = 1/2β and ϵP = kϵ2
G/300n, we can produce one sample from ũGibbs, using

Õ(β
√

n/k) queries to Uu and Umax
ũ , with Õ(β

√
nk)-time precomputation.

Finally, by applying k times the above procedure (with the precomputation processed only once), we
can produce k independent and identically distributed samples from ũGibbs that is ϵGibbs-close to the
Gibbs distribution OGibbs

u , with total time complexity

Õ
(

β
√

nk
)
+ k · Õ

(
β

√
n
k

)
= Õ

(
β
√

nk
)

.

D.3 Technical Lemmas

Proposition D.10. Let V defined by Equation (11), we have

⟨0|C⟨0|DV|0⟩C|0⟩D|i⟩A|0⟩B = ∑
j∈[n]

√
Ai,jzj

β
|i⟩A|j⟩B.

Proof.

V|0⟩C|0⟩D|i⟩A|0⟩B

=
(
|0⟩C⟨0| ⊗O′A + |1⟩C⟨1| ⊗ IAB

)|0⟩C|0⟩D|i⟩A ∑
j∈[n]

√
zj

β
|j⟩B + |1⟩C|0⟩D|i⟩A|ϕ⟩B


=|0⟩C ∑

j∈[n]

(√
Ai,j|0⟩D +

√
1− Ai,j|1⟩D

)√ zj

β
|i⟩A|j⟩B + |1⟩C|0⟩D|i⟩A|ϕ⟩B

=|0⟩C|0⟩D ∑
j∈[n]

√
Ai,jzj

β
|i⟩A|j⟩B + |0⟩C|1⟩D ∑

j∈[n]

√(
1− Ai,j

)
zj

β
|i⟩A|j⟩B + |1⟩C|0⟩D|i⟩A|ϕ⟩B.

Proposition D.11. In the proof of Theorem D.9, Uu is a (1, 0)-block-encoding of diag(u)/β.

Proof. To see this, for every i, j ∈ [n],

⟨0|C⟨0|D⟨j|A⟨0|BUu|0⟩C|0⟩D|i⟩A|0⟩B
=⟨0|C⟨0|D⟨j|A⟨0|B(V†

CAB ⊗ ID)(VDAB ⊗ IC)|0⟩C|0⟩D|i⟩A|0⟩B
=
(√

uj/β⟨0|C⟨0|D⟨j|A⟨ψj|B + ⟨1|C⟨0|D⟨gj|AB

)(√
ui/β|0⟩C|0⟩D|i⟩A|ψi⟩B + |0⟩C|1⟩D|gi⟩AB

)
= ⟨j|i⟩A

ui
β

.

Proposition D.12. In the proof of Theorem D.9, if δ = 1/2β, E = ∑j∈[n] exp
(
uj
)
, and ϵP =

kϵ2
G/300n, then

Θ
(

k
n

)
≤ E

16W
− 2ϵP ≤ ∥|upost⟩∥2 ≤ E

16W
+ 3ϵP.
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Proof. We first give an upper bound for W in terms of ui and ũ∗. Notice that ũi ≤ ui + 2βδ for all
i ∈ S, we have:

W = (n− k) exp(ũ∗) + ∑
i∈S

exp(ũi) ≤ exp(2βδ)

(
(n− k) exp(u∗) + ∑

i∈S
exp(ui)

)
.

Note that

(n− k) exp(u∗) + ∑
i∈S

exp(ui)

∑
i∈[n]

exp(ui)
≤ n− k

k
+ 1 =

n
k

,

then we have

E
W
≥ ∑

i∈[n]

exp(ui)

exp(2βδ)((n− k) exp(u∗) + ∑i∈S exp(ui))
≥ k

n
exp(−2βδ). (12)

With this, noting that (a− b)2 ≥ a2 − 2ab for any real a and b, we have

∥|upost⟩∥2 = ∑
i∈S

(
P2β

(
ui − ũi

4β

))2 exp(ũi)

W
+ ∑

i/∈S

(
P2β

(
ui − ũ∗

4β

))2 exp(ũ∗)
W

≥ ∑
i∈S

((
1
4

exp
(

ui − ũi
2

))2
− 2ϵP

)
exp(ũi)

W

+ ∑
i/∈S

((
1
4

exp
(

ui − ũ∗

2

))2
− 2ϵP

)
exp(ũ∗)

W

=
1

16

(
∑
i∈S

exp(ui − ũi)
exp(ũi)

W
+ ∑

i/∈S
exp(ui − ũ∗)

exp(ũ∗)
W

)

− 2ϵP

(
∑
i∈S

exp(ũi)

W
+ ∑

i/∈S

exp(ũ∗)
W

)

≥ E
16W

− 2ϵP

≥ Θ
(

k
n

)
.

On the other hand, a similar argument using the inequality (a + b)2 ≤ a2 + 3ab for positive real
a ≥ b gives

∥|upost⟩∥2 ≤ E
16W

+ 3ϵP.

These yield the proof.

Proposition D.13. In the proof of Theorem D.9, the total variation distance between the two
distributions ũGibbs and OGibbs

u is bounded by

dTV

(
ũGibbs,OGibbs

u

)
≤
√

88nϵP
k exp(−2βδ)

.

Proof. Define E = ∑
j∈[n]

exp
(
uj
)
. Let

|uGibbs⟩ = ∑
i∈[n]

√
exp(ui)

E
∣∣i〉

26



be the intended quantum state with amplitudes the same as the Gibbs distribution OGibbs
u . The inner

product between |ũpost⟩ and |uGibbs⟩ can be bounded by:

⟨ũpost|uGibbs⟩ = ∑
i∈S

P2β

(
ui − ũi

4β

)√
exp(ũi)

W

√
exp(ui)

E

+ ∑
i/∈S

P2β

(
ui − ũ∗

4β

)√
exp(ũ∗)

W

√
exp(ui)

E

≥ ∑
i∈S

(
1
4

exp
(

ui − ũi
2

)
− ϵP

)√
exp(ũi)

W

√
exp(ui)

E

+ ∑
i/∈S

(
1
4

exp
(

ui − ũi
2

)
− ϵP

)√
exp(ũ∗)

W

√
exp(ui)

E

≥ 1
4
√

WE

(
∑

i∈[n]
exp(ui)

)
− ϵP.

The last step is by Cauchy’s inequality. By Proposition D.12 and Equation (12), we have

|⟨ũGibbs|uGibbs⟩|2 =
|⟨ũpost|uGibbs⟩|2

∥|ũpost⟩∥2 ≥ E

16W ∥|ũpost⟩∥2 −
ϵP

2 ∥|ũpost⟩∥2

≥ E

16W
(

E
16W

+ 3ϵP

) − ϵP

2 ∥|ũpost⟩∥2

≥ 1− 48ϵP
E/W

− 8ϵP
E/W − 32ϵP

≥ 1− 48nϵP
k exp(−2βδ)

− 8nϵP
k exp(−2βδ)− 32nϵP

≥ 1− 88nϵP
k exp(−2βδ)

.

Finally, we have

dTV

(
ũGibbs,OGibbs

u

)
≤ 1

2
tr
(∣∣∣|ũGibbs⟩⟨ũGibbs| − |uGibbs⟩⟨uGibbs|

∣∣∣)
=

√
1− |⟨ũGibbs|uGibbs⟩|2

≤
√

88nϵP
k exp(−2βδ)

,

which is bounded by ϵG by the choice of ϵP.
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