
Contrastive Retrospection: honing in on critical steps
for rapid learning and generalization in RL

Chen Sun∗

Mila, Université de Montréal
sunchipsster@gmail.com

Wannan Yang
New York University

winnieyangwn96@gmail.com

Thomas Jiralerspong
Mila, Université de Montréal
thomas.jiralerspong

@mila.quebec

Dane Malenfant
McGill University

dane.malenfant@mila.quebec

Benjamin Alsbury-Nealy
University of Toronto, SilicoLabs Incorporated
benjamin.alsbury.nealy@silicolabs.ca

Yoshua Bengio
Mila, Université de Montréal, CIFAR
yoshua.bengio@mila.quebec

Blake Richards*

Mila, McGill University
Learning in Machines & Brains, CIFAR

blake.richards@mila.quebec

Abstract

In real life, success is often contingent upon multiple critical steps that are distant in
time from each other and from the final reward. These critical steps are challenging
to identify with traditional reinforcement learning (RL) methods that rely on the
Bellman equation for credit assignment. Here, we present a new RL algorithm that
uses offline contrastive learning to hone in on these critical steps. This algorithm,
which we call Contrastive Retrospection (ConSpec), can be added to any existing
RL algorithm. ConSpec learns a set of prototypes for the critical steps in a task
by a novel contrastive loss and delivers an intrinsic reward when the current state
matches one of the prototypes. The prototypes in ConSpec provide two key benefits
for credit assignment: (i) They enable rapid identification of all the critical steps.
(ii) They do so in a readily interpretable manner, enabling out-of-distribution
generalization when sensory features are altered. Distinct from other contemporary
RL approaches to credit assignment, ConSpec takes advantage of the fact that it is
easier to retrospectively identify the small set of steps that success is contingent
upon (and ignoring other states) than it is to prospectively predict reward at every
taken step. ConSpec greatly improves learning in a diverse set of RL tasks. The
code is available at the link: https://github.com/sunchipsster1/ConSpec.

1 Introduction

In real life, succeeding in a given task often involves multiple critical steps. For example, consider
the steps necessary for getting a paper accepted at a conference. One must (i) generate a good idea,
(ii) conduct mathematical analyses or experiments, (iii) write a paper, and finally, (iv) respond to
reviewers in a satisfactory manner. These are the critical steps necessary for success and skipping
any of these steps will lead to failure. Humans are able to learn these specific critical steps even
though they are interspersed among many other tasks in daily life that are not directly related to the
goal. Humans are also able to generalize knowledge about these steps to a myriad of new projects
throughout an academic career that can span different topics, and sometimes, even different fields.

∗Co-corresponding authors

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/sunchipsster1/ConSpec

Though understudied in RL, tasks involving multiple contingencies separated by long periods of time
capture an important capability of natural intelligence and a ubiquitous aspect of real life.

But even though such situations are common in real life, they are highly nontrivial for most RL
algorithms to handle. One problem is that the traditional approach for credit assignment in RL,
using the Bellman equation (58; 7), will take a lot of time to propagate value estimates back to the
earlier critical steps if the length of time between critical steps is sufficiently long (48; 46). Even
with the use of strategies to span a temporal gap (e.g. TD(λ)), Bellman back-ups do not scale to
really long-term credit problems. In light of this, some promising contemporary RL algorithms have
proposed mechanisms beyond Bellman backup to alleviate the problem of long term credit assignment
(3; 28; 48; 12; 10). But as we show (Figs. 4 and A.16) even these contemporary RL methods are
often insufficient to solve simple instantiations of tasks with multiple contingencies, indicating that
there are extra difficulties for long-term credit assignment when multiple contingencies are present.

As a remedy to this problem, we introduce Contrastive Retrospection (ConSpec), which can be added
to any backbone RL algorithm. Distinct from other approaches to credit assignment, ConSpec takes
advantage of the assumption exploited by humans that success is often contingent upon a small set
of steps: it is then easier to retrospectively identify that small set of steps than it is to prospectively
predict reward at every step taken in the environment. ConSpec learns offline from a memory buffer
with a novel contrastive loss that identifies invariances amongst successful episodes, i.e., the family
of states corresponding to a successfully achieved critical step. To do this, ConSpec learns a state
encoder and a series of prototypes2 that represent critical steps. When the encoded representation of
a state is well aligned with one of the prototypes, the RL agent receives an intrinsic reward (52; 47),
thereby steering the policy towards achieving the critical steps.

ConSpec is descended from a classical idea: the identification of “bottleneck states”, i.e. states that
must be visited to obtain reward, and their use as sub-goals (38; 41; 50; 59; 5). However, critical
steps in non-toy tasks rarely correspond to specific states of the environment. Instead, there can be
a large, potentially even infinite, set of states that correspond to taking a critical step in a task. For
example, what are the “states” associated with “conducting an experiment” in research? They cannot
be enumerated but a function that detects them can be learned. Ultimately, we thus need RL agents
that can learn how to identify critical steps without assuming that they correspond to a specific state
or easily enumerable set of states. ConSpec, by harnessing a novel contrastive loss, scalably solves
this. Our contributions in this paper are as follows:

• We introduce a scalable algorithm (ConSpec) for rapidly honing in on critical steps. It uses a novel
contrastive loss to learn prototypes that identify invariances amongst successful episodes.

• We show that ConSpec greatly improves long-term credit assignment in a wide variety of RL tasks
including grid-world, Atari, and 3D environments, as well as tasks where we had not anticipated
improvements, including Montezuma’s Revenge and continuous control tasks.

• We demonstrate that the invariant nature of the learned prototypes for the critical steps enable
zero-shot out-of-distribution generalization in RL.

2 Related work

ConSpec is a relatively simple design, but it succeeds because it centralizes several key intuitions
shared with other important works. ConSpec shares with bottleneck states (38), hierarchical RL
(HRL), and options discovery (59; 5; 41; 50) the idea that learning to hone in on a sparse number of
critical steps may be beneficial. But, unlike bottleneck state solutions, ConSpec does not assume that
critical steps correspond to individual states (or small, finite sets of states) of the environment. In con-
trast, ConSpec identifies critical steps in complex, high-dimensional tasks, such as 3D environments.
As well, in HRL and options discovery, how to discover appropriate sub-goals at scale remains an
unsolved problem. Critical steps discovered by ConSpec could theoretically be candidate sub-goals.

ConSpec shares with Return Decomposition for Delayed Rewards (RUDDER) (3; 44; 62), Temporal
Value Transport (TVT) (28), Synthetic Returns (SynthRs) (48), and Decision Transformers (DTs)
(12) the use of non-Bellman-based long-term credit assignment. ConSpec shares with slot-like

2We use the word “prototype” here in the psychological sense, i.e. an idealized version of a concept, which
in our case, is modelled with a learned vector.

2

attention-based algorithms such as Recurrent Independent Mechanisms (RIMs) and its derivatives
(23; 24) the use of discrete modularization of features. But, unlike all these other contemporary
algorithm, ConSpec aims to directly focus on identifying critical steps, a less burdensome task than
the typical modelling of value, reward, or actions taken for all encountered states.

ConSpec was inspired, in part, by the contrastive learning literature in computer vision (26; 13; 61; 27).
Specifically, it was inspired by the principle that transforming a task into a classification problem and
using well-chosen positive and negative examples can be a very powerful means of learning invariant
and generalizable representations. A similar insight on the power of classification led to a recent
proposal for learning affordances (32), which are arguably components of the environment that are
required for critical steps. As such, ConSpec shares a deep connection with this work. Along similar
lines, (56; 2; 54; 19; 21; 18; 36; 1) have begun to explore contrastive systems and binary classifiers
to do imitation learning and RL. With these works, ConSpec shares the principle that transforming
the RL problem into a classification task is beneficial. But these works typically use the contrastive
approach to learn whole policies or value functions. In distinction to this, ConSpec uses contrastive
learning for the purpose of learning prototype representations for recognizing critical steps in order
to shape the reward function, thereby enabling rapid learning and generalization.

2.1 Neuroscience inspiration

Our design of ConSpec was ultimately inspired at a high level by theories from neuroscience. For
example, it shares with episodic control and related algorithms (37; 35; 8; 45; 40; 51; 43) the principle
that a memory bank can be exploited for fast learning. But unlike episodic control, ConSpec exploits
memory not for estimating a surrogate value function, but rather, for learning prototypes that hone in
on a small number of discrete critical steps. In-line with this, ConSpec takes inspiration from the
neuroscience literature on the hippocampus, which suggests that the brain, too, endeavours to encode
and organize episodic experience around discrete critical steps (57; 63; 64; 20). Interestingly, recent
studies suggest that honing in on discrete critical states for success may in fact be key to how the brain
engages in reinforcement learning altogether (29). Contemporary RL is predicated on the Bellman
equation and the idea of reward prediction. But recent evidence suggest that dopamine circuits in the
brain, like ConSpec, focuses retrospectively on causes of rewards (29), i.e. critical steps.

3 Description and intuition for ConSpec

Why the use of contrastive learning in ConSpec? Humans are very good, and often very fast, at
recognizing when their success is contingent upon multiple past steps. Even children can identify
contingencies in a task after only a handful of experiences (55; 22). Intuitively, humans achieve this
by engaging in retrospection to examine their past and determine which steps along the way were
necessary for success. Such retrospection often seems to involve a comparison: we seem to be good
at identifying the differences between situations that led to success and those that led to failure, and
then we hone in on these differences. We reasoned that it would be possible for RL agents to learn to
identify critical steps—and moreover, to do so robustly—if a system were equipped with a similar,
contrastive, capability to take advantage of memory to sort through the events that distinguished
successful versus failed episodes. This paper’s principal contribution is the introduction of an add-on
architecture and loss for retrospection of this sort (Fig. 1).

At its core, ConSpec is a mechanism by which a contrastive loss enables rapid learning of a set of
prototypes for recognizing critical steps. Below we describe how ConSpec works.

3.1 A set of invariant prototypes for critical steps

To recognize when a new observation corresponds to a critical step, we store a set of H prototypes
in a learned representation space. Each prototype, hi is a learned vector that is compared to a
non-linear projection of the latent representation of currently encoded features in the environment,
gθ(zt) (with projection parameters θ). Thus, if we have current observation Ot, encoded as a latent
state zt = fW (Ot) (with encoder parameters W), we compare gθ(zt) to each of the prototypes, hi,
in order to assess whether the current observation corresponds to a critical step or not.

At first glance, one may think that a large number of prototypes is needed, since there are a massive
number of states corresponding to critical steps in non-toy tasks. But, by using cosine similarity

3

between prototype hi and encoder output zt, cos (hi, gθ(zt)), ConSpec can recognize a large, poten-
tially infinite set of states as being critical steps, even with a small number of prototypes, because the
mapping from Ot to cos (hi, gθ(zt)) is a many-to-one mapping, akin to a neural net classifier.

In what follows, we used H ≤ 20 for all our tasks, even the ones in 3D environments and with
continuous control, which have a lot of state-level variation. Of course, in other settings more
prototypes may need to be used. In general, one can specify more prototypes than necessary, which
does not hurt learning (Fig. A.3 for an extreme example).

3.2 A memory system for storing successes and failures

ConSpec maintains three memory buffers: one for the current mini-batch being trained on (B; with a
capacity of MB), one for successful episodes (S; with a capacity of MS), and one for failure episodes
(F ; with a capacity of MF). Each episode is of length T time steps. As we show, these memory
buffers need not be very large for ConSpec to work; we find that 16 slots in memory is enough,
even for 3D environments. Each buffer stores raw observations, Ot, encountered by the agent in the
environment. When a new mini-batch of observations is loaded into B for training, the episodes are
categorized into successes and failures using the given criteria for the task. We then fill S and F with
observations from those categorized episodes in a first-in-first-out (FIFO) manner, where episodes
stored from previous batches are overwritten as new trajectories come in.

3.3 A contrastive loss to learn prototypes

To learn our invariant prototypes of critical steps (and the encoding of the observation) we employ a
contrastive loss that differentiates successes from failures. The contrastive loss uses the observations
stored in S and F to shape the prototypes such that they capture invariant features shared by a
spectrum of observations in successful episodes. The functional form of this loss is:

LConSpec =

H∑
i=1

1

MS

∑
k∈S

|1− max
t∈{1...T}

sikt|+
H∑
i=1

1

MF

∑
k∈F

| max
t∈{1...T}

sikt|+

α · 1
H

∑
k∈S

D({sik}1≤i≤H)

(1)

where sikt = cos (hi, gθ(zkt)) is the cosine similarity of prototype hi and the latent representation
for the observation from timestep t found in episode k, sik is the vector of sikt elements concatenated
along t and softmaxed over t, and D(·) is a function that measures the diversity in the matches to the
prototypes (see Appendix section A.5 for functions D(·) we used in this work). Note the purpose of
the softmax was to sparsify the sequence of cosine scores for each trajectory over the time-steps t.
Our goal was to compare pairs of prototypes and force their peak cosine scores to be different in time.
The softmax was one way to do this, but any equivalent method would do equally well.

To elaborate on this loss, for each prototype hi and each episode’s projection at time step t, gθ(zkt),
the cosine similarity (a normalized dot product) is calculated between the prototype’s vector and the
latent projection vectors to yield a time-series of cosine similarity scores. The maximum similarity
score across time within each episode is then calculated. The maximum similarity score for each
successful episode is pushed up (1st term of the loss) and for each failed episode, it is pushed down
(2nd term). The 3rd term of the loss encourages the different prototypes to be distinct from one
another. The ConSpec loss is added to any RL losses during training (Algorithm 1 pseudocode).
Below we show that this loss leads to prototypes that hone in on distinct critical steps (Fig. 4b).

There is a potential nonstationarity in the policy that could cause instability in the prototypes
discovered, as the policy improves and previous successes become considered failures. To prevent
this, we froze the set of memories that defined each prototype upon reaching the criterion defined
in Appendix A.5. In practice, surprisingly, ConSpec does not suffer from learning instability in the
multikey-to-door task even if prototype freezing is not done (see Fig. A.12) but it is imaginable that
other tasks may still suffer so the freezing mechanism was kept.

3.4 Generating intrinsic rewards based on retrospection

Thus far, the described model learns a set of prototypes for critical steps along with an encoder.
This system must still be connected to an RL agent that can learn a policy (πϕ, parameterized by

4

Figure 1: ConSpec is a mod-
ule that learns to hone in on
critical state. ConSpec trains
its prototypes by comparing
successful v. failed episodes
via a contrastive loss, and
learning incentivizes pushing
cosine similarity scores of suc-
cesses to 1, and failures to 0.
It then uses the match to these
prototypes to output intrinsic
rewards to the RL agent.

ϕ). This could proceed in a number of different ways. Here, we chose the reward shaping approach
(52; 47; 42), wherein we add additional intrinsic rewards r̃kt to the rewards from the environment, rkt,
though other strategies are possible. One simple approach is to define the intrinsic reward in episode
k at time-step t, r̃kt, as the maximum prototype score, ŝikt, across a moving window of H time-steps
(H = 7 in our experiments, with a threshold of 0.6 applied to ignore small score fluctuations), and
scaled to be in the correct range of the task’s expected nonzero reward per step Rtask:

r̃kt = λ ·Rtask

H∑
i=1

ŝikt · 1ŝikt=max{ŝik,t−3,...,ŝik,t+3} (2)

However, a concern with any reward shaping is that it can alter the underlying optimal policy (47; 42).
Therefore, we experimented with another scheme for defining intrinsic rewards:

r̃kt = λ ·Rtask

H∑
i=1

(γ · ŝik,t − ŝik,t−1) (3)

where λ is a proportionality constant and γ is the discount in RL backbone. This formula satisfies
the necessary and sufficient criterion from (42) for policy invariance and provably does not alter the
optimal policy of the RL agent. In practice, we find that both forms of intrinsic reward work well (Fig.
4 and A.11) so unless otherwise noted, results in this paper used the simpler implementation, Eqn. 2.

3.5 Inductive biases in ConSpec that enable rapid credit assignment

What is the intuition for why ConSpec’s inductive biases make it well suited to learn when success is
contingent upon multiple critical steps? Learning a full model of the world and its transitions and
values is very difficult, especially for a novice agent. Most other RL approaches can be characterized,
at a high level, as learning to predict rewards or probability of success given sequences of observations
in memory. In contrast, ConSpec solves the reverse problem of retrospectively predicting the critical
steps given success. This is a much easier problem, because in many situations, critical steps are
independent of one another when conditioned on success. As such, when we consider the joint
distribution between success and all of the critical steps, we can learn it retrospectively by considering
the conditional probability given success for each potential critical step individually. In contrast,
if we learn the joint distribution prospectively, then we must learn the conditional probability of
success given all of the potential critical steps in tandem, which is a much more complicated inference
problem. To see a concrete example, conditioned on the successful acceptance of a paper, one can be
sure that all the critical steps had each individually been achieved (an idea conceived, experiments
run, paper written and reviewer concerns addressed). Given that all of the prototypes are learned in
parallel, this means that the search for each of these critical steps do not depend on one another when
taking this retrospective approach. This is a large gain over any algorithm attempting to learn the
function of how combinations of steps could predict reward.

4 Empirical results

We tested ConSpec on a variety of RL tasks: grid worlds, continuous control, video games, and 3-D
environments. Training was done on an RTX 8000 GPU cluster and hyperparameter choices are de-
tailed in the Appendix A.5. We show how ConSpec rapidly hones in on critical steps, helping alleviate
two difficult RL problems: long term credit assignment, and out-of-distribution generalization.

5

Algorithm 1 Jointly training ConSpec with an RL agent
Given: Current parameters (W , θ, ϕ, h1...H) and Inputs: memory buffers B, S, and F , number of
episodes in a mini-batch, B, and number of epochs to train for, E

1: for Epoch e = 1 . . . E do
2: Collect a new minibatch of B trajectories using πϕ and store them {(O1:T , a1:T , r1:T)} in B
3: Update the S and F memory banks based on B
4: Calculate latent representations: zkt ← f(Okt)
5: Calculate scores: sikt ← cos(hi, gθ(zkt))
6: Calculate intrinsic rewards, r̃kt and total rewards, rTotal

kt = rkt + r̃kt
7: Calculate RL loss, LRL, (per RL backbone) and LConSpec loss per equation 1
8: Update parameters via loss Ltotal = LRL + βLConSpec
9: end for

Orange-Tree Taska b

c

Search flat
object

Pick flat
 object

Waiting room Climb flat
 object

Pick orange

Example preferred state in 8 different episodes by prototype hi

Minibatches

R
ew

ar
d

0 400 800

0

10
ConSpec + PPO
PPO
SynthRs + PPO
CURL + PPO

Max reward
Figure 2: ConSpec learns invari-
ant representations. (a) 3D Orange-
Tree task design. (b) ConSpec effi-
ciently learns this task approaching
the maximum reward (=10), while
PPO, SynthRs, and CURL base-
lines found it difficult. (c) This pro-
totype learns to robustly detect the
retrieval of flat objects, invariant to
variations in object type and colour.

4.1 ConSpec learns prototypes for critical steps in 3D environments

We began with a series of experiments in a 3D virtual environment. This was to verify that Con-
Spec can identify critical steps in complex sensory environments, wherein critical steps do not
correspond to specific observable states (as bottleneck states do). To do this, we used SilicoLabs’3

Unity-based (31) game engine to create a 3-stage task that we call the "OrangeTree" task. In stage 1
of this task, the agent is placed in a room with two objects, one of them round or spiky (e.g. balls or
jacks), and one of them flat (e.g. boxes or tables) (Fig. 2a) and the agent can pick one of them up. In
stage 2, the agent is put in a waiting room where nothing happens. In stage 3, the agent is placed in
a new room with an orange tree. To obtain a reward, the agent must pick an orange, but to do this,
it must stand on a flat object (which it can do only if it had picked up a flat object in stage 1). So
in stage 1, the agent must learn the critical step of picking up a flat object. But, because there are a
variety of flat objects, there is no single bottleneck state to learn, but rather, a diverse set of states
sharing an invariant property (i.e. object flatness).

ConSpec was compared with a series of baselines. We first tested Proximal Policy Optimization
(PPO) (53; 33) on this task, which failed (Fig. 2b). One possibility for this is the challenge of
long-term credit assignment, which arises from the use of the waiting room in stage 2 of the task.
As such, we next tested an agent trained with Synthetic Returns (SynthRs) (48) atop PPO, a recent
reward shaping algorithm designed to solve long-term credit assignment problems. SynthRs works by
learning to predict rewards based on past memories and delivering an intrinsic reward whenever the
current state is predictive of reward. But SynthRs did not help solve the problem (Fig. 2b), showing
that the capacity to do long-term credit assignment is, by itself, not enough when success does not
depend on a single bottleneck state but rather a diverse set of states that correspond to a critical step.

Thus, we next considered more sophisticated representation learning for RL: Contrastive Unsu-
pervised Reinforcement Learning (CURL) (56), which outperforms prior pixel-based methods on
complex tasks. However, adding CURL to PPO, too, did not solve the task (Fig. 2b), likely because
CURL is not learning invariances for task success, but rather, invariances for image perturbations.

Finally, we examined the performance of ConSpec. An agent trained by PPO with additional intrinsic
rewards from a ConSpec module (per Algorithm 1) can indeed solve the OrangeTree task (Fig. 2b).
To further dissect the reasons for ConSpec’s abilities, we studied the invariances it learned. To do
this, we collected successful episodes and then identified the range of observations (images) that
maximally matched the prototypes during the episodes. Notably, one of the prototypes consistently

3https://www.silicolabs.ca/

6

https://www.silicolabs.ca/

OrangeTree & black objectsa b

d
Training Testing

Preferred state in 4 episodes by prototype hi

i

OrangeTree & different context

Training Testing

Preferred state in 4 episodes by prototype hjc

e f

Gradient steps

ConSpec + PPO
PPO
SynthRs + PPO

0
2
4
6
8
10

R
ew

ar
d

ConS
pec

 + PP
O

Vani
lla P

PO

Synt
hRs +

 PP
O 0 5 10 15

CURL + PPO

CURL+ PP
O

Max reward

0
2
4
6
8
10

Max reward

Figure 3: ConSpec’s invariant represen-
tations help OoD generalization. (a, c)
New OrangeTree tasks during Testing (a)
with black boxes/tables, or (c) in a differ-
ently coloured room. Previously trained
prototypes hone in on interpretable states
even in these new contingencies (b,d)
and are able to generalize (e) in zero-
shot with never-before seen black ob-
jects, and (f) in few-shot in a new en-
vironment, approaching the max reward.

had observations of picking up a flat object mapped to it. In other words, this prototype had discovered
an invariant feature of a critical step that was common to all successes but not failures, namely, the
step of having picked up a flat object (Fig. 2c). Moreover, this prototype learned to prefer flat
objects regardless of the type of object (i.e. box or table) and regardless of its colour. So, ConSpec’s
contrastive learning permitted the prototype to learn to recognize a critical step, namely picking up
flat objects, and to maintain invariance to irrelevant features of those objects such as shape and colour.

4.2 ConSpec generalizes to new contingencies in 3D environments

We next asked whether ConSpec’s capacity for finding invariances among critical steps could aid
in zero-shot generalization when the sensory features of the environment were altered. To test this,
we made a variation of the OrangeTree task. During training, the agent saw flat objects that were
magenta, blue, red, green, yellow, or peach (Fig. 3a). During testing, a black table or box was
presented, even though the agent had never seen black objects before. The prototype that recognized
picking up flat objects immediately generalized to black flat objects (Fig. 3b). Thanks to this, the
agent with ConSpec solved the task with the black objects in zero-shot (Fig. 3e). This shows that
ConSpec was able to learn prototypes that discovered an invariant feature among successes (flatness),
and was not confused by irrelevant sensory features such as colour, permitting it to generalize to
contingencies involving colours never seen before.

To further test ConSpec’s capacity for generalization, we made another variation of the OrangeTree
task with the background environment changed, in a manner typical of out-of-distribution (OoD)
generalization tests (4). In particular, testing took place in a different room than training, such that
the new room had pink walls and a green floor (unlike the gray walls and blue floor of the training
room) (Fig. 3c). Again, the prototypes generalized in a zero-shot manner, with flat objects being
mapped to the appropriate prototype in the new environment despite the different background (Fig.
3d). The policy network did not immediately generalize, but after a brief period of acclimatization
to the new environment (where the underlying PPO agent was trained for no more than 20 gradient
descent steps while ConSpec was kept constant), the ConSpec agent was able to rapidly solve the
new but related task environment (Fig. 3f).

4.3 ConSpec improves credit assignment in gridworld tasks with multiple critical steps

To investigate more deeply ConSpec’s ability to engage in long-term credit assignment by identifying
critical steps, we used simple multi-key-to-door tasks in 2D grid-worlds. These tasks were meant to
capture in the simplest possible instantiation the idea that in real life, rewards are sparse and often
dependent on multiple critical steps separated in time (akin to the paper-acceptance task structure
described in the Introduction 1). In the multi-key-to-door tasks we used here, the agent must find
one or more keys to open one or more doors (Fig. 4a). If the agent does not pick up all of the keys
and does not pass through all of the doors, success is impossible. To make the tasks challenging
for Bellman back-up, the agent is forced to wait in a wait room for many time steps in-between the
retrieval of each key. An episode is successful if and only if the agent exits the final door.

We found that when ConSpec was trained in these tasks, each prototype learned to represent a
distinct critical key-retrieval step (e.g. one prototype learned to hone in on the retrieval of the first
key, another prototype on the second key, etc.). We demonstrated this by examining which state in
different episodes maximally matched each prototype. As can be seen, picking up the first key was

7

ConSpec TVT

SynthRs

c dConSpec minus
exploration time

4 keys
3 keys
2 keys

0 4000 8000
0

10 4 keys
3 keys
2 keys

0 4000 8000
of Minibatches

0

10 4 keys
3 keys
2 keys

RNDe f g

0 4000 8000
of Minibatches

0

10

RUDDER

0

Key 1 Door

a

b

Key 4Key 3Key 2

4 Key Task

Prototype h i Prototype h j Prototype hk Prototype hl

Highest matching state in 4 example episodes for each prototype hi, hj, hk, hl

Waiting
 Room

Waiting
 Room

Waiting
 Room

Waiting
 Room

Figure 4: ConSpec rapidly learns tasks with multiple contingencies akin to the scenario from the
Introduction 1 (a) Protocol for multi-key-to-door task with 4 keys. (b) Plotted: states that maximally
matched each prototype. Here, prototypes learn to hone in on states that depict retrieval of the key
(where the agent is out the door and the coloured keys are gone i.e. retrieved). (c left) ConSpec rapidly
learns the multi-key-to-door tasks, whereas (d-g) TVT, SynthRs, RND, and RUDDER performances
collapse. (c right) When exploration time is subtracted, ConSpec’s training time ∝ O(constant)
approximately, even as number of keys increased, affirming the complexity predictions from 3.5.

matched to one prototype, picking up the second was matched to another, and so on (Fig. 4b). Thus,
ConSpec identifies multiple critical steps in a highly interpretable manner in these tasks.

We then tested ConSpec atop PPO again. We compared performance to four other baselines. The first
three, SynthRs, Temporal Value Transport (TVT) system (28), and RUDDER (3), are contemporary
reward-shaping based solutions to long-term credit assignment in RL. The fourth baseline was random
network distillation (RND) (10), a powerful exploration algorithm for sparse reward tasks, in order to
study if exploration itself was sufficient to overcome credit assignment in situations with multiple
critical steps.

We found that PPO with ConSpec learns the multi-key-to-door tasks very rapidly, across a range of
number of keys (Fig. 4c, left). Importantly, even as keys got added, ConSpec’s training time remained
constant when the exploration required for new keys was accounted for (Fig. 4c, right), consistent
with the intuitions given above (section 3.5). On the other hand, RUDDER, SynthRs, TVT, and RND
solved the task for a single key thanks to their ability to do long-term credit assignment (Fig. A.2,
A.4, A.5), but their performance collapsed as more keys were added (Fig. 4d-g), highlighting the
difficulty of long-term credit assignment with multiple critical steps.

We also note that RND, despite being strong enough to handle sparse reward tasks like Montezuma’s
Revenge (10), also fails here as more keys are added, illustrating the point that long term credit
assignment is its own distinct issue beyond exploration which ConSpec addresses and RND does not.

What happens when the number of prototypes is not sufficient to cover all the critical steps? Even
having fewer than necessary prototypes (3 prototypes in the 4-key task, shown in Fig. A.8) can
surprisingly still be enough to solve the task (i.e. catching any critical step at all, still helps the agent).

We also tested ConSpec on another set of grid-world tasks with multiple contingencies, but with a
different and harder to learn task structure. Again, ConSpec but not other baselines could solve these
tasks (Fig. A.16), illustrating that ConSpec successfully handles a wide variety of real-life inspired
scenarios with multiple contingencies.

8

Finally, we note that ConSpec successfully learns, not only atop a PPO backbone, but also atop
an Reconstructive Memory Agent (RMA) backbone (Fig. A.10 and also Fig. A.2b), illustrating
ConSpec’s flexibility in being added to any RL agent to improve long-term credit assignment.

4.4 ConSpec helps credit assignment in delayed Atari tasks and Montezuma’s Revenge

Next we studied how ConSpec could help credit assignment in other RL settings, such as the Atari
games from OpenAI Gym (9), including in some unanticipated settings where it would not have been
expected to help. We first note that existing RL algorithms, such as PPO, can solve many of these
games, as does PPO with ConSpec (Fig. A.17). But, PPO alone cannot solve delayed reward versions
of the Atari games. These require specialized long-term credit assignment algorithms to solve them
(3; 48). And adding ConSpec to PPO also solves delayed Atari (Fig. 5).

0 2000 4000
of Minibatches

15

10

5

0

5

Re
w

ar
d

ConSpec
PPO

0 2000 4000
of Minibatches

10

20

30

a Delayed Pong b Delayed Bowling

0 2000 4000
of Minibatches

0

500

1000

c Delayed AirRaid

Figure 5: ConSpec improves per-
formance on delayed (a) Pong, (b)
Bowling, and (c) AirRaid.

Within the set of unmodified Atari games, PPO alone also does not solve Montezuma’s Revenge, and
it does not usually exceed 0 reward, so we investigated this game further. Montezuma’s Revenge is
usually considered to be an exploration challenge, and sophisticated exploration algorithms have been
developed that solve it like RND(10) and Go-Explore (16). But, interestingly, we see that adding
ConSpec to PPO improves performance on Montezuma’s Revenge even without any sophisticated
exploration techniques added (Fig. 6a). To provide intuition as to why ConSpec is able to help
even in the absence of special exploration, we studied how many successful trajectories it takes for
ConSpec to learn how to obtain at least the first reward in the game. Crucially, ConSpec atop PPO
with only a simple ϵ-greedy exploration system is able to learn with as few as 2 successful episodes
(Fig. 6b). We speculate that this is because ConSpec, like other contrastive techniques (13), benefits
mostly from a large number of negative samples (i.e. failures) which are easy to obtain. Other
algorithms like Recurrent Independent Mechanisms (RIMs) have demonstrated large improvements
on other Atari games (23), and make use of discrete modularization of features as ConSpec does by
its prototypes. But RIMs discretizes by a very different mechanism, and does not make progress on
Montezuma’s Revenge (Fig. 6c).

Interestingly, Decision Transformers (DT) are designed to learn from successful demonstrations as
ConSpec does (Fig. 6d) but cannot solve Montezuma’s Revenge if those successes were "spurious
successes" (an important learning signal for novice agents) during random policies, affirming that
DTs, unlike ConSpec, need to be behaviourally cloned from curated experts. This was still true when
the DTs were trained with every success trajectory uniformly labelled +1 and every failure 0. Even
with this equally weighting of data, DTs still got 0 reward. (Fig. 6e) By contrast, ConSpec learns
well by inherently treating the data unequally, honing in on only a few critical steps.

Putting this altogether, the secret to ConSpec’s rapid abilities to learn from spurious successes
arises because the prototypes ignore irrelevant states and learn to hone in on the few critical ones,
allowing ConSpecto get reward on challenging tasks like Montezuma’s Revenge, doing so even
without a dedicated exploration algorithm. We speculate that coupled with an exploration algorithm
ConSpec could be even more powerful.

4.5 ConSpec helps credit assignment in continuous control tasks

Finally, we study another scenario in which ConSpec unexpectedly helps. Although ConSpec was
designed to exploit situations with discrete critical steps, we studied whether ConSpec might help
even in tasks that do not explicitly involve discrete steps, such as continuous control tasks. These
tasks are interesting because both the robotics and neurophysiology literature has long known that
“atomic moves” can be extracted from the structure of continuous control policies (15; 60). Moreover,
this is evident in real life. For example, learning to play the piano is a continuous control task, but
we can still identify specific critical steps that are required (such as playing arpeggios smoothly).
However, contemporary RL algorithms for continual control tasks are not designed to hone in on
sparse critical steps, and instead, they focus on learning the Markovian state-to-state policy.

9

ConSpec, 2 successes
ConSpec, 4 successes
ConSpec, 8 successes
PPO

a bConspec on Montezuma’s revenge
PPO
PPO + ConSpec

DTransformers,
 reward-to-go

c d e

0 1000 2000 3000
Minibatches

0

200

400
 DTransformers,
uniformly labelled

DTransformer: 36 successes

Figure 6: (a) PPO+ConSpec progresses on Montezuma’s Revenge despite the lack of a dedicated
exploration algorithm. (b) PPO+ConSpec with 2, 4, and 8 success demonstrations, highlighting how
ConSpec uses few successes very efficiently. (c) RIMs, and (d) DTs get 0 reward, even when DTs are
given up to 36 spurious success demonstrations. (e) DTs trained with success trajectories uniformly
labelled +1 and failures 0. With this uniform weighting of the data, DTs still get 0 reward.

We focused on delayed versions of three continuous control tasks: Half Cheetah, Walker, and Hopper,
where the delay was implemented according to past literature (49) to introduce a long-term credit
challenge (see A.4). ConSpec atop PPO is able to significantly improve performance in all tasks (Fig.
7), showing the utility of learning to identify critical steps even in continuous control tasks.

PPO
ConSpec
+PPO

0 400 800
minibatches

0

200

400

600

R
ew

ar
d

Delayed Hopper

0 500 1000 1500

-100

100

300

500

Delayed Walker

minibatches

Delayed Half Cheetah

minibatches

a b c

0 500 1000

-200
-100

0
100
200 Figure 7: ConSpec improves per-

formance in delayed versions of
continuous control tasks (a) Hop-
per, (b) Walker, (c) Half Cheetah.

5 Discussion and limitations

Here, we introduce ConSpec, a contrastive learning system that can be added to RL agents to help
hone in on critical steps from sparse rewards. ConSpec works by learning prototypes of critical steps
with a novel contrastive loss that differentiates successful episodes from failed episodes. This helps
both rapid long-term credit assignment and generalization, as we show. Altogether, ConSpec is a
powerful general add-on to any RL agent, allowing them to solve tasks they are otherwise incapable.

Despite its benefits for rapid credit assignment and generalization beyond Bellman-backup-based
approaches in RL, ConSpec has limitations, which we leave for future research. For one, the number
of prototypes is an unspecified hyperparameter. In our experiments, we did not use more than 20,
even for rich 3D environments, and in general one can specify more prototypes than necessary, which
does not hurt learning (Fig. A.3) for an extreme case). However, an interesting question is whether
it would be possible to design a system where the number of prototypes can change as needed.
For another limitation, ConSpec requires a definition of success and failure. We used relatively
simple definitions for tasks with sparse rewards as well as for tasks with dense rewards as detailed
in section A.3, and they worked well. But, future work can determine more principled definitions.
Alternatively, definitions of success can be learned or conditioned, and as such, are related to the
topic of goal-conditioned RL, which is left unexplored here. Nonetheless, we believe that this is
a promising future direction for ConSpec, and that it may potentially be of great help in the yet
unsolved problem of sub-goal and options discovery.

6 Acknowledgements

We heartily thank Doina Precup, Tim Lillicrap, Anirudh Goyal, Emmanuel Bengio, Kolya Malkin,
Moksh Jain, Shahab Bakhtiari, Nishanth Anand, Olivier Codol, David Yu-Tung Hui, as well as
members of the Richards and Bengio labs for generous feedback. We acknowledge funding from the
Banting Postdoctoral Fellowship, NSERC, CIFAR (Canada AI Chair and Learning in Machines &
Brains Fellowship), Samsung, IBM, and Microsoft. This research was enabled in part by support
provided by (Calcul Québec) and the Digital Research Alliance of Canada.

10

References
[1] Agarwal, R., Machado, M. C., Castro, P. S., and Bellemare, M. G. Contrastive Behavioral

Similarity Embeddings for Generalization in Reinforcement Learning. arXiv e-prints, art.
arXiv:2101.05265, January 2021.

[2] Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-A., and Devon Hjelm, R. Unsupervised
State Representation Learning in Atari. arXiv e-prints, art. arXiv:1906.08226, June 2019.

[3] Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Unterthiner, T., Brandstetter, J., and
Hochreiter, S. RUDDER: Return Decomposition for Delayed Rewards. arXiv e-prints, art.
arXiv:1806.07857, June 2018.

[4] Arjovsky, M. Out of Distribution Generalization in Machine Learning. arXiv e-prints, art.
arXiv:2103.02667, March 2021.

[5] Bacon, P.-L., Harb, J., and Precup, D. The Option-Critic Architecture. arXiv e-prints, art.
arXiv:1609.05140, September 2016.

[6] Barhate, N. Minimal implementation of decision transformer. https://github.com/
nikhilbarhate99/min-decision-transformer, 2022.

[7] Bellman, R. Dynamic programming. Technical report,Princeton University Press, 1957.

[8] Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J. Z., Rae, J., Wierstra, D., and
Hassabis, D. Model-Free Episodic Control. arXiv e-prints, art. arXiv:1606.04460, June 2016.

[9] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba,
W. Openai gym, 2016.

[10] Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Exploration by Random Network
Distillation. arXiv e-prints, art. arXiv:1810.12894, October 2018. doi: 10.48550/arXiv.1810.
12894.

[11] Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas,
A., and Mordatch, I. Decision transformer: Reinforcement learning via sequence modeling.
https://github.com/kzl/decision-transformer, 2020.

[12] Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and
Mordatch, I. Decision Transformer: Reinforcement Learning via Sequence Modeling. arXiv
e-prints, art. arXiv:2106.01345, June 2021.

[13] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A Simple Framework for Contrastive
Learning of Visual Representations. arXiv e-prints, art. arXiv:2002.05709, February 2020.

[14] Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Leveraging Procedural Generation to
Benchmark Reinforcement Learning. arXiv e-prints, art. arXiv:1912.01588, December 2019.

[15] d’Avella, A. and Bizzi, E. Shared and specific muscle synergies in natural motor behaviors.
Proceedings of the National Academy of Sciences, 102(8):3076–3081, 2005. doi: 10.1073/pnas.
0500199102. URL https://www.pnas.org/doi/abs/10.1073/pnas.0500199102.

[16] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. First return, then explore.
Nature, 590(7847):580–586, February 2021. doi: 10.1038/s41586-020-03157-9.

[17] Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V.,
Harley, T., Dunning, I., Legg, S., and Kavukcuoglu, K. IMPALA: Scalable Distributed Deep-RL
with Importance Weighted Actor-Learner Architectures. arXiv e-prints, art. arXiv:1802.01561,
February 2018.

[18] Eysenbach, B., Zhang, T., Salakhutdinov, R., and Levine, S. Contrastive Learning as Goal-
Conditioned Reinforcement Learning. arXiv e-prints, art. arXiv:2206.07568, June 2022.

[19] Finn, C., Christiano, P., Abbeel, P., and Levine, S. A Connection between Generative Adversarial
Networks, Inverse Reinforcement Learning, and Energy-Based Models. arXiv e-prints, art.
arXiv:1611.03852, November 2016.

11

https://github.com/nikhilbarhate99/min-decision-transformer
https://github.com/nikhilbarhate99/min-decision-transformer
https://github.com/kzl/decision-transformer
https://www.pnas.org/doi/abs/10.1073/pnas.0500199102

[20] Franklin, N. T., Norman, K. A., Ranganath, C., Zacks, J. M., and Gershman, S. J. Structured
event memory: a neuro-symbolic model of event cognition. bioRxiv, 2019. doi: 10.1101/541607.
URL https://www.biorxiv.org/content/early/2019/10/10/541607.

[21] Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C., Eysenbach, B., and Levine, S. Learning to
Reach Goals via Iterated Supervised Learning. arXiv e-prints, art. arXiv:1912.06088, December
2019.

[22] Gopnik, A. and Sobel, D. M. Detecting blickets: How young children use information about
novel causal powers in categorization and induction. Child Development, 71(5):1205–1222,
2000. ISSN 00093920, 14678624. URL http://www.jstor.org/stable/1131970.

[23] Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf, B.
Recurrent Independent Mechanisms. arXiv e-prints, art. arXiv:1909.10893, September 2019.

[24] Goyal, A., Lamb, A., Gampa, P., Beaudoin, P., Levine, S., Blundell, C., Bengio, Y., and
Mozer, M. Object Files and Schemata: Factorizing Declarative and Procedural Knowledge in
Dynamical Systems. arXiv e-prints, art. arXiv:2006.16225, June 2020.

[25] Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf, B.
Recurrent independent mechanisms. https://github.com/anirudh9119/RIMs, 2020.

[26] Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pp. 1735–1742, 2006. doi: 10.1109/CVPR.2006.100.

[27] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Momentum Contrast for Unsupervised Visual
Representation Learning. arXiv e-prints, art. arXiv:1911.05722, November 2019.

[28] Hung, C., Lillicrap, T. P., Abramson, J., Wu, Y., Mirza, M., Carnevale, F., Ahuja, A., and Wayne,
G. Optimizing agent behavior over long time scales by transporting value. Nat Commun, 10,
2019. doi: https://doi.org/10.1038/s41467-019-13073-w.

[29] Jeong, H., Taylor, A., Floeder, J. R., Lohmann, M., Mihalas, S., Wu, B., Zhou, M., Burke, D. A.,
and Namboodiri, V. M. K. Mesolimbic dopamine release conveys causal associations. Science,
378(6626):eabq6740, 2022. doi: 10.1126/science.abq6740. URL https://www.science.
org/doi/abs/10.1126/science.abq6740.

[30] joo, C. random-network-distillation-pytorch. https://github.com/jcwleo/
random-network-distillation-pytorch, 2018.

[31] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao, Y., Henry,
H., Mattar, M., and Lange, D. Unity: A General Platform for Intelligent Agents. arXiv e-prints,
art. arXiv:1809.02627, September 2018.

[32] Khetarpal, K., Ahmed, Z., Comanici, G., Abel, D., and Precup, D. What can I do here? A
Theory of Affordances in Reinforcement Learning. arXiv e-prints, art. arXiv:2006.15085, June
2020. doi: 10.48550/arXiv.2006.15085.

[33] Kostrikov, I. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

[34] Laskin, M. Curl: Contrastive unsupervised representation learning for sample-efficient rein-
forcement learning. https://github.com/MishaLaskin/curl, 2022.

[35] Lengyel, M. and Dayan, P. Hippocampal contributions to control: The third way. In Adv. Neural
Inf. Process. Syst., volume 20, 11 2007.

[36] Li, B., François-Lavet, V., Doan, T., and Pineau, J. Domain Adversarial Reinforcement Learning.
arXiv e-prints, art. arXiv:2102.07097, February 2021.

[37] Lin, L. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8:293–321, 2004.

12

https://www.biorxiv.org/content/early/2019/10/10/541607
http://www.jstor.org/stable/1131970
https://github.com/anirudh9119/RIMs
https://www.science.org/doi/abs/10.1126/science.abq6740
https://www.science.org/doi/abs/10.1126/science.abq6740
https://github.com/jcwleo/random-network-distillation-pytorch
https://github.com/jcwleo/random-network-distillation-pytorch
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/MishaLaskin/curl

[38] McGovern, A. and Barto, A. G. Automatic discovery of subgoals in reinforcement learning using
diverse density. In Proceedings of the Eighteenth International Conference on Machine Learning,
ICML ’01, pp. 361–368, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.
ISBN 1558607781.

[39] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller,
M. Playing Atari with Deep Reinforcement Learning. arXiv e-prints, art. arXiv:1312.5602,
December 2013.

[40] Moore, A. and Atkeson, C. Memory-based reinforcement learning: Efficient computation with
prioritized sweeping. In Hanson, S., Cowan, J., and Giles, C. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 5. Morgan-Kaufmann, 1992. URL https://proceedings.
neurips.cc/paper/1992/file/55743cc0393b1cb4b8b37d09ae48d097-Paper.pdf.

[41] Nachum, O., Gu, S., Lee, H., and Levine, S. Data-Efficient Hierarchical Reinforcement
Learning. arXiv e-prints, art. arXiv:1805.08296, May 2018.

[42] Ng, A. Y., Harada, D., and Russell, S. Policy invariance under reward transformations: Theory
and application to reward shaping. In In Proceedings of the Sixteenth International Conference
on Machine Learning, pp. 278–287. Morgan Kaufmann, 1999.

[43] Oh, J., Guo, Y., Singh, S., and Lee, H. Self-Imitation Learning. arXiv e-prints, art.
arXiv:1806.05635, June 2018.

[44] Patil, V. P., Hofmarcher, M., Dinu, M.-C., Dorfer, M., Blies, P. M., Brandstetter, J., Arjona-
Medina, J. A., and Hochreiter, S. Align-RUDDER: Learning From Few Demonstrations
by Reward Redistribution. arXiv e-prints, art. arXiv:2009.14108, September 2020. doi:
10.48550/arXiv.2009.14108.

[45] Pritzel, A., Uria, B., Srinivasan, S., Puigdomènech, A., Vinyals, O., Hassabis, D., Wierstra, D.,
and Blundell, C. Neural Episodic Control. arXiv e-prints, art. arXiv:1703.01988, March 2017.

[46] Puigdomènech Badia, A., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, D.,
and Blundell, C. Agent57: Outperforming the Atari Human Benchmark. arXiv e-prints, art.
arXiv:2003.13350, March 2020.

[47] Randløv, J. and Alstrøm, P. Learning to drive a bicycle using reinforcement learning and
shaping. In Proceedings of the Fifteenth International Conference on Machine Learning, ICML
’98, pp. 463–471, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN
1558605568.

[48] Raposo, D., Ritter, S., Santoro, A., Wayne, G., Weber, T., Botvinick, M., van Hasselt, H.,
and Song, F. Synthetic Returns for Long-Term Credit Assignment. arXiv e-prints, art.
arXiv:2102.12425, February 2021.

[49] Rengarajan, D., Vaidya, G., Sarvesh, A., Kalathil, D., and Shakkottai, S. Reinforcement
Learning with Sparse Rewards using Guidance from Offline Demonstration. arXiv e-prints, art.
arXiv:2202.04628, February 2022. doi: 10.48550/arXiv.2202.04628.

[50] Sasha Vezhnevets, A., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and
Kavukcuoglu, K. FeUdal Networks for Hierarchical Reinforcement Learning. arXiv e-prints,
art. arXiv:1703.01161, March 2017.

[51] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized Experience Replay. arXiv
e-prints, art. arXiv:1511.05952, November 2015.

[52] Schmidhuber, J. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010. doi: 10.1109/TAMD.
2010.2056368.

[53] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal Policy Optimiza-
tion Algorithms. arXiv e-prints, art. arXiv:1707.06347, July 2017.

13

https://proceedings.neurips.cc/paper/1992/file/55743cc0393b1cb4b8b37d09ae48d097-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/55743cc0393b1cb4b8b37d09ae48d097-Paper.pdf

[54] Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., and Levine, S.
Time-Contrastive Networks: Self-Supervised Learning from Video. arXiv e-prints, art.
arXiv:1704.06888, April 2017.

[55] Sobel, D., Tenenbaum, J., and Gopnik, A. Children’s causal inferences from indirect evidence:
Backwards blocking and bayesian reasoning in preschoolers. Cognitive Science, 28:303–333,
05 2004. doi: 10.1016/j.cogsci.2003.11.001.

[56] Srinivas, A., Laskin, M., and Abbeel, P. CURL: Contrastive Unsupervised Representations for
Reinforcement Learning. arXiv e-prints, art. arXiv:2004.04136, April 2020.

[57] Sun, C., Yang, W., Martin, J., and Tonegawa, S. Hippocampal neurons represent events as
transferable units of experience. Nature Neuroscience, art. 23, May 2020.

[58] Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT Press, 2018.

[59] Sutton, R. S., Precup, D., and Singh, S. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.
ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.
sciencedirect.com/science/article/pii/S0004370299000521.

[60] Thomas, P. S. and Barto, A. G. Motor primitive discovery. In 2012 IEEE International
Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–8, 2012. doi:
10.1109/DevLrn.2012.6400845.

[61] van den Oord, A., Li, Y., and Vinyals, O. Representation Learning with Contrastive Predictive
Coding. arXiv e-prints, art. arXiv:1807.03748, July 2018.

[62] Widrich, M., Hofmarcher, M., Patil, V. P., Bitto-Nemling, A., and Hochreiter, S. Modern
hopfield networks for return decomposition for delayed rewards. In Deep RL Workshop NeurIPS
2021, 2021. URL https://openreview.net/forum?id=t0PQSDcqAiy.

[63] Zacks, J., Braver, T., Sheridan, M., Donaldson, D., Snyder, A., Ollinger, J., Buckner, R.,
and Raichle, M. Human brain activity time-locked to perceptual event boundaries. Nature
Neuroscience, pp. 651–5, June 2001.

[64] Zheng, J., Schjetnan, A. G. P., Yebra, M., Gomes, B. A., Clayton, P. M., Kalia, S. K., Valiante,
T. A., Mamelak, A. N., Kreiman, G., and Rutishauser, U. Neurons detect cognitive boundaries
to structure episodic memories in humans. Nature Neuroscience, art. 25, March 2022.

14

https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://openreview.net/forum?id=t0PQSDcqAiy

A Appendix

A.1 Reproducibility

We aim to maximize the reproducibility of this study. A detailed description and full pseudo-code of
ConSpec is given in the method section and appendix. The ConSpec code is available at the link:
https://github.com/sunchipsster1/ConSpec.

A.2 Broader Impact

The focus of this work is the introduction of a new add-on algorithm in reinforcement learning to help
better generalization and long term credit assignment. We believe that there is potential for positive
impact as it can help make many real-life problems, which involve long-term credit assignment, more
solvable. However, it could be conceivably applied to ethically-questionable problems in RL. Users
of such methods must be aware when applying this method to their scientific problems.

A.3 Defining success and failure

How best to define successful and unsuccessful episodes? There are three fairly obvious ways:

1. In the domain of sparse reward tasks, the definition of a “successful” episode is relatively
straightforwardly defined as an episode that received one of the few rewards available, and a
“failure” episode is defined as anything else.

2. In non-sparse reward settings, the notion of a “successful” episode can be defined as the
top set of k episodes based on the sum of rewards. As such, the trajectories defined as
successful are updated as an agent improves. Therefore, ConSpec uses the reward signal in
a comparative and relativistic way, giving it the ability to hone in on key steps associated
with the best performance achieved so far.

3. In a goal-conditioned setting, a “successful” episode is simply one which achieves the goal.

In ConSpec we use the first approach, since the focus of this work is, in part, on solving tasks with
sparse rewards and multiple contingencies leading to them. In two cases we do take the second
approach (with Atari games and Continuous control tasks) (9) to demonstrate that this can also work.
We have yet to explore the third approach, which we leave for future research.

A.4 Task implementation details

OrangeTree experiments were implemented using SilicoLabs’ Unity ((31)) based game engine to
create virtual 3D environments. In stage 1 of this task, the agent sees two objects around the room,
one of them round or spiky, and one of them flat (e.g. boxes or tables), and the agent can pick up one
of the objects (Fig. 2). In stage 2, the agent is again put in a waiting room. In stage 3, the agent must
obtain oranges from the tree, but to do so, it must stand on a flat object in order to reach the oranges
and receive reward. Successful completion of the task resulted in a reward of 10. Observations given
to the RL agent were 84x84x3 pixels. The tasks were a total of 65 timesteps long, with 15 timesteps
in Stage 1, 40 timesteps in Stage 2, and 10 timesteps in Stage 3.

In the multi-key-to-door tasks the agent must find all the keys to open the doors (Fig. 4a). If the
agent does not pick up all of the keys and pass through all of the doors, success is impossible. In
between each stage for picking up keys/passing through doors, the agent is forced to wait in a waiting
room for many time steps in between the retrieval of each key. An episode is successful if and only if
the agent exits the final door. Observations given to the RL agent were minimalist, at 5x5x3 pixels.
Successful completion of the task resulted in a reward of 10. Tasks had alternating key retrieval and
waiting periods, and the lengths of each of these stages are indicated here A.1.

Atari tasks were implemented with frameskips of 4, and for computational expediency, and were
uniformly terminated at 600 timesteps at which point rewards were tallied. Observations given to
the RL agent were 84x84x3 pixels (where the 3 encodes colours RGB). For Delayed Atari games,
episodes were terminated after 600 timesteps and cumulative rewards were given only at the end,
similar to previous works (3; 48).

15

https://github.com/sunchipsster1/ConSpec

Number of timesteps for each task stage:

Stage Baseline
key-to-door
task

2-key task 3-key task 4-key task

Retrieve 1st key 10 10 10 10

Waiting period 85 85 85 85

Retrieve 2nd key 15 15 15

Waiting period 85 85 85

Retrieve 3rd key 15 15

Waiting period 85 85

Retrieve 4th key 15

Waiting period 85

Exit the final door 10 10 10 10

Total: 105 205 305 405
Figure A.1: Protocols for multi-key-to-door experiments.

Continuous control tasks were run for 250 timesteps. The traditional version of these tasks gives the
agent a forward reward at each timestep based on how much it has moved in the forward direction
during that timestep. The delayed versions of the tasks– taken from previous literature ((49))– were
created by modifying the reward function so that the forward reward is not given at each timestep, but
only once the agent has successfully moved a certain number of units in the forward direction (called
the threshold). On the timestep that the agent passes a threshold, it receives the cumulative reward
that it would have received for running up to that threshold during all the previous timesteps. Since a
fully trained agent on Half Cheetah runs approximately three times farther than a fully trained agent
hops in Hopper and walks in Walker, the thresholds for Hopper and Walker were set at 1, while the
threshold for Half Cheetah was set at 3.

A.5 Experimental and architectural details

Training on all experiments was done on an RTX 8000 GPU cluster. All seeds were run with 32GB
of memory until completion.

S and F buffer sizes: All experiments used S and F buffer sizes of 16. For 3D OrangeTree experi-
ments, although S and F buffers each held 16 episodes like all the other experiments, each gradient
step was done on a random minibatch of 8 episodes sampled from this 16 due to computational
resource limitations. In Atari tasks each gradient step was done on a random minibatch of 4 episodes
sampled from the buffers of 16 for similar reasons.

Minibatch size: all models used standard minibatch size B = 16, except for the Atari tasks, which
due to computational resource limitations, used minibatch size B = 8.

Seeds in experiments: All multi-door-to-key experiments averaged over 10 seeds, as did all 3D
OrangeTree experiments. The 9 Atari experiments and 3 Continuous control experiments averaged
over 5 seeds each. All plots show median and quartile range.

Number of prototypes: Across implementations of ConSpec for various tasks unless otherwise
indicated, the number of prototypes used was set as 8, except for ConSpec on the task in Fig. A.16
and the implementation of ConSpec on an RMA backbone (Fig A.10), both of which used 16, and
the Atari tasks, which due to computational resource limitations, used 3 prototypes.

We also tested ConSpec in the 4-key task with various numbers of prototypes and find that performance
was robust across values (Fig. A.7).

Architectural details for models used: For all multi-key-to-door tasks, the learned encoder of the
underlying RL agent was a single layer 2-D convolutional neural network (outchannels = 32, kernel
= 3) with ReLU activation, followed by a final linear layer, and a 512-unit GRU, as was done in
the (28) codebase for 2D key-to-door tasks. The convnet encoder for the ConSpec module was

16

identically sized, but separately parameterized so that there would be no interference between the
ConSpec module and the underlying RL agent. In the ConSpec module, the nonlinear projection
gθ in ConSpec was a 2-layer MLP with 1010 units in the intermediate layers and the final output
layer, and ReLU activations between layers. Inspired by the contrastive learning literature, where
the importance of having a large number of negative samples relative to positive samples has been
observed (13), the success buffers were filled at a slower rate than the failure buffers: at most 2 new
successful trajectories were added to S from each minibatch, while there was no limit to the number
of new failed trajectories added to F from each minibatch.

Continuous control tasks have small observation spaces and therefore did not require a convnet
encoder. In continuous control experiments, agents simply used a two-layer 64-unit MLP with tanh
nonlinearity.

Atari tasks and 3D gridworld tasks possess larger observations, so the learned encoder used was a
much larger Impala encoder (17; 14) using 3 Impala layers with 16, 32, and 32 channels respectively.
For these experiments, the nonlinear projection gθ in ConSpec was a 2-layer MLP with 100 units in
the intermediate layers and the final output, and ReLU activations between layers.

One of the aims of the Atari experiments was to apply ConSpec in a setting that requires a different
definition of successes and failures, as elaborated in section A.3. Specifically, successful trajectories
were defined as the highest cumulatively scoring ones from each minibatch, while comparatively,
failed trajectories were randomly chosen from the remainder of the minibatch. To extend ConSpec to
this setup, each of ConSpec’s prototypes took not just the sikt with the top cosine similarity for each
trajectory, but rather, averaged the sikt’s with the top-k cosine similarities for each trajectory (where
k = 20).

For the hyperparameter λ, which scales the intrinsic reward (see equation 3), we used a different
value in each set of experiments (multi-key-to-door, Atari, and OrangeTree). Specifically, we used
λ = 0.2 for the multi-key-to-door, λ = 0.5 for the policy-invariant version of ConSpec in the
multi-key-to-door experiment, λ = 0.5 for the Atari games, λ = 0.5 for OrangeTree, and λ = .2 for
Continuous control tasks. These values were determined via a logarithmic grid-search that selected
for best reward. Other hyperparameters were found via a logarithmic grid-search, and were shared
across all tasks:

• RL agent learning rate: 2× 10−4

• ConSpec learning rate: 2× 10−3

• α: 0.2

• β: 1.0

We also show for the OrangeTree task, the 4-key task, and Montezuma’s Revenge task, that in each
of these tasks, performance was relatively insensitive to lambda between 0.2 and 0.5 (Fig. A.9).

Models using a PPO backbone used the Adam optimizer with optimal PPO hyperparameters based
on the repository (33) (values below). The only major change to the hyperparameters used was the
entropy coefficient used (0.02, rather than 0.01 from the repository, in order to encourage exploration
necessary in the multi-key-to-door tasks):

• learning rate: 2× 10−4

• Adam epsilon: 1× 10−5

• reward discount factor: 0.99

• clipping 0.08

• value loss coefficient: 0.5

• entropy coefficient: 0.02

PPO-backbone models that were engaged with either the multi-door-to-key tasks or the 3D Orange-
Tree task had reward normalized to the range [0, 1]. PPO-backbone models that were engaged with
the 9 Atari tasks underwent reward clipping to the sign of the reward received at each timestep, as is
standard practice (39).

17

Models using an RMA backbone (including the implementation of TVT) were taken directly from
the (28) codebase without modification of the architecture. They used the Adam optimizer with PPO
hyperparameters based on the repository (28). The only major change to the hyperparameters used
was the entropy coefficient used (0.1, rather than 0.05 from the repository, in order to encourage
exploration necessary in the multi-key-to-door tasks):

• learning rate: 2× 10−4

• Adam epsilon: 1× 10−6

• agent discount: 0.92

• clipping 0.1

• reading strength coefficient: 50.

• image strength coefficient: 50.

• entropy coefficient: 0.1

The implementation for SynthRs used a synthetics returns MLP that was sized analogously as gθ in
ConSpec in the respective experiments (2-layer MLP with ReLU and 1010 or 100 units respectively).
This module was put on top of a PPO backbone. Its convolutional neural network encoder was
identical to the corresponding encoders used in ConSpec. The version of SynthRs from (48) that
did not make use of a bias term b(st) was used since in our tasks the reward is totally predictive
from the current state (e.g. whether the agent exits the final door or not), negating the need for linear
regression if the bias term is present. Here, SynthRs learning rates were matched to the learning rates
used in ConSpec to enable comparable rates of learning (2× 10−4 for the underlying PPO agent, and
2× 10−3 for the synthetics return module). The optimal weight of the SynthRs loss, β, as defined in
Algorithm 1 was determined via further logarithmic grid-search, and β = 10−4 worked well across
experiments. Further hyperparameters were as follows, taken amongst the optimal values used in the
SynthRs paper (48):

• state-associate alpha: 0.01

• state-associate beta: 1.0

SynthRs was unable to solve either the 3D OrangeTree task nor the mult-key-to-door tasks in the
allotted time (Figure A.15a-b). But replacing the sigmoid with a softmax on the last layer of the gate
g improved performance on both tasks (Figure 4f and 2b), so this was the version of SynthRs used in
all experiments.

The implementation of CURL was taken from the repository (34). We replaced the encoder with an
Impala neural network identical to the encoder used by PPO and ConSpec in the 3D OrangeTree
experiment. We also replace the SAC agent in the original repo with a PPO agent. Hyperparameters
were as follows:

• pretransform image size: 96

• image size: 84

• frame stack: 1

• batch size for curl: 128

• curl latent dim: 128

• encoder tau: 0.05

• framestack: 100000

The implementation of Decision Transformers for the grid-world task was taken from the repository
(6), but we added a convolutional neural network encoder that was identical to the encoder used in the
ConSpec experiment. Moreover, its learning rate (2× 10−4) was matched to the learning rate used
in ConSpec to enable comparable rates of learning. All other hyperparmeters were taken without
modification from the repository (6) and were:

• weight decay: 1× 10−4

18

• dropout probability: 0.1
• context length: 20
• number of blocks: 3

The implementation of Random Network Distillation was taken from (30) with the standard convolu-
tional neural network encoder that was identical to the encoder used in the ConSpec experiment, All
other hyperparameters were the default ones:

• extrinsic reward clipping: [−1, 1]
• intrinsic reward clipping: False
• observation clipping after normalization: [−5, 5]

The implementation of Decision Transformers for the Atari tasks was taken from (11) with default
parameters, which had been already optimized by the authors for Atari games.

The implementation of RIMs for the Atari tasks was taken from (25) with default parameters, which
had been already optimized by the authors for Atari games.

Function D for encouraging diversity: The function D is used in the loss function, equation 1,
for encouraging diversity amongst the prototypes. With the exception of Montezuma’s Revenge
(which will be discuss separately, below), the function D that was used for all other experiments was
D({sik}1≤i≤H) =

∑
i ̸=j cos (sik, sjk) where cos (·, ·) is cosine similarity. This term is therefore

an orthogonality constraint imposed to encourage the different prototypes to be independent from
each other.

Prototype freezing: keeping prototypes stable once they are learned:

There is a potential source of instability in learning prototypes with ConSpec. Specifically, once an
agent has learned a prototype for a specific critical step and helped shape the policy so that the agent
consistently takes this step, the failure buffer will begin to have many examples where this critical
step if it is not by itself sufficient to achieve success (e.g. if multiple keys are required). Thereafter
the initial prototype would begin to diverge from this critical step, and this can lead to instability.
To prevent this, updates to the memory buffers for each prototype were terminated upon reaching
criterion that this prototype sufficiently differentiated between successes and failures above threshold
T . Across all experiments, this criterion was defined as when the average maximum cosine similarity
scores among trajectories in S- F differed by > T and that the scores in S were themselves > T , all
for at least 25 consecutive gradient steps. We found that T = 0.6 worked well in practice, and this
value was used through all experiments.

This design is neuroscience-motivated because semantic knowledge is often defined by exemplars.
The frozen set of episodes for prototype i serve as the examplars that define prototype i. In an
experiment, we ablated this prototype freezing mechanism, and interestingly found that even without
prototype freezing, ConSpec performs well in the presence of multiple contingencies (Fig. A.12).

Recruitment of prototypes:

In most experiments, all prototypes were made immediately available to the agent as the simplest
case. However, we also tested recruiting prototypes only as needed in the Montezuma’s Revenge and
Continuous control experiments. In these experiments, only 3 prototypes were made immediately
available to train on. Only when the existing prototypes differentiated success from failure above
threshold T , would a new prototype be recruited to be newly trained. Therefore, this was a scheme
by which the prototypes would only be recruited as needed.

Montezuma’s Revenge: The purpose of the Montezuma’s Revenge experiments was to study whether
ConSpec can be used to help Montezuma’s Revenge, even when it is put atop PPO, despite the lack
of any further dedicated exploration algorithm. Montezuma’s Revenge required a greater task time
(necessary to encourage as much exploration as possible in the environment) and was terminated at a
longer 1200 timesteps. To study this game, the learned encoder was an Impala encoder (17; 14) using
3 Impala layers with 16, 32, and 32 channels respectively, and a 256-unit GRU. For these experiments,
the nonlinear projection gθ in ConSpec was a 2-layer MLP with 100 units in the intermediate layers
and the final output, and ReLU activations between layers. The model used 20 prototypes and λ = 0.2.
The function D that was used was D({sik}1≤i≤H) = −H(L1(

∑
i sik)) where H(·) is entropy and

19

L1(·) is L1 normalization. This term therefore encourages the different prototypes to hone in on
the trajectory as uniformly from each other as possible, thereby encouraging prototype diversity.
Successes in Montezuma’s Revenge are especially sparse especially to the novice agent, which means
that recurrent states stored in the S buffer are rarely updated (especially initially). To alleviate this, we
simply replayed a randomly chosen success trajectory to the agent every training iteration, to enable
it to recalculate its stored recurrent states in S buffer. The training of the ConSpec + PPO model did
not initiate until at least 2 successes had been spuriously experienced. The minibatch size used in
these experiments was B = 5 due to limitations in computational resources, and memory freezing
was not done as this would have added more memory buffers due to limitations in computational
resources. The Montezuma’s Revenge experiment Fig. 6a) used 10 seeds and excluded 4 other seeds
that were prematurely terminated by the Pytorch autograd during the learning of the task.

a b

ConSpec + PPO

PPO
SynthRs + PPO

ConSpec + RMA
TVT
RMA

0 2000 4000 6000 8000

of Minibatches

0

2

4

6

8

10

Re
w

ar
d

0 2000 4000 6000 8000
0

2

4

6

8

10

Re
w

ar
d

of Minibatches

Figure A.2: Baseline single key-to-door task. (a) Performance of ConSpec on a PPO backbone vs
SynthRs on a PPO backbone vs PPO. (b) Performance of ConSpec on an RMA backbone vs TVT vs
RMA.

Figure A.3: Performance of ConSpec when the number of prototypes is varied (40 vs 8) does not
change, in the vanilla single key-to-door task.

Figure A.4: Performance of RUDDER on the baseline single key-to-door task.

20

0 4000 8000
of Minibatches

0

4

8

Re
w

ar
d

RND

Figure A.5: Performance of RND on the baseline single key-to-door task.

0 250 500 750 1000 1250 1500 1750 2000

of Minibatches

0

2

4

6

8

10

R
ew

ar
d

ConSpec
D-Transformer + constrained action
D-Transformer

Figure A.6: ConSpec is more robust than Decision Transformers on vanilla key-to-door because of its
objective in learning states rather than predicting actions. Decision transformers is not able to solve
the key-to-door task unlike ConSpec but is able to solve it if actions are constrained in their freedom.

0 5000 10000
of Minibatches

0

10

Re
w

ar
d 16 prototypes

12 prototypes
8 prototypes
6 prototypes

Figure A.7: ConSpec performance was relatively insensitive to changes in the number of prototypes
in the 4-key task.

ConSpec: 4-lap task with 3 prototypes

Figure A.8: ConSpec’s performance on the 4-key task with only 3 prototypes: even having fewer
than necessary prototypes can surprisingly often catch enough critical steps to still solve the task.

0 4000 8000
of Minibatches

0

10

Re
w

ar
d

lambda = 0.5
lambda = 0.2

a 4-key-to-door task

0 1000 2000 3000
of Minibatches

0

200

400

Re
w

ar
d

lambda = 0.5
lambda = 0.2

b Montezuma's Revenge

0 500 1000
of Minibatches

0

10

Re
w

ar
d

lambda = 0.5
lambda = 0.2

c3D OrangeTree

Figure A.9: ConSpec performance was relatively insensitive when λ was changed from 0.2 to 0.5 on
(a) the 3D OrangeTree task, (b) the 4-key task, and (c) Montezuma’s Revenge. 5 seeds each
condition.

21

0 4000 8000
of Minibatches

0

10

Re
w

ar
d 4 keys

3 keys
2 keys

Figure A.10: Performance of ConSpec implemented on an RMA rather than PPO backbone, on the
multi-key-to-door tasks. As shown, ConSpec was successfully able to rapidly learn and converge in
each multi-key-to-door task, illustrating its flexibility in credit assignment, regardless the underlying
RL agent.

Figure A.11: Performance of ConSpec with the policy-invariant version of the intrinsic reward
(equation 3) on the multi-key-to-door tasks. As shown, ConSpec was successfully able to rapidly
learn each task.

0 4000 8000
of Minibatches

0

10

Re
w

ar
d

ConSpec + prototypes frozen
ConSpec + prototypes not frozen

Figure A.12: Ablation of the prototype freezing in ConSpec causes no learning deficits in the
multikey-to-door task.

0 4000 8000

of Minibatches

0

10

Re
w

ar
d

4 keys

ConSpec with stop gradient

Figure A.13: ConSpec could not solve the 4-key task with a stop-gradient on the prototypes.

0 500 1000
of Minibatches

0

10

Re
w

ar
d

RAD

Figure A.14: Performance of RAD on the 3D OrangeTree task.

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SynthRs + PPO

0 2000 4000 6000 8000 10000
of Minibatches

0

2

4

6

8

10

Re
w

ar
d

SynReg, 4 keys
SynReg, 3 keys
SynReg, 2 keys

of Minibatches

Re
w

ar
d

a b

Figure A.15: Performance of SynthRs with sigmoid on (a) the multi-key-to-door and (b) OrangeTree
tasks.

22

Figure A.16: ConSpec on another set of multi-key-to-door tasks with a different, conjunctive
structure. Multiple keys had to be learned to be picked up, but picking up each subsequent key did
not require previous keys to have been successfully picked up, unlike the paper-acceptance inspired
tasks in Fig. 4. (a) Protocol for this conjunctive 4 keys task. (b) ConSpec rapidly learns these
conjunctive multi-key-to-door tasks, whereas (c-f) TVT, RUDDER, SynthRs, and RND
performances collapse again.

0 2000 4000

4000

8000

12000

BattleZone

0 2000 4000

0

20

40

60

80

Boxing

0 2000 4000
0

20

40

60

80

Breakout

0 2000 4000
2
1
0
1
2
3

IceHockey

0 2000 4000

400

800

1200

MsPacman

0 2000 4000

10.0

5.0

0.0

5.0

Pong

0 2000 4000

1

2

3

4

5

Robotank

0 2000 4000

200

400

600

SpaceInvaders

of Minibatches

of Minibatches # of Minibatches

R
ew

ar
d

R
ew

ar
d

PPO
PPO + ConSpec
PPO + ConSpec +
Pol Invariance

R
ew

ar
d

Figure A.17: PPO vs PPO+ConSpec vs PPO+ConSpec+policy invariant intrinsic reward all learn to
perform similarly well on Atari Gym tasks.

a b

Figure A.18: Positive controls: Decision transformers and RIMs succeed in learning Atari Breakout,
unlike Montezuma’s Revenge in Fig. 6

23

	Introduction
	Related work
	Neuroscience inspiration

	Description and intuition for ConSpec
	A set of invariant prototypes for critical steps
	A memory system for storing successes and failures
	A contrastive loss to learn prototypes
	Generating intrinsic rewards based on retrospection
	Inductive biases in ConSpec that enable rapid credit assignment

	Empirical results
	ConSpec learns prototypes for critical steps in 3D environments
	ConSpec generalizes to new contingencies in 3D environments
	ConSpec improves credit assignment in gridworld tasks with multiple critical steps
	ConSpec helps credit assignment in delayed Atari tasks and Montezuma's Revenge
	ConSpec helps credit assignment in continuous control tasks

	Discussion and limitations
	Acknowledgements
	Appendix
	Reproducibility
	Broader Impact
	Defining success and failure
	Task implementation details
	Experimental and architectural details

