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Abstract

Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks
owing to their impressive performance. However, when it comes to handling long
token sequences, especially in dense prediction tasks that require high-resolution in-
put, the complexity of ViTs increases significantly. Notably, dense prediction tasks,
such as semantic segmentation or object detection, emphasize more on the contours
or shapes of objects, while the texture inside objects is less informative. Motivated
by this observation, we propose to apply adaptive resolution for different regions
in the image according to their importance. Specifically, at the intermediate layer
of the ViT, we utilize a spatial-aware density-based clustering algorithm to select
representative tokens from the token sequence. Once the representative tokens are
determined, we proceed to merge other tokens into their closest representative token.
Consequently, semantic similar tokens are merged together to form low-resolution
regions, while semantic irrelevant tokens are preserved independently as high-
resolution regions. This strategy effectively reduces the number of tokens, allowing
subsequent layers to handle a reduced token sequence and achieve acceleration.
At the output layers, the resolution of the feature map is restored by unfolding the
merged tokens for task prediction. As a result, our method significantly accelerates
ViTs for dense prediction tasks. We evaluate our proposed method on three different
datasets and observe promising performance. For example, the "Segmenter ViT-L"
model can be accelerated by 48% FPS without fine-tuning, while maintaining the
performance. Additionally, our method can be applied to accelerate fine-tuning as
well. Experimental results demonstrate that we can save 52% training time while
accelerating 2.46× FPS with only a 0.09% performance drop. The code is available
at https://github.com/caddyless/ailurus/tree/main.

1 Introduction

Transformers have shown significant advancements in various vision tasks such as image classification
[9, 27, 33, 18], object detection [38, 34], and semantic segmentation[26, 4]. Despite their impressive
performance across various visual tasks, the complexity of these models poses challenges for fine-
tuning and deployment, particularly as their capacity continues to grow [11, 13, 39]. This complexity
issue is particularly relevant for dense prediction tasks that require high-resolution input. Efforts have
been made to address this challenge by designing efficient ViT models [36, 6, 20, 24, 19, 16, 23, 31,
14, 1, 17]. However, most of these works are primarily focused on classification tasks and are not
applicable to dense prediction tasks. Recently, [15] proposed to expedite well-trained ViTs for dense
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prediction tasks through super-pixel clustering. Nevertheless, the clustering operation can be only
conducted in the relatively deep layers, resulting in limited acceleration ratio and scalability.

In this paper, we introduce a novel approach, namely Adaptive resolution with spatial-awaRe
clustering (AiluRus), to accelerate ViTs for dense prediction tasks. We find that dense prediction tasks
focus more on the shape or contour of objects rather than the texture. For instance, in segmentation
maps, the contour of objects carries crucial information, while the interior regions are filled with the
same prediction values, indicating their lower informativeness compared to the boundaries. Motivated
by this observation, we propose a token pruning technique that incorporates adaptive resolution to
represent different regions in an image. Specifically, we allocate more tokens to critical regions that
contribute to decision-making and fewer tokens to less informative regions. The main challenge is
to determine a reasonable assignment of resolutions. To address this issue, we utilize density-based
clustering algorithms[10, 21] to generate the assignment of each token, where spatial information is
incorporated to encourage neighboring tokens to have the same assignment. Tokens that have the
same assignments are averaged to produce the representative tokens. These representative tokens
could be the original ones, which correspond to informative regions, or the average of several tokens,
which correspond to less informative regions. This approach enables us to reduce the length of the
token sequence at intermediate layers, thereby accelerating the model. At the output stage, we restore
the original resolution for prediction tasks by assigning the value of the representative token to its
corresponding regions.

We provide compelling visualizations in Figure Fig. 2 to support the reasonableness of the generated
assignments and their limited impact on visual perception. To assess the effectiveness of our proposed
method, we adopt the benchmark of [15] and integrate our method into well-trained models without
fine-tuning. Our experimental results demonstrate that AiluRus effectively accelerates ViTs and
outperforms previous methods, particularly in scenarios with high acceleration ratios. Specifically,
AiluRus achieves a 48% increase in FPS for Segmenter ViT-L while maintaining the performance.
Moreover, we further apply AiluRus to accelerate the fine-tuning process. Experiments show that
AiluRus reduces training time by 52% while achieving a 2.46× increase in FPS with only a 0.09%
drop in performance. These findings demonstrate the effectiveness of AiluRus in accelerating ViTs.

In summary, we list our contributions as follows:

• We propose to apply adaptive resolution on the feature map of ViT-based dense prediction tasks
for acceleration without fine-tuning.

• We propose to generate the resolution assignments through the proposed spatial-aware DPC
algorithm. Visualizations demonstrate that the produced assignments have little influence on
visual perception and thus could expedite models without fine-tuning.

• Our proposed AiluRus can be used to accelerate well-trained models or pre-trained models for
inference or fine-tuning. Experiments show that AiluRus could significantly accelerate models
with a negligible performance drop.

2 Related Work

Vision transformer for dense prediction tasks. Transformers have gained immense popularity
in Natural Language Processing (NLP) tasks, and there have been considerable efforts to extend
their success to computer vision tasks. DETR [38] introduced transformers as the detection head
in a convolutional neural network, opening up new avenues for utilizing transformers in dense
prediction tasks. This work has inspired the development of hybrid-transformer architectures aimed at
facilitating dense prediction tasks [3, 30]. Other works have proposed pure transformer architectures,
which have achieved significant progress in recent advances [26, 4, 29]. In this paper, instead of
proposing a new architecture or framework for dense prediction tasks, we focus on accelerating
existing dense prediction methods.

Efficient vision transformers. One of the primary strategies for improving the efficiency of Vision
Transformers (ViTs) is to reduce the complexity of the self-attention operation. The conventional self-
attention operation involves establishing interactions between any two tokens, resulting in quadratic
complexity with respect to the number of tokens. To address this challenge, recent approaches aim to
approximate the self-attention results through clustering based on the sparse and low-rank properties
of self-attention [36, 6, 28].

2



Calculate 

Cluster Centers

Spatial Mask

T
ra

n
sfo

rm
er

B
lo

ck

……

D
eco

d
er

H
ea

d

S
p

a
tia

l-a
w

a
re

D
P

C

Input 

T
o

k
en

R
ew

eig
h

t

Spatial-aware DPC Token Reweight

Spatial Mask

Local Density

Distance Indicator

Color Bar

Higher Density

Color Bar

Longer Distance

𝒎𝒏 Tokens attributed 

to one cluster center

𝒂𝒊𝒋 =
𝐞𝐱𝐩(𝒒𝒊

𝑻𝒌𝒋/𝒔)

σ𝒏σ𝒊∈𝒎𝒏
𝒒𝒊
𝑻𝒌𝒋

Attention:

Recovery output

R
eco

v
ery

R
eso

lu
tio

n

T
ra

n
sfo

rm
er

B
lo

ck

Representative

Tokens

Recover tokens

Using Cluster Centers

Recovery Resolution

Cluster 

Centers

Figure 1: The framework of AiluRus. we focus on a specific intermediate layer of the ViT and
apply our AiluRus using the spatial-aware DPC algorithm. This algorithm searches for cluster centers
based on local density and distance indicators, and then averages the tokens in each cluster to obtain
a representative token for the following layers. To ensure that each representative token is weighted
appropriately, we re-weight them based on the number of tokens they represent. Finally, we unfold
the representative tokens at the output end to recover the original resolution. For a more detailed
explanation of our method, please refer to Section 3.

Another line of works focuses on token pruning [20, 19, 16, 23, 31, 14, 1, 8]. These methods aim to
gradually discard less informative tokens at different layers and retain only a subset of tokens at the
output end to accelerate the model. However, most of these approaches are designed for classification
tasks and are less practical for dense prediction tasks. For instance, EViT [16], Evo-ViT [31], and
PCAE [14] select informative tokens based on a single criterion, such as the attention weight to the
class token or similarity to the mean token, which is not suitable for dense prediction tasks where
there are many objects belonging to various categories in the image. DynamicViT [20] and Ada-ViT
[19] rely on specific architectures and require re-training, which may lead to additional computational
overhead in practical applications. ToMe [1] progressively merges a percentage of the most similar
tokens between bipartite tokens but has only been verified in classification tasks.

Some works aim to design more efficient ViTs by introducing learnable token merging or token
pruning modules [2, 12, 32, 25]. For example, STViT [2] replaces redundant tokens with a few
semantic tokens, which can be regarded as cluster centers for acceleration. PaCa-ViT [12] proposes
patch-to-cluster attention to address the semantic gap between patch-to-patch attention in visual tasks
and its NLP counterpart. TCFormer [32] merges tokens from less informative regions via clustering to
emphasize critical regions for human-centric tasks. Although these methods achieve promising results
for efficient ViTs, some of them rely on specific architectures [32, 12] and all require fine-tuning.
Recently, Liang et al. [15] proposed a method to expedite well-trained large ViTs for dense prediction
tasks using superpixel clustering, which does not require fine-tuning. However, this strategy can only
be applied in relatively deep layers, resulting in limited improvements in efficiency.

3 Methodology
3.1 Preliminary
A typical ViT requires sequential input and thus reshapes the input image X ∈ RH×W×3 as a
token sequence Xp ∈ R(H∗W )/p2×3∗p2

, where p indicates the patch size. As the patch size is
fixed for a given ViT, the number of tokens depends on the resolution of the input image, and thus
high-resolution images, which are usually required for dense prediction tasks, inevitably suffer from
high computational complexity. One intuitive way toward efficient ViTs is to reduce the number of
tokens. However, reducing tokens inevitably accompanies information loss and results in performance
degradation. We notice that dense prediction tasks such as detection and segmentation mainly focus
on the shape and contour of objects while less caring about the texture inside objects, or irrelevant
background. Based on this observation, we propose an adaptive resolution strategy for accelerating
dense prediction tasks. Our framework is illustrated in Fig. 1.
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3.2 Adaptive Resolution

For an input token sequence Z ∈ RN×D, the target is to generate M representative tokens according
to Z where M ≤ N . These representative tokens can be either the original tokens in Z that correspond
to informative regions in the image or the average of several tokens in Z that correspond to less
important regions for decision-making. In this way, different regions are represented by different
numbers of tokens, i.e., resolutions based on their importance. The main challenge is to generate a
proper assignment of Z that minimizes information loss.

To generate this assignment, we propose to apply density-based clustering algorithms, specifically
DPC [21, 10]. We are motivated by two reasons. For one thing, DPC does not rely on iterative updates
like traditional clustering methods such as K-means, making it more suitable for latency-sensitive
scenarios. For another thing, DPC searches for cluster centers among the input data, and thus specific
tokens can be independently preserved, which enables it to preserve details for informative regions.
We find that over 20% cluster centers are independently preserved when selecting 400 cluster centers
from 1600 tokens (Please refer to supplementary for details). In contrast, the cluster centers in
K-means are linearly weighted by input, which will lead to information distortion and affect decision-
making for fine-grained regions. However, conventional DPC algorithms only consider the relations
of data points in the feature space but ignore their intrinsic spatial structure. Since image patches
have clear spatial relationships that are critical for dense prediction, directly applying DPC may lead
to unreasonable assignments and performance degradation. To address this issue, we propose to
incorporate spatial information into clustering.

Spatial-aware DPC. DPC selects cluster centers from input data points based on their product of
local density ρ and distance indicator δ, where a large ρ ∗ σ indicates the high potential to be the
cluster center. We will explain how we calculate ρ, δ, and incorporate the spatial information in the
following. Specifically, we calculate the local density of each token by:

ρi = exp(−1

k

∑
zj∈K

σ(zi, zj) ∗ s(i, j)) (1)

s(i, j) =

{
(1− α)rank(j)/λ+ α rank(j) ≤ λ

inf rank(j) ≥ λ
(2)

where σ(·, ·) denotes the distance metric, K = KNN(zi) and we apply the Euclidean distance here,
k indicates the number of neighbors used to calculate the local density, s(·, ·) is the introduced spatial
information where α is the hyperparameter to control the strength of the spatial constraint, and λ
is the number of spatial neighbors. s(·, ·) assigns different weights for σ(zi, zj) according to their
spatial relation. Specifically, for tokens that are not λ nearest, s(i, j) assigns the maximum weight for
them while assigning the value of α to 1 for the λ nearest tokens. s(·, ·) encourages spatially adjacent
tokens to be merged first. With the introduced spatial information, the local density of each token
only depends on the λ spatial neighbors, and each cluster at most merges λ tokens. These properties
enable the produced assignments to avoid extreme cases where tokens far away in space are merged
or too many tokens are merged together.

The distance indicator δ is calculated by:

δi =

{
min

j:ρj>ρi

σ(zi, zj) ∗ s(i, j), ∃ρj > ρi

inf, otherwise
(3)

With ρi and δi, we rank tokens according to ρi ∗ δi and select top M tokens as the cluster centers.
The remaining tokens are assigned to the closest cluster centers, and tokens belonging to the same
cluster centers are merged together as the representative token.

Token re-weight. As the produced representative tokens correspond to different numbers of original
tokens (from dozens to only one), there is a distribution gap between the representative tokens and
original tokens. For example, tokens corresponding to large objects may be merged into a few
representative tokens, which results in inconsistent self-attention results. To minimize this gap, we
assign different weights for each representative token during self-attention. In conventional ViTs, the
attention of token i to token j is given as:

aij =
exp(qTi kj/s)∑
i exp(q

T
i kj/s)

(4)
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Original Low Resolution Assignments Original Low Resolution Assignments

Figure 2: Visualization to clustering results. The first and fourth columns display the original image,
the third and sixth columns show the produced assignments, where tokens with the same assignment
are marked with the same color, and the reconstructed low-resolution images are presented in the
second and fifth columns.

where qi is the query of token i, kj is the key of token j and s is the scale constant. To minimize the
differences brought by token reduction, the same token is expected to have similar attention values in
both the original token sequence and the representative token sequence. To this end, we group tokens
belonging to the same representative token in self-attention. As only similar tokens are merged, it can
be assumed that their value of qT k is also similar, and thus Eq. (4) can be written as:

aij =
exp(qTi kj/s)∑
n

∑
i∈mn

qTi kj
≈ mn exp(q

T
n kj/s)∑

n mn exp(qTn kj/s)
(5)

where mn denote the nth representative token. We notice that this trick is also used in [1].

3.3 Visualization

To evaluate the effectiveness of the clustering algorithm, we visualize the assignments and the
reconstructed low-resolution images. Specifically, we apply our spatial-aware density-based clustering
method with 400 cluster centers to the output of the second layer of Segmenter ViT-L, which consists
of 1600 tokens. We also reconstruct the entire image using 400 patches corresponding to the cluster
centers based on the assignments. The visualizations are shown in Fig. 2. Our results indicate that the
reconstructed images have a similar appearance to the original images, suggesting that the produced
assignments are reasonable and that 1/4 of the tokens are capable of capturing most of the shape and
contour information of the original images. Please note that although some regions may appear to
have the same color in the visualization of assignments due to the use of 400 different colors, they
may actually have different assignments. These findings provide strong evidence for the effectiveness
of our proposed method in generating high-quality representative tokens for dense prediction tasks.
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Table 1: GFLOPs, FPS and mIoU of AiluRus under different acceleration ratio. The baseline results
refer to Segmenter [26] ViT-L. The best results are marked in bold.

Methods Slight Mild Extreme

GFLOPs FPS mIoU GFLOPs FPS mIoU GFLOPs FPS mIoU

Results on ADE20k
Baseline 659.0 6.55 51.82 659.0 6.55 51.82 659.0 6.55 51.82
ACT [36] 611.1 6.01 51.69 545.2 6.16 51.24 533.5 6.33 48.03
ToMe [1] 516.2 6.97 51.66 448.7 8.31 50.96 321.3 10.75 47.12
EViT [16] 572.0 7.58 51.52 500.2 8.50 50.37 351.8 12.03 38.89
Expedite [15] 529.8 7.92 51.93 443.8 9.51 51.56 309.4 13.51 47.96
AiluRus 478.8 8.72 52.17 427.8 9.53 51.79 300.8 14.14 50.21
Results on CityScapes
Baseline 995.6 4.20 79.14 995.6 4.20 79.14 995.6 4.20 79.14
ACT [36] 906.3 4.76 79.00 742.7 4.49 78.71 730.4 5.32 75.42
ToMe [1] 760.8 5.20 78.37 651.5 5.50 77.81 448.5 7.84 71.23
EViT [16] 822.7 5.27 79.03 707.2 5.96 78.49 506.2 8.68 68.14
Expedite [15] 840.9 4.82 78.82 691.0 5.89 78.38 529.6 8.02 76.20
AiluRus 710.9 5.88 78.83 669.8 6.65 78.73 461.5 9.36 77.38
Results on Pascal Context
Baseline 338.7 14.7 58.07 338.7 14.7 58.07 338.7 14.7 58.07
ACT [36] 306.7 11.1 58.04 299.0 11.7 57.88 298.3 11.9 56.08
ToMe [1] 269.8 13.9 57.67 236.5 17.0 57.24 172.4 18.2 54.25
EViT [16] 271.7 16.0 57.94 261.0 17.7 56.99 184.4 23.5 48.57
Expedite [15] 251.2 18.2 58.27 201.3 21.6 57.85 161.0 25.0 55.08
AiluRus 241.2 19.8 57.95 224.3 21.9 57.91 157.7 28.4 57.02

Table 2: GFLOPs, FPS and mIoU of AiluRus under different acceleration ratio. The baseline results
refer to Segmenter [26] ViT-B. The best results are marked in bold.

Methods Slight Mild Extreme

GFLOPs FPS mIoU GFLOPs FPS mIoU GFLOPs FPS mIoU

Results on ADE20k
Baseline 124.7 32.2 48.48 124.7 32.2 48.48 124.7 32.2 48.48
ACT [36] 105.1 26.0 48.39 105.1 25.9 47.55 105.1 26.1 44.01
ToMe [1] 100.2 31.2 47.99 88.6 32.4 46.96 66.4 35.6 40.85
EViT [16] 109.4 34.1 48.44 96.5 37.8 48.05 69.4 46.5 38.27
Expedite [15] 110.2 29.8 46.74 97.4 34.6 46.14 87.1 39.4 45.17
AiluRus 62.3 37.9 48.59 50.3 45.9 48.38 40.2 55.3 47.32

4 Experiments
In this section, we begin by comparing AiluRus with recent SOTA methods on semantic segmentation
tasks in Section 4.1 which includes a more detailed comparison with the reminiscent method [15].
Subsequently, in Section 4.2, we evaluate the performance of AiluRus on object detection and instance
segmentation tasks to assess its generalization ability across various dense prediction tasks. Moving
on to Section 4.3, we investigate the applicability of AiluRus in the fine-tuning process to enable
acceleration. Additionally, in Section 4.4, we conduct ablation experiments to study the impact
of different hyper-parameters of AiluRus on the overall performance. Furthermore, we provide
supplementary experiments in the appendix, including the application of AiluRus in expediting
classification tasks and text-based video generation tasks. We also delve into the reasons behind the
superior performance of AiluRus compared to Expedite in these tasks. For more detailed information,
please refer to our appendix.

4.1 Comparison to other methods

We follow the benchmark in [15] to adapt the proposed method to the Segmenter [26] framework
built on ViT [9]. Specifically, we load the parameters of the officially released models and integrate
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Figure 3: The ablation study on the number of clusters with a fixed cluster location equal to 2. All
results are obtained from the officially released checkpoints, and the ablation study on ViT-L and
ViT-B are shown in (a) and (b) respectively.
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Figure 4: The ablation study on the cluster location with a fixed cluster number equal to 400. All
results are obtained from the officially released checkpoints, and the ablation study on ViT-L and
ViT-B are shown in (a) and (b) respectively.

AiluRus into the backbone. The adaptive resolution is applied to the output of a certain intermediate
layer, and the produced representative tokens are processed by the following layers. With the reduced
feature size, the inference speed of models can be significantly improved. We find that the decoder in
Segmenter is robust to the reduced feature size, and thus the resolution is recovered after the decoder
instead of the backbone.

Comparisons to SOTA methods. We conduct experiments to compare AiluRus with recent SOTA
efficient ViT methods across different datasets and architectures. The results are presented in Tab. 1
and Tab. 2. Note that Segmenter [26] only provides ViT-B for the ADE20K dataset. Hence, we
only compare different methods using ViT-B on the ADE20K dataset. We follow the benchmark
set by [15] and report the GFLOPS, FPS, and mIoU under three different acceleration ratios. The
results demonstrate that AiluRus consistently achieves the best trade-off between performance and
efficiency compared to other methods across various datasets and acceleration ratios. The advantages
of AiluRus are particularly evident in the extreme scenario. For instance, as presented in Tab. 1, with
higher FPS, AiluRus outperforms Expedite by 2.25↑ mIoU on ADE20K, 1.18↑ mIoU on CityScapes,
and 1.94↑ mIoU on Pascal Context, indicating that AiluRus is much more robust to high acceleration
ratios. Such a property enables AiluRus achieve more significant acceleration ratios at an acceptable
performance drop.

More comparisons to Expedite. As both AiluRus and Expedite accelerate ViTs by reducing the
feature size at the intermediate layer, they can be further compared under the same configuration.
Specifically, we fix either the number of clusters or the cluster location and vary the other parameters
across different configurations for both ViT-L and ViT-B models. Initially, we fix the cluster location
at 2 and experiment with different numbers of clusters. As illustrated in Fig. 4, AiluRus consistently
outperforms Expedite under all settings. The advantage of AiluRus is especially evident for ViT-B,
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Figure 5: With the officially released ’Segmenter[26] ViT-B’, we illustrate the FPS comparison
between AiluRus and Expedite under the same configuration.
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Figure 6: We run different configurations of AiluRus and Expedit (i.e. the cluster number and cluster
location) and illustrate the optimal mIoU-FPS curve for ViT-L and ViT-B in figure (a) and (b).

where AiluRus maintains performance even with only 484 clusters, while Expedite almost does not
work. Besides the performance, as illustrated in Fig. 5, AiluRus demonstrates higher efficiency than
Expedite under the same configuration. This can be attributed to the lower complexity of AiluRus.
Unlike Expedite, which requires multiple iterations for accurate cluster centers and inevitably involves
high latency, AiluRus selects cluster centers from candidate tokens in one step, making it more
suitable for latency-sensitive scenarios. This advantage becomes more pronounced in accelerating
relatively lightweight architectures.

Next, we fix the number of clusters at 400 and analyze the impact of cluster location. As depicted in
Fig. 3, the performance of AiluRus is close to Expedite when clustering is applied at deeper layers
but significantly exceeds Expedite when clustering is performed at shallower layers. This suggests
that AiluRus can achieve higher acceleration ratios by reducing the feature map size at shallower
layers. In contrast, Expedite suffers serious performance degradation when clustering is applied at
shallower layers, limiting its potential in accelerating ViTs.

To make a more comprehensive comparison between AiluRus and Expedite, we run various con-
figurations for AiluRus andExpedite and illustrate the optimal mIoU-FPS curve in Fig. 6. The
results consistently demonstrate that AiluRus achieves superior trade-offs between performance and
efficiency compared to C, particularly under high acceleration ratios.

4.2 Acceleration for object detection and instance segmentation.

To further validate the generalization of AiluRus in dense prediction tasks, we deploy it on object
detection and instance segmentation tasks to achieve instant acceleration. Since there are no well-
trained models available directly, we follow the setup of CAE and train detection models based on
ViT-L and ViT-B within the Mask-RCNN framework. Specifically, we use the CAE pre-trained
model as initialization and perform 1x schedule training. The training hyper-parameters strictly
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Table 3: The results of AiluRus accelerating Mask-RCNN based on ViT-L.

Methods Location Clusters FPS Object Detection Instance Segmentation

Baseline - - 1.9 54.7 47.8

AiluRus
7 1600 2.9 (↑53%) 53.0 (↓1.7) 46.5 (↓1.3)
9 1764 2.6 (↑37%) 54.0 (↓0.7) 47.2 (↓0.6)

11 1764 2.5 (↑32%) 54.3 (↓0.4) 47.4 (↓0.4)
15 1600 2.3 (↑21%) 54.5 (↓0.2) 47.6 (↓0.2)

Table 4: The results of AiluRus accelerating Mask-RCNN based on ViT-B.

Methods Location Clusters FPS Object Detection Instance Segmentation

Baseline - - 4.4 50.1 44.0

AiluRus
3 1296 6.3 (↑43%) 48.3 (↓1.8) 42.4 (↓1.6)
3 1764 5.9 (↑34%) 49.4 (↓0.7) 43.4 (↓0.6)
6 1444 5.3 (↑20%) 49.8 (↓0.3) 43.9 (↓0.1)
7 1444 5.1 (↑16%) 49.9 (↓0.2) 43.9 (↓0.1)

Table 5: The results of AiluRus accelerating fine-tuning based on ViT-L.

Methods Location Clusters Training Time FPS mIoU

Baseline - - 26.76 6.55 52.16

Expedite [15]

2 400 14.75 (↓45%) 18.44 (↑182%) 48.98 (↓3.18)
2 484 15.37 (↓43%) 17.53 (↑168%) 49.63 (↓2.53)
2 576 15.62 (↓42%) 16.39 (↑150%) 50.41 (↓1.75)
2 900 18.46 (↓31%) 10.77 (↑64%) 50.62 (↓1.54)
8 400 19.19 (↓28%) 12.92 (↑97%) 50.74 (↓1.42)
10 784 21.27 (↓21%) 9.02 (↑38%) 51.98 (↓0.18)

AiluRus

2 400 11.80 (↓56%) 19.24 (↑194%) 50.82 (↓1.34)
2 484 12.28 (↓54%) 17.30 (↑164%) 51.82 (↓0.34)
2 576 12.81 (↓52%) 16.11 (↑146%) 52.07 (↓0.09)
2 900 16.37 (↓39%) 11.24 (↑72%) 52.42 (↑0.26)

follow the CAE setup, and the reproduce results are also close to the officially reported ones
(reproduce vs official: 50.1 vs 50.3 for ViT-B, 54.7 vs 54.5 for ViT-L). Subsequently, we integrate
AiluRus into the well-trained models without fine-tuning, and the hyper-parameters (i.e. α, λ and
k) of AiluRus remained the same as in previous experiments. We vary the cluster location and
the number of clusters to achieve different acceleration ratios, these results are presented in Tab. 3
and Tab. 4. The results demonstrate that AiluRus generalizes well in object detection and instance
segmentation tasks, indicating that AiluRus can effectively expedite various dense prediction tasks
with minor modifications.

4.3 Acceleration for fine-tuning

The growing capacity of ViTs leads to satisfactory performance but remains a major challenge in
fine-tuning the pre-trained models. Since AiluRus does not rely on any specific architecture or
learnable parameter, it can be seamlessly integrated into the fine-tuning phase for acceleration. We
adopt AiluRus to Segmenter[26] and fine-tune the pre-trained model following the official schedule.
Our code base is MMsegmentation [5], and the results reported by MMsegmentation are used as
the baseline. We fine-tune the pre-trained modes on 8 V100-32G and evaluate the FPS on single
V-100 32G. Both ViT-L and ViT-B are evaluated, and the results are reported in Tab. 5 and Tab. 6.
We surprisingly find that AiluRus can largely reduce the overheads in fine-tuning while slightly
degrading performance or even enjoying better performance. Specifically, take ViT-L as example,
AiluRus reduces 52% training time(↓) and improves 146% FPS(↑) with only 0.09 mIoU drop when
remaining 576 clusters. Besides, AiluRus even achieves better performance(↑ 0.26) with improved
FPS(↑ 72%) when remaining 900 clusters.
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Table 6: The results of AiluRus accelerating fine-tuning based on ViT-B.

Methods Location Clusters Training Time FPS mIoU

Baseline - - 6.89 32.2 49.60

Expedite [15]

2 324 6.12 (↓11%) 53.8 (↑67%) 39.66 (↓9.94)
2 400 6.13 (↓11%) 48.2 (↑50%) 40.20 (↓9.40)
2 484 6.16 (↓11%) 43.3 (↑34%) 41.27 (↓8.33)
2 576 6.21 (↓10%) 38.9 (↑21%) 41.94 (↓7.66)
6 400 6.79 (↓1%) 37.7 (↑17%) 47.00 (↓2.60)
7 400 6.94 (↑1%) 35.8 (↑11%) 48.88 (↓0.72)

AiluRus

2 324 4.94 (↓28%) 61.5 (↑91%) 48.06 (↓1.54)
2 400 5.14 (↓25%) 54.1 (↑68%) 49.04 (↓0.56)
2 484 5.33 (↓23%) 49.7 (↑54%) 49.39 (↓0.21)
2 576 5.48 (↓20%) 44.0 (↑37%) 49.57 (↓0.03)

Table 7: Ablation study of the hyper-parameters.

Parameter α λ k
0.6 0.7 0.8 0.9 1.0 0 20 30 50 70 1 2 3 4

mIoU 50.59 50.76 50.75 50.81 50.67 50.47 50.48 50.58 50.81 50.73 50.81 50.45 50.29 50.19

We also run Expedite under the same configurations for a comprehensive comparison. The results in
Tab. 5 and Tab. 6 indicate that Expedite still works worse when reducing feature size at shallower
layers even with fine-tuning. We further run Expedite under official configurations and find that its
performance is obviously improved. However, the acceleration ratios are also significantly decreased
as these configurations reduce feature size at deeper layers. This comparison shows that the advantage
of AiluRus over Expedite is more obvious in accelerating fine-tuning. We attribute this to the good
robustness of AiluRus for feature size reduction and shallower cluster locations. This property enables
AiluRus maintain considerable performance at high acceleration ratios with well-trained models and
compensates for the performance drop during fine-tuning. In contrast, we find that the low tolerance
to shallow clustering layers of Expedite cannot be addressed by fine-tuning, and ultimately results in
limited efficiency improvement.

4.4 Ablation Study

We conducted hyper-parameter ablation experiments on the adaptive resolution strategy presented
in Section 3.2 using the ADE20K semantic segmentation benchmark and the officially released
Segmenter ViT-L/16 [26] checkpoint. For the neighbor weight hyper-parameter α, we searched its
value from 0.6 to 1.0 (1.0 indicates disabling this hyper-parameter), and the results showed that
α = 0.9 performed best. Similarly, we searched the value of λ from 0 to 70 (0 indicates not using
spatial information), and the results showed that λ = 50 performed best. The ablation results of k
indicated that k = 1, i.e., choosing the closest token to calculate the local density, performed best.

5 Conclusion

The emergence of ViTs has empowered numerous vision tasks but also brought increasing overheads
in fine-tuning and inference models. In this paper, we proposed a plug-in strategy, called AiluRus ,
that can be integrated into well-trained models to immediately accelerate inference without any
fine-tuning or to pre-trained models to expedite both fine-tuning and inference. Our experiments
demonstrated the advantages of AiluRus over previous methods, particularly in cases with high
acceleration ratios. For example, with Segmenter ViT-L [26], AiluRus could accelerate FPS by
45% for the well-trained model with a negligible performance drop (↓ 0.03). For the pre-trained
model, AiluRus could reduce fine-tuning time by 52% and accelerate FPS by 146% with a minor
performance drop (↓ 0.09). These impressive results lead us to believe that current dense prediction
tasks contain significant redundancy that unnecessarily benefits performance and can be removed for
significant efficiency improvements. We hope that this consideration could inspire future work in the
design of dense prediction tasks.
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APPENDIX

A Statistics of Assignments.

The produced assignments of each token play a crucial role in the trade-off between performance and
throughput. Therefore, we present the assignment statistics in Fig. 7a, where we deploy AiluRus on
Segmenter ViT-L and perform clustering on the output of the second layer. The produced assignments
are collected across the ADE20K [37] validation set. For a given cluster center, the number of tokens
belonging to it is denoted by x, while y1(x) and y2(x) indicate the percentage or the number of
cluster centers that dominate x tokens. We run this configuration with varying numbers of cluster
centers and illustrate their corresponding y1(x) and y2(x) in Fig. 7a.
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Figure 7: The statistics of the assignments. The horizontal axis indicates how many tokens each
cluster center has. The vertical axis denotes the percentages and amount of a certain kind of cluster
centers in (a) and (b) respectively.

The results reveal that cluster centers containing only one token are the most in all cases, and their
percentage increases with an increase in the number of cluster centers. As shown in Fig. 7b, the
number of cluster centers that dominate more tokens is similar for different total numbers of cluster
centers. This suggests that the assignments of the low-resolution regions (dominating more tokens)
are similar across different total numbers of cluster centers and the extra cluster centers are assigned
to the high-resolution areas. This phenomenon justifies AiluRus because the redundant regions within
an image remain fixed, while the areas containing details require more tokens to describe them.
Therefore, when increasing the number of cluster centers, the additional cluster centers should be
assigned to high-resolution regions to reduce the error.

B Acceleration for Classification

Table 8: The results of AiluRus accelerating classification tasks based on DEiT-B [27].

Methods Location Clusters Throughput (imgs/s) FLOPs (G) Accs

Baseline - - 268.2 17.7 81.8

Expedite [15]
2 121 390.4 (↑46%) 12.1 (↓32%) 78.1 (↓3.7)
4 144 314.3 (↑17%) 14.7 (↓17%) 79.3 (↓2.5)
6 144 299.7 (↑12%) 15.5 (↓12%) 81.0 (↓0.8)

AiluRus
0 121 419.8 (↑57%) 11.4 (↓36%) 80.4 (↓1.4)
0 144 350.5 (↑31%) 13.3 (↓25%) 81.3 (↓0.5)
4 144 313.7 (↑17%) 14.9 (↓16%) 81.7 (↓0.1)

While we focus on dense prediction tasks in this paper, AiluRus can be easily integrated into
classification tasks for instant acceleration. Specifically, we take the typical ImageNet [7] supervised
pre-trained DEiT-B as the base model and integrate AiluRus into it without fine-tuning. We run the
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same configurations for Expedite [15] in comparison. As presented in Tab. 8, AiluRus consistently
outperforms Expedite in various settings.

C Acceleration for Video Generation

Raw

Ailurus

Figure 8: The frames of generated videos. The frames in the first row are generated using the original
ControlVideo method [35], while the frames in the second row are generated by integrating AiluRus
with ControlVideo.

To demonstrate the versatility of AiluRus, we seamlessly integrate it into the ControlVideo [35]
method for text-based video generation. Specifically, we incorporate AiluRus into the StableDiffusion
model [22] to reduce the size of intermediate features and execute the model using the prompt "A
man wanders on the ocean" with depth condition. We also run the original model with the same
configuration for comparison. As shown above, AiluRus produces similar content to the original
model. However, AiluRus accomplishes this task in only half the time required by the original model
(2:11 vs 4:24). This observation highlights the capability of AiluRus to instantaneously accelerate
large models with negligible overheads, which is of critical importance for the recent emergence of
large models.

D Why AiluRus outperforms Expedite?

As described in the main text, AiluRus exhibits significant performance superiority over Expedite[15],
particularly when it comes to token reduction at shallow layers. Shallow layer token reduction poses
more significant challenges due to increased information loss. In order to validate this claim, we
conduct detailed experiments to explore the intrinsic mechanism.

i) The reconstruction errors of AiluRus and Expedite. With the frozen model, the reconstruction
errors between the output features and the original features are highly correlated with performance. To
provide a comprehensive comparison, we employ various configurations of AiluRus and Expedite on
ViT-B and ViT-L models, respectively, and calculate the cosine similarity between the reconstructed
features and the original features. The results presented in Tab. 9 and Tab. 10 demonstrate that
AiluRus generates output features that are more similar to the original features compared to Expedite
across different settings, providing a explanation for the superior performance of AiluRus.

Table 9: The reconstruction similarity comparison between AiluRus and Expedite over ViT-L. X × X
indicates the number of clusters.

Layer Method 20×20 22×22 24×24 26×26
mIoU Similarity mIoU Similarity mIoU Similarity mIoU Similarity

4 AiluRus 47.36 0.8401 48.84 0.8699 50.05 0.8941 50.56 0.9143
Expedite 42.88 0.7706 44.26 0.7926 47.19 0.8308 47.74 0.8504

6 AiluRus 48.80 0.8724 49.47 0.8967 50.45 0.9164 50.98 0.9326
Expedite 45.32 0.8162 46.05 0.8304 47.80 0.8626 48.37 0.8789

8 AiluRus 49.97 0.9039 50.39 0.9213 51.06 0.9356 51.37 0.9480
Expedite 49.73 0.8934 50.03 0.9048 50.77 0.9219 51.06 0.9324

ii) The reconstruction errors for different cluster locations. We further observe that AiluRus ex-
hibits a more pronounced advantage in shallow clustering, while Expedite’s performance deteriorates
significantly. Since both AiluRus and Expedite perform clustering only once and reuse the clustering
results at the output layer, it is evidently easier to perform clustering in deeper layers compared to
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Table 10: The reconstruction similarity comparison between AiluRus and Expedite over ViT-B. X ×
X indicates the number of clusters.

Layer Method 18×18 20×20 22×22 24×24
mIoU Similarity mIoU Similarity mIoU Similarity mIoU Similarity

2 AiluRus 46.45 0.8971 47.12 0.9291 47.70 0.9436 48.26 0.9602
Expedite 4.32 0.2882 5.21 0.3342 6.19 0.3652 7.57 0.4065

4 AiluRus 47.69 0.9339 48.27 0.9503 48.66 0.9636 48.88 0.9746
Expedite 12.66 0.4714 15.53 0.5218 18.03 0.5594 21.57 0.6017

6 AiluRus 48.19 0.9527 48.83 0.9642 48.90 0.9736 48.99 0.9817
Expedite 44.07 0.8782 45.17 0.8972 45.44 0.9068 46.14 0.9161

Table 11: The reconstruction similarity at different layers.

Methods 2 3 4 5 6 7 8 9 10 11
AiluRus 0.9210 0.8959 0.8863 0.8906 0.8972 0.9092 0.9238 0.9312 0.9361 0.9291
Expedite 0.7334 0.6228 0.5524 0.4824 0.4293 0.3694 0.3778 0.4219 0.4433 0.3342

Table 12: The probability of preserving token pair similarity for different similarity intervals.

Intervals 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Probability 0.0137 0.1246 0.2179 0.1439 0.0629 0.0347 0.0255 0.0193 0.0212 0.9903

shallow layers. To investigate the reasons behind the performance gap in shallow clustering, we
analyze a representative scenario (ViT-B, layer index=2, num cluster=20*20) and calculate the feature
reconstruction quality in subsequent layers. The results presented in Tab. 11 indicate that Expedite
experiences increasingly severe reconstruction distortion during the forward pass, while AiluRus
maintains reconstruction quality across layers. This elucidates the poor performance of Expedite
when applied in shallow layers.

iii) Why AiluRus has lower reconstruction errors and maintains its advantage across layers?
We delve into the advantages of AiluRus over Expedite in terms of the intrinsic mechanism. Both
methods aim to reduce the number of tokens while preserving the relationships between the retained
tokens and the reduced ones, and subsequently utilize the preserved relationships for recovery at
the output layer. The quality of recovery determines the overall performance, and it depends on
whether the preserved relationships can be maintained after passing through several Transformer
blocks. Expedite and AiluRus differ in the nature of the relationship they aim to preserve.

Expedite employs K-means clustering to generate super-pixel features and aims to preserve the
relationship between the super-pixel features and original tokens. Since the recovery for each token
relies on several super-pixel features, the recorded relationships become complex, and the similarity
between the removed token and corresponding super-pixel features is relatively low. In contrast,
AiluRus selects representative tokens from the original ones and aggregates the remaining tokens
into the nearest representative tokens, which allows AiluRus to recover tokens only relying on the
corresponding aggregated token. Therefore, the relationship preserved by AiluRus is simpler, and the
similarity between the removed token and the aggregated token is higher. To empirically verify this,
we conducted a study on the similarity between the original tokens and the super-pixel features in
Expedite, as well as the similarity between the aggregated tokens and the original tokens in AiluRus
during the inference process. Specifically, we run Expedite and AiluRus with the same configuration
and report the average similarity over the ADE20K validation set. The results confirm that the average
similarity in Expedite is 0.6728, while in AiluRus, it is 0.9210, aligning with our expectations.

We further investigate the probability of token pairs in different similarity intervals to maintain
their respective intervals at the output end. A higher probability indicates robust preservation of the
relationship within that interval, while a lower probability suggests a higher propensity for distortion.
Experiments are conducted on the entire validation set of ade20k, and the results are recorded in
Tab. 12. The results demonstrate that token pairs with a similarity between 0.9 and 1.0 have a
probability of over 99% of maintaining this similarity at the output layer. However, token pairs in
other similarity intervals suffer from significant similarity distortion. This finding elucidates why
Expedite experiences serious distortion while AiluRus consistently achieves low reconstruction errors
across layers.
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E Latency Analysis

As our motivation is to expedite vision transformers, it is necessary to ensure that the operations
introduced by AiluRus are sufficiently efficient, avoiding significant latency that slows down the
whole model. To investigate the latency brought by AiluRus , we decompose the running time of
models into three components, i.e., time for transformer blocks, time for clustering, and time for
recovering, and compare the elapsed time of Expedite and AiluRus. For fair comparisons, we run
them under the same configuration over ViT-L and ViT-B respectively. For ViT-L, we start clustering
at the 4-th layer and set the number of clusters as 576. For ViT-B, we start clustering at the 2-nd
layer and set the number of clusters as 400. We report the average latency of each component on the
ADE20K validation set in Tab. 13.

Table 13: The latency analysis. The percentage in parentheses indicates the percentage of latency
occupied by the current operation.

Methods Total (ms) blocks (ms) clustering (ms) recovering (ms) mIoU

Results on ViT-L
Expedite [15] 31.4 26.5 (84.4%) 3.9 (12.4%) 1.0 (3.2%) 47.19
AiluRus 26.6 25.3 (95.1%) 1.2 (4.5%) 0.09 (0.3%) 50.27
Results on ViT-B
Expedite [15] 11.1 8.4 (75.7%) 2.1 (18.9%) 0.6 (5.4%) 5.21
AiluRus 10.0 8.7 (87.0%) 1.2 (12.0%) 0.08 (0.8%) 47.35

The analysis results indicate that AiluRus exhibits significantly lower clustering and recovery costs
compared to Expedite. As we aforementioned, Expedite replaces raw tokens with super-pixel features
for forward passes. Consequently, Expedite relies on multiple iterations to achieve sufficiently accu-
rate super-pixel features and necessitates the computation of reconstruction coefficients for recovering
the original features. Thus, Expedite consumes more time in both clustering and reconstruction. In
contrast, AiluRus directly operates tokens in the original feature space and thus could efficiently
generate token assignments in a single iteration. The produced assignments can be directly used for
subsequent reconstruction, thereby avoiding additional recovery costs.

F Prediction Visualizations

Ailurus

Original

Figure 9: The prediction visualizations of the original Segmenter ViT-L model and the AiluRus
integrated one.

We conducted a comparative analysis of the prediction results between AiluRus and the original
model in order to elucidate the factors contributing to the performance improvement of AiluRus in
Tab. 5. Specifically, we visualize the predictions generated by both AiluRus and the original models
over randomly selected ADE20K [37] images. As illustrated in the figure, the predictions generated
by AiluRus exhibit enhanced smoothness, thereby avoiding undesirable predictions such as voids or
spikes. Consequently, in certain scenarios, AiluRus demonstrates superiority over the original model.
This improved smoothness can be attributed to the application of the adaptive resolution strategy. By
introducing a smoothness constraint in regions with low information density, such as backgrounds,
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this strategy effectively incorporates a prior for generating smooth predictions in these areas. When
retained an adequate number of tokens, this prior aligns well with the true information distribution of
the images, leading to performance improvements.

G TCFormer for Dense Prediction.

Both TCFormer [32] and AiluRus employ DPC clustering. However, they have very different
motivations and implementations. TCFormer is designed for human-centric tasks while AiluRus
focuses on expediting dense prediction tasks. In this section, we show that it is untrivial to apply
TCFormer for dense prediction tasks.

Table 14: The latency analysis for TCFormer and AiluRus.

Method Total (ms) blocks (ms) extra (ms) mIoU

TCFormer 33.8 8.6 (25%) 25.2 (75%) 0.14
AiluRus 10.0 8.7 (87%) 1.3 (13%) 47.35

Table 15: The performance comparison between AiluRus and ViT-CTM.

Method Num clusters FPS mIoU

Baseline 1024 32.2 49.60
ViT-CTM 410 (1024 * 0.4) 29.1 (↓ 10%) 33.48 (↓ 16.12)
AiluRus 400 53.7 (↑ 67%) 49.04 (↓ 0.56)

Initially, we intend to integrate TCFormer into the mmseg framework for semantic segmentation. We
carefully implement the TCFormer under the mmseg framework according to the officially released
code. However, we find that TCFormer is an extremely computationally intensive backbone. Even
with its lightest configuration, the FPS for inferring ADE20K images at a resolution of 512x512
under the Segmenter framework is only 2.03. In comparison, a typical ViT-Base model achieves an
FPS of 32.2, while AiluRus can surpass 50 without sacrificing performance. Upon analyzing the
TCFormer code, we discover that it heavily relies on sparse matrix multiplication. These operations
may not have high FLOPs yet introducing significant latency. Therefore, it is nearly impossible and
impractical to apply TCFormer for dense prediction tasks given its high computational complexity.

Furthermore, we attempt to integrate the core TCFormer design, the CTM module, into ViT for
acceleration. This would allow us to compare the performance of TCFormer with AiluRus using the
same backbone and initialization. However, we encountered the same issue of excessive complexity
for the CTM module. In a similar setup, the time required for the CTM module to execute is even
higher than the inference time of the model itself. The details are presented in Tab. 14:

Despite these issues, we proceeded to train the ViT model with the integrated CTM module in
the Segmenter framework for comparison with AiluRus. We followed the instructions provided in
the TCFormer paper to set up the CTM module and trained ViT-CTM with the same optimization
parameters and initialization as AiluRus. However, as demonstrated in Tab. 15, we find that even with
only the integration of CTM into ViT, it raises a significant negative impact on training and causes
very poor performance. Thus, it is untrivial to integrate the CTM module into ViTs for acceleration.

In conclusion, TCFormer is specifically designed for human-centric tasks, and adapting it to dense
prediction tasks poses significant challenges. Additionally, TCFormer exhibits high computational
complexity, rendering it unsuitable for accelerating ViTs. In contrast, AiluRus can be seamlessly
integrated into well-trained models, providing immediate acceleration or expediting training without
the need for additional hyper-parameter adjustments. These two methods differ significantly in terms
of motivation, implementation, and application. AiluRus stands out for its flexibility and lightweight
nature, enabling its deployment in various tasks that TCFormer is incapable of addressing.
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