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1 Theoretical Development

1.1 All Proofs

Theorem 1.1. (Theorem 3.1 in the main paper) Consider the following optimization problem

min
Q<<P

{λLS (Q) +KL (Q,P)} , (1)

where we search over Q absolutely continuous w.r.t. P and KL (·, ·) is the Kullback-Leibler diver-
gence. This optimization has a closed-form optimal solution Q∗ with the density

q∗ (θ) ∝ exp {−λLS (θ)} p(θ),

which is exactly the standard posterior QS with the density q(θ | S).

Proof. We have

λLS (Q) +KL (Q,P) = λ

∫
LS (θ) q (θ) dθ +

∫
q(θ) log

q (θ)

p (θ)
dθ.

The Lagrange function is as follows

L (q, α) = λ

∫
LS (θ) q (θ) dθ +

∫
q(θ) log

q (θ)

p (θ)
dθ + α

(∫
q(θ)dθ − 1

)
.

Take derivative w.r.t. q (θ) and set it to 0, we obtain

λLS (θ) + log q (θ) + 1− log p (θ) + α = 0.

q (θ) = exp {−λLS (θ)} p (θ) exp {−α− 1} .

q (θ) ∝ exp {−λLS (θ)} p (θ) .

Lemma 1.2. Assume that the data space X , the label space Y , and the model space Θ are compact
sets. There exist the modulus of continuity ω : R+ → R+ with limt→0+ ω (t) = 0 such that
|ℓ (fθ (x) , y)− ℓ (fθ′ (x) , y)| ≤ ω (∥θ − θ′∥) ,∀x ∈ X , y ∈ Y .
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Proof. The loss function ℓ (fθ (x) , y) is continuous on the compact set X × Y × Θ, hence it is
equip-continuous on this set. For every ϵ > 0, there exists δx, δy, δθ > 0 such that

∀ ∥x′ − x∥ ≤ δx, ∥y′ − y∥ ≤ δy, ∥θ′ − θ∥ ≤ δθ,

we have |ℓ (fθ′ (x′) , y′)− ℓ (fθ′ (x) , y)| ≤ ϵ.

Therefore, for all ∥θ′ − θ∥ ≤ δθ, we have

|ℓ (fθ (x) , y)− ℓ (fθ′ (x) , y)| ≤ ϵ,∀x, y.

This means that the family {ℓ (fθ (x) , y) : x ∈ X , y ∈ Y} is equi-continuous w.r.t. θ ∈ Θ. This
means the existence of the common modulus of continuity ω : R+ → R+ with limt→0+ ω (t) =
0.

Definition 1.3. Given ϵ > 0, we say that Θ is ϵ-covered by a set Θ′ if for all θ ∈ Θ, there exists
θ′ ∈ Θ′ such that ∥θ′ − θ∥ ≤ ϵ. We define N (Θ, ϵ) as the cardinality set of the smallest set Θ′ that
covers Θ.
Lemma 1.4. Let R = maxθ∈Θ ∥θ∥2 < ∞ and k is the dimension of Θ. We can upper-bound the
coverage number as

N (Θ, ϵ) ≤

(
2R

√
k

ϵ

)k

.

Proof. The proof can be found in Chapter 27 of [6].

By choosing ϵ = 1

n
1
2k

, we obtain

N
(
Θ, n− 1

2k

)
≤
(
2R

√
k
)k √

n.

However, solving the optimization problem (OP) for the general data-label distribution D is generally
intractable. To make it tractable, we find its upper-bound which is relevant to the sharpness as shown
in the following theorem.
Theorem 1.5. (Theorem 3.2 in the main paper) Assume that Θ is a compact set. Given any δ ∈ [0; 1],
with the probability at least 1− δ over the choice of S ∼ Dn, for any distribution Q, we have

LD (Q) ≤ Eθ∼Q

[
max

θ′:∥θ′−θ∥≤ρ
LS (θ′)

]
+ LS (Q) +

1√
n
+ 2ω

(
1

n
1
2k

)

+

√√√√k
(
1 + log

(
1 + 2R2

ρ2

(
1 + 2 log

(
2R

√
k
)
+ 2

k log n
)))

+ 2 log n
δ

4(n− 1)
,

where we assume that LD (Q) = Eθ∼Q [LD (θ)] ≤ Eθ∼Q
[
Eϵ∼N (0,σI) [LD (θ + ϵ)]

]
with σ =

ρ

k1/2

(
1+

√
log(N2n)

k

) and N = N
(
Θ, n− 1

2k

)
, k is the number of parameters of the models, n = |S|,

R = maxθ∈Θ ∥θ∥, and ω : R+ → R+ is a function such that limt→0+ ω (t) = 0.

Proof. Given ϵ = 1

n
1
2k

, we denote Θ′ =
{
θ
′

1, . . . , θ
′

N

}
where N = N

(
Θ, n− 1

2k

)
≤(

2R
√
k
)k √

n as the ϵ-covered set of Θ. We first examine a discrete distribution

Q =

m∑
i=1

πiδθi .

Without lossing the generalization, we can assume that
∥∥∥θ′

i − θi

∥∥∥ ≤ ϵ,∀i = 1, . . . ,m. We note that

θ
′

1, . . . .θ
′

m can be repeated if m > N . Using Lemma 1.2, let ω(·) be the modulus of continuity
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of ℓ (fθ (x) , y) such that |ℓ (fθ (x) , y)− ℓ (fθ (x) , y)| ≤ ω (∥θ − θ′∥) ,∀x, y and limt→0 ω (t) = 0.
This implies that∣∣∣ℓ (fθi (x) , y)− ℓ

(
fθ′

i
(x) , y

)∣∣∣ ≤ ω (ϵ) = ω

(
1

n
1
2k

)
,∀x, y, i = 1, . . . ,m.

We consider the distribution Q̄ =
∑m

i=1 πiN
(
θ
′

i, σI
)

. According to the McAllester PAC-Bayes

bound, with the probability 1− δ over the choices of S ∼ Dn, for any distribution P̄, we have

LD
(
Q̄
)
≤ LS

(
Q̄
)
+

√
KL

(
Q̄, P̄

)
+ log n

δ

2(n− 1)
.

Let θ∗ = argmax
1≤i≤m

∥∥∥θ′

i

∥∥∥. We consider the distribution P̄ = N (0, σP)where σ2
P = c exp

{
1−j
k

}
with

c = σ2
(
1 + exp

{
4n
k

})
and j =

⌊
1 + k log c

σ2+
∥θ∗∥2

k

⌋
=

⌊
1 + k log

σ2(1+exp{ 4n
k })

σ2+
∥θ∗∥2

k

⌋
. It follows

that

σ2 +
∥θ∗∥2

k
≤ σP ≤ exp

{
1

k

}(
σ2 +

∥θ∗∥2

k

)
.

We have

KL
(
N
(
θ
′

i, σI
)
, P̄
)
=

1

2

kσ2 +
∥∥∥θ′

i

∥∥∥2
σ2
P

− k + k log

(
σ2
P

σ2

) .

KL
(
N (θ∗, σI) , P̄

)
= max

i
KL

(
N
(
θ
′

i, σI
)
, P̄
)
.

KL
(
Q̄, P̄

)
≤

m∑
i=1

πiKL
(
N
(
θ
′

i, σI
)
, P̄
)
≤ KL

(
N (θ∗, σI) , P̄

)
.

We now bound KL
(
N (θ∗, σI) , P̄

)
KL

(
N (θ∗, σI) , P̄

)
=

1

2

[
kσ2 + ∥θ∗∥2

σ2
P

− k + k log

(
σ2
P

σ2

)]

≤1

2

kσ2 + ∥θ∗∥2

σ2 + ∥θ∗∥2

k

− k + k log

exp
{

1
k

}(
σ2 + ∥θ∗∥2

k

)
σ2


≤k

2

(
1 + log

(
1 +

∥θ∗∥2

kσ2

))
.

Therefore, with the probability 1− δ, we reach

LD
(
Q̄
)
≤ LS

(
Q̄
)
+

√√√√k
(
1 + log

(
1 + ∥θ∗∥2

kσ2

))
+ 2 log n

δ

4(n− 1)
.

Eθ∼
∑m

i=1 πiN(θ′
i ,σI)

[LD (θ)] ≤ Eθ∼
∑m

i=1 πiN(θ′
i ,σI)

[LS (θ)] +

√√√√k
(
1 + log

(
1 + ∥θ∗∥2

kσ2

))
+ 2 log n

δ

4(n− 1)
.

≤
m∑
i=1

πiEϵi∼N (0,σI)

[
LS

(
θ
′

i + ϵi

)]
+

√√√√k
(
1 + log

(
1 + ∥θ∗∥2

kσ2

))
+ 2 log n

δ

4(n− 1)
.
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Note that

Eθ∼N (θi,σI) [LD (θ)]− Eθ∼N(θ′
i ,σI)

[LD (θ)] =

∫ [
LD (θi + ϵi)− LD

(
θ
′

i + ϵi

)]
N (ϵi | 0, σI) dϵi

≤
∫

ω

(
1

n
1
2k

)
N (ϵi | 0, σI) dϵi = ω

(
1

n
1
2k

)
.

Eθ∼N (θi,σI) [LD (θ)] ≤ Eθ∼N(θ′
i ,σI)

[LD (θ)] + ω

(
1

n
1
2k

)
.

m∑
i=1

πiEθ∼N (θi,σI) [LD (θ)] ≤
m∑
i=1

πiEθ∼N(θ′
i ,σI)

[LD (θ)] + ω

(
1

n
1
2k

)
,

therefore we have

Eθ∼
∑m

i=1 πiN (θi,σI) [LD (θ)] ≤
m∑
i=1

πiEϵi∼N (0,σI)

[
LS

(
θ
′

i + ϵi

)]

+

√√√√k
(
1 + log

(
1 + ∥θ∗∥2

kσ2

))
+ 2 log n

δ

4(n− 1)
+ ω

(
1

n
1
2k

)
.

Using the assumption

LD (Q) = Eθ∼Q [LD (θ)] ≤ Eθ∼Q
[
Eϵ∼N (0,σI) [LD (θ + ϵ)]

]
= Eθ∼

∑m
i=1 πiN (θi,σI) [LD (θ)] ,

we obtain

LD (Q) ≤
m∑
i=1

πiEϵi∼N (0,σI) [LS (θi + ϵi)]

+

√
k
(
1 + log

(
1 + R2

kσ2

))
+ 2 log n

δ

4(n− 1)
+ ω

(
1

n
1
2k

)
.

Because ϵi ∼ N (0, σI), ∥ϵi∥2 follows the Chi-squared distribution. Therefore, we have for any
i ∈ [m]

P
(
∥ϵi∥2 − kσ2 ≥ 2σ2

√
kt+ 2tσ2

)
≤ exp(−t),∀t.

P
(
max
i∈[m]

∥ϵi∥2 − kσ2 ≥ 2σ2
√
kt+ 2tσ2

)
≤ N exp(−t),∀t.,

since the cardinality of
∣∣∣{θ′

1, . . . ., θ
′

m}
∣∣∣ cannot exceed N .

P
(
max
i∈[m]

∥ϵi∥2 − kσ2 < 2σ2
√
kt+ 2tσ2

)
> 1−N exp(−t),∀t.

By choosing t = log
(
Nn1/2

)
, with the probability at least 1− 1√

n
, we have for all i ∈ [m]

∥ϵi∥2 < σ2k

1 +
log
(
N2n

)
k

+ 2

√
log
(
Nn1/2

)
k

 ≤ σ2k

(
1 +

√
log (N2n)

k

)2

.

By choosing σ = ρ

k1/2

(
1+

√
log(N2n)

k

) , with the probability at least 1− 1√
n

, we have for all i ∈ [m]

∥ϵi∥ < ρ.
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We now derive

LD (Q) ≤
m∑
i=1

πi

((
1− 1√

n

)
max
∥ϵi∥≤ρ

LS

(
θ
′

i + ϵi

)

+
1√
n
+

√
k
(
1 + log

(
1 + R2

kσ2

))
+ 2 log n

δ

4(n− 1)
+ ω

(
1

n
1
2k

)
≤
(
1− 1√

n

) m∑
i=1

πi max
∥ϵi∥≤ρ

LS

(
θ
′

i + ϵi

)
+

1√
n

+

√√√√√√k

(
1 + log

(
1 + R2

ρ2

(
1 +

√
log(N2n)

k

)2
))

+ 2 log n
δ

4(n− 1)
+ ω

(
1

n
1
2k

)
≤

m∑
i=1

πi max
∥ϵi∥≤ρ

LS

(
θ
′

i + ϵi

)
+

1√
n

+

√√√√k
(
1 + log

(
1 + 2R2

ρ2

(
1 + log(N2n)

k

)))
+ 2 log n

δ

4(n− 1)
+ ω

(
1

n
1
2k

)
≤

m∑
i=1

πi max
∥ϵi∥≤ρ

LS

(
θ
′

i + ϵi

)
+

1√
n

+

√√√√k
(
1 + log

(
1 + 2R2

ρ2

(
1 + 2 log

(
2R

√
k
)
+ 2

k log n
)))

+ 2 log n
δ

4(n− 1)
+ ω

(
1

n
1
2k

)
.

Note that for all i ∈ [m]

max
∥ϵi∥≤ρ

LS

(
θ
′

i + ϵi

)
≤ max

∥ϵi∥≤ρ
LS (θi + ϵi) + ω

(
1

n
1
2k

)
,

therefore, we reach

LD (Q) ≤
m∑
i=1

πi max
∥ϵi∥≤ρ

LS (θi + ϵi) +
1√
n

+

√√√√k
(
1 + log

(
1 + 2R2

ρ2

(
1 + 2 log

(
2R

√
k
)
+ 2

k log n
)))

+ 2 log n
δ

4(n− 1)
+ 2ω

(
1

n
1
2k

)
≤ LS (Q) +

1√
n
+ 2ω

(
1

n
1
2k

)

+

√√√√k
(
1 + log

(
1 + 2R2

ρ2

(
1 + 2 log

(
2R

√
k
)
+ 2

k log n
)))

+ 2 log n
δ

4(n− 1)
.

For any distribution Q, we approximate Q by its empirical distribution

Qm =
1

m

m∑
i=1

δθi ,

which weakly converges to Q when m → ∞. By using the achieved results for Qm and taking
limitation when m → ∞, we reach the conclusion.
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Theorem 1.6. (Theorem 3.3 in the main paper) The optimal solution the OP in is the sharpness-aware
posterior distribution QSA

S with the density function qSA(θ|S):

qSA(θ|S) ∝ exp

{
−λ max

θ′:∥θ′−θ∥≤ρ
LS (θ′)

}
p (θ)

= exp {−λLS (s (θ))} p (θ) ,

where we have defined s (θ) = argmax
θ′:∥θ′−θ∥≤ρ

LS (θ′).

Proof. We have

λEθ∼Q

[
max

θ′:∥θ′−θ∥≤ρ
LS (θ′)

]
+KL (Q,P) = λ

∫
LS (s (θ)) q (θ) dθ +

∫
q(θ) log

q (θ)

p (θ)
dθ.

The Lagrange function is as follows

L (q, α) = λ

∫
LS (s(θ)) q (θ) dθ +

∫
q(θ) log

q (θ)

p (θ)
dθ + α

(∫
q(θ)dθ − 1

)
.

Take derivative w.r.t. q (θ) and set it to 0, we obtain

λLS (s(θ)) + log q (θ) + 1− log p (θ) + α = 0.

q (θ) = exp {−λLS (s(θ))} p (θ) exp {−α− 1} .

q (θ) ∝ exp {−λLS (s(θ))} p (θ) .

1.2 Technicalities of the baselines and the corresponding flat versions

In what follows, we present how the baselines used in the experiments can be viewed as variational
and MCMC approaches and incorporate our sharpness-aware technique.

Bayesian deep ensemble [3]: We consider the approximate posterior qϕ = 1
K

∑K
k=1 δθk where δ

is the Dirac delta distribution as a uniform distribution over several base models θ1:K . Considering
the prior distribution p(θ) = N (0, I), we have the following OPs for the non-flat and flat versions.

Non-flat version:

min
θ1:K

{
Eθk∼qϕ [λLS (θk)] +KL

(
1

K

K∑
k=1

δθk ,N (0, I)

)}
,

where KL
(

1
K

∑K
k=1 δθk ,N (0, I)

)
= − 1

K

∑K
k=1 logN (θk | 0, I) + const, leading to the L2 regu-

larization terms.

Flat version:

min
θ1:K

{
Eθk∼qϕ

[
λ max

θ′:∥θ′−θk∥≤ρ
LS (θ′)

]
+KL

(
1

K

K∑
k=1

δθk ,N (0, I)

)}
.

MC-Dropout [2]: As shown in [2], the MC-dropout can be viewed as a BNN with the approximate
posterior qϕ = δϕ where ϕ is a fully-connected base model without any dropout and the prior
distribution p(θ) = N (0, I). The KL(qϕ, p(θ)) can be approximated which turns out to be a
weighted L2 regularization where the weights are proportional to the keep-prob rates at the layers.
The main term Eθ∼qϕ [λLS (θ)] can be interpreted as applying the dropout before minimizing the
loss. For our flat version, the main term is Eθ∼qϕ

[
λmaxθ′:∥θ′−θ∥≤ρ LS (θ′)

]
.
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BNNs with Stochastic Gradient Langevin Dynamics (SGLD) [7]: For SGLD, we sample one or
several particle models directly from the posterior distribution q(θ | S) for the non-flat version and
from the SA-posterior distribution qSA(θ | S) for the flat version. For the non-flat version, the update
is similar to the mini-batch SGD except that we add small Gaussian noises to the particle models. For
our flat version, we first compute the perturbed model θa for a given particle model θ and use the
mini-batch SGD update with the gradient evaluated at θa together with small Gaussian noises.

SWAG [4]: We consider SWAG as an MCMC approach, where we keep a trajectory of particle
models using SWA. Additionally, the covariance matrices are determined based on this trajectory
to form an approximate Gaussian posterior. In the corresponding flat version to this approach, we
employ SWA to sample from the SA (Sharpness-Aware) posterior. Specifically, we first calculate the
perturbed model θa based on the current model θ and then employ mini-batch SGD updates with the
gradient evaluated at model θa. Finally, we update the final model using the SWA strategy.

2 Additional experiments

2.1 Comparison with bSAM method

We conduct experiments to compare our flat BNN with bSAM [5] on Resnet18, the results are shown
in Table 1. The authors of bSAM explored the relationship between SAM and BNN and proposed a
combination of SAM and Adam to optimize the mean of parameters in BNN networks while keeping
the variance fixed. The results clearly indicate that our flat BNN outperforms bSAM in most metric
scores. Here we note that we are unable to evaluate bSAM on the architectures used in Tables 1 and 2
in the main paper because the authors did not release the code. Instead, we run our methods with the
setting mentioned in the bSAM paper.

Table 1: Classification score on Resnet18

CIFAR-10 CIFAR-100
Method ACC ↑ NLL ↓ ECE ↓ ACC ↑ NLL ↓ ECE ↓
bSAM 96.15 0.1200 0.0049 80.22 0.7000 0.0310
F-SWAG-Diag 96.56 0.1047 0.0037 80.70 0.7012 0.0227
F-SWAG 96.58 0.1045 0.0045 80.74 0.7024 0.0243

2.2 Full result of Out-of-distribution prediction

In Section 4.2 of the main paper, we provide a comprehensive analysis of the performance concerning
various corruption groups, including noise, blur, weather conditions, and digital distortions. We
present the detailed results for each corruption type in Table 2, providing a deeper understanding of
the impact of these corruptions on the model’s performance. On average, flat BNNs outperform their
non-flat counterparts, especially on ECE with a notable margin. These findings further emphasize the
effectiveness of flat BNNs in enhancing robustness and generalization against various corruptions.

2.3 Additional ablation studies

Comparison of Hessian eigenvalue We report the log scale of the largest eigenvalue of the Hessian
matrix over several methods applying to WideResNet28x10 using CIFAR-100, and the ratio of the
largest and fifth eigenvalue as shown in Table 3, which evidently indicates that our method updates
models to minima having lower curvature.

Computational cost Our flat-seeking method requires the computation of gradients twice: initially
to obtain the perturbed model θ′ and subsequently to update the model. Consequently, the training
time is nearly double in comparison to non-flat counterparts, as indicated in Table 4. Note that the
Deep Ensemble settings utilize multiple models training individually for prediction and we report
training time for one model in each setting.

The effect of KL term in Deep-ensemble settings We present the results of training Deep-ensemble
with SAM following the formula for the flat version in Section 1.2 but without KL (or L2 regular-
isation) in Table 5. Each experiment is performed three times and reports the mean and standard

7



Table 2: Classification score on CIFAR-10-C using PreResNet-164 model when training with CIFAR-
10 dataset

ECE ↓ Accuracy ↑
Method SWAG-D F-SWAG-D SWAG F-SWAG SWAG-D F-SWAG-D SWAG F-SWAG

Gaussian noise 0.0765 0.0765 0.1032 0.0091 72.01 73.95 71.58 73.43
Shot noise 0.0661 0.0647 0.0892 0.0075 75.77 77.09 75.44 76.28
Speckle noise 0.0711 0.0686 0.0921 0.0072 75.55 76.71 75.36 76.15
Impulse noise 0.0779 0.0706 0.0988 0.0077 73.74 74.61 73.71 74.49
Defocus blur 0.0108 0.0071 0.0178 0.0256 92.16 91.55 92.14 91.63
Gaussian blur 0.0130 0.0116 0.0214 0.0239 90.79 89.73 90.67 90.22
Motion blur 0.0147 0.0103 0.0233 0.0298 90.33 90.22 90.20 90.52
Zoom blur 0.0099 0.0070 0.0185 0.0301 91.24 90.71 91.12 91.36
snow 0.0298 0.0245 0.0419 0.0208 86.17 86.11 86.10 85.81
Fog 0.0114 0.0075 0.0176 0.0259 91.67 91.22 91.64 91.27
Brightness 0.0081 0.0076 0.0129 0.0281 93.47 92.94 93.45 92.98
Contrast 0.0110 0.0127 0.0141 0.0306 91.34 90.59 91.36 90.73
Elastic transform 0.0244 0.0213 0.0367 0.0220 87.06 86.61 86.98 86.94
Pixelate 0.0350 0.0269 0.0463 0.0124 85.75 86.11 85.61 85.74
Jpeg compression 0.0605 0.0522 0.0813 0.0093 78.01 78.90 77.57 79.80
Spatter 0.0242 0.0163 0.0341 0.0227 87.94 87.61 87.99 88.13
Saturate 0.0112 0.0080 0.0179 0.0288 92.10 91.79 92.09 91.81
Frost 0.0253 0.0174 0.0365 0.0215 86.60 86.48 86.52 86.39

Average 0.0322 0.0283 0.0446 0.0201 85.65 85.71 85.52 85.76

Table 3: Log scale of Hessian eigenvalue of WideResNet28x10 training on CIFAR-100. λ1 is the
largest eigenvalue and λ5 is 5th largest eigenvalue

Method λ1 ↓ λ1/λ5

SWAG 4.17 ± 0.001 1.17 ± 0.012
F-SWAG 4.08 ± 0.000 1.17 ± 0.020

SGLD 3.34 ± 0.031 1.17 ± 0.009
F-SGLD 2.83± 0.029 1.15 ± 0.010

Deep-ensemble 4.64 ± 0.055 1.45 ± 0.020
F-Deep-ensemble 4.01 ± 0.054 1.58 ± 0.032

Table 4: Comparison of training time per epoch
Network & Dataset SWAG F-SWAG SGLD F-SGLD Deep-ensemble F-Deep-ensemble

WideResNet28x10 & CIFAR-100 110s 169s 110s 233s 110s 218s

Densenet-161 & ImageNet 1.75h 2.28h 1.78h 2.49h - -
ResNet-152 & ImageNet 1.59h 2.15h 1.64h 2.22h - -

deviation. Based on the result, without KL loss, our method still manages to yield better numbers
than the non-flat counterparts.

3 Experimental settings

CIFAR: We conduct experiments using PreResNet-164, WideResNet28x10, Resnet10 and Resnet18
on both CIFAR-10 and CIFAR-100. The total number of images in these datasets is 60,000, which
comprises 50,000 instances for training and 10,000 for testing. For each network-dataset pair, we
apply Sharpness-Aware Bayesian methodology to various settings, including F-SGLD, F-SGVB,
F-SWAG-Diag, F-SWAG, F-MC-Dropout, and F-Deep-Ensemble.

In the experiments presented in Tables 1 and 2 in the main paper, we train all models for 300 epochs
using SGD, with a learning rate of 0.1 and a cosine schedule. We start collecting models after epoch
161 for the F-SWA and F-SWAG settings, consistent with the protocol in [4]. Additionally, we
set ρ = 0.05 for CIFAR-10 and ρ = 0.1 for CIFAR-100 in all experiments, except for Resnet10
and Resnet18, where ρ is set to 0.01. The training set is augmented with basic data augmentations,
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Table 5: Experiments of F-Deep-ensemble variations on CIFAR-100 dataset using WideResNet28x10.
Each experiment is conducted with three different random seeds to calculate mean and standard
deviation

WideResNet28x10
Model ACC ↑ NLL ↓ ECE ↓

Deep-ensemble 83.04 ± 0.15 0.6958 ± 0.0335 0.0483 ± 0.0017

F-Deep-ensemble (Our) 84.52 ± 0.03 0.5644 ± 0.0106 0.0191 ± 0.0039
F-Deep-ensemble (w/o L2) 83.80 ± 0.10 0.7026 ± 0.0007 0.0594 ± 0.0005

including horizontal flip, padding by four pixels, random crop, and normalization. For the experiments
presented in Table 3 in the main paper, we apply the same augmentations to the training set as in
the experiments in Tables 1 and 2. However, the models are trained for 200 epochs using the Adam
optimizer, with a learning rate of 0.001 and a plateau schedule. It’s worth noting that SGVB and
SGVB-LRT perform poorly with other settings than those mentioned, making it challenging to scale
up this approach.

For the baseline of the Deep-Ensemble, SGLD, SGVB and SGVB-LRT methods, we reproduce
results following the hyper-parameters and processes as our flat versions. Note that we train three
independent models for the Deep-Ensemble method. For inference, we do an ensemble on 30 sample
models for all settings sampled from posterior distributions. To ensure the stability of the method, we
repeat each set three times with different random seeds and report the mean and standard deviation.

ImageNet: This is a large and challenging dataset with 1000 classes. We conduct experiments
with Densenet-161 and ResNet-152 architecture on F-SWAG-Diag, F-SWAG, and F-SGLD. For all
settings, we initialize the models with pre-trained weights on the ImageNet dataset, obtained from the
torchvision package, then fine-tuned for 10 epochs with ρ = 0.05. We start collecting 4 models per
epoch at the beginning of the fine-tuning process and evaluate them following a protocol consistent
with the CIFAR dataset experiments.

The performance metrics for the SWAG-Diag, SWAG, and MC-Dropout methods are sourced from
the original paper by Maddox et al. [4], except for the MC-Dropout result on PreResNet-164 for the
CIFAR-100 dataset, which we reproduce due to its unavailability. The performance of bSAM is taken
from [5].

It’s important to note that the purpose of these experiments was not to achieve state-of-the-art
performance. Instead, we aim to demonstrate the utility of the sharpness-aware posterior when
integrated with specific Bayesian Neural Networks. The implementation is provided in https:
//github.com/anh-ntv/flat_bnn.git.

Hyper-parameters for training: Table 6 provides our setup for both training and testing phases.
Note that the SWAG-Diag method follows the same setup as SWAG. Typically, using the default
ρ = 0.05 yields a good performance across all experiments. However, ρ = 0.1 is recommended for
the CIFAR-100 dataset in [1]. For model evaluation, we use the checkpoint from the final epoch
without taking into account the validation set’s performance.
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Table 6: Hyperparameters for training both flat and non-flat versions of BNNs. All models are trained
with the input resolution of 224× 224 and cosine learning rate decay, except experiments of SGVB
and SGVB-LRT, which use an input resolution of 32× 32

Model Method Init weight Epoch LR init Weight decay ρ # samples

CIFAR-100
PreResNet-164 SWAG 30

MC-Drop Scratch 300 0.1 3e-4 0.1 30
Deep-Ens 3

WideResNet28x10 SWAG 30
MC-Drop Scratch 300 0.1 5e-4 0.1 30
Deep-Ens 3

Resnet10 SGVB 5e-3
F-SGVB + Geometry 5e-4
SGVB-LRT Scratch 200 0.001 5e-4 5e-3 30
F-SGVB-LRT + Geometry 5e-4

Resnet18 SGVB 5e-3
F-SGVB + Geometry 5e-4
SGVB-LRT Scratch 200 0.001 5e-4 5e-3 30
F-SGVB-LRT + Geometry 5e-4

SWAG Scratch 300 0.1 5e-4 0.1 30

CIFAR-10
PreResNet-164 SWAG 30

MC-Drop Scratch 300 0.1 3e-4 0.05 30
Deep-Ens 3

WideResNet28x10 SWAG 30
MC-Drop Scratch 300 0.1 5e-4 0.05 30
Deep-Ens 3

Resnet10 SGVB 5e-3
F-SGVB + Geometry 5e-4
SGVB-LRT Scratch 200 0.001 5e-4 5e-3 30
F-SGVB-LRT + Geometry 5e-4

Resnet18 SGVB 5e-3
F-SGVB + Geometry 5e-4
SGVB-LRT Scratch 200 0.001 5e-4 5e-3 30
F-SGVB-LRT + Geometry 5e-4

SWAG Scratch 300 0.1 5e-4 0.1 30

ImageNet
DenseNet-161 All methods Pre-trained 10 0.001 1e-4 0.05 30
ResNet-152 All methods Pre-trained 10 0.001 1e-4 0.05 30
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