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Abstract

Bayesian Neural Networks (BNNs) provide a probabilistic interpretation for deep
learning models by imposing a prior distribution over model parameters and infer-
ring a posterior distribution based on observed data. The model sampled from the
posterior distribution can be used for providing ensemble predictions and quantify-
ing prediction uncertainty. It is well-known that deep learning models with lower
sharpness have better generalization ability. However, existing posterior inferences
are not aware of sharpness/flatness in terms of formulation, possibly leading to high
sharpness for the models sampled from them. In this paper, we develop theories, the
Bayesian setting, and the variational inference approach for the sharpness-aware
posterior. Specifically, the models sampled from our sharpness-aware posterior, and
the optimal approximate posterior estimating this sharpness-aware posterior, have
better flatness, hence possibly possessing higher generalization ability. We con-
duct experiments by leveraging the sharpness-aware posterior with state-of-the-art
Bayesian Neural Networks, showing that the flat-seeking counterparts outperform
their baselines in all metrics of interest.

1 Introduction

Bayesian Neural Networks (BNNs) provide a way to interpret deep learning models probabilistically.
This is done by setting a prior distribution over model parameters and then inferring a posterior
distribution over model parameters based on observed data. This allows us to not only make
predictions, but also quantify prediction uncertainty, which is useful for many real-world applications.
To sample deep learning models from complex and complicated posterior distributions, advanced
particle-sampling approaches such as Hamiltonian Monte Carlo (HMC) [41], Stochastic Gradient
HMC (SGHMC) [10], Stochastic Gradient Langevin dynamics (SGLD) [58], and Stein Variational
Gradient Descent (SVGD) [36] are often used. However, these methods can be computationally
expensive, particularly when many models need to be sampled for better ensembles.

To alleviate this computational burden and enable the sampling of multiple deep learning models from
posterior distributions, variational inference approaches employ approximate posteriors to estimate
the true posterior. These methods utilize approximate posteriors that belong to sufficiently rich
families, which are both economical and convenient to sample from. However, the pioneering works
in variational inference, such as [21, 5, 33], assume approximate posteriors to be fully factorized
distributions, also known as mean-field variational inference. This approach fails to account for
the strong statistical dependencies among random weights of neural networks, limiting its ability
to capture the complex structure of the true posterior and estimate the true model uncertainty. To
overcome this issue, latter works have attempted to provide posterior approximations with richer
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expressiveness [61, 52, 53, 54, 20, 45, 55, 30, 48]. These approaches aim to improve the accuracy of
the posterior approximation and enable more effective uncertainty quantification.

In the context of standard deep network training, it has been observed that flat minimizers can
enhance the generalization capability of models. This is achieved by enabling them to locate wider
local minima that are more robust to shifts between train and test sets. Several studies, including
[27, 47, 15], have shown evidence to support this principle. However, the posteriors used in existing
Bayesian neural networks (BNNs) do not account for the sharpness/flatness of the models derived
from them in terms of model formulation. As a result, the sampled models can be located in regions
of high sharpness and low flatness, leading to poor generalization ability. Moreover, in variational
inference methods, using approximate posteriors to estimate these non-sharpness-aware posteriors can
result in sampled models from the corresponding optimal approximate posterior lacking awareness of
sharpness/flatness, hence causing them to suffer from poor generalization ability.

In this paper, our objective is to propose a sharpness-aware posterior for learning BNNs, which
samples models with high flatness for better generalization ability. To achieve this, we devise both
a Bayesian setting and a variational inference approach for the proposed posterior. By estimating
the optimal approximate posteriors, we can generate flatter models that improve the generalization
ability. Our approach is as follows: In Theorem 3.1, we show that the standard posterior is the optimal
solution to an optimization problem that balances the empirical loss induced by models sampled
from an approximate posterior for fitting a training set with a Kullback-Leibler (KL) divergence,
which encourages a simple approximate posterior. Based on this insight, we replace the empirical
loss induced by the approximate posterior with the general loss over the entire data-label distribution
in Theorem 3.2 to improve the generalization ability. Inspired by sharpness-aware minimization [16],
we develop an upper-bound of the general loss in Theorem 3.2, leading us to formulate the sharpness-
aware posterior in Theorem 3.3. Finally, we devise the Bayesian setting and variational approach for
the sharpness-aware posterior. Overall, our contributions in this paper can be summarized as follows:

• We propose and develop theories, the Bayesian setting, and the variational inference approach
for the sharpness-aware posterior. This posterior enables us to sample a set of flat models
that improve the model generalization ability. We note that SAM [16] only considers the
sharpness for a single model, while ours is the first work studying the concept and theory of
the sharpness for a distribution Q over models. Additionally, the proof of Theorem 3.2 is
very challenging, elegant, and complicated because of the infinite number of models in the
support of Q.

• We conduct extensive experiments by leveraging our sharpness-aware posterior with the
state-of-the-art and well-known BNNs, including BNNs with an approximate Gaussian
distribution [33], BNNs with stochastic gradient Langevin dynamics (SGLD) [58], MC-
Dropout [18], Bayesian deep ensemble [35], and SWAG [39] to demonstrate that the flat-
seeking counterparts consistently outperform the corresponding approaches in all metrics of
interest, including the ensemble accuracy, expected calibration error (ECE), and negative
log-likelihood (NLL).

2 Related Work

2.1 Bayesian Neural Networks

Markov chain Monte Carlo (MCMC): This approach allows us to sample multiple models from the
posterior distribution and was well-known for inference with neural networks through the Hamiltonian
Monte Carlo (HMC) [41]. However, HMC requires the estimation of full gradients, which is
computationally expensive for neural networks. To make the HMC framework practical, Stochastic
Gradient HMC (SGHMC) [10] enables stochastic gradients to be used in Bayesian inference, crucial
for both scalability and exploring a space of solutions. Alternatively, stochastic gradient Langevin
dynamics (SGLD) [58] employs first-order Langevin dynamics in the stochastic gradient setting.
Additionally, Stein Variational Gradient Descent (SVGD) [36] maintains a set of particles to gradually
approach a posterior distribution. Theoretically, all SGHMC, SGLD, and SVGD asymptotically
sample from the posterior in the limit of infinitely small step sizes.

Variational Inference: This approach uses an approximate posterior distribution in a family to
estimate the true posterior distribution by maximizing a variational lower bound. [21] suggests fitting
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a Gaussian variational posterior approximation over the weights of neural networks, which was
generalized in [32, 33, 5], using the reparameterization trick for training deep latent variable models.
To provide posterior approximations with richer expressiveness, many extensive studies have been
proposed. Notably, [38] treats the weight matrix as a whole via a matrix variate Gaussian [22] and
approximates the posterior based on this parameterization. Several later works have inspected this
distribution to examine different structured representations for the variational Gaussian posterior, such
as Kronecker-factored [59, 52, 53], k-tied distribution [54], non-centered or rank-1 parameterization
[20, 14]. Another recipe to represent the true covariance matrix of Gaussian posterior is through the
low-rank approximation [45, 55, 30, 39].

Dropout Variational Inference: This approach utilizes dropout to characterize approximate posteri-
ors. Typically, [18] and [33] use this principle to propose Bayesian Dropout inference methods such
as MC Dropout and Variational Dropout. Concrete dropout [19] extends this idea to optimize the
dropout probabilities. Variational Structured Dropout [43] employs Householder transformation to
learn a structured representation for multiplicative Gaussian noise in the Variational Dropout method.

2.2 Flat Minima

Flat minimizers have been found to improve the generalization ability of neural networks. This is
because they enable models to find wider local minima, which makes them more robust against shifts
between train and test sets [27, 47, 15, 44]. The relationship between generalization ability and the
width of minima has been investigated theoretically and empirically in many studies, notably [23, 42,
12, 17]. Moreover, various methods seeking flat minima have been proposed in [46, 9, 29, 25, 16, 44].
Typically, [29, 26, 57] investigate the impacts of different training factors such as batch size, learning
rate, covariance of gradient, and dropout on the flatness of found minima. Additionally, several
approaches pursue wide local minima by adding regularization terms to the loss function [46, 61, 60,
9]. Examples of such regularization terms include softmax output’s low entropy penalty [46] and
distillation losses [61, 60].

SAM, a method that aims to minimize the worst-case loss around the current model by seeking flat
regions, has recently gained attention due to its scalability and effectiveness compared to previous
methods [16, 56]. SAM has been widely applied in various domains and tasks, such as meta-
learning bi-level optimization [1], federated learning [51], multi-task learning [50], where it achieved
tighter convergence rates and proposed generalization bounds. SAM has also demonstrated its
generalization ability in vision models [11], language models [3], domain generalization [8], and
multi-task learning [50]. Some researchers have attempted to improve SAM by exploiting its
geometry [34, 31], additionally minimizing the surrogate gap [62], and speeding up its training
time [13, 37]. Regarding the behavior of SAM, [28] empirically studied the difference in sharpness
obtained by SAM [16] and SWA [24], [40] showed that SAM is an optimal Bayes relaxation of the
standard Bayesian inference with a normal posterior, while [44] proved that distribution robustness
[4, 49] is a probabilistic extension of SAM.

3 Proposed Framework

In what follows, we present the technicality of our proposed sharpness-aware posterior. Particularly,
Section 3.1 introduces the problem setting and motivation for our sharpness-aware posterior. Section
3.2 is dedicated to our theory development, while Section 3.3 is used to describe the Bayesian setting
and variational inference approach for our sharpness-aware posterior.

3.1 Problem Setting and Motivation

We aim to develop Sharpness-Aware Bayesian Neural Networks (SA-BNN). Consider a family of
neural networks fθ(x) with θ ∈ Θ and a training set S = {(x1, y1), ..., (xn, yn)} where (xi, yi) ∼ D.
We wish to learn a posterior distribution QSA

S with the density function qSA(θ|S) such that any
model θ ∼ QSA

S is aware of the sharpness when predicting over the training set S.

We depart with the standard posterior

q(θ | S) ∝
n∏

i=1

p(yi | xi,S, θ)p(θ),
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where the prior distribution P has the density function p(θ) and the likelihood has the form

p (y | x,S, θ) ∝ exp

{
− λ

|S|
ℓ (fθ(x), y)

}
= exp

{
−λ

n
ℓ (fθ(x), y)

}
with the loss function ℓ. The standard posterior QS has the density function defined as

q(θ | S) ∝ exp

{
−λ

n

n∑
i=1

ℓ (fθ (xi) , yi)

}
p(θ), (1)

where λ ≥ 0 is a regularization parameter.

We define the general and empirical losses as follows:
LD (θ) = E(x,y)∼D [ℓ (fθ (x) , y)] .

LS (θ) = E(x,y)∼S [ℓ (fθ (x) , y)] =
1

n

n∑
i=1

ℓ (fθ (xi) , yi) .

Basically, the general loss is defined as the expected loss over the entire data-label distribution D,
while the empirical loss is defined as the empirical loss over a specific training set S .

The standard posterior in Eq. (1) can be rewritten as
q(θ | S) ∝ exp {−λLS (θ)} p(θ). (2)

Given a distribution Q with the density function q (θ) over the model parameters θ ∈ Θ, we define
the empirical and general losses over this model distribution Q as

LS (Q) =

∫
Θ

LS (θ) dQ (θ) =

∫
Θ

LS (θ) q (θ) dθ.

LD (Q) =

∫
Θ

LD (θ) dQ (θ) =

∫
Θ

LD (θ) q (θ) dθ.

Specifically, the general loss over the model distribution Q is defined as the expectation of the general
losses incurred by the models sampled from this distribution, while the empirical loss over the model
distribution Q is defined as the expectation of the empirical losses incurred by the models sampled
from this distribution.

3.2 Our Theory Development

We now present the theory development for the sharpness-aware posterior whose proofs can be found
in the supplementary material. Inspired by the Gibbs form of the standard posterior QS in Eq. (2),
we establish the following theorem to connect the standard posterior QS with the density q(θ | S)
and the empirical loss LS (Q) [7, 2].
Theorem 3.1. Consider the following optimization problem

min
Q<<P

{λLS (Q) +KL (Q,P)} , (3)

where we search over Q absolutely continuous w.r.t. P and KL (·, ·) is the Kullback-Leibler diver-
gence. This optimization has a closed-form optimal solution Q∗ with the density

q∗ (θ) ∝ exp {−λLS (θ)} p(θ),
which is exactly the standard posterior QS with the density q(θ | S).

Theorem 3.1 reveals that we need to find the posterior QS balancing between optimizing its empirical
loss LS (Q) and simplicity via KL (Q,P). However, minimizing the empirical loss LS (Q) only
ensures the correct predictions for the training examples in S , hence possibly encountering overfitting.
Therefore, it is desirable to replace the empirical loss by the general loss to combat overfitting.

To mitigate overfitting, in (3), we replace the empirical loss by the general loss and solve the following
optimization problem (OP):

min
Q<<P

{λLD (Q) +KL (Q,P)} . (4)

Notably, solving the optimization problem (OP) in (4) is generally intractable. To make it tractable,
we find its upper-bound which is relevant to the sharpness of a distribution Q over models as shown
in the following theorem.
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Theorem 3.2. Assume that Θ is a compact set. Under some mild conditions, given any δ ∈ [0; 1],
with the probability at least 1− δ over the choice of S ∼ Dn, for any distribution Q, we have

LD (Q) ≤ Eθ∼Q

[
max

θ′:∥θ′−θ∥≤ρ
LS (θ′)

]
+ f

(
max
θ∈Θ

∥θ∥2 , n
)
,

where f is a non-decreasing function w.r.t. the first variable and approaches 0 when the training size
n approaches ∞.

We note that the proof of Theorem 3.2 is not a trivial extension of sharpness-aware minimization
because we need to tackle the general and empirical losses over a distribution Q. To make explicit
our sharpness over a distribution Q on models, we rewrite the upper-bound of the inequality as

Eθ∼Q

[
max

θ′:∥θ′−θ∥≤ρ
LS (θ′)− LS (θ)

]
+ LS (Q) + f

(
max
θ∈Θ

∥θ∥2 , n
)
,

where the first term Eθ∼Q
[
maxθ′:∥θ′−θ∥≤ρ LS (θ′)− LS (θ)

]
can be regarded as the sharpness over

the distribution Q on the model space and the last term f
(
maxθ∈Θ ∥θ∥2 , n

)
is a constant.

Moreover, inspired by Theorem 3.2, we propose solving the following OP which forms an upper-
bound of the desirable OP in (4)

min
Q<<P

{
λEθ∼Q

[
max

θ′:∥θ′−θ∥≤ρ
LS (θ′)

]
+KL (Q,P)

}
. (5)

The following theorem characterizes the optimal solution of the OP in (5).

Theorem 3.3. The optimal solution the OP in (5) is the sharpness-aware posterior distribution QSA
S

with the density function qSA(θ|S):

qSA(θ|S) ∝ exp

{
−λ max

θ′:∥θ′−θ∥≤ρ
LS (θ′)

}
p (θ) = exp {−λLS (s (θ))} p (θ) ,

where we have defined s (θ) = argmax
θ′:∥θ′−θ∥≤ρ

LS (θ′).

Theorem 3.3 describes the close form of the sharpness-aware posterior distribution QSA
S with the

density function qSA(θ|S). Based on this characterization, in what follows, we introduce the SA
Bayesian setting that sheds lights on its variational approach.

3.3 Sharpness-Aware Bayesian Setting and Its Variational Approach

Bayesian Setting: To promote the Bayesian setting for sharpness-aware posterior distribution QSA
S ,

we examine the sharpness-aware likelihood

pSA (y | x,S, θ) ∝ exp

{
− λ

|S|
ℓ
(
fs(θ)(x), y

)}
= exp

{
−λ

n
ℓ
(
fs(θ)(x), y

)}
,

where s (θ) = argmax
θ′:∥θ′−θ∥≤ρ

LS (θ′).

With this predefined sharpness-aware likelihood, we can recover the sharpness-aware posterior
distribution QSA

S with the density function qSA(θ|S):

qSA(θ|S) ∝
n∏

i=1

pSA (yi | xi,S, θ) p (θ) .

Variational inference for the sharpness-aware posterior distribution: We now develop the
variational inference for the sharpness-aware posterior distribution. Let denote X = [x1, ..., xn] and
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Y = [y1, ..., yn]. Considering an approximate posterior family {qϕ (θ) : ϕ ∈ Φ}, we have

log pSA (Y | X,S) =
∫
Θ

qϕ (θ) log p
SA (Y | X,S) dθ

=

∫
Θ

qϕ (θ) log
pSA (Y | θ,X,S) p (θ)

qϕ (θ)

qϕ (θ)

qSA(θ|S)
dθ

= Eqϕ(θ)

[
n∑

i=1

log pSA (yi | xi,S, θ)

]
−KL (qϕ, p) +KL

(
qϕ, q

SA
)
.

It is obvious that we need to maximize the following lower bound for maximally reducing the gap
KL

(
qϕ, q

SA
)
:

max
qϕ

{
Eqϕ(θ)

[
n∑

i=1

log pSA (yi | xi,S, θ)

]
−KL (qϕ, p)

}
,

which can be equivalently rewritten as

min
qϕ

{
λEqϕ(θ) [LS (s (θ))] +KL (qϕ, p)

}
or

min
qϕ

{
λEqϕ(θ)

[
max

θ′:∥θ′−θ∥≤ρ
LS (θ′)

]
+KL (qϕ, p)

}
. (6)

Derivation for Variational Approach with A Gaussian Approximate Posterior: Inspired by
the geometry-based SAM approaches [34, 31], we incorporate the geometry to the SA vari-
ational approach via the distance to define the ball for the sharpness as ∥θ′ − θ∥diag(Tθ)

=√
(θ′ − θ)

T diag(Tθ)−1 (θ′ − θ) as

min
qϕ

{
λEqϕ(θ)

[
max

θ′:∥θ′−θ∥diag(Tθ)≤ρ
LS (θ′)

]
+KL (qϕ, p)

}
.

To further clarify, we consider our SA posterior distribution to Bayesian NNs, wherein we impose
the Gaussian distributions to its weight matrices Wi ∼ N

(
µi, σ

2
i I
)
, i = 1, . . . , L1. The parameter

ϕ consists of µi, σi, i = 1, . . . , L. For θ = W1:L ∼ qϕ, using the reparameterization trick Wi =

µi+diag(σi)ϵi, ϵi ∼ N (0, I) and by searching θ
′
= W

′

1:L with W
′

i = µ
′

i+diag(σi)ϵi, ϵi ∼ N (0, I),
the constraint ∥θ − θ′∥diag(Tθ)

= ∥µ− µ′∥diag(Tθ)
with µ = µ1:L and µ

′
= µ

′

1:L. Thus, the OP in (6)
reads

min
µ,σ

λEϵ

 max
∥µ′−µ∥diag(Tµ,σ)

≤ρ
LS

([
µ

′

i + diag(σi)ϵi

]L
i=1

) , (7)

where σ = σ1:L, ϵ = ϵ1:L, and we define diag(Tθ) = diag(Tµ,σ) in the distance of the geometry.

To solve the OP in (7), we sample ϵ = ϵ1:L from the standard Gaussian distributions, employ an
one-step gradient ascent to find µ

′
, and use the gradient at µ

′
to update µ. Specifically, we find µ′ [6]

(Chapter 9) as

µ′ = µ+ ρ
diag(Tµ,σ)∇µLS

(
[µi + diag(σi)ϵi]

L
i=1

)
∥∥∥diag(Tµ,σ)∇µLS

(
[µi + diag(σi)ϵi]

L
i=1

)∥∥∥ .
The diagnose of diag(Tµ,σ) specifies the importance level of the model weights, i.e., the weight
with a higher importance level is encouraged to have a higher sharpness via a smaller absolute
partial derivative of the loss w.r.t. this weight. We consider diag(Tµ,σ) = I (i.e., the standard SA

BNN) and diag(Tµ,σ) = diag
(

|µ|
σ

)
(i.e., the geometry SA BNN). Here we note that •

•
represents the

element-wise division.
1We absorb the biases to the weight matrices.
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Table 1: Classification score on CIFAR-100 dataset.Each experiment is repeated three times with
different random seeds and reports the mean and standard deviation.

PreResNet-164 WideResNet28x10
Method ACC ↑ NLL ↓ ECE ↓ ACC ↑ NLL ↓ ECE ↓

Variational inference
MC-Dropout 79.50 ± 0.37 0.9162 ± 0.0103 0.0993 ± 0.0033 82.30 ± 0.19 0.6500 ± 0.0049 0.0574 ± 0.0028
F-MC-Dropout 81.06 ± 0.44 0.7027 ± 0.0049 0.0514 ± 0.0047 83.24 ± 0.11 0.6144 ± 0.0068 0.0250 ± 0.0027
Deep-ens 82.08 ± 0.42 0.7189 ± 0.0108 0.0334 ± 0.0064 83.04 ± 0.15 0.6958 ± 0.0335 0.0483 ± 0.0017
F-Deep-ens 82.54 ± 0.10 0.6286 ± 0.0022 0.0143 ± 0.0041 84.52 ± 0.03 0.5644 ± 0.0106 0.0191 ± 0.0039

Markov chain Monte Carlo
SGLD 80.13 ± 0.01 0.7604 ± 0.0010 0.1161 ± 0.0031 81.38 ± 0.10 0.7123 ± 0.0204 0.0958 ± 0.0004
F-SGLD 80.82 ± 0.02 0.7276 ± 0.0012 0.1085 ± 0.0008 82.12 ± 0.16 0.6722 ± 0.0112 0.0820 ± 0.0021

Sample
SWAG-Diag 80.18 ± 0.50 0.6837 ± 0.0186 0.0239 ± 0.0047 82.40 ± 0.09 0.6150 ± 0.0029 0.0322 ± 0.0018
F-SWAG-Diag 81.01 ± 0.29 0.6645 ± 0.0050 0.0242 ± 0.0039 83.50 ± 0.29 0.5763 ± 0.0120 0.0151 ± 0.0020
SWAG 79.90 ± 0.50 0.6595 ± 0.0019 0.0587 ± 0.0048 82.23 ± 0.19 0.6078 ± 0.0006 0.0113 ± 0.0020
F-SWAG 80.93 ± 0.27 0.6704 ± 0.0049 0.0350 ± 0.0025 83.57 ± 0.26 0.5757 ± 0.0136 0.0196 ± 0.0015

Table 2: Classification score on CIFAR-10 dataset.Each experiment is repeated three times with
different random seeds and reports the mean and standard deviation.

PreResNet-164 WideResNet28x10
Method ACC ↑ NLL ↓ ECE ↓ ACC ↑ NLL ↓ ECE ↓

Variational inference
MC-Dropout 96.18 ± 0.02 0.1270 ± 0.0030 0.0162 ± 0.0007 96.39 ± 0.09 0.1094 ± 0.0021 0.0094 ± 0.0014
F-MC-Dropout 96.39 ± 0.18 0.1137 ± 0.0024 0.0118 ± 0.0006 97.10 ± 0.12 0.0966 ± 0.0047 0.0095 ± 0.0008

Deep-ens 96.39 ± 0.09 0.1277 ± 0.0030 0.0108 ± 0.0015 96.96 ± 0.10 0.1031 ± 0.0076 0.0087 ± 0.0018
F-Deep-ens 96.70 ± 0.04 0.1031 ± 0.0016 0.0057 ± 0.0031 97.11 ± 0.10 0.0851 ± 0.0011 0.0059 ± 0.0012

Markov chain Monte Carlo
SGLD 94.79 ± 0.10 0.2089 ± 0.0021 0.0711 ± 0.0061 95.87 ± 0.08 0.1573 ± 0.0190 0.0463 ± 0.0050
F-SGLD 95.04 ± 0.06 0.1912 ± 0.0080 0.0601 ± 0.0002 96.43 ± 0.05 0.1336 ± 0.004 0.0385 ± 0.0003

Sample
SWAG-Diag 96.03 ± 0.10 0.1251 ± 0.0029 0.0082 ± 0.0008 96.41 ± 0.05 0.1077 ± 0.0009 0.0047 ± 0.0013
F-SWAG-Diag 96.23 ± 0.01 0.1108 ± 0.0013 0.0043 ± 0.0005 97.05 ± 0.08 0.0888 ± 0.0052 0.0043 ± 0.0004
SWAG 96.03 ± 0.02 0.1232 ± 0.0022 0.0053 ± 0.0004 96.32 ± 0.08 0.1122 ± 0.0009 0.0088 ± 0.0006
F-SWAG 96.25 ± 0.03 0.11062 ± 0.0014 0.0056 ± 0.0002 97.09 ± 0.14 0.0883 ± 0.0004 0.0036 ± 0.0008

Finally, the objective function in (6) indicates that we aim to find an approximate posterior distribution
that ensures any model sampled from it is aware of the sharpness, while also preferring simpler
approximate posterior distributions. This preference can be estimated based on how we equip these
distributions. With the Bayesian setting and variational inference formulation, our proposed sharpness-
aware posterior can be integrated into MCMC-based and variational inference-based Bayesian Neural
Networks. The supplementary material contains the details on how to derive variational approaches
and incorporate the sharpness-awareness into the BNNs used in our experiments including BNNs
with an approximate Gaussian distribution [33], BNNs with stochastic gradient Langevin dynamics
(SGLD) [58], MC-Dropout [18], Bayesian deep ensemble [35], and SWAG [39].

4 Experiments

In this section, we conduct various experiments to demonstrate the effectiveness of the sharpness-
aware approach on Bayesian Neural networks, including BNNs with an approximate Gaussian
distribution [33] (i.e., SGVB for model’s reparameterization trick and SGVB-LRT for representation’s
reparameterization trick), BNNs with stochastic gradient Langevin dynamics (SGLD) [58], MC-
Dropout [18], Bayesian deep ensemble [35], and SWAG [39]. The experiments are conducted
on three benchmark datasets: CIFAR-10, CIFAR-100, and ImageNet ILSVRC-2012, and report
accuracy, negative log-likelihood (NLL), and Expected Calibration Error (ECE) to estimate the
calibration capability and uncertainty of our method against baselines. The details of the dataset and
implementation are described in the supplementary material2.

2The implementation is provided in https://github.com/anh-ntv/flat_bnn.git
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Table 3: Classification scores of approximate the Gaussian posterior on the CIFAR datasets. Each
experiment is repeated three times with different random seeds and reports the mean and standard
deviation.

Resnet10 Resnet18
Method ACC ↑ NLL ↓ ECE ↓ ACC ↑ NLL ↓ ECE ↓

Experiments on Cifar-100 dataset
SGVB-LRT 61.75 ± 0.75 1.534 ± 0.03 0.0676 ± 0.01 68.95 ± 1.20 1.140 ± 0.21 0.063 ± 0.04
F-SGVB-LRT 62.25 ± 0.57 1.4001 ± 0.04 0.0642 ± 0.01 70.00 ± 1.42 1.127 ± 0.25 0.022 ± 0.05

+ Geometry 62.54 ± 0.67 1.3704 ± 0.01 0.0301 ± 0.03 70.12 ± 1.02 1.121 ± 0.23 0.036 ± 0.06

SGVB 54.40 ± 0.98 1.968 ± 0.05 0.214 ± 0.00 60.91 ± 2.31 1.746 ± 0.15 0.246 ± 0.03
F-SGVB 54.53 ± 0.33 1.967 ± 0.00 0.212 ± 0.00 61.54 ± 2.23 1.695 ± 0.15 0.242 ± 0.03

+ Geometry 55.53 ± 0.65 1.906 ± 0.02 0.207 ± 0.00 62.58 ± 0.53 1.612 ± 0.03 0.224 ± 0.00

Experiments on Cifar-10 dataset
SGVB-LRT 84.98 ± 1.87 0.422 ± 0.10 0.043 ± 0.04 89.10 ± 1.32 0.344 ± 0.02 0.033 ± 0.02
F-SGVB-LRT 86.32 ± 1.34 0.409 ± 0.03 0.017 ± 0.06 90.00 ± 1.10 0.291 ± 0.02 0.019 ± 0.01

+ Geometry 86.44 ± 1.12 0.403 ± 0.06 0.025 ± 0.03 90.31 ± 1.11 0.262 ± 0.01 0.014 ± 0.02
SGVB 80.52 ± 2.10 0.781 ± 0.23 0.237 ± 0.06 86.74 ± 1.25 0.541 ± 0.01 0.181 ± 0.02
F-SGVB 80.60 ± 1.88 0.776 ± 0.13 0.223 ± 0.05 87.01 ± 0.91 0.534 ± 0.01 0.183 ± 0.01

+ Geometry 82.05 ± 0.47 0.704 ± 0.01 0.206 ± 0.00 86.80 ± 1.30 0.531 ± 0.01 0.175 ± 0.01

Table 4: Classification score on ImageNet dataset
Densenet-161 ResNet-152

Model ACC ↑ NLL ↓ ECE ↓ ACC ↑ NLL ↓ ECE ↓
SWAG-Diag 78.59 0.8559 0.0459 78.96 0.8584 0.0566
F-SWAG-Diag 78.71 0.8267 0.0194 79.20 0.8065 0.0199
SWAG 78.59 0.8303 0.0204 79.08 0.8205 0.0279
F-SWAG 78.70 0.8262 0.0185 79.17 0.8078 0.0208
SGLD 78.50 0.8317 0.0157 79.00 0.8165 0.0220
F-SGLD 78.64 0.8236 0.0166 79.16 0.8050 0.0167

4.1 Experimental results

4.1.1 Predictive performance

Our experimental results, presented in Tables 1, 2, 3 for CIFAR-100 and CIFAR-10 dataset, and
Table 4 for the ImageNet dataset, indicate a notable improvement across all experiments. It is worth
noting that there is a trade-off between accuracy, negative log-likelihood, and expected calibration
error. Nonetheless, our approach obtains a fine balance between these factors compared to the overall
improvement.

4.2 Effectiveness of sharpness-aware posterior

Calibration of uncertainty estimates: We evaluate the ECE of each setting and compare it to
baselines in Tables 1, 2, and 4. This score measures the maximum discrepancy between the accuracy

Figure 1: Comparing loss landscape of PreResNet-164 on CIFAR-100 dataset training with SWAG
and F-SWAG method. For visualization purposes, we sample two models for each SWAG and F-
SWAG and then plot the loss landscapes. It can be observed that the loss landscapes of our F-SWAG
are flatter, supporting our argument for the flatter sampled models.
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Figure 2: Reliability diagrams for PreResNet164 on CIFAR-100. The confidence is split into 20 bins
and plots the gap between confidence and accuracy in each bin. The best case is the black dashed line
when this gap is zeros. The plots of F-SWAG get closer to the zero lines, implying our F-SWAG can
calibrate the uncertainty better.

Table 5: Classification score on CIFAR-10-C on PreResNet-164 model when training with CIFAR-10.
The full result on each type of corruption is displayed in the supplemetary material.

ECE ↓ Accuracy ↑
Corruption SWAG-D F-SWAG-D SWAG F-SWAG SWAG-D F-SWAG-D SWAG F-SWAG

Noise 0.0729 0.0701 0.0958 0.0078 74.26 75.59 74.02 75.08
Blur 0.0121 0.0090 0.0202 0.0273 91.13 90.55 91.03 90.93
Weather 0.018 0.0142 0.0272 0.0240 89.47 89.18 89.42 89.11
Digital and others 0.0277 0.0229 0.0384 0.0209 87.03 86.94 86.93 87.19

Average 0.0328 0.0290 0.0454 0.0200 85.47 85.56 85.35 85.58

and confidence of the model. To further clarify it, we display the Reliability Diagrams of PreResNet-
164 on CIFAR-100 to understand how well the model predicts according to the confidence threshold
in Figure 2. The experiments is detailed in the supplementary material.

Out-of-distribution prediction: The effectiveness of the sharpness-aware Bayesian neural network
(BNN) is demonstrated in the above experiments, particularly in comparison to non-flat methods.
In this section, we extend the evaluation to an out-of-distribution setting. Specifically, we utilize
the BNN models trained on the CIFAR-10 dataset to assess their performance on the CIFAR-10-C
dataset. This is an extension of the CIFAR-10 designed to evaluate the robustness of machine learning
models against common corruptions and perturbations in the input data. The corruptions include
various forms of noise, blur, weather conditions, and digital distortions. We conduct an ensemble
of 30 models sampled from the flat-posterior distribution and compared them with non-flat ones.
We present the average result of each corruption group and the average result on the whole dataset
in Table 5, the detailed result of each corruption form is displayed in the supplementary material.
Remarkably, the flat BNN models consistently surpass their non-flat counterparts with respect to
average ECE and accuracy metrics. This finding is additional evidence of the generalization ability of
the sharpness-aware posterior.

4.3 Ablation studies

In Figure 1, we plot the loss-landscape of the models sampled from our proposal of sharpness-aware
posterior against the non-sharpness-aware one. Particularly, we compare two methods F-SWAG and
SWAG by selecting four random models sampled from the posterior distribution of each method under
the same hyper-parameter settings. As observed, our method not only improves the generalization of
ensemble inference, demonstrated by classification results in Section 4.1 and sharpness in Section
4.2, but also the individual sampled model is flatter itself.

We measure and visualize the sharpness of the models. To this end, we sample five models from
the approximate posteriors and then take the average of the sharpness of these models. For a model
θ, the sharpness is evaluated as max

||ϵ||2≤ρ
LS(θ + ϵ)− LS(θ) to measure the change of loss value

around θ. We calculate the sharpness score of PreResNet-164 network for SWAG, and F-SWAG
training on CIFAR-100 dataset and visualize them in the supplementary material. As shown there, the
sharpness-aware versions produce smaller sharpness scores compared to the corresponding baselines,
indicating that our models get into flatter regions.
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5 Conclusion

In this paper, we introduce theories in the Bayesian setting and discuss variational inference for the
sharpness-aware posterior in the context of Bayesian Neural Networks (BNNs). The sharpness-aware
posterior results in models that are less sensitive to noise and have a better generalization ability,
as it enables the models sampled from it and the optimal approximate posterior estimates to have a
higher flatness. We conducted extensive experiments that leveraged the sharpness-aware posterior
with state-of-the-art Bayesian Neural Networks. Our main results show that the models sampled from
the proposed posterior outperform their baselines in terms of ensemble accuracy, expected calibration
error (ECE), and negative log-likelihood (NLL). This indicates that the flat-seeking counterparts
are better at capturing the true distribution of weights in neural networks and providing accurate
probabilistic predictions. Furthermore, we performed ablation studies to showcase the effectiveness
of the flat posterior distribution on various factors such as uncertainty estimation, loss landscape, and
out-of-distribution prediction. Overall, the sharpness-aware posterior presents a promising approach
for improving the generalization performance of Bayesian neural networks.
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[40] Thomas Möllenhoff and Mohammad Emtiyaz Khan. Sam as an optimal relaxation of bayes.
arXiv preprint arXiv:2210.01620, 2022. 3

[41] Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg,
1996. 1, 2

[42] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. Advances in neural information processing systems, 30, 2017.
3

[43] Son Nguyen, Duong Nguyen, Khai Nguyen, Khoat Than, Hung Bui, and Nhat Ho. Structured
dropout variational inference for bayesian neural networks. Advances in Neural Information
Processing Systems, 34:15188–15202, 2021. 3

[44] Van-Anh Nguyen, Trung Le, Anh Bui, Thanh-Toan Do, and Dinh Phung. Optimal transport
model distributional robustness. In Advances in Neural Information Processing Systems, 2023.
3

[45] Victor M-H Ong, David J Nott, and Michael S Smith. Gaussian variational approximation with a
factor covariance structure. Journal of Computational and Graphical Statistics, 27(3):465–478,
2018. 2, 3

12



[46] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E. Hinton.
Regularizing neural networks by penalizing confident output distributions. In ICLR (Workshop).
OpenReview.net, 2017. 3

[47] Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley.
Relative flatness and generalization. In NeurIPS, pages 18420–18432, 2021. 2, 3

[48] Cuong Pham, C. Cuong Nguyen, Trung Le, Phung Dinh, Gustavo Carneiro, and Thanh-Toan
Do. Model and feature diversity for bayesian neural networks in mutual learning. In Advances
in Neural Information Processing Systems, 2023. 2

[49] Hoang Phan, Trung Le, Trung Phung, Anh Tuan Bui, Nhat Ho, and Dinh Phung. Global-
local regularization via distributional robustness. In Francisco Ruiz, Jennifer Dy, and Jan-
Willem van de Meent, editors, Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pages
7644–7664. PMLR, 25–27 Apr 2023. 3

[50] Hoang Phan, Lam Tran, Ngoc N Tran, Nhat Ho, Dinh Phung, and Trung Le. Improving
multi-task learning via seeking task-based flat regions. arXiv preprint arXiv:2211.13723, 2022.
3

[51] Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
via sharpness aware minimization. arXiv preprint arXiv:2206.02618, 2022. 3

[52] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for
neural networks. In 6th International Conference on Learning Representations, ICLR 2018-
Conference Track Proceedings, volume 6. International Conference on Representation Learning,
2018. 2, 3

[53] Simone Rossi, Sebastien Marmin, and Maurizio Filippone. Walsh-hadamard variational in-
ference for bayesian deep learning. Advances in Neural Information Processing Systems,
33:9674–9686, 2020. 2, 3

[54] Jakub Swiatkowski, Kevin Roth, Bastiaan Veeling, Linh Tran, Joshua Dillon, Jasper Snoek,
Stephan Mandt, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. The k-tied normal
distribution: A compact parameterization of gaussian mean field posteriors in bayesian neural
networks. In International Conference on Machine Learning, pages 9289–9299. PMLR, 2020.
2, 3

[55] Marcin Tomczak, Siddharth Swaroop, and Richard Turner. Efficient low rank gaussian vari-
ational inference for neural networks. Advances in Neural Information Processing Systems,
33:4610–4622, 2020. 2, 3

[56] Tuan Truong, Hoang-Phi Nguyen, Tung Pham, Minh-Tuan Tran, Mehrtash Harandi, Dinh Phung,
and Trung Le. Rsam: Learning on manifolds with riemannian sharpness-aware minimization,
2023. 3

[57] Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of
dropout. In International conference on machine learning, pages 10181–10192. PMLR, 2020. 3

[58] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011. 1, 2, 7

[59] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient
as variational inference. In International Conference on Machine Learning, pages 5852–5861.
PMLR, 2018. 3

[60] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma.
Be your own teacher: Improve the performance of convolutional neural networks via self
distillation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3713–3722, 2019. 3

13



[61] Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep mutual learning.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4320–4328,
2018. 2, 3

[62] Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training. arXiv preprint arXiv:2203.08065, 2022. 3

14


