
List and Certificate Complexities in Replicable
Learning

Peter Dixon1, A. Pavan 2, Jason Vander Woude3, and N. V. Vinodchandran4

1Independent Researcher
tooplark@gmail.com

2Iowa State University
pavan@cs.iastate.edu

3University of Nebraska-Lincoln
jasonvw@huskers.unl.edu
4University of Nebraska-Lincoln

vinod@cse.unl.edu

Abstract

We investigate replicable learning algorithms. Informally a learning algorithm is
replicable if the algorithm outputs the same canonical hypothesis over multiple runs
with high probability, even when different runs observe a different set of samples
from the unknown data distribution. In general, such a strong notion of replicability
is not achievable. Thus we consider two feasible notions of replicability called
list replicability and certificate replicability. Intuitively, these notions capture the
degree of (non) replicability. The goal is to design learning algorithms with optimal
list and certificate complexities while minimizing the sample complexity. Our
contributions are the following.

– We first study the learning task of estimating the biases of d coins, up to
an additive error of ε, by observing samples. For this task, we design a
(d + 1)-list replicable algorithm. To complement this result, we establish
that the list complexity is optimal, i.e there are no learning algorithms with a
list size smaller than d+ 1 for this task. We also design learning algorithms
with certificate complexity Õ(log d). The sample complexity of both these
algorithms is Õ(d

2

ε2 ) where ε is the approximation error parameter (for a
constant error probability).

– In the PAC model, we show that any hypothesis class that is learnable with
d-nonadaptive statistical queries can be learned via a (d+ 1)-list replicable
algorithm and also via a Õ(log d)-certificate replicable algorithm. The sample
complexity of both these algorithms is Õ( d

2

ν2 ) where ν is the approximation
error of the statistical query. We also show that for the concept class d-
THRESHOLD, the list complexity is exactly d+ 1 with respect to the uniform
distribution.

To establish our upper bound results we use rounding schemes induced by geometric
partitions with certain properties. We use Sperner/KKM Lemma to establish the
lower bound results.
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1 Introduction

Replicability and reproducibility in science are critical concerns. The fundamental requirement
that scientific results and experiments be replicable/reproducible is central to the development and
evolution of science. In recent years, these concerns have grown as several scientific disciplines
turn to data-driven research, which enables exponential progress through data democratization and
affordable computing resources. The replicability issue has received attention from a wide spectrum of
entities, from general media publications (for example, The Economist’s “How Science Goes Wrong,”
2013 (eco13)) to scientific publication venues (for example, see (JP05; Bak16)) to professional and
scientific bodies such as the National Academy of Sciences, Engineering, and Medicine (NASEM).
The emerging challenges to replicability and reproducibility have been discussed in depth by a
consensus study report published by NASEM (NAS19).

A broad approach taken to ensure the reproducibility/replicability of algorithms is to make the
datasets, algorithms, and code publicly available. Of late, conferences have been hosting replicability
workshops to promote best practices and to encourage researchers to share code (see (PVLS+21) and
(MPK19)). An underlying assumption is that consistent results can be obtained using the same input
data, computational methods, and code. However, these practices alone are insufficient to ensure
replicability as modern-day approaches use computations that inherently involve randomness.

Computing over random variables results in a high degree of non-replicability, especially in machine
learning tasks. Machine learning algorithms observe samples from a (sometimes unknown) distribu-
tion and output a hypothesis. Such algorithms are inherently non-replicable. Two distinct runs of the
algorithm will output different hypotheses as the algorithms see different sets of samples over the
two runs. Ideally, to achieve “perfect replicability,” we would like to design algorithms that output
the same canonical hypothesis over multiple runs, even when different runs observe a different set of
samples from the unknown distribution.

We first observe that perfect replicability is not achievable in learning, as a dependency of the output
on the data samples is inevitable. We illustrate this with a simple learning task of estimating the bias
of a coin: given n independent tosses of a coin with unknown bias b, output an estimate of b that
is within an additive error of ε with high probability. It is relatively easy to argue that there is no
algorithm that outputs a canonical estimate vb with probability ≥ 2/3 so that |vb − b| ≤ ε. Suppose,
for the sake of contradiction, such an algorithm A exists. Consider a sequence of coins with biases
b1 < b2 < · · · < bm where each bi+1− bi ≤ η = 1/10n, and bm− b1 ≥ 2ε. For two adjacent biases
bi and bi+1, the statistical distance (denoted by dTV) between Dn

i+1 and Dn
i is ≤ nη, where Dn

i is
the distribution of n independent tosses of the ith coin. Let vi+1 and vi be the canonical estimates
output by the algorithm for biases bi+1 and bi respectively. Since A on samples from distribution
Dn

i outputs vi with probability at least 2/3 and dTV(D
n
i , D

n
i+1) ≤ nη, A(Dn

i+1) must output vi with
probability at least 2/3− nη. Since A(Dn

i+1) must output a canonical value vi+1 with probability at
least 2/3, this implies that vi = vi+1 (if not the probabilities will add up to > 1). Thus, on all biases
b1, . . . , bm, the algorithm A should output the same value. This leads to a contradiction since b1 and
bm are 2ε apart. However, it is easy to see that there is an algorithm for bias-estimation that outputs
one of two canonical estimates with high probability using n = O(1/ε2) tosses: estimate the bias
within an error of ε/2 and round the value to the closest multiple of ε. The starting point of our work
is these two observations. Even though it may not be possible to design learning algorithms that are
perfectly replicable, it is possible to design algorithms whose “non-replicability” is minimized.

We study two notions of replicability called list replicability and certificate replicability which quantify
the degree of (non)-replicability of learning algorithms. They are rooted in the pseudodeterminism-
literature (GG11; Gol19; GL19) which studied concepts known as multi-pseudodeterminism (related
to list replicability) and influential bit algorithms (related to certificate replicability). Recently a
notion of algorithmic stability and its variants such as list global stability, pseudo global stability, and
ρ-replicability have been studied in the context of learning algorithms (BLM20; GKM21; ILPS22).
These notions are very similar to each other and Section 2 discusses the similarities and connections.

1.1 Our Results

Informally, an algorithm A is k-list replicable if there is a list L consisting of k (approximately
correct) hypotheses so that the output of the algorithms A belongs to L with high probability. This
implies that when the algorithm A is run multiple times, we see at most k distinct hypotheses (with
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high probability). The value k is called the list complexity of the algorithm. An algorithm whose
list complexity is 1 is perfectly replicable. Thus, list complexity can be considered as a degree of
(non) replicability. The goal in this setting is to design learning algorithms that minimize the list
complexity k for various learning tasks.

In certificate replicability, the learning algorithm has access to an ℓ-bit random string that is indepen-
dent of samples and the other randomness that the algorithm may use. It is required that for most
ℓ-bit random strings r, the algorithm must output a canonical (approximately correct) hypothesis hr

that depends only on r. Thus once we fix a good ℓ-bit random string r, multiple runs of the algorithm
will output the same hypothesis with high probability. We call ℓ the certificate complexity of the
algorithm. An algorithm with zero certificate complexity is perfectly replicable. Thus ℓ is another
measure of the degree of (non) replicability of the algorithm. The goal in this setting is to design
learning algorithms that minimize the certificate complexity.

A critical resource in machine learning tasks is the sample complexity—the number of samples that
the algorithm observes. This work initiates a study of learning algorithms that are efficient in list
complexity, certificate complexity as well as sample complexity. The main contribution of this work
is the design of algorithms with an optimal list and certificate complexities with efficient sample
complexity for a few fundamental learning tasks.

Estimating the biases of d coins. We consider the basic problem of estimating the biases of d coins
simultaneously by observing n tosses of each of the coins which we call d-COIN BIAS ESTIMATION
PROBLEM. The task is to output an approximate bias vector v⃗ with probability at least (1− δ) so
that ∥⃗b− v⃗∥∞ ≤ ε where b⃗ = ⟨b1, · · · bd⟩ is the true bias vector, i.e., bi is the true bias of the ith coin.
For this task, we establish the following results.

- There is a (d+ 1)-list replicable learning algorithm for d-COIN BIAS ESTIMATION PROBLEM

whose sample complexity (number of observed coin tosses) is n = O(d
2

ε2 · log d
δ ) per coin.

- There is a ⌈log d
δ ⌉-certificate replicable algorithm for d-COIN BIAS ESTIMATION PROBLEM

with sample complexity n = O( d2

ε2δ2 ) per coin.
- We establish the optimality of the above upper bounds in terms of list complexity. We show that

there is no d-list replicable learning algorithm for d-COIN BIAS ESTIMATION PROBLEM.

While d-COIN BIAS ESTIMATION PROBLEM is a basic learning task and is of interest by itself, the
techniques developed for this problem are applicable in the context of PAC learning.

PAC learning. We investigate list and certificate replicable PAC learning algorithms.

- We establish the following generic result: Any concept class that can be learned using d non-
adaptive statistical queries can be learned by a (d+1)-list replicable PAC learning algorithm with
sample complexity O( d

2

ν2 · log d
δ ) where ν is the statistical query parameter. We also show that

such concept classes admit a ⌈log d
δ ⌉-certificate replicable PAC learning algorithm with sample

complexity O( d2

ν2δ2 · log d
δ ).

- We study the list complexity of the concept class d-THRESHOLD. Each hypothesis ht⃗ in this
concept class is described via a d-dimensional vector t⃗ ∈ [0, 1]d. For a hypothesis ht, ht(x⃗) = 1
if and only if xi ≤ ti, 1 ≤ i ≤ d1. We establish that, under the uniform distribution, the list
complexity of d-THRESHOLD is exactly d+ 1.

To establish our upper bound results we use rounding schemes induced by geometric partitions with
certain properties. We use Sperner/KKM Lemma as a tool to establish the lower bound results. Due
to space restrictions, most of the proofs are given in the supplementary material.

2 Prior and Related Work

Formalizing reproducibility and replicability has gained considerable momentum in recent years.
While the terms reproducibility and replicability are very close and often used interchangeably, there

1This concept class is the same as the class of axis-parallel rectangles in [0, 1]d with 0⃗ as one of the corners.
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has been an effort to distinguish between them and accordingly, our notions fall in the replicability
definition (PVLS+21). As mentioned earlier, reproducibility, replicability, and related notions
have been of considerable interest in the context of traditional randomized algorithms and learning
algorithms. Here we discuss the prior work that is most relevant to the present work. A more detailed
discussion of the prior and related work is provided in the supplementary material.

The seminal work of (BLM20) defined the notion of global stability in the context of learning, which
is similar to the notion of pseudodeterminism (GG11) in the context of traditional algorithms. They
define a learning algorithm A to be (n, η)-globally stable with respect to a distribution D if there is
a hypothesis h such that PrS∼Dn(A(S) = h) ≥ η, here η is called the stability parameter. Using
this notion as an intermediate tool they established that every concept class with finite Littlestone
dimension can be learned by an approximate differentially private algorithm. The work in (GKM21)
extended the notion of global stability to list-global stability and pseudo-global stability. The authors
of (GKM21) used these concepts to design user-level differentially private algorithms. The notion of
pseudo-global stability is similar to the notion of certificate applicability, however, as defined, the
notion of list-global stability differs from our notion of list replicability.

The recent work reported in (ILPS22) introduced the notion of ρ-replicability. A learning algorithm
A is ρ-replicable if Pr[A(S1, r) = A(S2, r)] ≥ 1− ρ, where S1 and S2 are samples drawn from a
distribution D and r is the internal randomness of the learning algorithm A. They designed replicable
algorithms for many learning tasks, including statistical queries, approximate heavy hitters, median,
and learning half-spaces. It is known that the notions of pseudo-global stability and ρ-replicability
are the same up to polynomial factors in the parameters (ILPS22; GKM21).

The present work introduces the notions of list and certificate complexities as measures of the degree
of (non) replicability. Our goal is to design learning algorithms with optimal list and certificate
complexities while minimizing the sample complexity. The earlier works did not focus on minimizing
these quantities. The works of (BLM20; GKM21) used replicable algorithms as an intermediate
step to design differentially private algorithms. The work of (ILPS22) did not consider reducing
the certificate complexity in their algorithms and also did not study list replicability. The main
distinguishing feature of our work from prior works is our focus on designing learning algorithms
that are efficient in list, certificate, and sample complexities as well as establishing optimality results
for list and certificate complexity.

A very recent and independent work of (CMY23) investigated relations between list replicability
and the stability parameter ν, in the context of distribution-free PAC learning. They showed that for
every concept class H, its list complexity is exactly the inverse of the stability parameter. They also
showed that the list complexity of a hypothesis class is at least its VC dimension. For establishing
this they exhibited, for any d, a concept class whose list complexity is exactly d. There are some
similarities between their work and the present work. We establish similar upper and lower bounds on
the list complexity but for different learning tasks: d-THRESHOLD and d-COIN BIAS ESTIMATION
PROBLEM. For d-THRESHOLD, our results are for PAC learning under uniform distribution and do
not follow from their distribution-independent results. Thus our results, though similar in spirit, are
incomparable to theirs. Moreover, their work did not focus on efficiency in sample complexity and
also did not study certificate complexity which is a focus of our paper. We do not study the stability
parameter.

Finally, we would like to point out that there notions of list PAC learning and list-decodable learning in
the learning theory literature (see (CP23) and (RY20) for recent progress on these notions). However,
these notions are different from the list replicable learning that we consider in this paper. List PAC
learning and list-decodable learning are generalized models of PAC learning. For example, any
learning task that is PAC learnable is trivially list PAC learnable with a list size of 1. However, list
replicable learning is an additional requirement that needs to be satisfied by a learner. Thus the notion
of list and list-decodable PAC learning are different from the notions of list/certificate replicability.

3 List and Certificate Replicability Notions

We define list and certificate replicability notions for general learning tasks. A learning problem is a
family D of distributions over a domain X , a set H (representing hypotheses) and an error function
err : D × H → [0,∞). The goal is to learn a hypothesis from H by observing samples from a
distribution D where D ∈ D with a small error err(D,h). A learning algorithm A has the following
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inputs: (i) m independent samples from a distribution D ∈ D and (ii) ε ∈ (0,∞) and (iii) δ ∈ (0, 1].
It may also receive additional inputs.
Definition 3.1 (List Replicability). Let k ∈ N, ε ∈ (0,∞), and δ ∈ [0, 1]. A learning algorithm A is
called (k, ε, δ)-list replicable if the following holds: There exists n ∈ N such that for every D ∈ D,
there exists a list L ⊆ H of size at most k such that (i) for all h ∈ L, err(D,h) ≤ ε, and (ii)

Pr
s∼Dn

[A(s, ε, δ) ∈ L] ≥ 1− δ.

For k ∈ N, we call A k-list replicable if for all ε ∈ (0,∞) and δ ∈ (0, 1], A is (k, ε, δ)-list replicable.
We say that n is the sample complexity of A and k is the list complexity of A.
Definition 3.2 (Certificate Replicability). Let ℓ ∈ N, ε ∈ (0,∞), and δ ∈ [0, 1]. A learning algorithm
A is called (ℓ, ε, δ)-certificate replicable if the following holds: There exists n ∈ N such that for
every D ∈ D there exists h : {0, 1}ℓ → H such that

Pr
r∈{0,1}ℓ

[
Pr

s∈Dn

[
A(s, ε, δ, r) = h(r) and err(D,h(r)) ≤ ε

]
≥ 1− δ

]
≥ 1− δ.

We can refine the above definition by introducing another probability parameter ρ and define a notion
of (ℓ, ε, ρ, δ)-replicability. The definition is the same as above except that we require the outer
probability to be 1− ρ, and the inner probability is 1− δ. For simplicity, we take ρ to be δ and work
with the notion of (ℓ, ε, δ)-replicability.

The above definitions generalize the notion of perfect replicability, where it is required that the
learning algorithm outputs a canonical hypothesis h (with err(D,h) ≤ ε) with probability ≥ 1− δ.
A motivation for these definitions is to characterize how close we can be to perfect replicability in
scenarios where if perfect replicability is not achievable. Note that for list (certificate) replicability,
when k = 1 (respectively, ℓ = 0), we achieve perfect applicability. We note that the above definitions
are inspired by multi-pseudodeterminism (Gol19) and influential-bit algorithms (GL19).

4 Primary Lemmas

Our upper bounds are based on certain rounding schemes and the lower bound is based on
Sperner/KKM lemma. In this section, we state a few key technical lemmas that will be used
in the rest of the paper. The proofs are in the supplementary material. We will use the following
notation. We use diam∞ to indicate the diameter of a set relative to the ℓ∞ norm and B

∞
ε (p⃗) to

represent the closed ball of radius ε centered at p⃗ relative to the ℓ∞ norm. That is, in Rd we have
B

∞
ε (p⃗) =

∏d
i=1[pi − ε, pi + ε].

We first state a lemma that gives a universal deterministic rounding algorithm that is used in designing
list replicable algorithms. The lemma is based on the work in (VWDP+22) and is a byproduct of
certain geometric partitions they call secluded partitions.
Lemma 4.1. Let d ∈ N and ε ∈ (0,∞). Let ε0 = ε

2d . There is an efficiently computable function
fε : Rd → Rd with the following two properties:

1. For any x ∈ Rd and any x̂ ∈ B
∞
ε0 (x) it holds that fε(x̂) ∈ B

∞
ε (x).

2. For any x ∈ Rd the set
{
fε(x̂) : x̂ ∈ B

∞
ε0 (x)

}
has cardinality at most d+ 1.

Item (1) states that if x̂ is an ε0 approximation of x, then fε(x̂) is an ε approximation of x, and Item
(2) states that fε maps every ε0 approximation of x to one of at most d+ 1 possible values.

The following lemma gives a universal randomized rounding algorithm that is used in designing
certificate replicable algorithms. We note that randomized rounding schemes have been used in a few
prior works (SZ99; DPV18; Gol19; GL19; ILPS22). Our rounding scheme is more nuanced as it is
geared towards minimizing certificate complexity.
Lemma 4.2. Let d ∈ N, ε0 ∈ (0,∞) and 0 < δ < 1. There is an efficiently computable deterministic
function f : {0, 1}ℓ × Rd → Rd with the following property. For any x ∈ Rd,

Pr
r∈{0,1}ℓ

[
∃x∗ ∈ B

∞
ε (x) ∀x̂ ∈ B

∞
ε0 (x) : f(r, x̂) = x∗

]
≥ 1− δ

where ℓ = ⌈log d
δ ⌉ and ε = (2ℓ + 1)ε0 ≤ 2ε0d

δ .
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The following result is a corollary to a cubical variant of Sperner’s lemma/KKM lemma initially
developed in (DLPES02) and expanded on in (VWDP+22). We use this to establish our lower bound
results.
Lemma 4.3. Let P be a partition of [0, 1]d such that for each member X ∈ P , it holds that
diam∞(X) < 1. Then there exists p⃗ ∈ [0, 1]d such that for all δ > 0 we have that B

∞
δ (p⃗) intersects

at least d+ 1 members of P .

5 Replicability of Learning Coins Biases

In this section, we establish replicability results for estimating biases of d coins.
Definition 5.1. The d-COIN BIAS ESTIMATION PROBLEM is the following problem: Design an
algorithm A (possibly randomized) that gets ε ∈ (0, 1), δ ∈ (0, 1] as inputs, observes independent
tosses of an ordered collection of d-many biased coins with a bias vector b⃗ ∈ [0, 1]d, and outputs v⃗ so
that ∥⃗b− v⃗∥∞ ≤ ε with probability ≥ 1− δ.

The d-COIN BIAS ESTIMATION PROBLEM fits in the framework of the general learning task
introduced in Section 3 so that we can talk about list and certificate replicable algorithm for d-COIN
BIAS ESTIMATION PROBLEM. We describe this now.

For d-COIN BIAS ESTIMATION PROBLEM we have the following. X = {0, 1}d (where 0 corre-
sponds to Tail and 1 corresponds to Head) which is the set of representations of all possibilities of
flipping d-many coins. The class of distributions D is the set of all d-fold products of Bernoulli
distributions. Each distribution D ∈ D is parameterized with a vector vD = ⟨b1, · · · , bd⟩ ∈ [0, 1]d.
When sampled according to vD we obtain a sample point ⟨x1 · · ·xd⟩ ∈ X , where Pr(xi = 1) = bi.
We take the class of hypothesis H to be [0, 1]d which is the set of all d-tuples representing biases of a
collection of d-many coins. Lastly, the error function is defined as err(D,h) = ∥vD − h∥∞.

5.1 Replicable Algorithms for d-COIN BIAS ESTIMATION PROBLEM

In this section, we design list and certificate replicable algorithms for d-COIN BIAS ESTIMATION
PROBLEM .
Theorem 5.2. There exists an (d + 1)-list replicable algorithm for d-COIN BIAS ESTIMATION

PROBLEM. For a given ε and δ, its sample complexity is n = O(d
2

ε2 · log d
δ ), per coin.

Algorithm 1 (d+ 1)-list replicable algorithm for d-COIN BIAS ESTIMATION PROBLEM

Input: ε > 0, δ ∈ (0, 1], sample access to d coins with biases b⃗ ∈ [0, 1]d

ε0
def
= ε

2d , δ0
def
= δ

d

n
def
= O

(
ln(1/δ0)

ε20

)
= O

(
d2 ln(d/δ)

ε2

)
for some constant

Let fε : Rd → Rd be as in Lemma 4.1.
Let g : Rd → [0, 1]d be the function which restricts coordinates to the unit interval (i.e.

g(y⃗)
def
=

〈
0 yi < 0

yi yi ∈ [0, 1]

1 yi > 1

〉d

i=1

)
Take n samples from each coin and let a⃗ be the empirical biases.
return g(f (⃗a))

Proof. Note that when ε ≥ 1/2, a trivial algorithm that outputs a vector with 1/2 in each component
works. Thus the most interesting case is when ε < 1/2. Our list replicable algorithm is described in
Algorithm 1. We will prove its correctness by associating for each possible bias b⃗ ∈ [0, 1]d, a set Lb⃗

with the three necessary properties: (1) |Lb⃗| ≤ d+1, (2) Lb⃗ ⊆ B
∞
ε (⃗b) (and also the problem specific
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restriction that Lb⃗ ⊆ [0, 1]d), and (3) when given access to coins of biases b⃗, with probability at least
1− δ the algorithm returns a value in Lb⃗.

Let Lb⃗ =
{
g(fε(x⃗)) : x⃗ ∈ B

∞
ε0 (⃗b)

}
. By Lemma 4.1, fε takes on at most d + 1 values on B

∞
ε0 (⃗b)

(which means g ◦ fε also takes on at most d+ 1 values on this ball) which proves that |Lb⃗| ≤ d+ 1.
This proves property (1).

Next we state the following observation which says that the coordinate restriction function g of
Algorithm 1 does not reduce approximation quality. The proof is straightforward.

Observation 5.3. Using the notation of Algorithm 1, if y⃗ ∈ B
∞
ε (⃗b) then g(y⃗) ∈ B

∞
ε (⃗b).

We now establish Property (2). We know from Lemma 4.1 that for each x⃗ ∈ B
∞
ε0 (⃗b) we have

fε(x⃗) ∈ B
∞
ε (⃗b), and by Observation 5.3, g maintains this quality and we have g(fε(x⃗)) ∈ B

∞
ε (⃗b).

This shows that Lb⃗ ⊆ B
∞
ε (⃗b) proving property (2).

By Chernoff’s bounds, for a single biased coin, with n = O
(

ln(1/δ0)
ε20

)
independent samples of the

coin we can estimate the bias within ε0 with probability at least 1− δ0. Thus, by a union bound, if
we take n samples of each of the d coins, there is a probability of at most d · δ0 = δ that at least one
of the empirical coin biases is not within ε0 of the true bias. Thus, by taking n samples of each coin,
we have with probability at least 1− δ that the empirical biases a⃗ belong to B

∞
ε0 (⃗b). In the case that

this occurs, we have by definition of Lb⃗ that the value g(fε(⃗a)) returned by the algorithm belongs to
the set Lb⃗. This proves property (3). The sample complexity follows since ε0 = ε

2d and δ0 = δ
d .

The next result is on certificate replicable algorithm for d-COIN BIAS ESTIMATION PROBLEM.

Theorem 5.4. For every ε and δ, there is a (⌈log d
δ ⌉, ε, δ)-certificate replicable algorithm for d-COIN

BIAS ESTIMATION PROBLEM with sample complexity of n = O( d2

ε2δ2 ) per coin.

Proof. Let ε and δ be the input parameters to the algorithm and b⃗ the bias vector. Set ε0 = εδ
2d . The

algorithm A first estimates the bias of each coin with up to ε0 with a probability error parameter
δ
d using a standard estimation algorithm. Note that this can be done using O( d2

ε2δ2 ) tosses per coin.
Let v⃗ be the output vector. It follows that v⃗ ∈ B

∞
ε0 (⃗b) with probability at least 1− δ. Then it runs

the deterministic function f described in Lemma 4.2 with input r ∈ {0, 1}ℓ with ℓ = ⌈log d
δ ⌉ and

v⃗ and outputs the value of the function. Lemma 4.2 guarantees that for 1− δ fraction of the rs, all
v⃗ ∈ B

∞
ε0 (⃗b) gets rounded to the same value by f . Hence algorithm A satisfies the requirements of the

certificate-replicability. The certificate complexity is ⌈log d
δ ⌉.

We remark that by using the refined definition of certificate replicability mentioned in Section 3, we
can obtain a (⌈log d

ρ⌉, ε, ρ, δ)-replicable algorithm with sample complexity O( d2

ε2ρ2 log(1/δ)). Note
that an ℓ-certificate replicable algorithm leads to a 2ℓ-list replicable algorithm. Thus Theorem 5.4
gives a O(dδ )-list replicable algorithm for d-COIN BIAS ESTIMATION PROBLEM with sample
complexity O( d2

ε2δ2 ). However, this is clearly sub-optimal and Theorem 5.2 gives an algorithm with a
much smaller list and sample complexities. Also from the work of Goldrecih (Gol19), it follows that
ℓ-list replicable algorithm can be converted into a ⌈log( ℓδ )⌉-certificate replicable algorithm. However,
this conversion increases the sample complexity. For example, when applied to d-COIN BIAS

ESTIMATION PROBLEM, the sample complexity becomes O( d6

ε2δ2 ). In comparison, Theorem 5.4
uses a tailored rounding technique to achieve an algorithm with a much smaller sample complexity.

5.2 An Impossibility Result

This section establishes the optimality of the list complexity for d-COIN BIAS ESTIMATION PROB-
LEM.
Theorem 5.5. For k < d+ 1, there does not exist a k-list replicable algorithm for the d-COIN BIAS
ESTIMATION PROBLEM.

7



Before proving the theorem, we need a lemma that follows from the Data Processing Inequality; for
more detail see the supplementary material. In the following, we use DA,⃗b,n to denote the distribution
of the output of an algorithm for d-COIN BIAS ESTIMATION PROBLEM.

Lemma 5.6. For biases a⃗, b⃗ ∈ [0, 1]d we have dTV

(
DA,⃗a,n,DA,⃗b,n

)
≤ n · d · ∥⃗b− a⃗∥∞.

Proof. We use the basic fact that an algorithm (deterministic or randomized) cannot increase the
total variation distance between two input distributions.

The distribution giving one sample flip of each coin in a collection with bias b⃗ is the d-fold product
of Bernoulli distributions

∏d
i=1 Bern(bi) (which for notational brevity we denote as Bern(⃗b), so the

distribution which gives n independent flips of each coin is the n-fold product of this and is denoted
as Bern(⃗b)⊗n). We will show that for two bias vectors a⃗ and b⃗, dTV

(
Bern(⃗b)⊗n,Bern(⃗a)⊗n

)
≤

n · d · ∥⃗b− a⃗∥∞. This suffices to establish the lemma.

Observe that we have for each i ∈ [d],
dTV (Bern(bi),Bern(ai)) = |bi − ai|.

Hence we have

dTV

(
Bern(⃗b),Bern(⃗a)

)
≤

d∑
i=1

|bi − ai| ≤ d · ∥⃗b− a⃗∥∞

and
dTV

(
Bern(⃗b)⊗n,Bern(⃗a)⊗n

)
≤ n · d · ∥⃗b− a⃗∥∞.

Proof of Theorem 5.5. Fix any d ∈ N, and choose ε and δ as ε < 1
2 and δ ≤ 1

d+2 . Suppose for
contradiction that such an algorithm A does exists for some k < d + 1. This means that for each
possible bias vector b⃗ ∈ [0, 1]d, there exists some set Lb⃗ ⊆ H of hypotheses with three properties:
(1) each element of Lb⃗ is an ε-approximation to hb⃗, (2) |Lb⃗| ≤ k, and (3) with probability at least
1− δ, A returns an element of Lb⃗.

By an averaging argument, this means that there exists at least one element in Lb⃗ which is returned by
A with probability at least 1

k · (1− δ) ≥ 1
k · (1− 1

d+2 ) =
1
k · d+1

d+2 ≥ 1
k · k+1

k+2 . Let f : [0, 1]d → [0, 1]d

be a function which maps each bias b⃗ to such an element of Lb⃗. Since 1
k · k+1

k+2 > 1
k+1 , let η be such

that 0 < η < 1
k · k+1

k+2 − 1
k+1 .

The function f induces a partition P of [0, 1]d where the members of P are the fibers of f (i.e. P ={
f−1(y⃗) : y⃗ ∈ range(f)

}
). By definition, for any member X ∈ P there exists some y⃗ ∈ range(f)

such that for all b⃗ ∈ X , f (⃗b) = y⃗. By definition, we have f (⃗b) ∈ Lb⃗ ⊆ B
∞
ε (⃗b) showing that

y⃗ ∈ B
∞
ε (⃗b) and by symmetry b⃗ ∈ B

∞
ε (y⃗). This shows that X ⊆ B

∞
ε (y⃗), so diam∞(X) ≤ 2ε < 1.

Let r = η·d
n . Since every member of P has ℓ∞ diameter less than 1, by Lemma 4.3 there exists a

point p⃗ ∈ [0, 1]d such that B
∞
r (p⃗) intersects at least d+ 1 > k members of P . Let b⃗(1), . . . , b⃗(d+1)

be points belonging to distinct members of P that all belong to B
∞
r (p⃗). By definition of P , this

means for distinct j, j′ ∈ [d+ 1] that f (⃗b(j)) ̸= f (⃗b(j
′)).

Now, for each j ∈ [d + 1], because ∥p⃗ − b⃗(j)∥∞ ≤ r, by Lemma 5.6 we have
dTV(DA,p⃗,n,DA, ⃗b(j),n

) ≤ n · d · r = η. However, this gives rise to a contradiction because

the probability that A with access to biased coins b⃗(j) returns f (⃗b(j)) is at least 1
k · k+1

k+2 , and by

Lemma 5.6, it must be that A with access to biased coins p⃗ returns f (⃗b(j)) with probability at least
1
k ·

k+1
k+2−η > 1

k+1 ; notationally, PrD
A,

⃗
b(j),n

(
{
f (⃗b(j))

}
) ≥ 1

k ·
k+1
k+2 and dTV(DA, ⃗b(j),n

,DA,p⃗,n) ≤ η,

so PrDA,p⃗,n
(
{
f (⃗b(j))

}
) ≥ 1

k · k+1
k+2 − η > 1

k+1 . This is a contradiction because a distribution cannot

have d+ 1 ≥ k + 1 disjoint events that each have probability greater than 1
k+1 .
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6 List and Certificate Replicability in PAC Learning

In this section, we establish replicability results for the PAC model. We first note that PAC model fits
in the general learning framework introduced in Section 3. Consider the PAC learning model where we
have a domain X ′, a concept class C (a family of subsets of X ′), and a hypothesis class H (a collection
of functions X ′ → {0, 1}). For any distribution D over X ′ and any concept indicator f from C, let Df

denote the distribution over X ′ × {0, 1}d obtained by sampling x ∼ D and outputting ⟨x, f(x)⟩. We
define the following learning problem in the general learning framework: X = X ′ × {0, 1}, H = H,
D = {Df : f ∈ C and D a distribution over X ′}, and err(Df , h) = Prx∼D′ [f(x) ̸= h(x)].

We are interested in statistical query learning which is defined by Kearns (Kea98).

Definition 6.1. A statistical query oracle STAT (Df , ν) takes as an input a real-valued function
ϕ : X × {0, 1} → (0, 1) and returns an estimate v such that |v − E⟨x,y⟩∈Df

[ϕ(x, y)]| ≤ ν (Kea98).
We say that an algorithm A learns a concept class H via statistical queries if for every distribution
D and every function f ∈ H, for every 0 < ε < 1, there exists ν such that the algorithm A on
input ε, and STAT (Df , ν) as an oracle, outputs a hypothesis h such that err(Df , h) ≤ ε. The
concept class is non-adaptively learnable if all the queries made by A to the statistical query oracle
are non-adaptive.

6.1 Replicable PAC Learning Algorithms

Next we state main results of this section. Due to space limitation, all the proofs are in the supple-
mentary material. We first show that any concept class that is learnable with d non-adpative statistical
queries has a (d+ 1)-list replicable algorithm.

Theorem 6.2. Let H be a concept class that is learnable with d non-adaptive statistical queries,
then H is (d+ 1)-list replicably learnable. Furthermore, the sample complexity n = n(ν, δ) of the
(d+ 1)-list replicable algorithm is O( d

2

ν2 · log d
δ ), where ν is the approximation error parameter of

each statistical query oracle.

We note that we can simulate a statistical query algorithm that makes d adaptive queries to get a
2d-list replicable learning algorithm. This can be done by rounding each query to two possible
values (the approximation factor increases by 2). The sample complexity of this algorithm will be
O( d

ν2 · log d
δ ). Next, we design a certificate replicable algorithm for hypothesis classes that admit

statistical query learning algorithms.

Theorem 6.3. Let H be a concept class that is learnable with d non-adaptive statistical queries, then
H is ⌈log d

δ ⌉-certificate replicably learnable. Furthermore, the sample complexity n = n(ν, δ) of this
algorithm is O( d2

ν2δ2 · log d
δ ), where ν is the approximation error parameter of each statistical query

oracle.

We can also consider the case when the statistical query algorithm makes d adaptive queries. In this
case we get the following theorem. Note that the certificate complexity is close to linear in d as
oppose to logarithmic in the case of non-adaptive queries.

Theorem 6.4. Let H be a concept class that is learnable with d adaptive statistical queries, then H
is ⌈d log d

δ ⌉-certificate replicably learnable. Furthermore, the sample complexity of this algorithm is
O( d3

ν2δ2 · log d
δ ), where ν is the approximation error parameter of each statistical query oracle.

6.2 Impossibility Results in the PAC Model

In this section, we establish matching upper and lower bounds on the list complexity for the concept
class d-THRESHOLD in the PAC model with respect to the uniform distribution. In particular, we
establish that this learning task admits a (d+ 1)-list replicable algorithm and does not admit a d-list
replicable algorithm.

Definition 6.5 (d-THRESHOLD). Fix some d ∈ N. Let X = [0, 1]d. For each value t⃗ ∈ [0, 1]d, let
ht⃗ : X → {0, 1} be the concept defined as follows: ht⃗(x⃗) = 1 if for every i ∈ [d] it holds that
xi ≤ ti and 0 otherwise. Let H be the hypothesis class consisting of all such threshold concepts:
H =

{
ht⃗ | t⃗ ∈ [0, 1]d

}
.

9



We first observe the impossibility of list-replicable algorithms in the distribution-free PAC model.
This follows from known results.
Observation 6.6. There is no k-list replicable algorithm (for any k) for d-THRESHOLD in the PAC
model even when d = 1.

The above observation follows from the works of (ALMM19) and (BLM20). It is known that d-
THRESHOLD has an infinite Littlestone dimension. Suppose it admits k-list replicable algorithms in
the PAC model. This implies that d-THRESHOLD is globally stable learnable with stability parameter
1/k (Please see (BLM20) for the definition of global stability). The work of (BLM20) showed
that any class that is globally stable learnable with a constant stability parameter is differentially
private learnable. The work of (ALMM19) showed that if a concept class is differentially private
learnable, then it has a finite Littlestone dimension. Putting these results together, we obtain that if
d-THRESHOLD admits k-list replicable algorithm, then it has a finite Littlestone dimension which is
a contradiction.

The above result implies that for every k and every learning algorithm A, there is some distribution
DA such that A is not k-list replicable with respect to DA. However, a natural question is whether
a lower bound holds for a fixed distribution, especially simple distributions such as the uniform
distribution. We show that this is indeed the case.
Theorem 6.7. In the PAC model under the uniform distribution, there is a d + 1-list replicable
algorithm for the d-THRESHOLD. Moreover, for any k < d+1, there does not exist a k-list replicable
algorithm for the concept class d-THRESHOLD under the uniform distribution. Thus its list complexity
is exactly d+ 1.

7 Conclusions

In this work, we investigated the pressing issue of replicability in machine learning from an algorith-
mic point of view. We observed that perfect replicability is not achievable and hence considered two
natural extensions that capture the degree of (non) replicability: list and certificate replicability. We
designed replicable algorithms with a small list, certificate, and sample complexities for the d-COIN
BIAS ESTIMATION PROBLEM and the class of problems that can be learned via statistical query
algorithms that make non-adaptive statistical queries. We also established certain impossibility results
in the PAC model of learning and for d-COIN BIAS ESTIMATION PROBLEM. There are several
interesting research directions that emerge from our work. There is a gap in the sample complexities
of the list and certificate replicable algorithms with comparable parameters. Is this gap inevitable?
Currently, there is an exponential gap in the replicability parameters between hypothesis classes that
can be learned via non-adaptive and adaptive statistical queries. Is this gap necessary? A generic
question is to explore the trade-offs between the sample complexities, list complexity, certificate
complexities, adaptivity, and nonadaptivity.
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A Appendix

A.1 Missing Proofs from Section 4

To establish Lemmas 4.1 and 4.3, we build on the work of (VWDP+22) and (DLPES02). We first
introduce the necessary notion and definitions.

We recall the following notation from the main body of the paper. We use diam∞ to indicate the
diameter of a set relative to the ℓ∞ norm and B

∞
ε (p⃗) to represent the closed ball of radius ε centered

at p⃗ relative to the ℓ∞ norm. That is, in Rd we have B
∞
ε (p⃗) =

∏d
i=1[pi − ε, pi + ε].

Lemma 4.1 is based on the construction of certain geometric partitions of Rd called secluded
partitions. Such partitions naturally induce deterministic rounding schemes which we use in the
proof.

Let P be a partition of Rd. For a point p⃗ ∈ Rd, let Nε(p⃗) denote the set of members of the partitions
that have a non-empty intersection with the ε-ball around p⃗. That is,

Nε(p⃗) = {X ∈ P | B∞
ε (p⃗)) ∩X ̸= ∅}

Definition A.1 (Secluded Partition). Let P be a partition of Rd. We say that P is (k, ε)-secluded, if
for every point p⃗ ∈ Rd, |Nε(p⃗)| ≤ k.

The following theorem from (VWDP+22) gives an explicit construction of a secluded partition with
desired parameters where each member of the partition is a hypercube. For such partitions, we use
the following notation. For every p⃗ ∈ Rd, if p⃗ ∈ P, then the representative of p⃗, rep(p⃗), is the center
of the hypercube X .
Theorem A.2. For each d ∈ N, there exists a (d+ 1, 1

2d )-secluded partition, where each member of
the partition is a unit hypercube. Moreover, the partition is efficiently computable: Given an arbitrary
point x⃗ ∈ Rd, its representative can be computed in time polynomial in d.

A.1.1 Proof of Lemma 4.1

Lemma A.3 (Lemma 4.1). Let d ∈ N and ε ∈ (0,∞). Let ε0 = ε
2d . There is an efficiently

computable function fε : Rd → Rd with the following two properties:

1. For any x ∈ Rd and any x̂ ∈ B
∞
ε0 (x) it holds that fε(x̂) ∈ B

∞
ε (x).

2. For any x ∈ Rd the set
{
fε(x̂) : x̂ ∈ B

∞
ε0 (x)

}
has cardinality at most d+ 1.

As explained in the main body, intuitively, item (1) states that if x̂ is an ε0-approximation of x, then
fε(x̂) is an ε-approximation of x, and item (2) states that fε maps every ε0-approximation of x to
one of at most d+ 1 possible values.

Proof. A high-level idea behind the proof is explained in Figure 1. We scale the (d+1, 1
2d )-secluded

unit hypercube partition by ε so that each partition member is a hypercube with side length ε. Now,
for a point x, the ball B

∞
ε0 (x) intersects at most d+ 1 hypercubes. Consider a point x̂1 ∈ B

∞
ε0 (x), it

is rounded to c1 (center of the hypercube it resides in). Note that c1 lies in the ball of radius ε around
x, this is because distance from x to x̂1 is at most ε0 and the distance from x̂1 to c1 is at most ε/2.
By triangle inequality c1 belongs to B

∞
ε (x). We now provide formal proof.

Let P be the (d+ 1, 1
2d )-secluded partition given by Theorem A.2. Thus P consists of unit cubes

[0, 1)d with the property that for any point p⃗ ∈ Rd the closed cube of side length 1/d centered at p⃗
(i.e. B

∞
1
2d
(p⃗)) intersects at most d+ 1 members/cubes of P .

We first define a rounding function f : Rd → Rd as follows: for every x ∈ Rd, f(x) = rep(x).

Observe that the rounding function f has the following two properties. (1) For every x ∈ Rd,
∥f(x)− x∥∞ ≤ 1

2 . This is because every point x is mapped via f to its representative, which is the

center of the unit cube in which it lies. (2) For any point p⃗ ∈ Rd, the set
{
f(x) : x ∈ B

∞
1
2d
(p⃗)

}
has
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Figure 1: Illustration of proof of Lemma 4.1 for d = 2.

cardinality at most d+ 1. This is because B
∞
1
2d
(p⃗) intersects at most d+ 1 hypercubes of P and for

every hypercube X , all the points in X are mapped to its center by f .

The function f only gives an 1
2 -approximation guarantee. In order to get any ε-approximation

guarantee, we scale f appropriately. fε is this scaled version of f .

Define the function fε : Rd → Rd as follows: for every x̂ ∈ Rd, fε(x̂) = ε · f( 1ε x̂). The efficient
computability of fε comes from the efficient computability of f .

We first establish that fε has property (1) stated in the Lemma. Let x ∈ Rd and x̂ ∈ B
∞
ε0 (x). Then

we have the following (justifications will follow):∥∥ 1
ε · fε(x̂)− 1

εx
∥∥
∞ =

∥∥f( 1ε x̂)− 1
εx

∥∥
∞

≤
∥∥f( 1ε x̂)− 1

ε x̂
∥∥
∞ +

∥∥ 1
ε x̂− 1

εx
∥∥
∞

≤
∥∥f( 1ε x̂)− 1

ε x̂
∥∥
∞ + 1

ε∥x̂− x∥∞
≤ 1

2 + 1
εε0

= 1
2 + 1

2d ≤ 1

The first line is by the definition of fε, the second is the triangle inequality, the third is scaling of
norms, the fourth uses the property of f that points are not mapped a distance more than 1

2 along
with the hypothesis that x̂ ∈ B

∞
ε0 (x), the fifth uses the definition of ε0, and the sixth uses the fact that

d ≥ 1.

Scaling both sides by ε and using the scaling of norms, the above gives us ∥fε(x̂)− x∥∞ ≤ ε which
proves property (1) of the lemma.

To see that fε has property (2), let x ∈ Rd. We have the following set equalities:{
fε(x̂) : x̂ ∈ B

∞
ε0 (x)

}
=

{
ε · f( 1ε x̂) : x̂ ∈ B

∞
ε0 (x)

}
=

{
ε · f(a) : a ∈ B

∞
1
ε ε0

( 1εx)
}

=
{
ε · f(a) : a ∈ B

∞
1
2d
( 1εx)

}
The first line is from the definition of fε, the second line is from re-scaling, and the third is from the
definition of ε0.

Because f takes on at most d+ 1 distinct values on B
∞
1
2d
( 1εx), the set above has cardinality at most

d+ 1 which proves property (2) of the lemma.
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A.1.2 Proof of Lemma 4.2

Lemma A.4 (Lemma 4.2). Let d ∈ N, ε0 ∈ (0,∞) and 0 < δ < 1. There is an efficiently computable
deterministic function f : {0, 1}ℓ × Rd → Rd with the following property. For any x ∈ Rd,

Pr
r∈{0,1}ℓ

[
∃x∗ ∈ B

∞
ε (x) ∀x̂ ∈ B

∞
ε0 (x) : f(r, x̂) = x∗

]
≥ 1− δ

where ℓ = ⌈log d
δ ⌉ and ε = (2ℓ + 1)ε0 ≤ 2ε0d

δ .

Proof. Partition each coordinate of Rd into 2ε0-width intervals. The algorithm computing the
function f does the following simple randomized rounding:

The function f : Choose a random integer r ∈ {1 . . . 2ℓ}. Note that r can be represented using ℓ bits.
Consider the ith coordinate of x̂ denoted by x̂[i]. Round x̂[i] to the nearest k ∗ (2ε0) such that k
mod 2ℓ ≡ r.

Now we will prove that f satisfies the required properties.

First, we prove the approximation guarantee. Let x′ denote the point in Rd obtained after rounding
each coordinate of x̂. The ks satisfying k mod 2ℓ ≡ r are 2ℓ · 2ε0 apart. Therefore, x′[i] is rounded
by at most 2ℓε0. That is, |x′[i] − x̂[i]| ≤ 2ℓε0 = ε0d

δ for every i, 1 ≤ i ≤ d. Since x̂ is an
ε0-approximation (i.e. each coordinate x̂[i] is within ε0 of the true value x[i]), then each coordinate of
x′ is within (2ℓ +1)ε0 of x[i]. Therefore x′ is a (2ℓ +1)ε0-approximation of x[i]. Thus x′ ∈ B

∞
ε (x)

for any choice of r.

Now we establish that for ≥ 1− δ fraction of r ∈ {1 . . . 2ℓ}, there exists x∗ such every x̂ ∈ B
∞
ε0 (x)

is rounded x∗. We argue this with respect to each coordinate and apply the union bound. Fix an x
and a coordinate i. For x[i], consider the ε0 interval around it.

Consider r from {1 . . . 2ℓ}. When this r is chosen, then we round x̂[i] to the closest k∗(2ε0) such that
k mod 2ℓ ≡ r. Let pr1, p

r
2, . . . p

r
j . . . be the set of such points: more precisely pj = (j2l + r) ∗ 2ε0.

Note that x̂[i] is rounded to an pj to some j. Let mr
j denote the midpoint between prj and prj+1.

I.e, mr = (prj + prj+1)/2 We call r ‘bad’ for x[i] if x[i] is close to some mr
j . That is, r is ‘bad’ if

|x[i]−mr
j | < ε0. Note that for a bad r there exist x̂1 and x̂2 in B

∞
ε0 (x) so that their ith coordinates

are rounded to prj and prj+1 respectively. The crucial point is that if r is ‘not bad’ for x[i], then for
every x′ ∈ B

∞
ε0 (x), there exists a canonical p∗ such that x′[i] is rounded to p∗. We call r bad for x, if

r is bad for x, if there exists at least one i, 1 ≤ i ≤ d such that r is bad for x[i]. With this, it follows
that if r is not bad for x, then there exists a canonical x∗ such that every x′ ∈ B

∞
ε0 (x) is rounded to

x∗.

With this, the goal is to bound the probability that a randomly chosen r is bad for x. For this, we
first bound the probability that r is bad for x[i]. We will argue that there exists at most one bad
r for x[i]. Suppose that there exist two numbers r1 and r2 that are both bad for x[i]. This means
that |x[i] − mr1

j1
| < ε0 and |x[i] − mr2

j2
| < ε0 for some j1 and j2. Thus by triangle inequality

|mr1
j1

−mr2
j2
| < 2ε0. However, note that |pr1j1 − pr2j2 | is |(j1 − j2)2

ℓ + (r1 − r2)|2ε0. Since r1 ̸= r2,
this value is at least 2ε0. This implies that the absolute value of difference between mr1

j1
and mr2

j2
is

at least 2ε leading to a contradiction.

Thus the probability that r is bad for x[i] is at most 1
2ℓ

and by the union bound the probability that r
is bad for x is at most d

2ℓ
≤ δ. This completes the proof.

A.1.3 Proof of Lemma 4.3

The proof, which is based on Sperner/KKM Lemma, is present in (VWDP+22). Since our setting is
slightly different, for completeness we give a proof.

We first introduce the necessary definitions and notation.

Definition A.5 (Sperner/KKM Coloring). Let d ∈ N and V = {0, 1}d denote a set of colors (which
is exactly the set of vertices of [0, 1]d so that colors and vertices are identified). Let χ : [0, 1]d → V
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be a coloring function such that for any face F of [0, 1]d (of any dimension), for any x ∈ F , it holds
that χ(x) ∈ V (F ) where V (F ) is the vertex set of F (informally, the color of x is one of the vertices
in the face F ). Such a function χ will be called a Sperner/KKM coloring.

Theorem A.6 (Cubical Sperner/KKM lemma (DLPES02)). Let d ∈ N and V = {0, 1}d and
χ : [0, 1]d → V be a Sperner/KKM coloring. Then there exists a subset J ⊂ V with |J | = d+ 1 and
a point y⃗ ∈ [0, 1]d such that for all j ∈ J , y⃗ ∈ χ−1(j) (informally, there is a point y⃗ that is touching
at least d+ 1 different colors).

We will need to relate partitions to Sperner/KKM coloring so that we can use the Sperner/KKM
Lemma.

For any co-ordinate i, let π denote the standard projection map: πi : [0, 1]d → [0, 1] defined by
πi(x)

def
= xi which maps d-dimensional points to the ith coordinate value. We extend this to sets:

πi(X) = {πi(x) : x ∈ X}.

Definition A.7 (Non-Spanning partition). Let d ∈ N and P be a partition of [0, 1]d. We say that
P is a non-spanning partition if it holds for all X ∈ P and for all i ∈ [d] that either πi(X) ̸∋ 0 or
πi(X) ̸∋ 1 (or both).

Next, we state a lemma that asserts that for any non-spanning partition, there is a Sperner/KKM
coloring that respects the partition: that is every member gets the same color.

Lemma A.8 (Coloring Admission). Let d ∈ N, and V = {0, 1}d, and P a non-spanning partition of
[0, 1]d. Then there exists a Sperner/KKM coloring χ : [0, 1]d → V such that for every X ∈ P , for
every x, y ∈ X , χ(x) = χ(y).

Now we are ready to prove the Lemma 4.3.

Lemma A.9. (Lemma 4.3) Let P be a partition of [0, 1]d such that for each member X ∈ P , it
holds that diam∞(X) < 1. Then there exists p⃗ ∈ [0, 1]d such that for all δ > 0 we have that B

∞
δ (p⃗)

intersects at least d+ 1 members of P .

Proof. Consider an arbitrary X ∈ P . For each coordinate, i ∈ [d], the set {xi : x ∈ X} does not
contain both 0 and 1 (if it did, this would demonstrate two points in X that are ℓ∞ distance at least
1 apart and contradict that diam∞(X) < 1). Thus, P is by definition a non-spanning partition of
[0, 1]d. Since P is non-spanning, by Lemma A.8, there is a Sperner/KKM coloring where each point
of [0, 1]d can be assigned one of 2d-many colors and for any member X ∈ P , all points in X are
assigned the same color. By Lemma A.6, there is a point p⃗ ∈ [0, 1]d such that p⃗ belongs to the closure
of at least d+ 1 colors. Since every point of a partition has the same color, each of these d+ 1 colors
corresponds to at least d + 1 different partitions. From this, it follows that or any δ > 0, B

∞
δ (p⃗)

intersects at least d+ 1 different members of P .

A.2 Missing Proofs From Section 6

A.2.1 Proofs of Theorem 6.2, Theorem 6.3

Theorem A.10 (Theorem 6.2). Let H be a concept class that is learnable with d non-adaptive
statistical queries, then H is (d+ 1)-list replicably learnable. Furthermore, the sample complexity
n = n(ν, δ) of the (d+ 1)-list replicable algorithm is O( d

2

ν2 · log d
δ ), where ν is the approximation

error parameter of each statistical query oracle.

Proof. The proof is very similar to the proof of Theorem 5.2. Our replicable algorithm B works as
follows. Let ε and δ be input parameters and D be a distribution and f ∈ H. Let A be the statistical
query learning algorithm for H. Let STAT (Df , ν) be the statistical query oracle for this algorithm.
Let ϕ1, . . . , ϕd be the statistical queries made by A.

Let b⃗ = ⟨b[1], b[2], . . . , b[d]⟩ where b[i] = E⟨x,y⟩∈Df
[ϕi(⟨x, y⟩], 1 ≤ i ≤ d. Set ε0 = ν

2d . The
algorithm B first estimates the values b[i] up to an approximation error of ε0 with success probably
1− δ/d for each query. Note that this can be done by a simple empirical estimation algorithm, that
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uses a total of n = O( d
2

ν2 · log d
δ ) samples. Let v⃗ be the estimated vector. It follows that v⃗ ∈ B

∞
ε0 (⃗b)

with probability at least 1− δ. Note that different runs of the algorithm will output different v⃗.

Next, the algorithm B evaluates the deterministic function fε from Lemma 4.1 on input v⃗. Let u⃗ be
the output vector. Finally, the algorithm B simulates the statistical query algorithm A with u⃗[i] as
the answer to the query ϕi. By Lemma 4.1, u⃗ ∈ B

∞
ν (⃗b). Thus the error of the hypothesis output by

the algorithm is at most ε. Since A is a deterministic algorithm the number of possible outputs only
depends on the number of outputs of the function fε, more precisely the number of possible outputs
is the size of the set {fε(v⃗) : v ∈ B

∞
ε0 (⃗b)} which is almost d + 1, by Lemma 4.1. Thus the total

number of possible outputs of the algorithm B is at most d+ 1 with probability at least 1− δ.

Theorem A.11 (Theorem 6.3). Let H be a concept class that is learnable with d non-adaptive
statistical queries, then H is ⌈log d

δ ⌉-certificate replicably learnable. Furthermore, the sample
complexity n = n(ν, δ) of this algorithm equals O( d2

ν2δ2 · log d
δ ), where ν is the approximation error

parameter of each statistical query oracle.

Proof. The proof is very similar to the proof of Theorem 5.4. Our replicable algorithm B works as
follows, let ε and δ be input parameters and D be a distribution and f ∈ H. Let A be the statistical
query learning algorithm for H that outputs a hypothesis h with approximation error eDf

(h) = ε.
Let STAT (Df , ν) be the statistical query oracle for this algorithm. Let ϕ1, . . . , ϕd be the statistical
queries made by A.

Let b⃗ = ⟨b[1], b[2], · · · , b[d]⟩, where b[i] = E⟨x,y⟩∈Df
[ϕi(⟨x, y⟩)]. Set ε0 = νδ

2d . The algorithm B
first estimates the values b[i], 1 ≤ i ≤ d up to an additive approximation error of ε0 with success
probably 1−δ/d for each query. Note that this can be done by a simple empirical estimation algorithm
that uses a total of n = O( d2

ν2δ2 · log d
δ ) samples. Let v⃗ be the estimated the vector. It follows that

v⃗ ∈ B
∞
ε0 (⃗b) with probability at least 1− δ. Next, the algorithm B evaluates the deterministic function

f described in Lemma 4.2 with inputs r ∈ {0, 1}ℓ where ℓ = ⌈log d
δ ⌉ and v⃗. By Lemma 4.2 for at

least 1− δ fraction of the r’s , the function f outputs a canonical v⃗∗ ∈ B
∞
ν (⃗b). Finally, the algorithm

B simulates the statistical query algorithm A with v⃗∗[i] as the answer to the query ϕi. Since A
is a deterministic algorithm it follows that our algorithm B is certificate replicable. Note that the
certificate complexity is ℓ = ⌈log d

δ ⌉.

The following theorem states how to convert adaptive statistical query learning algorithms into
certificate replicable PAC learning algorithms. This result also appears in the work of (GKM21;
ILPS22), though they did not state the certificate complexity. We explicitly state the result here.
Theorem A.12. ((GKM21; ILPS22))[Theorem 6.4] Let H be a concept class that is learnable with d
adaptive statistical queries, then H is ⌈d log d

δ ⌉-certificate replicably learnable. Furthermore, the
sample complexity of this algorithm equals O( d3

ν2δ2 · log d
δ ), where ν is the approximation error

parameter of each statistical query oracle.

Proof. The proof uses similar arguments as before. The main difference is that we will evaluate each
query with an approximation error of νδ

d with a probability error of d/δ. This requires O( d2

ν2δ2 · log
d
δ )

per query. We use a fresh set of certificate randomness for each such evaluation. Note that the length
of the certificate for each query is ⌈log d/δ⌉. Thus the total certificate complexity is ⌈d log d

δ ⌉.

A.2.2 Proof of Theorem 6.7

We first recall the definition of the concept class d-THRESHOLD.

Fix some d ∈ N. Let X = [0, 1]d. For each value t⃗ ∈ [0, 1]d, let ht⃗ : X → {0, 1} be the concept
defined as follows: ht⃗(x⃗) = 1 if for every i ∈ [d] it holds that xi ≤ ti and 0 otherwise. Let H be the
hypothesis class consisting of all such threshold concepts: H =

{
ht⃗ | t⃗ ∈ [0, 1]d

}
.

Theorem A.13 (Theorem 6.7). In the PAC model under the uniform distribution, there is a d+ 1-list
replicable algorithm for the d-THRESHOLD. Moreover, for any k < d + 1, there does not exist a
k-list replicable algorithm for the concept class d-THRESHOLD under the uniform distribution. Thus
its list complexity is exactly d+ 1.
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It is easy to see that d-THRESHOLD is learnable under the uniform distribution by making d non-
adaptive statistical queries. Thus by Theorem 6.2, d-THRESHOLD under the uniform distribution
admits a (d + 1)-list replicable algorithm. So we will focus on proving the lower bound which is
stated as a separate theorem below.

Theorem A.14. For k < d+1, there does not exist a k-list replicable algorithm for the d-THRESHOLD
in the PAC model under uniform distribution.

The proof is similar to the proof of Theorem 5.5. The reason is that sampling d-many biased coins
with bias vector b⃗ is similar to obtaining a point x⃗ uniformly at random from [0, 1]d and evaluating the
threshold function hb⃗ on it—this corresponds to asking whether all of the coins were heads/1’s. The
two models differ though, because in the sample model for the d-COIN BIAS ESTIMATION PROBLEM,
the algorithm sees for each coin whether it is heads or tails, but this information is not available in
the PAC model for the d-THRESHOLD. Conversely, in the PAC model for the d-THRESHOLD, a
random draw from [0, 1]d is available to the algorithm, but in the sample model for the d-COIN BIAS
ESTIMATION PROBLEM the algorithm does not get this information.

Furthermore, there is the following additional complexity in the impossibility result for the d-
THRESHOLD. In the d-COIN BIAS ESTIMATION PROBLEM, we said by definition that a collection of
d coins parameterized by bias vector a⃗ was an ε-approximation to a collection of d coins parameterized
by bias vector b⃗ if and only if ∥⃗b− a⃗∥∞ ≤ ε, and we used this norm in the proofs. However, the notion
of ε-approximation in the PAC model is quite different than this. It is possible to have a hypotheses
ha⃗ and hb⃗ in the d-THRESHOLDsuch that ∥⃗b− a⃗∥∞ > ε but with respect to some distribution DX

on the domain X we have errDX
(ha⃗, hb⃗) ≤ ε. For example, if DX is the uniform distribution on

X = [0, 1]d and a⃗ = 0⃗ and b⃗ is the first standard basis vector b⃗ = ⟨1, 0, . . . , 0⟩, and ε = 1
2 , then

∥⃗b− a⃗∥∞ = 1 > ε, but errDX
(ha⃗, hb⃗) = 0 ≤ ε because ha⃗(x⃗) ̸= hb⃗(x⃗) if and only if all of the last

d − 1 coordinates of x⃗ are 0 and the first coordinate is > 0, but there is probability 0 of sampling
such x⃗ from the uniform distribution on X = [0, 1]d.

For this reason, we can’t just partition [0, 1]d as we did with the proof of Theorem 5.5 and must do
something more clever. It turns out that it is possible to find a subset [α, 1]d on which hypotheses
parameterized by vectors on opposite faces of this cube [α, 1]d have high PAC error between them.
A consequence by the triangle inequality of errDX

is that two such hypotheses cannot both be
approximated by a common third hypothesis. This is the following lemma states.

Lemma A.15. Let d ∈ N and α = d−1
d . Let s⃗, t⃗ ∈ [α, 1]d such that there exists a coordinate i0 ∈ [d]

where si0 = α and ti0 = 1 (i.e. s⃗ and t⃗ are on opposite faces of this cube). Let ε ≤ 1
8d . Then there is

no point r⃗ ∈ X such that both errunif(hs⃗, hr⃗) ≤ ε and errunif(ht⃗, hr⃗) ≤ ε (i.e. there is no hypothesis
which is an ε-approximation to both hs⃗ and ht⃗).

Proof. Let q⃗ =

〈{
si i = i0
ti i ̸= i0

〉d

i=1

which will serve as a proxy to s⃗.

We need the following claim.

Claim A.16. For each x⃗ ∈ X , the following are equivalent:

1. hq⃗(x⃗) ̸= ht⃗(x⃗)

2. hq⃗(x⃗) = 0 and ht⃗(x⃗) = 1

3. xi0 ∈ (qi0 , ti0 ] = (α, 1] and for all i ∈ [d] \ {i0}, xi ∈ [0, ti].

Furthermore, the above equivalent conditions imply the following:

4. hs⃗(x⃗) ̸= ht⃗(x⃗).

Proof of Claim A.16.

(2) =⇒ (1): This is trivial.

19



(1) =⇒ (2): Note that because qi0 = si0 = α < 1 = ti0 , we have for all i ∈ [d] that qi ≤ ti. If
ht⃗(x⃗) = 0 then for some i1 ∈ [d] it must be that xi1 > ti1 , but since ti1 ≥ qi1 it would also be the
case that xi1 > qi1 , so hq⃗(x⃗) = 0 which gives the contradiction that hq⃗(x⃗) = ht⃗(x⃗). Thus ht⃗(x⃗) = 1,
and since hq⃗(x⃗) ̸= ht⃗(x⃗) we have hq⃗(x⃗) = 0.

(1) ⇐⇒ (3): We partition [0, 1]d into three sets and examine these three cases.

Case 1: xi0 ∈ (qi0 , ti0 ] = (α, 1] and for all i ∈ [d] \ {i0}, xi ∈ [0, ti]. In this case, qi0 < xi0 so
hq⃗(x⃗) = 0 and for all i ∈ [d] xi ≤ ti, so ht⃗(x⃗) = 1, so hq⃗(x⃗) ̸= ht⃗(x⃗).

Case 2: xi0 ̸∈ (qi0 , ti0 ] = (α, 1] and for all i ∈ [d] \ {i0}, xi ∈ [0, ti]. In this case, because
xi0 ∈ [0, 1] and xi0 ̸∈ (α, 1] we have xi0 ≤ α = qi0 ≤ ti0 and also for all other i ∈ [d] \ {i0},
xi ≤ ti = qi (by definition of q⃗). Thus hq⃗(x⃗) = 1 = ht⃗(x⃗).

Case 3: For some i1 ∈ [d] \ {i0}, xi1 ̸∈ [0, ti1 ]. In this case, because xi1 ∈ [0, 1], we have
xi1 > ti1 = qi1 . Thus hq⃗(x⃗) = 0 = ht⃗(x⃗).

Thus, it is the case that hq⃗(x⃗) ̸= ht⃗(x⃗) if and only if xi0 ∈ (qi0 , ti0 ] = (α, 1] and for all i ∈ [d]\{i0},
xi ∈ [0, ti].

(1, 2, 3) =⇒ (4): By (2), we have xi0 > qi0 , and since qi0 = si0 by definition of q⃗, it follows that
xi0 > si0 which means hs⃗(x⃗) = 0. By (3), ht⃗(x⃗) = 1 which gives hs⃗(x⃗) ̸= ht⃗(x⃗).

We also need the following Lemma.

Lemma A.17. Let d ∈ N and α = d−1
d = 1− 1

d . Then (1− α) · αd−1 > 1
4d .

Proof. If d = 1, then α = 0 so (1− α) · αd−1 = 1 ≥ 1
4 = 1

4d (see footnote2).

If d ≥ 2, then we utilize the fact that (1− 1
d )

d ≥ 1
4 in the following:

(1− α) · αd−1 = ( 1d )(1−
1
d )

d−1

= ( 1d )
(1− 1

d )
d

1− 1
d

=
(1− 1

d )
d

d− 1

≥ 1

4(d− 1)

>
1

4d
.

This completes the proof. As an aside, α = d−1
d is the value of α that maximizes the expression

(1− α) · αd−1 which is why that value was chosen.

With the above Claim and Lemma in hand, we return to the proof of Lemma A.15. Our next step will
be two prove the following two inequalities:

2ε < errunif(hq⃗, ht⃗) ≤ errunif(hs⃗, ht⃗).

For the second of these inequalities, note that by the (1) =⇒ (4) part of claim above, since hq⃗(x⃗) ̸=
ht⃗(x⃗) implies hs⃗(x⃗) ̸= ht⃗(x⃗) we have

errunif(hq⃗, ht⃗) = Pr
x⃗∼ unif(X)

[hq⃗(x⃗) ̸= ht⃗(x⃗)]

≤ Pr
x⃗∼ unif(X)

[hs⃗(x⃗) ̸= ht⃗(x⃗)]

= errunif(hs⃗, ht⃗).

2This uses the interpretation that 00 = 1 which is the correct interpretation in the context in which we will
use the lemma.
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Now, for the first of the inequalities above, we will use the (1) ⇐⇒ (3) portion of the claim, we will
use our hypothesis that t⃗ ∈ [α, 1]d (which implies for each i ∈ [d] that [0, ti] ⊆ [0, α]), we will use
the hypothesis that ε ≤ 1

8d , and we will use Theorem A.17. Utilizing these, we get the following:

errunif(hq⃗, ht⃗)

= Pr
x⃗∼ unif(X)

[hq⃗(x⃗) ̸= ht⃗(x⃗)]

= Pr
x⃗∼ unif(X)

[xi0 ∈ (α, 1] ∧ ∀i ∈ [d] \ {i0} , xi ∈ [0, ti]]

= Pr
xi0 ∼ unif([0,1])

[xi0 ∈ (α, 1]] ·
d∏

i=1
i ̸=i0

Pr
x∼ unif([0,1])

[x ∈ [0, ti]]

≥ Pr
xi0

∼ unif([0,1])
[xi0 ∈ (α, 1]] ·

d∏
i=1
i ̸=i0

Pr
x∼ unif([0,1])

[x ∈ [0, α]]

= (1− α) · αd−1

>
1

4d
≥ 2ε.

Thus, we get the desired two inequalities:

2ε < errunif(hq⃗, ht⃗) ≤ errunif(hs⃗, ht⃗).

This nearly completes the proof. If there existed some point r⃗ ∈ X such that both errunif(hs⃗, hr⃗) ≤ ε
and errunif(ht⃗, hr⃗) ≤ ε, then it would follow from the triangle inequality of errunif that

errunif(hs⃗, ht⃗) ≤ errunif(hs⃗, hr⃗) + errunif(ht⃗, hr⃗) ≤ 2ε

but this would contradict the above inequalities, so no such r⃗ exists.

Equipped with the Lemma A.15, we are now ready to prove Theorem A.14.

Proof of Theorem A.14. Fix any d ∈ N, and choose ε and δ as ε ≤ 1
4d and δ ≤ 1

d+2 . We will use the
constant α = d−1

d and consider the cube [α, 1]d.

Suppose for contradiction such an algorithm A does exists for some k < d+ 1. This means that for
each possible threshold t⃗ ∈ [0, 1]d, there exists some set Lt⃗ ⊆ H of hypotheses with three properties:
(1) each element of Lt⃗ is an ε-approximation to ht⃗, (2) |Lt⃗| ≤ k, and (3) with probability at least
1− δ, A returns an element of Lt⃗.

By the trivial averaging argument, this means that there exists at least one element in Lt⃗ which is
returned by A with probability at least 1

k · (1 − δ) ≥ 1
k · (1 − 1

d+2 ) = 1
k · d+1

d+2 ≥ 1
k · k+1

k+2 . Let
f : [α, 1]d → [0, 1]d be a function which maps each threshold t⃗ ∈ [α, 1]d to such an element (the
maximum probability element with ties broken arbitrarily) of Lt⃗. This is slightly different from the
proof of Theorem 5.5 because we are defining the function f on only a very specific subset of the
possible thresholds. The reason for this was alluded to in the discussion following the statement of
Theorem A.14.

The function f induces a partition P of [α, 1]d where the members of P are the fibers of f (i.e.
P =

{
f−1(y⃗) : y⃗ ∈ range(f)

}
). For any member W ∈ P and any coordinate i ∈ [d], it cannot be

that the set {wi : w⃗ ∈ W} contains both values α and 1—if it did, then there would be two points
s⃗, t⃗ ∈ W such that si = α and ti = 1, but because they both belong to W , there is some y⃗ ∈ [0, 1]d

such that f(s⃗) = y⃗ = f (⃗t), but by definition of the partition, hy⃗ would have to be an ε-approximation
(in the PAC model) of both hs⃗ and ht⃗, but by Lemma A.15 this is not possible.

Thus, the partition P is a non-spanning partition of [α, 1]d as in the proof of Lemma 4.3, so there is
some point p⃗ ∈ [α, 1]d such that for every radius r > 0, it holds that B

∞
r (p⃗) intersects at least d+ 1

21



members of P . In fact, there is some radius r such that ∥t⃗− s⃗∥∞ ≤ r, then dTV(DA,s⃗,n,DA,⃗t,n) ≤ η,
for η that lies between 0 and 1

k · k+1
k+2 − 1

k+1 .

Now we get the same type of contradiction as in the proof of Theorem 5.5: for the special point p⃗ we
have that DA,p⃗,n is a distribution that has d+ 1 ≥ k + 1 disjoint events that each have probability
greater than 1

k+1 . Thus, no k-list replicable algorithm exists.

B Expanded Prior and Related Work

We give a more detailed discussion on prior and related work. This section is an elaboration of the
Section 2 from the main body of the paper.

Formalizing reproducibility and replicability has gained considerable momentum in recent years.
While the terms reproducibility and replicability are very close and often used interchangeably, there
has been an effort to distinguish between them and accordingly, our notions fall in the replicability
definition (PVLS+21).

In the context of randomized algorithms, various notions of reproducibility/replicability have been
investigated. The work of Gat and Goldwasser (GG11) formalized and defined the notion of pseu-
dodeterministic algorithms. A randomized algorithm A is pseudodeterministic if, for any input
x, there is a canonical value vx such that Pr[A(x) = vx] ≥ 2/3. Gat and Goldwasser designed
polynomial-time pseudodeterministic algorithms for algebraic computational problems, such as
finding quadratic non-residues and finding non-roots of multivariate polynomials (GG11). Later
works studied the notion of pseudodeterminism in other algorithmic settings, such as parallel com-
putation, streaming and sub-linear algorithms, interactive proofs, and its connections to complexity
theory (GG; GGH18; OS17; OS18; AV20; GGMW20; LOS21; DPVWV22).

In the algorithmic setting, mainly two generalizations of pseudodeterminism have been investigated:
multi-pseudodeterministic algorithms (Gol19) and influential bit algorithms (GL19). A randomized
algorithm A is k-pseudodeterministic if, for every input x, there is a set Sx of size at most k
such that the output of A(x) belongs to the set Sx with high probability. When k = 1, we get
pseudodeterminism. A randomized algorithm A is ℓ-influential-bit algorithm if, for every input x,
for most of the strings r of length ℓ, there exists a canonical value vx,r such that the algorithm A
on inputs x and r outputs vx,r with high probability. The string r is called the influential bit string.
Again, when ℓ = 0, we get back pseudodeterminism. The main focus of these works has been to
investigate reproducibility in randomized search algorithms.

Very recently, pseudodeterminism and its generalizations have been explored in the context of learning
algorithms to formalize the notion of replicability. The seminal work of (BLM20) defined the notion
of global stability. They define a learning algorithm A to be (n, η)-globally stable with respect to
a distribution D if there is a hypothesis h such that PrS∼Dn(A(S) = h) ≥ η, here η is called the
stability parameter. Note that the notion of global stability is equivalent to Gat and Goldwasser’s
notion of pseudodeterminism when η = 2/3. Since Gat and Goldwasser’s motivation is to study
pseudodeterminism in the context of randomized algorithms, the success probability is taken as 2/3.
In the context of learning, studying the stability parameter η turned out to be useful. The work of
Bun, Livny and Moran (BLM20) showed that any concept class with Littlestone dimension d has
an (m, η)-globally stable learning algorithm with m = Õ(22

d

/α) and η = Õ(2−2d), where the
error of h (with respect to the unknown hypothesis) is ≤ α. Then they established that a globally
stable learner implies a differentially private learner. This, together with an earlier work of Alon,
Livny, Malliaris, and Moran (ALMM19), establishes an equivalence between online learnability and
differentially private PAC learnability.

The work of Ghazi, Kumar, and Manurangsi (GKM21) extended the notion of global stability to
pseudo-global stability and list-global stability. The notion of pseudo-global stability is very similar
to the earlier-mentioned notion of influential bit algorithms of Grossman and Liu (GL19) when
translated to the context of learning. The work of (GKM21) used these concepts to design user-level
differentially private algorithms.

The recent work reported in (ILPS22) introduced the notion of ρ-replicability. A learning algorithm A
is ρ-replicable if PrS1,S2,r[A(S1, r) = A(S2, r)] ≥ 1−ρ, where S1 and S2 are samples drawn from a
distribution D and r is the internal randomness of the learning algorithm A. They designed replicable
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algorithms for many learning tasks, including statistical queries, approximate heavy hitters, median,
and learning half-spaces. It is known that the notions of pseudo-global stability and ρ-replicability
are the same up to polynomial factors in the parameters (ILPS22; GKM21).

In this work, we study the notions of list and certificate complexities as a measure the degree of (non)
replicability. Our goal is to design learning algorithms with optimal list and certificate complexities
while minimizing the sample complexity. The earlier works (BLM20; GKM21; ILPS22) did not
focus on minimizing these quantities. The works of (BLM20; GKM21) used replicable algorithms as
an intermediate step to design differentially private algorithms. The work of (ILPS22) did not consider
reducing the certificate complexity in their algorithms and also did not study list-replicability. Earlier
works (GKM21; ILPS22) studied how to convert statistical query learning algorithms into certificate
replicable learning algorithms, however, their focus was not on the certificate complexity. Here, we
study the relationship among (nonadaptive and adaptive) statistical query learning algorithms, list
replicable algorithms, and certificate replicable algorithms with a focus on list, certificate and sample
complexities.

A very recent and independent work of (CMY23) investigated relations between list replicability
and the stability parameter ν, in the context of distribution-free PAC learning. They showed that for
every concept class H, its list complexity is exactly the inverse of the stability parameter. They also
showed that the list complexity of a hypothesis class is at least its VC dimension. For establishing
this they exhibited, for any d, a concept class whose list complexity is exactly d. There are some
similarities between their work and the present work. We establish similar upper and lower bounds on
the list complexity but for different learning tasks: d-THRESHOLD and d-COIN BIAS ESTIMATION
PROBLEM. For d-THRESHOLD, our results are for PAC learning under uniform distribution and do
not follow from their distribution-independent results. Thus our results, though similar in spirit, are
incomparable to theirs. Moreover, their work did not focus on efficiency in sample complexity and
also did not study certificate complexity which is a focus of our paper. We do not study the stability
parameter.

The study of notions of reproducibility/replicability in various computational fields is an emerging
topic. The article (PVLS+21) discusses the differences between replicability and reproducibility. In
(EKK+23), the authors consider replicability in the context of stochastic bandits. Their notion is
similar to the notion studied in (ILPS22). In (AJJ+22), the authors investigate reproducibility in the
context of optimization with inexact oracles (initialization/gradient oracles). The setup and focus of
these works are different from ours.

Finally, we would like to point out that there notions of list PAC learning and list-decodable learning in
the learning theory literature (see (CP23) and (RY20) for recent progress on these notions). However,
these notions are different from the list replicable learning that we consider in this paper. List PAC
learning and list-decodable learning are generalized models of PAC learning. For example, any
learning task that is PAC learnable is trivially list PAC learnable with a list size of 1. However, list
replicable learning is an additional requirement that needs to be satisfied by a learner. Thus the notion
of list and list-decodable PAC learning are different from the notions of list/certificate replicability.
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