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Abstract

Modern policy optimization methods in reinforcement learning, such as TRPO
and PPO, owe their success to the use of parameterized policies. However, while
theoretical guarantees have been established for this class of algorithms, especially
in the tabular setting, the use of general parameterization schemes remains mostly
unjustified. In this work, we introduce a framework for policy optimization
based on mirror descent that naturally accommodates general parameterizations.
The policy class induced by our scheme recovers known classes, e.g., softmax,
and generates new ones depending on the choice of mirror map. Using our
framework, we obtain the first result that guarantees linear convergence for a
policy-gradient-based method involving general parameterization. To demonstrate
the ability of our framework to accommodate general parameterization schemes,
we provide its sample complexity when using shallow neural networks, show
that it represents an improvement upon the previous best results, and empirically
validate the effectiveness of our theoretical claims on classic control tasks.

1 Introduction

Policy optimization is one of the most widely-used classes of algorithms for reinforcement learning
(RL). Among policy optimization techniques, policy gradient (PG) methods [e.g., 92, 87, 49, 6]
are gradient-based algorithms that optimize the policy over a parameterized policy class and have
emerged as a popular class of algorithms for RL [e.g., 42, 75, 12, 69, 78, 80, 54].

The design of gradient-based policy updates has been key to achieving empirical success in many
settings, such as games [9] and autonomous driving [81]. In particular, a class of PG algorithms
that has proven successful in practice consists of building updates that include a hard constraint (e.g.,
a trust region constraint) or a penalty term ensuring that the updated policy does not move too far
from the previous one. Two examples of algorithms belonging to this category are trust region policy
optimization (TRPO) [78], which imposes a Kullback-Leibler (KL) divergence [53] constraint on
its updates, and policy mirror descent (PMD) [e.g. 88, 54, 93, 51, 89], which applies mirror descent
(MD) [70] to RL. Shani et al. [82] propose a variant of TRPO that is actually a special case of PMD,
thus linking TRPO and PMD.

From a theoretical perspective, motivated by the empirical success of PMD, there is now a concerted
effort to develop convergence theories for PMD methods. For instance, it has been established
that PMD converges linearly to the global optimum in the tabular setting by using a geometrically
increasing step-size [54, 93], by adding entropy regularization [17], and more generally by adding
convex regularization [100]. Linear convergence of PMD has also been established for the negative
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entropy mirror map in the linear function approximation regime, i.e., for log-linear policies, either
by adding entropy regularization [15], or by using a geometrically increasing step-size [20, 2, 98].
The proofs of these results are based on specific policy parameterizations, i.e., tabular and log-linear,
while PMD remains mostly unjustified for general policy parameterizations and mirror maps, leaving
out important practical cases such as neural networks. In particular, it remains to be seen whether
the theoretical results obtained for tabular policy classes transfer to this more general setting.

In this work, we introduce Approximate Mirror Policy Optimization (AMPO), a novel framework
designed to incorporate general parameterization into PMD in a theoretically sound manner. In
summary, AMPO is an MD-based method that recovers PMD in different settings, such as tabular
MDPs, is capable of generating new algorithms by varying the mirror map, and is amenable to
theoretical analysis for any parameterization class. Since the MD update can be viewed as a two-step
procedure, i.e., a gradient update step on the dual space and a mapping step onto the probability
simplex, our starting point is to define the policy class based on this second MD step (Definition 3.1).
This policy class recovers the softmax policy class as a special case (Example 3.2) and accommodates
any parameterization class, such as tabular, linear, or neural network parameterizations. We then
develop an update procedure for this policy class based on MD and PG.

We provide an analysis of AMPO and establish theoretical guarantees that hold for any parameteriza-
tion class and any mirror map. More specifically, we show that our algorithm enjoys quasi-monotonic
improvements (Proposition 4.2), sublinear convergence when the step-size is non-decreasing, and
linear convergence when the step-size is geometrically increasing (Theorem 4.3). To the best of
our knowledge, AMPO is the first policy-gradient-based method with linear convergence that can
accommodate any parameterization class. Furthermore, the convergence rates hold for any choice
of mirror map. The generality of our convergence results allows us not only to unify several current
best-known results with specific policy parameterizations, i.e., tabular and log-linear, but also to
achieve new state-of-the-art convergence rates with neural policies. Tables 1 and 2 in Appendix A.2
provide an overview of our results. We also refer to Appendix A.2 for a thorough literature review.

The key point of our analysis is Lemma 4.1, which allows us to keep track of the errors incurred
by the algorithm (Proposition 4.2). It is an application of the three-point descent lemma by [19,
Lemma 3.2] (see also Lemma F.2), which is possible thanks to our formulations of the policy class
(Definition 3.1) and the policy update (Line 2 of Algorithm 1). The convergence rates of AMPO
are obtained by building on Lemma 4.1 and leveraging modern PMD proof techniques [93].

In addition, we show that for a large class of mirror maps, i.e., the ω-potential mirror maps in
Definition 3.5, AMPO can be implemented in Õ(|A|) computations. We give two examples of mirror
maps belonging to this class, Examples 3.6 and 3.7, that illustrate the versatility of our framework.
Lastly, we examine the important case of shallow neural network parameterization both theoretically
and empirically. In this setting, we provide the sample complexity of AMPO, i.e., Õ(ε−4) (Corollary
4.5), and show how it improves upon previous results.

2 Preliminaries

LetM = (S,A, P, r, γ, µ) be a discounted Markov Decision Process (MDP), where S is a possibly
infinite state space, A is a finite action space, P (s′ | s, a) is the transition probability from state
s to s′ under action a, r(s, a) ∈ [0, 1] is a reward function, γ is a discount factor, and µ is a target
state distribution. The behavior of an agent on an MDP is then modeled by a policy π ∈ (∆(A))S ,
where a ∼ π(· | s) is the density of the distribution over actions at state s ∈ S, and ∆(A) is the
probability simplex over A.

Given a policy π, let V π : S → R denote the associated value function. Letting st and at be
the current state and action at time t, the value function V π is defined as the expected discounted
cumulative reward with the initial state s0 = s, namely,

V π(s) := Eat∼π(·|st),st+1∼P (·|st,at)

[∑∞

t=0
γtr(st, at) | π, s0 = s

]
.

Now letting V π(µ) := Es∼µ[V
π(s)], our objective is for the agent to find an optimal policy

π⋆ ∈ argmaxπ∈(∆(A))S V π(µ). (1)
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As with the value function, for each pair (s, a) ∈ S × A, the state-action value function, or
Q-function, associated with a policy π is defined as

Qπ(s, a) := Eat∼π(·|st),st+1∼P (·|st,at)

[∑∞

t=0
γtr(st, at) | π, s0 = s, a0 = a

]
.

We also define the discounted state visitation distribution by

dπµ(s) := (1− γ)Es0∼µ

[∑∞

t=0
γtP (st = s | π, s0)

]
, (2)

where P (st = s | π, s0) represents the probability of the agent being in state s at time t when
following policy π and starting from s0. The probability dπµ(s) represents the time spent on state
s when following policy π.

The gradient of the value function V π(µ) with respect to the policy is given by the policy gradient
theorem (PGT) [87]:

∇sV
π(µ) :=

∂V π(µ)

∂π(· | s)
=

1

1− γ
dπµ(s)Q

π(s, ·). (3)

2.1 Mirror descent

The first tools we recall from the mirror descent (MD) framework are mirror maps and Bregman
divergences [14, Chapter 4]. Let Y ⊆ R|A| be a convex set. A mirror map h : Y → R is a strictly
convex, continuously differentiable and essentially smooth function1 such that ∇h(Y) = R|A|. The
convex conjugate of h, denoted by h∗, is given by

h∗(x∗) := supx∈Y⟨x∗, x⟩ − h(x), x∗ ∈ R|A|.

The gradient of the mirror map ∇h : Y → R|A| allows to map objects from the primal space Y to
its dual space R|A|, x 7→ ∇h(x), and viceversa for ∇h∗, i.e., x∗ 7→ ∇h∗(x∗). In particular, from
∇h(Y) = R|A|, we have: for all (x, x∗) ∈ Y × R|A|,

x = ∇h∗(∇h(x)) and x∗ = ∇h(∇h∗(x∗)). (4)

Furthermore, the mirror map h induces a Bregman divergence [13, 18] , defined as

Dh(x, y) := h(x)− h(y)− ⟨∇h(y), x− y⟩,

where Dh(x, y) ≥ 0 for all x, y ∈ Y . We can now present the standard MD algorithm [70, 14].
Let X ⊆ Y be a convex set and V : X → R be a differentiable function. The MD algorithm
can be formalized2 as the following iterative procedure in order to solve the minimization problem
minx∈X V (x): for all t ≥ 0,

yt+1 = ∇h(xt)− ηt∇V (x)|x=xt , (5)

xt+1 = ProjhX (∇h∗(yt+1)), (6)

where ηt is set according to a step-size schedule (ηt)t≥0 and ProjhX (·) is the Bregman projection

ProjhX (y) := argminx∈X Dh(x, y). (7)

Precisely, at time t, xt ∈ X is mapped to the dual space through ∇h(·), where a gradient step is
performed as in (5) to obtain yt+1. The next step is to map yt+1 back in the primal space using
∇h∗(·). In case ∇h∗(yt+1) does not belong to X , it is projected as in (6).

3 Approximate Mirror Policy Optimization

The starting point of our novel framework is the introduction of a novel parameterized policy class
based on the Bregman projection expression recalled in (7).

1h is essentially smooth if limx→∂Y ∥∇h(x)∥2 = +∞, where ∂Y denotes the boundary of Y .
2See a different formulation of MD in (11) and in Appendix B (Lemma B.1).
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Algorithm 1: Approximate Mirror Policy Optimization

Input: Initial policy π0, mirror map h, parameterization class FΘ, iteration number T , step-size
schedule (ηt)t≥0, state-action distribution sequence (vt)t≥0.

for t = 0 to T − 1 do
1 Obtain θt+1 ∈ Θ such that θt+1 ∈ argminθ∈Θ

∥∥fθ −Qt − η−1
t ∇h(πt)

∥∥2
L2(vt)

.4

2 Update πt+1
s ∈ argmin

p∈∆(A)

Dh(p,∇h∗(ηtf
θt+1

s )) = Projh∆(A)(∇h∗(ηtf
t+1
s )), ∀s ∈ S.

Definition 3.1. Given a parameterized function class FΘ = {fθ : S × A → R, θ ∈ Θ}, a mirror
map h : Y → R, where Y ⊆ R|A| is a convex set with ∆(A) ⊆ Y , and η > 0, the Bregman
projected policy class associated with FΘ and h consists of all the policies of the form:{

πθ : πθ
s = Projh∆(A)(∇h∗(ηfθ

s )), s ∈ S; θ ∈ Θ
}
,

where for all s ∈ S, πθ
s , f

θ
s ∈ R|A| denote vectors [πθ(a | s)]a∈A and [fθ(s, a)]a∈A, respectively.

In this definition, the policy is induced by a mirror map h and a parameterized function fθ, and is ob-
tained by mapping fθ to Y with the operator∇h∗(·), which may not result in a well-defined probabil-
ity distribution, and is thus projected on the probability simplex ∆(A). Note that the choice of h is key
in deriving convenient expressions for πθ. The Bregman projected policy class contains large families
of policy classes. Below is an example of h that recovers a widely used policy class [7, Example 9.10].

Example 3.2 (Negative entropy). If Y = R|A|
+ and h is the negative entropy mirror map, i.e.,

h(π(·|s))=
∑

a∈A π(a|s) log(π(a|s)), then the associated Bregman projected policy class becomes{
πθ : πθ

s =
exp(ηfθ

s )

∥exp(ηfθ
s )∥1

, s ∈ S; θ ∈ Θ
}
, (8)

where the exponential and the fraction are element-wise and ∥·∥1 is the ℓ1 norm. In particular, when
fθ(s, a) = θs,a, the policy class (8) becomes the tabular softmax policy class; when fθ is a linear
function, (8) becomes the log-linear policy class; and when fθ is a neural network, (8) becomes
the neural policy class defined by Agarwal et al. [1]. We refer to Appendix C.1 for its derivation.

We now construct an MD-based algorithm to optimize V πθ

over the Bregman projected policy class
associated with a mirror map h and a parameterization class FΘ by adapting Section 2.1 to our
setting. We define the following shorthand: at each time t, let πt := πθt

, f t := fθt

, V t := V πt

,
Qt := Qπt

, and dtµ := dπ
t

µ . Further, for any function y : S ×A → R and distribution v over S ×A,
let ys := y(s, ·) ∈ R|A| and ∥y∥2L2(v)

= E(s,a)∼v[(y(s, a))
2]. Ideally, we would like to execute the

exact MD algorithm: for all t ≥ 0 and for all s ∈ S,

f t+1
s = ∇h(πt

s) + ηt(1− γ)∇sV
t(µ)/dtµ(s)

(3)
= ∇h(πt

s) + ηtQ
t
s,

3 (9)

πt+1
s = Projh∆(A)(∇h∗(ηtf

t+1
s )). (10)

Here, (10) reflects our Bregman projected policy class 3.1. However, we usually cannot perform
the update (9) exactly. In general, if fθ belongs to a parameterized class FΘ, there may not be any
θt+1 ∈ Θ such that (9) is satisfied for all s ∈ S.

To remedy this issue, we propose Approximate Mirror Policy Optimization (AMPO), described in
Algorithm 1. At each iteration, AMPO consists in minimizing a surrogate loss and projecting the result
onto the simplex to obtain the updated policy. In particular, the surrogate loss in Line 1 of Algorithm
1 is a standard regression problem where we try to approximate Qt + η−1

t ∇h(πt) with f t+1, and has
been studied extensively when fθ is a neural network [3, 35]. We can then readily use (10) to update
πt+1 within the Bregman projected policy class defined in 3.1, which gives Line 2 of Algorithm 1.

To better illustrate the novelty of our framework, we provide below two remarks on how the two
steps of AMPO relate and improve upon previous works.
3The update is (5) up to a scaling (1− γ)/dtµ(s) of ηt.
4With a slight abuse of notation, denote ∇h(πt)(s, a) as [∇h(πt

s)]a.
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Remark 3.3. Line 1 associates AMPO with the compatible function approximation framework
developed by [87, 42, 1], as both frameworks define the updated parameters θt+1 as the solution
to a regression problem aimed at approximating the current Q-function Qt. A crucial difference is
that, Agarwal et al. [1] approximate Qt linearly with respect to ∇θ log π

t (see (61)), while in Line 1
we approximate Qt and the gradient of the mirror map of the previous policy with any function
fθ. This generality allows our algorithm to achieve approximation guarantees for a wider range
of assumptions on the structure of Qt. Furthermore, the regression problem proposed by Agarwal
et al. [1] depends on the distribution dtµ, while ours has no such constraint and allows off-policy
updates involving an arbitrary distribution vt. See Appendix E for more details.
Remark 3.4. Line 2 associates AMPO to previous approximations of PMD [89, 88]. For instance,
Vaswani et al. [89] aim to maximize an expression equivalent to

πt+1 ∈ argmaxπθ∈Π(Θ) Es∼dt
µ
[ηt⟨Qt

s, π
θ
s⟩ − Dh(π

θ
s , π

t
s)], (11)

where Π(Θ) is a given parameterized policy class, while the Bregman projection step of AMPO can
be rewritten as

πt+1
s ∈ argmaxp∈∆(A)⟨ηtf t+1

s −∇h(πt
s), p⟩ − Dh(p, π

t
s), ∀s ∈ S. (12)

We formulate this result as Lemma F.1 in Appendix F with a proof. When the policy class Π(Θ) is
the entire policy space ∆(A)S , (11) is equivalent to the two-step procedure (9)-(10) thanks to the
PGT (3). A derivation of this observation is given in Appendix B for completeness. The issue with
the update in (11), which is overcome by (12), is that Π(Θ) in (11) is often a non-convex set, thus
the three-point-descent lemma [19] cannot be applied. The policy update in (12) circumvents this
problem by defining the policy implicitly through the Bregman projection, which is a convex problem
and thus allows the application of the three-point-descent lemma [19]. We refer to Appendix F for
the conditions of the three-point-descent lemma in details.

3.1 ω-potential mirror maps

In this section, we provide a class of mirror maps that allows to compute the Bregman projection
in Line 2 with Õ(|A|) operations and simplifies the minimization problem in Line 1.
Definition 3.5 (ω-potential mirror map [50]). For u ∈ (−∞,+∞], ω ≤ 0, let an ω-potential be
an increasing C1-diffeomorphism ϕ : (−∞, u)→ (ω,+∞) such that

lim
x→−∞

ϕ(x) = ω, lim
x→u

ϕ(x) = +∞,

∫ 1

0

ϕ−1(x)dx ≤ ∞.

For any ω-potential ϕ, the associated mirror map hϕ, called ω-potential mirror map, is defined as

hϕ(πs) =
∑

a∈A

∫ π(a|s)

1

ϕ−1(x)dx.

Thanks to Krichene et al. [50, Proposition 2] (see Proposition C.1 as well), the policy πt+1 in Line 2 in-
duced by the ω-potential mirror map can be obtained with Õ(|A|) computations and can be written as

πt+1(a | s) = σ(ϕ(ηtf
t+1(s, a) + λt+1

s )), ∀s ∈ S, a ∈ A, (13)

where λt+1
s ∈ R is a normalization factor to ensure

∑
a∈A πt+1(a | s) = 1 for all s ∈ S, and

σ(z) = max(z, 0) for z ∈ R. We call this policy class the ω-potential policy class. By using (13) and
the definition of the ω-potential mirror map hϕ, the minimization problem in Line 1 is simplified to be

θt+1 ∈ argminθ∈Θ

∥∥fθ −Qt − η−1
t max(ηt−1f

t, ϕ−1(0)− λt
s)
∥∥2
L2(vt)

, (14)

where max(·, ·) is applied element-wisely. The ω-potential policy class allows AMPO to generate
a wide range of applications by simply choosing an ω-potential ϕ. In fact, it recovers existing
approaches to policy optimization, as we show in the next two examples.

Example 3.6 (Squared ℓ2-norm). If Y = R|A| and ϕ is the identity function, then hϕ is the squared ℓ2-
norm, that is hϕ(πs) = ∥πs∥22 /2, and∇hϕ is the identity function. So, Line 1 in Algorithm 1 becomes

θt+1 ∈ argminθ∈Θ

∥∥fθ −Qt − η−1
t πt

∥∥2
L2(vt)

. (15)
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The ∇h∗
ϕ also becomes the identity function, and the policy update is given for all s ∈ S by

πt+1
s = Projhϕ

∆(A)(ηtf
t+1
s ) = argmin

πs∈∆(A)

∥∥πs − ηtf
t+1
s

∥∥2
2
, (16)

which is the Euclidean projection on the probability simplex. In the tabular setting, where S and
A are finite and fθ(s, a) = θs,a, (15) can be solved exactly with the minimum equal to zero, and
Equations (15) and (16) recover the projected Q-descent algorithm [93]. As a by-product, we
generalize the projected Q-descent algorithm from the tabular setting to a general parameterization
class FΘ, which is a novel algorithm in the RL literature.

Example 3.7 (Negative entropy). If Y = R|A|
+ and ϕ(x) = exp(x − 1), then hϕ is the negative

entropy mirror map from Example 3.2 and Line 1 in Algorithm 1 becomes

θt+1 ∈ argminθ∈Θ

∥∥∥f t+1 −Qt − ηt−1

ηt
f t
∥∥∥2
L2(vt)

. (17)

Consequently, based on Example 3.2, we have πt+1
s ∝ exp(ηtf

t+1
s ) for all s ∈ S. In this example,

AMPO recovers tabular NPG [82] when fθ(s, a) = θs,a, and Q-NPG with log-linear policies [98]
when fθ and Qt are linear functions for all t ≥ 0.

We refer to Appendix C.2 for detailed derivations of the examples in this section and an efficient
implementation of the Bregman projection step. In addition to the ℓ2-norm and the negative entropy,
several other mirror maps that have been studied in the optimization literature fall into the class of
ω-potential mirror maps, such as the Tsallis entropy [74, 57] and the hyperbolic entropy [34], as well
as a generalization of the negative entropy [50]. These examples illustrate how the class of ω-potential
mirror maps recovers known methods and can be used to explore new algorithms in policy optimiza-
tion. We leave the study of the application of these mirror maps in RL as future work, both from an
empirical and theoretical point of view, and provide additional discussion and details in Appendix C.2.

4 Theoretical analysis

In our upcoming theoretical analysis of AMPO, we rely on the following key lemma.

Lemma 4.1. For any policies π and π̄, for any function fθ ∈ FΘ and for η > 0, we have

⟨ηfθ
s −∇h(π̄s), πs − π̃s⟩ ≤ Dh(πs, π̄s)−Dh(π̃s, π̄s)−Dh(πs, π̃s), ∀s ∈ S,

where π̃ is the Bregman projected policy induced by fθ and h according to Definition 3.1, that is
π̃s = argminp∈∆(A)Dh(p,∇h∗(ηfθ

s )) for all s ∈ S.

The proof of Lemma 4.1 is given in Appendix D.1. Lemma 4.1 describes a relation between any two
policies and a policy belonging to the Bregman projected policy class associated with FΘ and h. As
mentioned in Remark 3.4, Lemma 4.1 is the direct consequence of (12) and can be interpreted as an
application of the three-point descent lemma [19], while it cannot be applied to algorithms based on
the update in (11) [88, 89] due to the non-convexity of the optimization problem (see also Appendix
F). Notice that Lemma 4.1 accommodates naturally with general parameterization also thanks to (12).
In contrast, similar results have been obtained and exploited for specific policy and mirror map classes
[93, 60, 36, 98], while our result allows any parameterization class FΘ and any choice of mirror map,
thus greatly expanding the scope of applications of the lemma. A similar result for general parameter-
ization has been obtained by Lan [55, Proposition 3.5] in the setting of strongly convex mirror maps.

Lemma 4.1 becomes useful when we set π̄ = πt, fθ = f t+1, η = ηt and π = πt or π = π⋆. In
particular, when ηtf

t+1
s − ∇h(πt

s) ≈ ηtQ
π
s , Lemma 4.1 allows us to obtain telescopic sums and

recursive relations, and to handle error terms efficiently, as we show in Appendix D.

4.1 Convergence for general policy parameterization

In this section, we consider the parameterization class FΘ and the fixed but arbitrary mirror map
h. We show that AMPO enjoys quasi-monotonic improvement and sublinear or linear convergence,
depending on the step-size schedule. The first step is to control the approximation error of AMPO.
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(A1) (Approximation error). There exists εapprox ≥ 0 such that, for all times t ≥ 0,

E
[ ∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

]
≤ εapprox,

where (vt)t≥0 is a sequence of distributions over states and actions and the expectation is
taken over the randomness of the algorithm that obtains f t+1.

Assumption (A1) is common in the conventional compatible function approximation approach5

[1]. It characterizes the loss incurred by Algorithm 1 in solving the regression problem in Line 1.
When the step-size ηt is sufficiently large, Assumption (A1) measures how well f t+1 approximates
the current Q-function Qt. Hence, εapprox depends on both the accuracy of the policy evaluation
method used to obtain an estimate of Qt [86, 79, 28] and the error incurred by the function
fθ ∈ FΘ that best approximates Qt, that is the representation power of FΘ. Later in Section 4.2,
we show how to solve the minimization problem in Line 1 when FΘ is a class of shallow neural
networks so that Assumption (A1) holds. We highlight that Assumption (A1) is weaker than the
conventional assumptions [1, 98], since we do not constrain the minimization problem to be linear
in the parameters (see (61)). We refer to Appendix A.2 for a discussion on its technical novelty and
Appendix G for a relaxed version of the assumption.

As mentioned in Remark 3.3, the distribution vt does not depend on the current policy πt for all
times t ≥ 0. Thus, Assumption (A1) allows for off-policy settings and the use of replay buffers [68].
We refer to Appendix A.3 for details. To quantify how the choice of these distributions affects the
error terms in the convergence rates, we introduce the following coefficient.

(A2) (Concentrability coefficient). There exists Cv ≥ 0 such that, for all times t,

E(s,a)∼vt

[(
dπµ(s)π(a | s)

vt(s, a)

)2]
≤ Cv,

whenever (dπµ, π) is either (d⋆µ, π
⋆), (dt+1

µ , πt+1), (d⋆µ, π
t), or (dt+1

µ , πt).

The concentrability coefficient Cv quantifies how much the distribution vt overlaps with the
distributions (d⋆µ, π

⋆), (dt+1
µ , πt+1), (d⋆µ, π

t) and (dt+1
µ , πt). It highlights that the distribution vt

should have full support over the environment, in order to avoid large values of Cv. Assumption
(A2) is weaker than the previous best-known concentrability coefficient [98, Assumption 9], in the
sense that we have the full control over vt. We refer to Appendix H for a more detailed discussion.
We can now present our first result on the performance of Algorithm 1.
Proposition 4.2 (Quasi-monotonic updates). Let (A1), (A2) be true. We have, for all t ≥ 0,

E
[
V t+1(µ)− V t(µ)

]
≥ E

[
Es∼dt+1

µ

[
Dh(π

t+1
s , πt

s) +Dh(π
t
s, π

t+1
s )

ηt(1− γ)

]]
−

2
√
Cvεapprox

1− γ
,

where the expectation is taken over the randomness of AMPO.

We refer to Appendix D.3 for the proof. Proposition 4.2 ensures that an update of Algorithm 1 cannot
lead to a performance degradation, up to an error term. The next assumption concerns the coverage
of the state space for the agent at each time t.

(A3) (Distribution mismatch coefficient). Let d⋆µ := dπ
⋆

µ . There exists νµ ≥ 0 such that

sup
s∈S

d⋆µ(s)

dtµ(s)
≤ νµ, for all times t ≥ 0.

Since dtµ(s) ≥ (1− γ)µ(s) for all s ∈ S, obtained from the definition of dµ in (2), we have that

sup
s∈S

d⋆µ(s)

dtµ(s)
≤ 1

1− γ
sup
s∈S

d⋆µ(s)

µ(s)
,

where assuming boundedness for the term on the right-hand side is standard in the literature on both the
PG [e.g., 101, 90] and NPG convergence analysis [e.g., 1, 15, 93]. We refer to Appendix I for details.
It is worth mentioning that the quasi-monotonic improvement in Proposition 4.2 holds without (A3).

We define the weighted Bregman divergence between the optimal policy π⋆ and the initial policy
π0 as D⋆

0 = Es∼d⋆
µ
[Dh(π

⋆
s , π

0
s)]. We then have our main results below.

5An extended discussion of this approach is provided in Appendix G.
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Theorem 4.3. Let (A1), (A2) and (A3) be true. If the step-size schedule is non-decreasing, i.e.,
ηt ≤ ηt+1 for all t ≥ 0, the iterates of Algorithm 1 satisfy: for every T ≥ 0,

V ⋆(µ)− 1

T

∑
t<T

E
[
V t(µ)

]
≤ 1

T

(
D⋆

0

(1− γ)η0
+

νµ
1− γ

)
+

2(1 + νµ)
√
Cvεapprox

1− γ
.

Furthermore, if the step-size schedule is geometrically increasing, i.e., satisfies

ηt+1 ≥
νµ

νµ − 1
ηt ∀t ≥ 0, (18)

we have: for every T ≥ 0,

V ⋆(µ)− E
[
V T (µ)

]
≤ 1

1− γ

(
1− 1

νµ

)T(
1 +

D⋆
0

η0(νµ − 1)

)
+

2(1 + νµ)
√

Cvεapprox

1− γ
.

Theorem 4.3 is, to the best of our knowledge, the first result that establishes linear convergence
for a PG-based method involving general policy parameterization. For the same setting, it also
matches the previous best known O(1/T ) convergence [55], without requiring regularization. Lastly,
Theorem 4.3 provides a convergence rate for a PMD-based algorithm that allows for arbitrary mirror
maps and policy parameterization without requiring the assumption on the approximation error
to hold in ℓ∞-norm, in contrast to Lan [55]. We give here a brief discussion of Theorem 4.3 w.r.t.
previous results and refer to Tables 1 and 2 in Appendix A.2 for a detailed comparison.

In terms of iteration complexity, Theorem 4.3 recovers the best-known convergence rates in the tabular
setting [93], for both non-decreasing and exponentially increasing step-size schedules. While consid-
ering a more general setting, Theorem 4.3 matches or improves upon the convergence rate of previous
work on policy gradient methods for non-tabular policy parameterizations that consider constant
step-size schedules [60, 82, 61, 90, 1, 89, 16, 55], and matches the convergence speed of previous
work that employ NPG, log-linear policies, and geometrically increasing step-size schedules [2, 98].

In terms of generality, the results in Theorem 4.3 hold without the need to implement regularization
[17, 100, 15, 16, 54], to impose bounded updates or smoothness of the policy [1, 61], to restrict the
analysis to the case where the mirror map h is the negative entropy [60, 36], or to make ℓ∞-norm
assumptions on the approximation error [55]. We improve upon the latest results for PMD with
general policy parameterization by Vaswani et al. [89], which only allow bounded step-sizes, where
the bound can be particularly small, e.g., (1− γ)3/(2γ|A|), and can slow down the learning process.

When S is a finite state space, a sufficient condition for νµ in (A3) to be bounded is requiring µ to have
full support on S . If µ does not have full support, one can still obtain linear convergence for V ⋆(µ′)−
V T (µ′), for an arbitrary state distribution µ′ with full support, and relate this quantity to V ⋆(µ)−
V T (µ). We refer to Appendix I for a detailed discussion on the distribution mismatch coefficient.

Intuition. An interpretation of our theory can be provided by connecting AMPO to the Policy
Iteration algorithm (PI), which also enjoys linear convergence. To see this, first recall (12)

πt+1
s ∈ argminp∈∆(A)⟨−f t+1

s + η−1
t ∇h(πt

s), p⟩+ η−1
t Dh(p, π

t
s), ∀s ∈ S.

Secondly, solving Line 1 of Algorithm 1 leads to f t+1
s − η−1

t ∇h(πt
s) ≈ Qt

s. When the step-size
ηt →∞, that is η−1

t → 0, the above viewpoint of the AMPO policy update becomes

πt+1
s ∈ argminp∈∆(A)⟨−Qt

s, p⟩ ⇐⇒ πt+1
s ∈ argmaxp∈∆(A)⟨Qt

s, p⟩, ∀s ∈ S,

which is the PI algorithm. Here we ignore the Bregman divergence term Dh(π, π
t
s), as it is multiplied

by 1/ηt, which goes to 0. So AMPO behaves more and more like PI with a large enough step-size
and thus is able to converge linearly like PI.

Proof idea. We provide a sketch of the proof here; the full proof is given in Appendix D. In a nutshell,
the convergence rates of AMPO are obtained by building on Lemma 4.1 and leveraging modern PMD
proof techniques [93]. Following the conventional compatible function approximation approach [1],
the idea is to write the global optimum convergence results in an additive form, that is

sub-optimality gap ≤ optimization error + approximation error.
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The separation between the two errors is allowed by Lemma 4.1, while the optimization error
is bounded through the PMD proof techniques from Xiao [93] and the approximation error is
characterized by Assumption (A1). Overall, the proof consists of three main steps.

Step 1. Using Lemma 4.1 with π̄ = πt, fθ = f t+1, η = ηt, π̃ = πt+1 , and πs = πt
s, we obtain

⟨ηtf t+1
s −∇h(πt

s), π
t+1
s − πt

s⟩ ≥ 0,

which characterizes the improvement of the updated policy.

Step 2. Assumption (A1), Step 1, the performance difference lemma (Lemma D.4), and Lemma
4.1 with π̄ = πt, fθ = f t+1, η = ηt, π̃ = πt+1, and πs = π⋆

s permit us to obtain the following.
Proposition 4.4. Let ∆t := V ⋆(µ)− V t(µ). For all t ≥ 0, we have

E [νµ (∆t+1 −∆t) + ∆t] ≤ E
[Es∼d⋆µ

[Dh(π
⋆
s ,π

t
s)]

(1−γ)ηt
−

Es∼d⋆µ
[Dh(π

⋆
s ,π

t+1
s )]

(1−γ)ηt

]
+ (1 + νµ)

2
√

Cvεapprox
1−γ .

Step 3. Proposition 4.4 leads to sublinear convergence using a telescoping sum argument, and to linear
convergence by properly defining step-sizes and by rearranging terms into the following contraction,

E
[
∆t+1 +

Es∼d⋆µ
[Dh(π

⋆
s ,π

t+1
s )]

(1−γ)ηt+1(νµ−1)

]
≤
(
1− 1

νµ

)
E
[
∆t +

Es∼d⋆µ
[Dh(π

⋆
s ,π

t
s)]

(1−γ)ηt(νµ−1)

]
+
(
1 + 1

νµ

)
2
√

Cvεapprox
1−γ .

4.2 Sample complexity for neural network parameterization

Neural networks are widely used in RL due to their empirical success in applications [67, 68, 84].
However, few theoretical guarantees exist for using this parameterization class in policy optimization
[60, 90, 16]. Here, we show how we can use our framework and Theorem 4.3 to fill this gap by
deriving a sample complexity result for AMPO when using neural network parameterization. We
consider the case where the parameterization class FΘ from Definition 3.1 belongs to the family
of shallow ReLU networks, which have been shown to be universal approximators [38, 4, 27, 39].
That is, for (s, a) ∈ (S ×A) ⊆ Rd, define fθ(s, a) = c⊤σ(W (s, a) + b) with θ = (c,W, b), where
σ(y) = max(y, 0) for all y ∈ R is the ReLU activation function and is applied element-wisely,
c ∈ Rm, W ∈ Rm×d and b ∈ Rm.

At each iteration t of AMPO, we set vt = dtµ and solve the regression problem in Line 1 of Algorithm
1 through stochastic gradient descent (SGD). In particular, we initialize entry-wise W0 and b as
i.i.d. random Gaussian variables from N (0, 1/m), and c as i.i.d. random Gaussian variables from
N (0, ϵA) with ϵA ∈ (0, 1]. Assuming access to a simulator for the distribution vt, we run SGD for
K steps on the matrix W , that is, for k = 0, . . . ,K − 1,

Wk+1 = Wk − α
(
f (k)(s, a)− Q̂t(s, a)− η−1

t ∇h(πt
s)
)
∇W f (k)(s, a), (19)

where f (k)(s, a) = c⊤σ((W0 +Wk)(s, a) + b), (s, a) ∼ vt and Q̂t(s, a) is an unbiased estimate of
Qt(s, a) obtained through Algorithm 4. We can then present our result on the sample complexity of
AMPO for neural network parameterization, which is based on our convergence Theorem 4.3 and an
analysis of neural networks by Allen-Zhu et al. [3, Theorem 1].
Corollary 4.5. In the setting of Theorem 4.3, let the parameterization class FΘ consist of sufficiently
wide shallow ReLU neural networks. Using an exponentially increasing step-size and solving the
minimization problem in Line 1 with SGD as in (19), the number of samples required by AMPO to
find an ε-optimal policy with high probability is Õ(C2

vν
5
µ/ε

4(1− γ)6), where ε has to be larger than
a fixed and non-vanishing error floor.

We provide a proof of Corollary 4.5 and an explicit expression for the error floor in Appendix J. Note
that the sample complexity in Corollary 4.5 might be impacted by an additional poly(ε−1) term. We
refer to Appendix J for more details and an alternative result (Corollary J.4) which does not include
an additional poly(ε−1) term, enabling comparison with prior works.

5 Numerical experiments

We provide an empirical evaluation of AMPO in order to validate our theoretical findings. We note
that the scope of this work is mainly theoretical and that we do not aim at establishing state-of-the-
art results in the setting of deep RL. Our implementation is based upon the PPO implementation
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from PureJaxRL [63], which obtains the estimates of the Q-function through generalized advantage
estimation (GAE) [79] and performs the policy update using ADAM optimizer [48] and mini-batches.
To implement AMPO, we (i) replaced the PPO loss with the expression to minimize in Equation (14),
(ii) replaced the softmax projection with the Bregman projection, (iii) saved the constants λ along the
sampled trajectories in order to compute Equation (14). The code is available here.
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Figure 1: Averaged performance over 50 runs of AMPO in CartPole and Acrobot environments. Note
that the maximum values for CartPole and Acrobot are 500 and -80, respectively.

In Figure 1, we show the averaged performance over 100 runs of AMPO in two classic control
environments, i.e. CartPole and Acrobot, in the setting of ω-potential mirror maps. In particular,
we choose: ϕ(x) = ex, which corresponds to the negative entropy (Example 3.7); ϕ(x) = sinh(x),
which corresponds to the hyperbolic entropy [34, see also (41)]; ϕ(x) = x, which corresponds to the
Euclidean norm (Example 3.6); and the Tsallis entropy for two values of the entropic index q [74, 57,
see also (40)]. We refer to Appendix C.2 for a detailed discussion on these mirror maps. We set the
step-size to be constant and of value 1. For a comparison, we also plot the averaged performance
over 100 runs of PPO.

The plots in Figure 1 confirm our results on the quasi-monotonicity of the updates of AMPO and
on its convergence to the optimal policy. We observe that instances of AMPO with different mirror
maps are very competitive as compared to PPO. We also note that, despite the convergence rates in
Theorem 4.3 depend on the mirror map only in terms of a D⋆

0 term, different mirror maps may result
in different convergence speeds and error floors in practice. In particular, our experiments suggest that
the negative entropy mirror map may not be the best choice for AMPO, and that exploring different
mirror maps is a promising direction of research.

6 Conclusion

We have introduced a novel framework for RL which, given a mirror map and any parameterization
class, induces a policy class and an update rule. We have proven that this framework enjoys
sublinear and linear convergence for non-decreasing and geometrically increasing step-size schedules,
respectively. Future venues of investigation include studying the sample complexity of AMPO in
on-policy and off-policy settings other than neural network parameterization, exploiting the properties
of specific mirror maps to take advantage of the structure of the MDP and efficiently including
representation learning in the algorithm. We refer to Appendix A.3 for a thorough discussion of
future work. We believe that the main contribution of AMPO is to provide a general framework with
theoretical guarantees that can help the analysis of specific algorithms and MDP structures. AMPO
recovers and improves several convergence rate guarantees in the literature, but it is important to
keep in consideration how previous works have exploited particular settings, while AMPO tackles
the most general case. It will be interesting to see whether these previous works combined with our
fast linear convergence result can derive new efficient sample complexity results.
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Here we provide the related work discussion, the deferred proofs from the main paper and some
additional noteworthy observations.

A Related work

We provide an extended discussion for the context of our work, including a comparison of different
PMD frameworks and a comparison of the convergence theories of PMD in the literature. Furthermore,
we discuss future work, such as extending our analysis to the dual averaging updates and developing
sample complexity analysis of AMPO.

A.1 Comparisons with other policy mirror descent frameworks

In this section, we give a comparison of AMPO with some of the most popular policy optimization
algorithms in the literature. First, recall AMPO’s update through (12), that is, for all s ∈ S,

πt+1
s ∈ argmax

πs∈∆(A)

⟨ηtf t+1
s −∇h(πt

s), πs⟩ − Dh(πs, π
t
s), (20)

where ηtf t+1
s −∇h(πt

s) ≈ ηtQ
t
s following Line 1 of Algorithm 1. The proof of (20) can be found in

Lemma F.1 in Appendix F.

Generalized Policy Iteration (GPI) [86]. The update consists of evaluating the Q-function of the
policy and obtaining the new policy by acting greedily with respect to the estimated Q-function. That
is, for all s ∈ S,

πt+1
s ∈ argmax

πs∈∆(A)

⟨Qt
s, πs⟩. (21)

AMPO behaves like GPI when we perfectly approximate f t+1
s to the value of Qt

s (e.g. when we
consider the tabular case) and ηt → +∞ (or η−1

t → 0) which is the case with the use of geometrically
increasing step-size schedule.
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Mirror Descent Modified Policy Iteration (MD-MPI) [33]. Consider the full policy space Π =
∆(A)S . The MD-MPI’s update is as follows:

πt+1
s ∈ argmax

πs∈∆(A)

⟨Qt
s, πs⟩ − Dh(πs, π

t
s), ∀s ∈ S. (22)

In this case, the PMD framework of Xiao [93], which is a special case of AMPO, recovers MD-MPI
with the fixed step-size ηt = 1. Consequently, Assumption (A1) holds with εapprox = 0, and we
obtain the sublinear convergence of MD-MPI through Theorem 4.3, which is

V ⋆(µ)− 1

T

∑
t<T

E
[
V t(µ)

]
≤ 1

T

(
D⋆

0

(1− γ)
+

νµ
1− γ

)
.

As explained later in Appendix H that the distribution mismatch coefficient νµ is upper bounded by
O( 1

1−γ ), we obtain an average regret of MD-MPI as O( 1
(1−γ)2T ), which matches the convergence

results in Geist et al. [33, Corollary 3].

Trust Region Policy Optimization (TRPO) [78]. The TRPO’s update is as follows:

πt+1 ∈ argmax
π∈Π

Es∼dt
µ

[
⟨At

s, πs⟩
]
, (23)

such that Es∼dt
µ

[
Dh(π

t
s, πs)

]
≤ δ,

where At
s = Qt

s − V t represents the advantage function, h is the negative entropy and δ > 0. Like
GPI, TRPO is equivalent to AMPO when at each time t, the admissible policy class is Πt = {π ∈
∆(A)S : Es∼dt

µ
Dh(π

t
s, πs) ≤ δ}, and we perfectly approximate Qt

s with ηt → +∞.

Proximal Policy Optimization (PPO) [80]. The PPO’s update consists of maximizing a surrogate
function depending on the policy gradient with respect to the new policy. Namely,

πt+1 ∈ argmax
π∈Π

Es∼dt
µ

[
L(πs, π

t
s)
]
, (24)

with
L(πs, π

t
s) = Ea∼πt [min

(
rπ(s, a)At(s, a), clip(rπ(s, a), 1± ϵ)At(s, a)

)
],

where rπ(s, a) = π(s, a)/πt(s, a) is the probability ratio between the current policy πt and the new
one, and the function clip(rπ(s, a), 1± ϵ) clips the probability ratio rπ(s, a) to be no more than 1+ ϵ
and no less than 1− ϵ. PPO has also a KL variation [80, Section 4], where the objective function L is
defined as

L(πs, π
t
s) = ηt⟨At

s, πs⟩ −Dh(π
t
s, πs),

where h is the negative entropy. In an exact setting and when Π = ∆(A)S , the KL variation of PPO
still differs from AMPO because it inverts the terms in the Bregman divergence penalty.

Mirror Descent Policy Optimization (MDPO.) [88]. The MDPO’s update is as follows:

πt+1 ∈ argmax
π∈Π

Es∼dt
µ
[⟨ηtAt

s, πs⟩ −Dh(πs, π
t
s)], (25)

where Π is a parameterized policy class. While it is equivalent to AMPO in an exact setting and
when Π = ∆(A)S , as we show in Appendix B, the difference between the two algorithms lies in the
approximation of the exact algorithm.

Functional Mirror Ascent Policy Gradient (FMA-PG) [89]. The FMA-PG’s update is as follows:

πt+1 ∈ argmax
πθ: θ∈Θ

Es∼dt
µ
[V t(µ) + ⟨ηt∇πs

V t(µ)
∣∣
π=πt , π

θ
s − πt

s⟩ −Dh(π
θ
s , π

t
s)] (26)

∈ argmax
πθ: θ∈Θ

Es∼dt
µ
[⟨ηtQt

s, π
θ
s⟩ −Dh(π

θ
s , π

t
s)],

The second line is obtained by the definition of V t and the policy gradient theorem (3). The discussion
is the same as the previous algorithm.

19



Mirror Learning [51]. The on-policy version of the algorithm consists of the following update:

πt+1 = argmax
π∈Π(πt)

Es∼dt
µ
[⟨Qt

s, πs⟩ −D(πs, π
t
s)], (27)

where Π(πt) is a policy class that depends on the current policy πt and the drift functional D is
defined as a map D : ∆(A)×∆(A)→ R such that D(πs, π̄s) ≥ 0 and ∇πs

D(πs, π̄s)
∣∣
πs=π̄s

= 0.
The drift functional D recovers the Bregman divergence as a particular case, in which case Mirror
Learning is equivalent to AMPO in an exact setting and when Π = ∆(A)S . Again, the main
difference between the two algorithms lies in the approximation of the exact algorithm.

A.2 Discussion on related work

Our Contributions. Our work provides a framework for policy optimization – AMPO. For AMPO, we
establish in Theorem 4.3 both O(1/T ) convergence guarantee by using a non-decreasing step-size
and linear convergence guarantee by using a geometrically increasing step-size. Our contributions
to the prior literature on sublinear and linear convergence of policy optimization methods can be
summarized as follows.

• The generality of our framework allows Theorem 4.3 to unify previous results in the
literature and generate new theoretically sound algorithms under one guise. Both the
sublinear and the linear convergence analysis of natural policy gradient (NPG) with softmax
tabular policies [93] or with log-linear policies [2, 98] are special cases of our general
analysis. As mentioned in Appendix A.1, MD-MPI [33] in the tabular setting is also a
special case of AMPO. Thus, Theorem 4.3 recovers the best-known convergence rates
in both the tabular setting [33, 93] and the non-tabular setting [16, 2, 98]. AMPO also
generates new algorithms by selecting mirror maps, such as the ϵ-negative entropy mirror
map in Appendix C.2 associated with Algorithm 2, and generalizes the projected Q-descent
algorithm [93] from the tabular setting to a general parameterization class FΘ.

• As discussed in Section 4.1, the results of Theorem 4.3 hold for a general setting with
fewer restrictions than in previous work. The generality of the assumptions of Theorem 4.3
allows the application of our theory to specific settings, where existing sample complexity
analyses could be improved thanks to the linear convergence of AMPO. For instance, since
Theorem 4.3 holds for any structural MDP, AMPO could be applied directly to the linear
MDP setting to derive a sample complexity analysis of AMPO which could improve that
of Zanette et al. [99] and Hu et al. [36]. As we discuss in Appendix A.3, this is a promising
direction for future work.

• From a technical point of view, our main contributions are: Definition 3.1 introduces a
novel way of incorporating general parameterization into the policy; the update in Line 1
of Algorithm 1 simplifies the policy optimization step into a regression problem; and
Lemma 4.1 establishes a key result for policies belonging to the class in Definition 3.1.
Together, these innovations have allowed us to establish new state-of-the-art results in
Theorem 4.3 by leveraging the modern PMD proof techniques of Xiao [93].

In particular, our technical novelty with respect to Xiao [93], Alfano and Rebeschini [2], and Yuan
et al. [98] can be summarized as follows.

• In terms of algorithm design, AMPO is an innovation. The PMD algorithm proposed by Xiao
[93] is strictly limited to the tabular setting and, although it is well defined for any mirror map,
it cannot include general parameterization. Alfano and Rebeschini [2] and Yuan et al. [98]
propose a first generalization of the PMD algorithm in the function approximation regime
thanks to the linear compatible function approximation framework [1], but are limited to con-
sidering the log-linear policy parameterization and the entropy mirror map. On the contrary,
AMPO solves the problem of incorporating general parameterizations in the policy thanks to
Definition 3.1 and the extension of the compatible function approximation framework from
linear to nonlinear, which corresponds to the parameter update in Line 1 of Algorithm 1. This
innovation is key to the generality of the algorithm, as it allows AMPO to employ any mirror
map and any parameterization class. Moreover, AMPO is computationally efficient for a
large class of mirror maps (see Appendix C.2 and Algorithms 2 and 3). Our design is readily
applied to deep RL, where the policy is usually parameterized by a neural network whose

20



last layer is a softmax transformation. Our policy definition can be implemented in this
setting by replacing the softmax layer with a Bregman projection, as shown in Example 3.7.

• Regarding the assumptions necessary for convergence guarantees, we have weaker as-
sumptions. Xiao [93] requires an ℓ∞-norm on the approximation error of Qt, i.e.,
∥Q̂t − Qt∥∞ ≤ εapprox, for all t ≤ T . Alfano and Rebeschini [2] and Yuan et al.
[98] require an L2-norm bound on the error of the linear approximation of Qt, i.e.,
∥w⊤ϕ−Qt∥2L2(vt) ≤ εapprox for some feature mapping ϕ : S×A → Rd and vector w ∈ Rd,
for all t ≤ T . Our approximation error εapprox in Assumption (A1) is an improvement since
it does not require the bound to hold in ℓ∞-norm, and allows any regression model instead of
linear function approximation, especially neural networks, which greatly increases the repre-
sentation power of FΘ and expands the range of applications. We further relax Assumption
(A1) in Appendix G and show that the approximation error bound can be larger for earlier iter-
ations. In addition, we improve the concentrability coefficients of Yuan et al. [98] by defining
the expectation under an arbitrary state-action distribution vt instead of the state-action
visitation distribution with a fixed initial state-action pair (see Yuan et al. [98, Equation (4)]).

• As for the analysis of the algorithm, while we borrow tools from Xiao [93], Alfano and
Rebeschini [2], and Yuan et al. [98], our results are not simple extensions. In fact, without
our work, it is not clear from Xiao [93], Alfano and Rebeschini [2], and Yuan et al. [98]
whether PMD could have theoretical guarantees in a setting with general parameterization
and an arbitrary mirror map. The two main problems on this front are the non-convexity
of the policy class, which prevents the use of the three-point descent lemma by Chen and
Teboulle [19, Lemma 3.2] (or by Xiao [93, Lemma 6]), and the fact that the three-point
identity used by Alfano and Rebeschini [2, Equation 4] holds only for the negative entropy
mirror map. Our Lemma 4.1 successfully addresses general policy parameterization and
arbitrary mirror maps thanks to the design of AMPO. Additionally, we provide a sample
complexity analysis of AMPO when employing shallow neural networks that improves upon
previous state-of-the-art results in this setting. We further improve this sample complexity
analysis in Appendix J, where we consider an approximation error assumption that is
weaker than Assumption (A1) (see Appendix G).

We also include a comparison wih Lan [55]. Our diffences can be outlined in two points.

• Lan [55] propose a PMD algorithm (Algorithm 2 in their paper) that can accommodate
general parameterization and arbitrary mirror maps. As AMPO, it involves a two-step
procedure where the first step is to find an approximation of Qt − η−1

t ∇h(πt) and the
second step is to find the policy through a Bregman projection. However, it is unclear how to
implement their algorithm in practice, as they do not propose a specific method to perform
either step. We provide an explicit implementation of AMPO and identify a class of mirror
maps that is computationally efficient for AMPO (see Appendix C.2 and Algorithms 2 and 3).

• In terms of theoretical analysis, they assume for their results that the approximation error
is bounded in ℓ∞-norm over the action space. Let

εdet = Es∼v⋆

[∥∥E[f t+1
s ]−Qt

s − η−1
t ∇h(πt

s)
∥∥
∞

]
,

εsto = Es∼v⋆

[∥∥E[f t+1
s ]− f t+1

s

∥∥2
∞

]
,

where the expectation E[f t+1
s ] is taken w.r.t. the stochasticity of the algorithm employed

to obtain f t+1. Lan [55] assume that both εdet and εsto are bounded for all iterations t. In
contrast, our assumptions are weaker as they are required to hold for the L2(v)-norm we
define in Section 3. Additionally, Lan [55] establishes a O(1/

√
T ) convergence rate for

their algorithm without regularization and a O(1/T ) convergence rate in the regularized
case, in both cases using bounded step-sizes. We improve upon these results by obtaining
a O(1/T ) convergence rate without regularization and a linear convergence rate.

Related literature. Recently, the impressive empirical success of policy gradient (PG)-based methods
has catalyzed the development of theoretically sound algorithms for policy optimization. In particular,
there has been a lot of attention around algorithms inspired by mirror descent (MD) [70, 8] and,
more specifically, by natural gradient descent [5]. These two approaches led to policy mirror descent
(PMD) methods [82, 54] and natural policy gradient (NPG) methods [42], which, as first shown by
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Neu et al. [72], is a special case of PMD. For instance, PMD and NPG are the building blocks of
the state-of-the-art policy optimization algorithms, TRPO [78] and PPO [80]. Leveraging various
techniques from the MD literature, it has been established that PMD, NPG, and their variants converge
to the global optimum in different settings. We refer to global optimum convergence as an analysis
that guarantees that V ⋆(µ)− E

[
V T (µ)

]
≤ ϵ after T iterations with ϵ > 0. As an important variant

of NPG, we will also discuss the literature of the convergence analysis of natural actor-critic (NAC)
[75, 12]. The comparison of AMPO with different methods will proceed from the tabular case to
different function approximation regimes.

Sublinear convergence analyses of PMD, NPG and NAC. For softmax tabular policies, Shani
et al. [82] establish aO(1/

√
T ) convergence rate for unregularized NPG andO(1/T ) for regularized

NPG. Agarwal et al. [1], Khodadadian et al. [45] and Xiao [93] improve the convergence rate for
unregularized NPG and NAC toO(1/T ) and Xiao [93] extends the same convergence rate to projected
Q-descent. The same convergence rate is established by MD-MPI [33] through the PMD framework.

In the function approximation regime, Zanette et al. [99] and Hu et al. [36] achieve O(1/
√
T )

convergence rate by developing variants of PMD methods for the linear MDP [40] setting. The
same O(1/

√
T ) convergence rate is obtained by Agarwal et al. [1] for both log-linear and smooth

policies, while Yuan et al. [98] improve the convergence rate to O(1/T ) for log-linear policies.
For smooth policies, the convergence rate is later improved to O(1/T ) either by adding an extra
Fisher-non-degeneracy condition on the policies [61] or by analyzing NAC under Markovian
sampling [94]. Yang et al. [95] and Huang et al. [37] consider Lipschitz and smooth policies [97],
obtain O(1/

√
T ) convergence rates for PMD-type methods and faster O(1/T ) convergence rates

by applying the variance reduction techniques SARAH [73] and STORM [22], respectively. As for
neural policy parameterization, Liu et al. [60] establish a O(1/

√
T ) convergence rate for two-layer

neural PPO. The same O(1/
√
T ) convergence rate is established by Wang et al. [90] for two-layer

neural NAC, which is later improved to O(1/T ) by Cayci et al. [16], using entropy regularization.

We highlight that all of the above sublinear convergence analyses, for both softmax tabular policies
and the function approximation regime, are obtained either by using a decaying step-size or a
constant step-size. Under these step-size schemes, our AMPO’s O(1/T ) sublinear convergence rate
is the state of the art: it recovers the best-known convergence rates in the tabular setting [33, 93]
without regularization; it improves the O(1/

√
T ) convergence rate of Zanette et al. [99] and Hu

et al. [36] to O(1/T ) for the linear MDP setting; it recovers the best-known convergence rates
for the log-linear policies [98]; it matches the O(1/T ) sublinear convergence rate for smooth and
Fisher-non-degenerate policies [61] and the same convergence rate of Yang et al. [95] and Huang
et al. [37] for Lipschitz and smooth policies without introducing variance reduction techniques; it
matches the previous best-known convergence result in the neural network settings [16] without
regularization; lastly, it goes beyond all these results by allowing general parameterization. We refer
to Table 1 for an overview of recent sublinear convergence analyses of NPG/PMD.

Linear convergence analysis of PMD, NPG, NAC and other PG methods. In the softmax tabular
policy settings, the linear convergence guarantees of NPG and PMD are achieved by either adding
regularization [17, 100, 54, 58] or by varying the step-sizes [11, 46, 47, 93].

In the function approximation regime, the linear convergence guarantees are achieved for NPG
with log-linear policies, either by adding entropy regularization [15] or by choosing geometrically
increasing step-sizes [2, 98]. It can also be achieved for NAC with log-linear policy by using adaptive
increasing step-sizes [20].

Again, our AMPO’s linear convergence rate is the state of the art: not only it recovers the best-
known convergence rates in both the tabular setting [93] and the log-linear policies [2, 98] without
regularization [17, 100, 54, 58], nor adaptive step-sizes [11, 46, 47, 20], but also it achieves the
new state-of-the-art linear convergence rate for PG-based methods with general parameterization,
including the neural network parameterizations. We refer to Table 2 for an overview of recent linear
convergence analyses of NPG/PMD.

Alternatively, by exploiting a Polyak-Lojasiewicz (PL) condition [76, 62], fast linear convergence
results can be achieved for PG methods under different settings, such as linear quadratic control
problems [31] and softmax tabular policies with entropy regularization [65, 97]. The PL condition
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is extensively studied by Bhandari and Russo [10] to identify more general MDP settings. Like the
cases of NPG and PMD, linear convergence of PG can also be obtained for the softmax tabular policy
without regularization by choosing adaptive step sizes through exact line search [11] or by exploiting
non-uniform smoothness [66]. When the PL condition is relaxed to other weaker conditions, PG
methods combined with variance reduction methods such as SARAH [73] and PAGE [59] can also
achieve linear convergence. This is shown by Fatkhullin et al. [29, 30] when the PL condition is
replaced by the weak PL condition [97], which is satisfied by Fisher-non-degenerate policies [24]. It
is also shown by Zhang et al. [102], where the MDP satisfies some hidden convexity property that
contains a similar property to the weak PL condition studied by Zhang et al. [101]. Lastly, linear
convergence is established for the cubic-regularized Newton method [71], a second-order method,
applied to Fisher-non-degenerate policies combined with variance reduction [64].

Outside of the literature focusing on finite time convergence guarantees, Vaswani et al. [89] and Kuba
et al. [51] provide a theoretical analysis for variations of PMD and show monotonic improvements
for their frameworks. Additionally, Kuba et al. [51] give an infinite time convergence guarantee for
their framework.

A.3 Future work

Our work opens several interesting research directions in both algorithmic and theoretical aspects.

From an algorithmic point of view, the updates in Lines 1 and 2 of AMPO are not explicit. This
might be an issue in practice, especially for large scale RL problems. It would be interesting to design
efficient regression solver for minimizing the approximation error in Line 1 of Algorithm 1. For
instance, by using the dual averaging algorithm [7, Chapter 4], it could be possible to replace the
term ∇h(πt

s) with f t
s for all s ∈ S , to make the computation of the algorithm more efficient. That is,

it could be interesting to consider the following variation of Line 1 in Algortihm 1:∥∥∥∥f t+1 −Qt − ηt−1

ηt
f t

∥∥∥∥2
L2(vt)

≤ εapprox. (28)

Notice that (28) has the same update as (17), however, (28) is not restricted to using the negative
entropy mirror map. To efficiently solve the regression problem in Line 1 of Algorithm 1, one may
want to apply modern variance reduction techniques [73, 22, 59]. This has been done by Liu et al.
[61] for NPG method.

From a theoretical point of view, it would be interesting to derive a sample complexity analysis for
AMPO in specific settings, by leveraging its linear convergence. As mentioned for the linear MDP
[40] in Appendix A.2, one can apply the linear convergence theory of AMPO to other structural
MDPs, e.g., block MDP [25], factored MDP [44, 85], RKHS linear MDP and RKHS linear mixture
MDP [26], to build new sample complexity results for these settings, since the assumptions of
Theorem 4.3 do not impose any constraint on the MDP. On the other hand, it would be interesting to
explore the interaction between the Bregman projected policy class and the expected Lipschitz and
smooth policies [97] and the Fish-non-degenerate policies [61] to establish new improved sample
complexity results in these settings, again thanks to the linear convergence theory of AMPO.

Additionally, it would be interesting to study the application of AMPO to the offline setting. In the
main text, we have discussed how to extend Algorithm 1 and Theorem 4.3 to the offline setting, where
vt can be set as the state-action distribution induced by an arbitrary behavior policy that generates
the data. However, we believe that this direction requires further investigation. One of the major
challenges of offline RL is dealing with the distribution shifts that stem from the mismatch between
the trained policy πt and the behaviour policy. Several methods have been introduced to deal with
this issue, such as constraining the current policy to be close to the behavior policy [56]. We leave
introducing offline RL techniques in AMPO as future work.

Another direction for future work is extending the policy update of AMPO to mirror descent algorithm
based on value iteration and Bellman operators, such as MD-MPI [33], in order to extend existing
results to the general parameterization setting. Other interesting settings that have been addressed
using the PMD framework are mean-field games [96] and constrained MDPs [23]. We hope to build
on the existing literature for these settings and see whether our results can bring any improvements.

Finally, this work theoretically indicates that, perhaps the most important future work of PMD-type
algorithms is to design efficient policy evaluation algorithms to make the estimation of the Q-function
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Table 1: Overview of sublinear convergence results for NPG and PMD methods with constant
step-size in different settings. The dark blue cells contain our new results. The light blue cells

contain previously known results that we recover as special cases of our analysis. The pink cells
contain previously known results that we improve upon by providing a faster convergence rate. The
white cells contain existing results that have already been improved by other literature or that we
could not recover under our general analysis.

Algorithm Rate Comparisons to our works
Setting: Softmax tabular policies

Adaptive TRPO [82] O(1/
√
T ) They employ regularization

Tabular off-policy NAC [45] O(1/T ) Assumption (A1) with L2 instead of ℓ∞ norm
We have a weaker approximation error

Tabular NPG [1] O(1/T )

MD-MPI [33] O(1/T ) We match their results when fθ(s, a) = θs,a.

projected Q-descent [93]
Tabular NPG/ O(1/T )

Assumption (A1) with L2 instead of ℓ∞ norm.
we have a weaker approximation error
We recover their results when fθ(s, a) = θs,a;

Setting: Log-linear policies

Q-NPG [1] O(1/
√
T )

Q-NPG/NPG [98] O(1/T )
to θ.
We recover their results when fθ(s, a) is linear

Setting: Softmax two-layer neural policies

Neural PPO [60] O(1/
√
T )

Neural NAC [90] O(1/
√
T )

Regularized neural NAC [16] O(1/T ) We match their results without regularization.

Setting: Linear MDP

NPG [99, 36] O(1/
√
T )

Setting: Smooth policies

NPG [1] O(1/
√
T )

NAC under Markovian sampling [94] O(1/T )

Fisher-non-degenerate policies [61]
NPG with O(1/T )

Setting: Lipschitz and Smooth policies

Variance reduced PMD [95, 37] O(1/T ) We match their results without variance reduction.

Setting: Bregman projected policies with general parameterization and mirror map

Regularized PMD [55] O(1/T )
Assumption (A1) with L2 instead of ℓ∞ norm.
we have a weaker approximation error
We match their results without regularization;

AMPO (Theorem 4.3, this work) O(1/T )
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Table 2: Overview of linear convergence results for NPG and PMD methods in different settings.
The darker cells contain our new results. The light cells contain previously known results that we
recover as special cases of our analysis, and extend the permitted concentrability coefficients settings.
The white cells contain existing results that we could not recover under our general analysis.

Algorithm Reg. C.S. A.I.S. N.I.S.∗ Error assumption∗∗

Setting: Softmax tabular policies

NPG [17] ✓ ✓ ℓ∞

PMD [100] ✓ ✓ ℓ∞

NPG [54] ✓ ✓ ℓ∞

NPG [58] ✓ ✓ ℓ∞

NPG [11] ✓

NPG [46, 47] ✓ ℓ∞

NPG / Projected Q-descent [93] ✓ ℓ∞

Setting: Log-linear policies

NPG [15] ✓ ✓ L2

Off-policy NAC [20] ✓ ℓ∞

Q-NPG [2] ✓ L2

Q-NPG/NPG [98] ✓ L2

Setting: Bregman projected policies with general parameterization and mirror map

AMPO (Theorem 4.3, this work) ✓ L2

∗ Reg.: regularization; C.S.: constant step-size; A.I.S.: Adaptive increasing step-size; N.I.S.: Non-adaptive
increasing step-size.
∗∗ Error assumption.: ℓ∞ means that the approximation error assumption uses the ℓ∞-norm; and L2 means
that the approximation error assumption uses the weaker L2 norm.

as accurate as possible, such as using offline data for training, and to construct adaptive representation
learning for FΘ to closely approximate Q-function, so that ϵapprox is guaranteed to be small. This
matches one of the most important research questions for deep Q-learning type algorithms for general
policy optimization problems.

B Equivalence of (9)-(10) and (11) in the tabular case

To demonstrate the equivalence between the two-step update (9)-(10) and the one-step update (11)
for policy mirror descent in the tabular case, it is sufficient to validate the following lemma, which
comes from the optimization literature. The proof of this lemma can be found in Bubeck [14, Chapter
4.2]. However, for the sake of completeness, we present the proof here.

Lemma B.1 (Right after Theorem 4.2 in Bubeck [14]). Consider the mirror descent update in (5)-(6)
for the minimization of a function V (·), that is,

yt+1 = ∇h(xt)− ηt∇V (x)|x=xt , (29)

xt+1 = ProjhX (∇h∗(yt+1)). (30)

Then the mirror descent update can be rewritten as

xt+1 ∈ argmin
x∈X

ηt⟨x,∇V (x)|x=xt⟩+Dh(x, x
t). (31)
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Proof. From definition of the Bregman projection step, starting from (29) we have

xt+1 = ProjhX (∇h∗(yt+1)) = argmin
x∈X

Dh(x,∇h∗(yt+1))

∈ argmin
x∈X

∇h(x)−∇h(∇h∗(yt+1))−
〈
∇h(∇h∗(yt+1)), x−∇h∗(yt+1)

〉
(4)
∈ argmin

x∈X
∇h(x)− yt+1 −

〈
yt+1, x−∇h∗(yt+1)

〉
∈ argmin

x∈X
∇h(x)− ⟨x, yt+1⟩

(29)
∈ argmin

x∈X
∇h(x)− ⟨x,∇h(xt)− ηt∇V (x)|x=xt⟩

∈ argmin
x∈X

ηt⟨x,∇V (x)|x=xt⟩+∇h(x)−∇h(xt)−
〈
∇h(xt), x− xt

〉
∈ argmin

x∈X
ηt⟨x,∇V (x)|x=xt⟩+Dh(x, x

t),

where the second and the last lines are both obtained by the definition of the Bregman divergence.

The one-step update in (31) is often taken as the definition of mirror descent [8], which provides a
proximal view point of mirror descent, i.e., a gradient step in the primal space with a regularization
of Bregman divergence.

C AMPO for specific mirror maps

In this section, we give the derivations for Example 3.2, which is based on the Karush-Kuhn-Tucker
(KKT) conditions [43, 52], and then provide details about the ω-potential mirror map class from
Section 3.1.

C.1 Derivation of Example 3.2

We give here the derivation of Example 3.2. Let h be the negative entropy mirror map, that is

h(πs) =
∑
a∈A

π(a | s) log(π(a | s)), ∀πs ∈ ∆(A) and ∀s ∈ S.

For every state s ∈ S, we solve the minimization problem

πθ
s ∈ argmin

πs∈∆(A)

Dh(πs,∇h∗(ηfθ
s ))

through the KKT conditions. We formalize it as

πθ
s ∈ argmin

πs∈R|A|
Dh(πs,∇h∗(ηfθ

s ))

subject to ⟨πs,1⟩ = 1,

π(a | s) ≥ 0, ∀ a ∈ A,

where 1 denotes a vector in R|A| with coordinates equal to 1 element-wisely. The conditions then
become

(stationarity) log(πθ
s)− ηfθ

s + (λs + 1)1− cs = 0,

(complementary slackness) casπ
θ(a | s) = 0, ∀ a ∈ A,

(primal feasibility) ⟨πθ
s ,1⟩ = 1, πθ(a | s) ≥ 0, ∀ a ∈ A,

(dual feasibility) cas ≥ 0, ∀ a ∈ A,
where log(πs) is applied element-wisely, λs ∈ R and cas ∈ R are the dual variables, and cs devotes
the vector [cas ]a∈A. It is easy to verify that the solution

πθ
s =

exp(ηfθ
s )

∥exp(ηfθ
s )∥1

,
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with λs = log
(∑

a∈A exp(ηfθ(s, a))
)
− 1 and cas = 0 for all a ∈ A, satisfies all the conditions.

When fθ(s, a) = θs,a we obtain the tabular softmax policy πθ(a | s) ∝ exp(ηθs,a). When
fθ(s, a) = θ⊤ϕ(s, a) is a linear function, for θ ∈ Rd and for a feature function ϕ : S × A → Rd,
we obtain the log-linear policy πθ(a | s) ∝ exp(ηθ⊤ϕ(s, a)). When fθ : S × A → R is a neural
network, we obtain the softmax neural policy πθ(a | s) ∝ exp(ηfθ(s, a)).

C.2 More on ω-potential mirror maps

In this section, we provide details about the ω-potential mirror map class from Section 3.1, including
the derivation of (14), several instantiations of ω-potential mirror map mentioned in Section 3.1 with
their derivations, and an iterative algorithm to find approximately the Bregman projection induced
by ω-potential mirror map when an exact solution is not available.

We give a different but equivalent formulation of Proposition 2 of Krichene et al. [50].
Proposition C.1. For u ∈ (−∞,+∞] and ω ≤ 0, an increasing C1-diffeomorphism ϕ : (−∞, u)→
(ω,+∞) is called an ω-potential if

lim
x→−∞

ϕ(x) = ω, lim
x→u

ϕ(x) = +∞,

∫ 1

0

ϕ−1(x)dx ≤ ∞.

Let the mirror map hϕ be defined as

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1

ϕ−1(x)dx.

We have that πt
s is a solution to the Bregman projection

min
π∈∆s

Projh∆(A)(∇h
∗
ϕ(ηt−1f

t
s)),

if and only if there exist a normalization constant λt
s ∈ R such that

πt(a | s) = σ(ϕ(ηt−1f
t(s, a) + λt

s)), ∀a ∈ A, (32)

and
∑

a∈A πt(a | s) = 1, where for all s ∈ S and σ(z) = max(z, 0) for z ∈ R.

We can now use Proposition C.1 to derive (14).

Consider an ω-potential mirror map hϕ associated with an ω-potential ϕ. By definition, we have

∇hϕ(π
t
s) = [ϕ−1(πt(a | s))]a∈A. (33)

Plugging (32) into (33), we have

∇hϕ(π
t
s)

(33)
= [ϕ−1(πt(a | s))]a∈A

(32)
=

[
ϕ−1

(
σ
(
ϕ(ηt−1f

t(s, a) + λt
s)
))]

a∈A

=
[
max

(
ϕ−1

(
ϕ(ηt−1f

t(s, a) + λt
s)
)
, ϕ−1(0)

)]
a∈A

=
[
max

(
ηt−1f

t(s, a) + λt
s, ϕ

−1(0)
)]

a∈A

=
[
max

(
ηt−1f

t(s, a), ϕ−1(0)− λt
s

)]
a∈A + λt

s,

where the third line is obtained by using the increasing property of ϕ−1, as ϕ is increasing. Finally,
plugging the above expression of ∇hϕ(π

t
s) into Line 1, we obtain (14), which is

θt+1 ∈ argminθ∈Θ E(s,a)∼vt

[
(fθ(s, a)−Qt(s, a)− η−1

t max(ηt−1f
t(s, a), ϕ−1(0)− λt

s))
2
]
,

where the term λt
s is dropped, as it is constant over actions and does not affect the resulting policy.

Once (14) is obtained, we can instantiate AMPO for mirror maps belonging to this class. We highlight
that due to the definition of the Bregman divergence, two mirror maps that only differ for a constant
term are equivalent and generate the same algorithm. We start with the negative entropy, which leads
to a closed solution for λt

s and therefore for the Bregman projection.
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Negative entropy. Let ϕ(x) = exp(x− 1), which is an ω-potential with ω = 0, u = +∞, and∫ 1

0

ϕ−1(x)dx =

∫ 1

0

log(x) + 1dx = [x log(x)]10 = 0 ≤ +∞.

The mirror map hϕ becomes the negative entropy, as

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1

(log(x) + 1)dx =
∑
a∈A

π(a | s) log(π(a | s)),

and the associated Bregman divergence becomes the KL divergence, i.e., Dhϕ
(πs, π̄s) = KL(πs, π̄s).

Equation (17) follows from Equation (14) by the fact that

ϕ−1(0) = log(0) + 1 = −∞,

which means that max(ηt−1f
t, ϕ−1(0)− λt

s) = ηt−1f
t element-wisely.

As we showed in Appendix C.1, the Bregman projection (Line 2 of Algorithm 1) for the negative
entropy has a closed form which is πt+1

s ∝ exp(ηtf
t+1
s ).

In NPG with softmax tabular policies [1, 93], at time t, the updates for the policies have

πt+1
s ∝ πt

s ⊙ exp(ηtQ
t
s), ∀s ∈ S. (34)

When considering AMPO with fθ(s, a) = θs,a ∈ R, from (17), we obtain that for all s, a ∈ S,A,
we have

θt+1 ∈ argmin
θ∈R|S|×|A|

∥∥∥∥θ −Qt − ηt−1

ηt
θt
∥∥∥∥2
L2(vt)

⇐⇒ f t+1(s, a) = Qt(s, a) +
ηt−1

ηt
f t(s, a)

⇐⇒ ηtf
t+1(s, a) = ηtQ

t(s, a) + ηt−1f
t(s, a).

With the above expression, we have the AMPO’s updates for the policies rewritten as

πt+1
s ∝ exp(ηtf

t+1
s )

= exp(ηtQ
t
s + ηt−1f

t
s)

∝ πt
s ⊙ exp(ηtQ

t
s), ∀s ∈ S,

which recovers (34). In particular, the summation in the second line is element-wise and the third
line is obtained because of πt

s ∝ exp(ηt−1f
t
s), as shown in Appendix C.1.

In Q-NPG with log-linear policies [1, 98, 2], at time t, the updates for the policies have

πt+1(a | s) ∝ πt(a | s) exp(ηtϕ(s, a)⊤wt), (35)

where ϕ : S ×A → Rd is a feature map, and

wt ∈ argmin
w∈Rd

E(s,a)∼dt
µ

[
(Qt(s, a)− ϕ(s, a)⊤w)2

]
. (36)

Like in the tabular case, when considering AMPO with θ ∈ Rd, fθ(s, a) = ϕ(s, a)⊤θ and vt = dtµ,
from (17), we obtain that for all s, a ∈ S,A, we have

θt+1 ∈ argmin
θ∈Rd

E(s,a)∼dt
µ

[(
ϕ(s, a)⊤θ −Qt(s, a)− ηt−1

ηt
ϕ(s, a)⊤θt

)2
]

∈ argmin
θ∈Rd

E(s,a)∼dt
µ

[(
Qt(s, a)− ϕ(s, a)⊤

(
θ − ηt−1

ηt
θt︸ ︷︷ ︸

w

))2]
.

Compared the above form with (36), we obtain that

wt = θt+1 − ηt−1

ηt
θt ⇐⇒ ηtθ

t+1 = ηtw
t + ηt−1θ

t. (37)
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Algorithm 2: Bregman projection for ϵ-negative entropy

Input: vector to project x ∈ R|A|, parameter ϵ.
1 Initialize y = exp(x) element-wisely.
2 Let y(i) be the i-th smallest element of y.
3 Let i⋆ be the smallest index for which

(1 + ϵ(|A| − i+ 1))y(i) − ϵ
∑
j≥i

y(j) > 0.

Set
λ =

∑
i≥i⋆ y

(i)

1 + ϵ(|A| − i⋆ + 1)
.

Return: the projected vector (σ (−ϵ+ ya/λ))a∈A.

So, the AMPO’s updates for the policies can be rewritten as

πt+1(a | s) ∝ exp(ηtϕ(s, a)
⊤θt+1)

(37)
= exp(ϕ(s, a)⊤(ηtw

t + ηt−1θ
t))

∝ πt(a | s) exp(ηtϕ(s, a)⊤wt),

where the last line is obtained because of πt
s ∝ exp(ηt−1f

t
s), as shown in Appendix C.1, and we

recover (35).

We next present the squared ℓ2-norm and the ϵ-negative entropy. For these two mirror maps, the
Bregman projection can be computed exactly but has no closed form.

Squared ℓ2-norm. Let ϕ be the identity function. The mirror map hϕ becomes the squared ℓ2-norm,
up to a constant term, as

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1

x dx =
1

2

∑
a∈A

(
π(a | s)2 − 1

)
.

The associated Bregman divergence becomes the squared Euclidean distance, i.e., Dhϕ
(πs, π̄s) =

1
2 ∥πs − π̄s∥22, and ∇h∗(·) is the identity function. The update in (15) follows immediately and the
Bregman projection step with the Euclidean distance becomes, for all s ∈ S,

πt+1
s = Projhϕ

∆(A)(∇h
∗(ηtf

t+1
s )) = Projl2∆(A)(ηtf

t+1
s ) = argmin

p∈∆(A)

∥∥p− ηtf
t+1
s

∥∥2
2
. (38)

In the projected-Q descent for tabular policies developed by Xiao [93], at time t, the updates for the
policies are

πt+1
s ∈ argmin

p∈∆(A)

∥∥πt
s + ηtQ

t
s − p

∥∥2
2
, ∀s ∈ S. (39)

When considering AMPO with fθ(s, a) = θs,a and Θ = R|S|×|A|, (15) is solved with

f t+1(s, a) = θt+1
s,a = Qt(s, a) + η−1

t πt(a | s).

Plugging the above expression into (38), we recover (39).

Notice that the Euclidean projection onto the probability simplex can be obtained exactly, as shown
by Wang and Carreira-Perpinán [91].

ϵ-negative entropy [50]. Let ϵ ≥ 0 and define the ϵ-exponential potential as ϕ(x) = exp(x−1)−ϵ.
The mirror map hϕ becomes

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1

(log(x+ϵ)+1)dx =
∑
a∈A

[(π(a | s) + ϵ) ln(π(a | s) + ϵ)− (1 + ϵ) ln(1 + ϵ)] .
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Algorithm 3: Bregman projection for ω-potential mirror maps

Input: vector to project x ∈ R|A|, ω-potential ϕ, precision ε.
1 Initialize

ν̄ = ϕ−1(1)−max
a∈A

xa

¯
ν = ϕ−1(1/|A|)−max

a∈A
xa

2 Define x̃(ν) = (σ(ϕ (xa + ν)))a∈A.
while ∥x̃(ν̄)− x̃(

¯
ν)∥1 > ε do

3 Let ν+ ← (ν̄ +
¯
ν)/2

4 if
∑

a∈A x̃a(ν
+) > 1 then

5 ν̄ ← ν+

6 else
7

¯
ν ← ν+

8 Return x̃(ν̄)

An exact solution to the associated projection can then be found in Õ(|A|) computations using
Algorithm 2, which has been proposed by Krichene et al. [50, Algorithm 4]. Additionally, following
(14), the regression problem in Line 1 of Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥fθ −Qt − η−1
t max(ηt−1f

t, 1 + log(ϵ)− λt
s)
∥∥2
L2(vt)

,

where λt
s can be obtained through Algorithm 2.

The Bregman projection for generic mirror maps can be computed approximately in Õ(|A|) compu-
tations through a bisection algorithm. Krichene et al. [50] propose one such algorithm, which we
report in Algorithm 3 for completeness. We next provide two mirror maps that have appeared before
in the optimization literature, but do not lead to an exact solution to the Bregman projection. We
leave them as object for future work.

Negative Tsallis entropy [74, 57]. Let q > 0 and define ϕ as

ϕq(x) =

 exp(x− 1) if q = 1,[
σ
(

(q−1)x
q

)] 1
q−1

else.

The mirror map hϕq
becomes the negative Tsallis entropy, that is

hϕq
(πs) =

∑
π(a | s) logq(π(a | s)), (40)

where, for y > 0,

logq(y) =

{
log(y) if q = 1,
− yq−1

q−1 else.

If q ̸= 1 and following (14), the regression problem in Line 1 of Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥∥∥fθ −Qt − ηt−1

ηt
f t

∥∥∥∥2
L2(vt)

,

Hyperbolic entropy [34]. Let b > 0 and define ϕ as
ϕb(x) = b sinh(x)

The mirror map hϕb
becomes the hyperbolic entropy, that is

hϕb
(πs) =

∑
a∈A

π(a | s) arcsinh(π(a | s)/b)−
√
π(a | s)2 + b2, (41)

and, following (14), the regression problem in Line 1 of Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥fθ −Qt − η−1
t max(ηt−1f

t,−λt
s)
∥∥2
L2(vt)

.
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Hyperbolic-tangent entropy. Inspired by the hyperbolic entropy, we consider ϕ as
ϕ(x) = tanh(x)/2 + 0.5

The mirror map hϕ becomes

hϕ(πs) =
1

2

∑
a∈A

(2π(a | s)− 1) arctanh(2π(a | s)− 1) +
1

2
log π(a | s)(1− π(a | s)), (42)

which, to the best of our knowledge, is not equivalent to any mirror map studied in the literature.
Following (14), the regression problem in Line 1 of Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥∥∥fθ −Qt − ηt−1

ηt
f t

∥∥∥∥2
L2(vt)

.

Regarding the limitations of the ω-potential mirror map class, we are aware of two previously used
mirror maps that cannot be recovered using ω-potentials: h(x) = 1

2x
⊤Ax [32], for some positive-

definite matrix A, which generates the Mahalanobis distance, and p-norms, i.e. h(x) = ∥x∥2p [74].
Note that the case where h(x) = ∥x∥pp can be recovered by setting ϕ(x) = (px)p/(1−p).

We note that tuning the mirror map and the step-size can lead AMPO to encompass the case of
deterministic policies, which can be obtained when using softmax policies by sending the step-size
to infinity, effectively turning the softmax operator into a max operator. Another simple way of
introducing deterministic policies in our framework is to choose the mirror map to be the Euclidean
norm and to choose the step-size large enough. Doing so will cause the Bregman projection to put
all the probability on the action that corresponds to the maximum value of fθ

s . Our results hold in
this setting because our analysis does not use the policy gradient theorem (3), which has a different
expression for deterministic policies [83].

D Deferred proofs from Section 4.1

D.1 Proof of Lemma 4.1

Here we provide the proof of Lemma 4.1, an application of the three-point descent lemma that
accommodates arbitrary parameterized functions. Lemma 4.1 is the key tool for our analysis of
AMPO. It is a generalization of both Xiao [93, Equation (44)] and Yuan et al. [98, Equation (50)]
thanks to our two-step PMD framework. First, we recall some technical conditions of the mirror map
[14, Chapter 4].

Suppose that Y ⊂ R|A| is a closed convex set, we say a function h : Y → R is a mirror map if it
satisfies the following properties:

(i) h is strictly convex and differentiable;
(ii) h is essentially smooth, i.e., the graident of h diverges on the boundary of Y , that is

lim
x→∂Y

∥∇h(x)∥ → ∞;

(iii) the gradient of h takes all possible values, that is∇h(Y) = R|A|.

To prove Lemma 4.1, we also need the following rather simple properties, i.e., the three-point identity
and the generalized Pythagorean theorem, satisfied by the Bregman divergence. We provide their
proofs for self-containment.
Lemma D.1 (Three-point identity, Lemma 3.1 in Chen and Teboulle [19]). Let h be a mirror map.
For any a, b in the relative interior of Y and c ∈ Y , we have that:

Dh(c, a) +Dh(a, b)−Dh(c, b) = ⟨∇h(b)−∇h(a), c− a⟩ . (43)

Proof. Using the definition of the Bregman divergence Dh, we have
⟨∇h(a), c− a⟩ = h(c)− h(a)−Dh(c, a), (44)
⟨∇h(b), a− b⟩ = h(a)− h(b)−Dh(a, b), (45)
⟨∇h(b), c− b⟩ = h(c)− h(b)−Dh(c, b). (46)

Subtracting (44) and (45) from (46) yields (43).
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Lemma D.2 (Generalized Pythagorean Theorem of Bregman divergence, Lemma 4.1 in Bubeck
[14]). Let X ⊆ Y be a closed convex set. Let h be a mirror map defined on Y . Let x ∈ X , y ∈ Y
and y⋆ = ProjhX (y), then

⟨∇h (y⋆)−∇h(y), y⋆ − x⟩ ≤ 0,

which also implies

Dh (x, y
⋆) +Dh (y

⋆, y) ≤ Dh(x, y). (47)

Proof. From the definition of y⋆, which is

y⋆ ∈ argmin
y′∈X

Dh(y
′, y),

and from the first-order optimality condition [14, Proposition 1.3], with

∇y′Dh(y
′, y) = ∇h(y′)−∇h(y), for all y′ ∈ Y,

we have

⟨∇y′Dh(y
′, y)|y′=y⋆ , y⋆ − x⟩ ≤ 0 =⇒ ⟨∇h (y⋆)−∇(y), y⋆ − x⟩ ≤ 0,

which implies (47) by applying the definition of Bregman divergence and rearranging terms.

Now we are ready to prove Lemma 4.1.

Lemma D.3 (Lemma 4.1). Let Y ⊂ R|A| be a closed convex set with ∆(A) ⊆ Y . For any policies
π ∈ ∆(A)S and π̄ in the relative interior of ∆(A)S , any function fθ with θ ∈ Θ, any s ∈ S and for
η > 0, we have that,

⟨ηfθ
s −∇h(π̄s), πs − π̃s⟩ ≤ Dh(πs, π̄s)−Dh(π̃s, π̄s)−Dh(π, π̃s),

where π̃ is induced by fθ and η according to Definition 3.1, that is, for all s ∈ S,

π̃s = Projh∆(A)

(
∇h∗(ηfθ

s )
)
= argmin

π′
s∈∆(A)

Dh(π
′
s,∇h∗(ηfθ

s )). (48)

Proof. For clarity of exposition, let ps = ∇h∗(ηfθ
s ). Plugging a = π̄s, b = ps and c = πs in the

three-point identity lemma D.1, we obtain

Dh(πs, π̄s)−Dh(πs, ps) +Dh(π̄s, ps) = ⟨∇h(π̄s)−∇h(ps), π̄s − πs⟩ . (49)

Similarly, plugging a = π̄s, b = ps and c = π̃s in the three-point identity lemma D.1, we obtain

Dh(π̃s, π̄s)−Dh(π̃s, ps) +Dh(π̄s, ps) = ⟨∇h(π̄s)−∇h(ps), π̄s − π̃s⟩ . (50)

From (49), we have

Dh(πs, π̄s)−Dh(πs, ps) +Dh(π̄s, ps)

= ⟨∇h(π̄s)−∇h(ps), π̄s − πs⟩
= ⟨∇h(π̄s)−∇h(ps), π̄s − π̃s⟩+ ⟨∇h(π̄s)−∇h(ps), π̃s − πs⟩

(50)
= Dh(π̃s, π̄s)−Dh(π̃s, ps) +Dh(π̄s, ps) + ⟨∇h(π̄s)−∇h(ps), π̃s − πs⟩ .

By rearranging terms, we have

Dh(πs, π̄s)−Dh(π̃s, π̄s)−Dh(πs, ps) +Dh(π̃s, ps) = ⟨∇h(π̄s)−∇h(ps), π̃s − πs⟩ . (51)

From the Generalized Pythagorean Theorem of the Bregman divergence in Lemma D.2, also known
as non-expansivity property, and from the fact that π̃s = Projh∆(A)(ps), we have that

Dh(πs, π̃s) +Dh(π̃s, ps) ≤ Dh(πs, ps) ⇐⇒ −Dh(πs, ps) +Dh(π̃s, ps) ≤ −Dh(πs, π̃s).

Plugging the above inequality into the left hand side of (51) yields

Dh(πs, π̄s)−Dh(π̃s, π̄s)−Dh(πs, π̃s) ≥ ⟨∇h(π̄s)−∇h(ps), π̃s − πs⟩ ,

which concludes the proof with ∇h(ps) = ηfθ
s .

We also provide an alternative proof of Lemma 4.1 later in Appendix F.
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D.2 Bounding errors

In this section, we will bound error terms of the type

Es∼dπ
µ,a∼πs

[
Qt(s, a) + η−1

t [∇h(πt
s)]a − f t+1(s, a)

]
, (52)

where (dπµ, π) ∈ {(d⋆µ, π⋆), (dt+1
µ , πt+1), (d⋆µ, π

t), (dt+1
µ , πt)}. These error terms appear in the

forthcoming proofs of our results and directly induce the error floors in the convergence rates.

In the rest of Appendix D, let qt : S ×A → R such that, for every s ∈ S,

qts := f t+1
s − η−1

t ∇h(πt
s) ∈ R|A|.

So (52) can be rewritten as

Es∼dπ
µ,a∼πs

[
Qt(s, a) + η−1

t [∇h(πt
s)]a − f t+1(s, a)

]
= Es∼dπ

µ,a∼πs

[
Qt(s, a)− qt(s, a)

]
. (53)

To bound it, let (vt)t≥0 be a sequence of distributions over states and actions. By using Cauchy-
Schwartz’s inequality, we have

Es∼dπ
µ,a∼πs

[
Qt(s, a)− qt(s, a)

]
=

∫
s∈S,a∈A

dπµ(s)π(a | s)√
vt(s, a)

·
√

vt(s, a)(Qt(s, a)− qt(s, a))

≤

√√√√∫
s∈S,a∈A

(
dπµ(s)π(a | s)

)2
vt(s, a)

·
∫
s∈S,a∈A

vt(s, a)(Qt(s, a)− qt(s, a))2

=

√√√√E(s,a)∼vt

[(
dπµ(s)π(a | s)

vt(s, a)

)2
]
· E(s,a)∼vt [(Qt(s, a)− qt(s, a))2]

≤
√
CvE(s,a)∼vt [(Qt(s, a)− qt(s, a))2],

where the last line is obtained by Assumption (A2). Using the concavity of the square root and
Assumption (A1), we have that

E
[
Es∼dπ

µ,a∼πs

[
Qt(s, a)− qt(s, a)

]]
≤
√

Cvεapprox. (54)

D.3 Quasi-monotonic updates – Proof of Proposition 4.2

In this section, we show Proposition 4.2 with its proof that the AMPO updates guarantee a quasi-
monotonic property, i.e., a non-decreasing property up to a certain error floor due to the approximation
error, which allows us to establish an important recursion about the AMPO iterates next. First, we
recall the performance difference lemma [41] which is the second key tool for our analysis and a well
known result in the RL literature. Here we use a particular form of the lemma presented by Xiao [93,
Lemma 1].
Lemma D.4 (Performance difference lemma, Lemma 1 in [93]). For any policy π, π′ ∈ ∆(A)S and
µ ∈ ∆(S),

V π(µ)− V π′
(µ) =

1

1− γ
Es∼dπ

µ

[〈
Qπ′

s , πs − π′
s

〉]
.

For clarity of exposition, we introduce the notation

τ :=
2
√
Cvεapprox

1− γ
.

Proposition 4.2 characterizes the non-decreasing property of AMPO. The error bound (54) in Ap-
pendix D.2 will be used to prove the the result.
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Proposition D.5 (Proposition 4.2). For the iterates of Algorithm 1, at each time t ≥ 0, we have

E[V t+1(µ)− V t(µ)] ≥ E
[
Es∼dt+1

µ

[
Dh(π

t+1
s , πt

s) +Dh(π
t
s, π

t+1
s )

ηt(1− γ)

]]
− τ.

Proof. Using Lemma 4.1 with π̄ = πt, fθ = f t+1, η = ηt, thus π̃ = πt+1 by Definition 3.1 and
Algorithm 1, and πs = πt

s, we have

⟨ηtqts, πt
s − πt+1

s ⟩ ≤ Dh(π
t
s, π

t
s)−Dh(π

t+1
s , πt

s)−Dh(π
t
s, π

t+1
s ). (55)

By rearranging terms and noticing Dh(π
t
s, π

t
s) = 0, we have

⟨ηtqts, πt+1
s − πt

s⟩ ≥ Dh(π
t+1
s , πt

s) +Dh(π
t
s, π

t+1
s ) ≥ 0. (56)

Then, by the performance difference lemma D.4, we have

(1− γ)E[V t+1(µ)− V t(µ)] = E
[
Es∼dt+1

µ

[
⟨Qt

s, π
t+1
s − πt

s⟩
]]

= E
[
Es∼dt+1

µ

[
⟨qts, πt+1

s − πt
s⟩
]]

+E
[
Es∼dt+1

µ

[
⟨Qt

s − qts, π
t+1
s − πt

s⟩
]]

(55)
≥ E

[
Es∼dt+1

µ

[
Dh(π

t+1
s , πt

s) +Dh(π
t
s, π

t+1
s )

ηt

]]
−
∣∣∣E [Es∼dt+1

µ

[
⟨Qt

s − qts, π
t+1
s − πt

s⟩
]]∣∣∣

≥ E
[
Es∼dt+1

µ

[
Dh(π

t+1
s , πt

s) +Dh(π
t
s, π

t+1
s )

ηt

]]
− τ(1− γ),

which concludes the proof after dividing both sides by (1− γ). The last line follows from∣∣∣E [Es∼dt+1
µ

[
⟨Qt

s − qts, π
t+1
s − πt

s⟩
]]∣∣∣ ≤

∣∣∣E [Es∼dt+1
µ ,a∼πt+1

s

[
Qt(s, a)− qt(s, a)

]]∣∣∣ (57)

+
∣∣∣E [Es∼dt+1

µ ,a∼πt
s

[
Qt(s, a)− qt(s, a)

]]∣∣∣
(54)
≤ 2

√
C1εerror = τ(1− γ), (58)

where both terms are upper bounded by
√

Cvεapprox through (54) with (dπµ, π) = (dt+1
µ , πt+1) and

(dπµ, π) = (dt+1
µ , πt), respectively.

D.4 Main passage – An important recursion about the AMPO method

In this section, we show an important recursion result for the AMPO updates, which will be used for
both the sublinear and the linear convergence analysis of AMPO.

For clarity of exposition in the rest of Appendix D, let

νt :=

∥∥∥∥ d⋆µ

dt+1
µ

∥∥∥∥
L∞

:= sup
s∈S

d⋆µ(s)

dt+1
µ (s)

.

For two different time t, t′ ≥ 0, let Dt
t′ denote the expected Bregman divergence between the policy

πt and policy πt′ , where the expectation is taken over the discounted state visitation distribution of
the optimal policy d⋆µ, that is,

Dt
t′ := Es∼d⋆

µ

[
Dh(π

t
s, π

t′

s )
]
.

Similarly, let D⋆
t denote the expected Bregman divergence between the optimal policy π⋆ and πt,

that is,
D⋆

t := Es∼d⋆
µ

[
Dh(π

⋆
s , π

t
s)
]
.

Let ∆t := V ⋆(µ)− V t(µ) be the optimality gap.

We can now state the following important recursion result for the AMPO method.
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Proposition D.6 (Proposition 4.4). Consider the iterates of Algorithm 1, at each time t ≥ 0, we have

E
[
Dt+1

t

(1− γ)ηt
+ νµ (∆t+1 −∆t) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ (1 + νµ)τ.

Proof. Using Lemma 4.1 with π̄ = πt, fθ = f t+1, η = ηt, and thus π̃ = πt+1 by Definition 3.1 and
Algorithm 1, and πs = π⋆

s , we have that

⟨ηtqts, π⋆
s − πt+1

s ⟩ ≤ Dh(π
⋆, πt)−Dh(π

⋆, πt+1)−Dh(π
t+1, πt),

which can be decomposed as

⟨ηtqts, πt
s − πt+1

s ⟩+ ⟨ηtqts, π⋆
s − πt

s⟩ ≤ Dh(π
⋆, πt)−Dh(π

⋆, πt+1)−Dh(π
t+1, πt).

Taking expectation with respect to the distribution d⋆µ over states and with respect to the randomness
of AMPO and dividing both sides by ηt, we have

E
[
Es∼d⋆

µ

[
⟨qts, πt

s − πt+1
s ⟩

]]
+ E

[
Es∼d⋆

µ

[
⟨qts, π⋆

s − πt
s⟩
]]
≤ 1

ηt
E[D⋆

t −D⋆
t+1 −Dt+1

t ]. (59)

We lower bound the two terms on the left hand side of (59) separately. For the first term, we have that

E
[
Es∼d⋆

µ

[
⟨qts, πt

s − πt+1
s ⟩

]] (56)
≥

∥∥∥∥ d⋆µ

dt+1
µ

∥∥∥∥
L∞

E
[
Es∼dt+1

µ

[
⟨qts, πt

s − πt+1
s ⟩

]]
= νt+1E

[
Es∼dt+1

µ

[
⟨Qt

s, π
t
s − πt+1

s ⟩
]]

+νt+1E
[
Es∼dt+1

µ

[
⟨qts −Qt

s, π
t
s − πt+1

s ⟩
]]

(a)
= νt+1(1− γ)E

[
V t(µ)− V t+1(µ)

]
+νt+1E

[
Es∼dt+1

µ

[
⟨qts −Qt

s, π
t
s − πt+1

s ⟩
]]

(57)
≥ νt+1(1− γ)E

[
V t(µ)− V t+1(µ)

]
− νt+1τ(1− γ)

= νt+1(1− γ)E [∆t+1 −∆t]− νt+1τ(1− γ),

where (a) follows from Lemma D.4. For the second term, we have that

E
[
Es∼d⋆

µ

[
⟨qts, π⋆

s − πt
s⟩
]]

= E
[
Es∼d⋆

µ

[
⟨Qt

s, π
⋆
s − πt

s⟩
]]

+ E
[
Es∼d⋆

µ

[
⟨qts −Qt

s, π
⋆
s − πt

s⟩
]]

(b)
= E[∆t](1− γ) + E

[
Es∼d⋆

µ

[
⟨qts −Qt

s, π
⋆
s − πt

s⟩
]]

(c)

≥ E[∆t](1− γ)− τ(1− γ),

where (b) follows from Lemma D.4 and (c) follows similarly to (57), i.e., by applying (54) twice
with (dπµ, π) = (d⋆µ, π

⋆) and (dπµ, π) = (d⋆µ, π
t).

Plugging the two bounds in (59), dividing both sides by (1− γ) and rearranging, we obtain

E
[
Dt+1

t

(1− γ)ηt
+ νt+1 (∆t+1 −∆t − τ) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ τ.

From Proposition 4.2, we have that ∆t+1 − ∆t − τ ≤ 0. Consequently, since νt+1 ≤ νµ by the
definition of νµ in Assumption (A3), one can lower bound the left hand side of the above inequality
by replacing νt+1 by νµ, that is,

E
[
Dt+1

t

(1− γ)ηt
+ νµ (∆t+1 −∆t − τ) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ τ,

which concludes the proof.
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D.5 Proof of the sublinear convergence analysis

In this section, we derive the sublinear convergence result of Theorem 4.3 with non-decreasing
step-size.

Proof. Starting from Proposition D.6

E
[
Dt+1

t

(1− γ)ηt
+ νµ (∆t+1 −∆t) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ (1 + νµ)τ.

If ηt ≤ ηt+1,

E
[
Dt+1

t

(1− γ)ηt
+ νµ (∆t+1 −∆t) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt+1

]
+ (1 + νµ)τ. (60)

Summing up from 0 to T − 1 and dropping some positive terms on the left hand side and some
negative terms on the right hand side, we have∑

t<T

E [∆t] ≤
D⋆

0

(1− γ)η0
+ νµ∆0 + T (1 + νµ)τ ≤

D⋆
0

(1− γ)η0
+

νµ
1− γ

+ T (1 + νµ)τ.

Notice that ∆0 ≤ 1
1−γ as r(s, a) ∈ [0, 1]. By dividing T on both side, we yield the proof of the

sublinear convergence

V ⋆(µ)− 1

T

∑
t<T

E
[
V t(µ)

]
≤ 1

T

(
D⋆

0

(1− γ)η0
+

νµ
1− γ

)
+ (1 + νµ)τ.

D.6 Proof of the linear convergence analysis

In this section, we derive the linear convergence result of Theorem 4.3 with exponentially increasing
step-size.

Proof. Starting from Proposition D.6 by dropping Dt+1
t

(1−γ)ηt
on the left hand side, we have

E [νµ (∆t+1 −∆t) + ∆t] ≤ E
[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ (1 + νµ)τ.

Dividing νµ on both side and rearranging, we obtain

E
[
∆t+1 +

D⋆
t+1

(1− γ)νµηt

]
≤
(
1− 1

νµ

)
E
[
∆t +

D⋆
t

(1− γ)ηt(νµ − 1)

]
+

(
1 +

1

νµ

)
τ.

If the step-sizes satisfy ηt+1(νµ − 1) ≥ ηtνµ with νµ ≥ 1, then

E
[
∆t+1 +

D⋆
t+1

(1− γ)ηt+1(νµ − 1)

]
≤
(
1− 1

νµ

)
E
[
∆t +

D⋆
t

(1− γ)ηt(νµ − 1)

]
+

(
1 +

1

νµ

)
τ.

Now we need the following simple fact, whose proof is straightforward and thus omitted.

Suppose 0 < α < 1, b > 0 and a nonnegative sequence {at}t≥0 satisfies

at+1 ≤ αat + b ∀t ≥ 0.

Then for all t ≥ 0,

at ≤ αta0 +
b

1− α
.

The proof of the linear convergence analysis follows by applying this fact with at =

E
[
∆t +

D⋆
t

(1−γ)ηt(νµ−1)

]
, α = 1− 1

νµ
and b =

(
1 + 1

νµ

)
τ .

36



E Discussion of the first step (Line 1) of AMPO – the compatible function
approximation framework

Starting from this section, some additional remarks about AMPO are in order. In particular, we
discuss in detail the novelty of the first step (Line 1) and the second step (Line 2) of AMPO in this and
the next section, respectively. Afterwards, we provide an extensive justification of the assumptions
used in Theorem 4.3 in Appendices G to I.

As mentioned in Remark 3.3, Agarwal et al. [1] study NPG with smooth policies through compatible
function approximation and propose the following algorithm. Let {πθ : θ ∈ Θ} be a policy class
such that log πθ(a | s) is a β-smooth function of θ for all s ∈ S, a ∈ A. At each iteration t, update

θt+1 = θt + ηwt,

with
wt ∈ argmin

∥w∥2≤W

∥∥At − w⊤∇θ log π
t
∥∥
L2(dt

µ·πt)
, (61)

where W > 0 and At(s, a) = Qt(s, a)− V t(s) represents the advantage function. While both the
algorithm proposed by Agarwal et al. [1] and AMPO involve regression problems, the one in (61) is
restricted to linearly approximate At with ∇θ log π

t, whereas the one in Line 1 of Algorithm 1 is
relaxed to approximate At with an arbitrary class of functions FΘ. Additionally, (61) depends on
the distribution dtµ, while Line 1 of Algorithm 1 does not and allows off-policy updates involving an
arbitrary distribution vt, as vt is independent of the current policy πt.

F Discussion of the second step (Line 2) of AMPO – the Bregman projection

As mentioned in Remark 3.4, we can rewrite the second step (Line 2) of AMPO through the following
lemma.
Lemma F.1. For any policy π̄, for any function fθ ∈ FΘ and for η > 0, we have, for all s ∈ S,

π̃s ∈ argmin
p∈∆(A)

Dh(p,∇h∗(ηfθ
s )) ⇐⇒ π̃s ∈ argmin

p∈∆(A)

⟨−ηfθ
s +∇h(π̄s), p⟩+Dh(p, π̄s).

Equations (12) and (20) are obtained by choosing π̃s = πt+1
s and π̄s = πt

s for all s ∈ S, η = ηt,
θ = θt+1, and by changing the sign of the expression on the right in order to obtain an argmax.

Proof. Starting from the definition of π̃, we have

π̃s ∈ argmin
p∈∆(A)

Dh(p,∇h∗(ηfθ
s ))

∈ argmin
p∈∆(A)

h(p)− h(∇h∗(ηfθ
s ))− ⟨∇h(∇h∗(ηfθ

s )), p−∇h∗(ηfθ
s )⟩

∈ argmin
p∈∆(A)

h(p)− ⟨ηfθ
s , p⟩

∈ argmin
p∈∆(A)

⟨−ηfθ
s +∇h(π̄s), p⟩+ h(p)− h(π̄s)− ⟨∇h(π̄s), p− π̄s⟩

∈ argmin
p∈∆(A)

⟨−ηfθ
s +∇h(π̄s), p⟩+Dh(p, π̄s), (62)

where the second and the last lines are obtained using the definition of the Bregman divergence, and
the third line is obtained using (4) (∇h(∇h∗(x∗)) = x∗ for all x∗ ∈ R|A|).

Lemmas F.1 and B.1 share a similar result, as they both rewrite the Bregman projection into the MD
updates. However, the MD updates in Lemma B.1 are exact, while the MD updates in AMPO involve
approximation (Line 1).

Next, we provide an alternative proof for Lemma 4.1 to show that it is the direct consequence of
Lemma F.1. The proof will involve the application of the three-point descent lemma [19, Lemma
3.2]. Here we adopt its slight variation by following Lemma 6 in Xiao [93].
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Lemma F.2 (Three-point decent lemma, Lemma 6 in Xiao [93]). Suppose that C ⊂ Rm is a closed
convex set, f : C → R is a proper, closed 6 convex function, Dh(·, ·) is the Bregman divergence
generated by a mirror map h. Denote rint domh as the relative interior of domh. For any
x ∈ rint domh, let

x+ ∈ arg min
u∈ domh∩C

{f(u) +Dh(u, x)}.

Then x+ ∈ rint domh ∩ C and for any u ∈ domh ∩ C,
f(x+) +Dh(x

+, x) ≤ f(u) +Dh(u, x)−Dh(u, x
+).

We refer to Yuan et al. [98, Lemma 11] for a proof of Lemma F.2.

Lemma 4.1 is obtained by simply applying the three-point descent lemma, Lemma F.2, to (62) with
x+ = π̃s, f(u) = ⟨−ηfθ

s +∇h(π̄s), u⟩, u = π and x = π̄s and rearranging terms.

In contrast, it may not be possible to apply Lemma F.2 to (11), as Π(Θ) is often non-convex.

G Discussion on Assumption (A1) – the approximation error

The compatible function approximation approach [1, 61, 15, 21, 2, 98] has been introduced to deal
with large state and action spaces, in order to reduce the dimension of the problem and make the com-
putation feasible. As mentioned in the proof idea in Page 8, this framework consists in upper-bounding
the sub-optimality gap with an optimization error plus an approximation error. Consequently, it is
important that both error terms converge to 0 in order to achieve convergence to a global optimum.

Assumptions similar to Assumption (A1) are common in the compatible function approximation
literature. Assumption (A1) encodes a form of realizability assumption for the parameterization class
FΘ, that is, we assume that for all t ≤ T there exists a function fθ ∈ FΘ such that∥∥fθ −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

≤ εapprox.

When FΘ is a class of sufficiently large shallow neural networks, this realizability assumption holds
as it has been shown that shallow neural networks are universal approximators [39]. It is, however,
possible to relax Assumption (A1). In particular, the condition

1

T

∑
t<T

√
E
[
E
∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

]
≤ √εapprox (63)

can replace Assumption (A1) and is sufficient for the sublinear convergence rate in Theorem 4.3 to
hold. Equation (63) shows that the realizability assumption does not need to hold for all t < T , but
only needs to hold on average over T iterations. Similarly, the condition∑

t≤T

(
1− 1

νµ

)T−t
1

νµ

√
E
[
E
∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

]
≤ √εapprox (64)

can replace Assumption (A1) and is sufficient for the linear convergence rate in Theorem 4.3 to hold.
Additionally, requiring, for all t < T ,

E
[
E
∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

]
≤

ν2µ
T 2

(
1− 1

νµ

)−2(T−t)

εapprox (65)

is sufficient for Equation (64) to hold. Equation (65) shows that the error floor in the linear conver-
gence rate is less influenced by approximation errors made in early iterations, which are discounted
by the term

(
1− 1

νµ

)
. On the other hand, the realizability assumption becomes relevant once the

algorithm approaches convergence, i.e., when t ≃ T and Qt ≃ Q⋆, as the discount term
(
1− 1

νµ

)
is

applied fewer times.

Finally, although Assumption (A1) holds for the softmax tabular policies and for the neural network
parameterization, it remains an open question whether Assumption (A1) is necessary to achieve the
global optimum convergence, especially when the representation power of FΘ cannot guarantee a
small approximation error.
6A convex function f is proper if dom f is nonempty and for all x ∈ dom f , f(x) > −∞. A convex function
is closed, if it is lower semi-continuous.
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H Discussion on Assumption (A2) – the concentrability coefficients

In our convergence analysis, Assumptions (A2) and (A3) involve the concentrability coefficient
Cv and the distribution mismatch coefficient νµ, which are potentially large. We give extensive
discussions on them in this and the next section, respectively.

As discussed in Yuan et al. [98, Appendix H], the issue of having (potentially large) concentrability
coefficient (Assumptions (A2)) is unavoidable in all the fast linear convergence analysis of approxi-
mate PMD due to the approximation error εapprox of the Q-function [17, 100, 54, 16, 93, 20, 2, 98].
Indeed, in the fast linear convergence analysis of PMD, the concentrability coefficient is always along
with the approximation error εapprox under the form of Cvεapprox, which is the case in Theorem 4.3.
To not get the concentrability coefficient involved yet maintain the linear convergence of PMD, one
needs to consider the exact PMD in the tabular setting [see 93, Theorem 10]. Consequently, the PMD
update is deterministic and the full policy space ∆(A)S is considered. In this setting, at each time t,
it exists θt+1 such that, for any state-action distribution vt,∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

= 0 = εapprox,

and Cv is ignored in the convergence analysis thanks to the vanishing of εapprox. We note that
the PMD analysis in the seminal paper by Agarwal et al. [1] does not use such a coefficient, but a
condition number instead. The condition number is controllable to be relatively small, so that the error
term in their PMD analysis is smaller than ours. However, their PMD analysis has only a sublinear
convergence rate, while ours enjoys a fast linear convergence rate. It remains an open question whether
one can both avoid using the concentrability coefficient and maintain the linear convergence of PMD.

Now we compare our concentrability coefficient Cv with others used in the fast linear convergence
analysis of approximate PMD [17, 100, 54, 15, 93, 20, 2, 98]. To the best of our knowledge, the
previously best-known concentrability coefficient Cv was the one used by Yuan et al. [98, Appendix
H]. As they discuss, their concentrability coefficient involved the weakest assumptions on errors
among Lan [54], Xiao [93] and Chen and Theja Maguluri [20] by using the L2-norm instead of the
ℓ∞-norm over the approximation error εapprox. Additionally, it did not impose any restrictions on the
MDP dynamics compared to Cayci et al. [15], as the concentrability coefficient of Yuan et al. [98]
was independent from the iterates.

Indeed, Yuan et al. [98] choose vt such that, for all (s, a) ∈ S ×A,

vt(s, a) = (1− γ)E(s0,a0)∼ν

[ ∞∑
t′=0

γt′P (st′ = s, at′ = a | πt, s0, a0)

]
,

where ν is an initial state-action distribution chosen by the user. In this setting, we have

vt(s, a) ≥ (1− γ)ν(s, a).

From the above lower bound of vt, we obtain that

E(s,a)∼vt

[(
dπµ(s)π(a | s)

vt(s, a)

)2 ]
=

∫
(s,a)∈S×A

dπµ(s)
2π(a | s)2

vt(s, a)

≤
∫
(s,a)∈S×A

1

vt(s, a)
≤ 1

(1− γ)min(s,a)∈S×A ν(s, a)
,

where the finite upper bound is independent to t.

As mentioned right after Assumption (A2), the assumption on our concentrability coefficient Cv

is weaker than the one in Yuan et al. [98, Assumption 9], as we have the full control over vt while
Yuan et al. [98] only has the full control over the initial state-action distribution ν. In particular, our
concentrability coefficient Cv recovers the previous best-known one in Yuan et al. [98] as a special
case. Consequently, our concentrability coefficient Cv becomes the “best” with the full control over
vt when other concentrability coefficients are infinite or require strong assumptions [77].

In general, for the ratio E(s,a)∼vt

[(
dπ
µ(s)π(a|s)
vt(s,a)

)2 ]
to have a finite upper bound Cv, it is important

that vt covers well the state and action spaces so that the upper bound is independent to t. However, the

39



upper bound 1
(1−γ)min(s,a)∈S×A ν(s,a) in Yuan et al. [98] is very pessimistic. Indeed, when πt and πt+1

converge to π⋆, one reasonable choice of vt is to choose vt ∈ {d⋆µ ·π⋆, dt+1
µ ·πt+1, d⋆µ ·πt, dt+1

µ ·πt}
such that Cv is close to 1.

We also refer to Yuan et al. [98, Appendix H] for more discussions on the concentrability coefficient.

I Discussion on Assumption (A3) – the distribution mismatch coefficients

In this section, we give further insights on the distribution mismatch coefficient νµ in Assumption
(A3). As mentioned right after (A3), we have that

sup
s∈S

d⋆µ(s)

dtµ(s)
≤ 1

1− γ
sup
s∈S

d⋆µ(s)

µ(s)
:= ν′µ,

which is a sufficient upper bound for νµ. As discussed in Yuan et al. [98, Appendix H],

1/(1− γ) ≤ ν′µ ≤ 1/((1− γ)min
s

µ(s)).

The upper bound 1/((1−γ)mins µ(s)) of ν′µ is very pessimistic and the lower bound ν′µ = 1/(1−γ)
is often achieved by choosing µ = d⋆µ.

Furthermore, if µ does not have full support on the state space, i.e., the upper bound 1/((1 −
γ)mins µ(s)) might be infinite, one can always convert the convergence guarantees for some state
distribution µ′ ∈ ∆(S) with full support such that

V ⋆(µ)− E[V T (µ)] = E
[∫

s∈S

µ(s)

µ′(s)
µ′(s)

(
V ⋆(s)− V T (s)

)]
≤ sup

s∈S

µ(s)

µ′(s)

(
V ⋆(µ′)− E[V T (µ′)]

)
.

Then by the linear convergence result of Theorem 4.3, we only transfer the original convergence
guarantee to V ⋆(µ′) − E[V T (µ′)] up to a scaling factor sup

s∈S

µ(s)
µ′(s) with an arbitrary distribution µ′

such that ν′µ is finite.

Finally, if dtµ converges to d⋆µ which is the case of AMPO through the proof of our Theorem 4.3, then

sups∈S
d⋆
µ(s)

dt
µ(s)

converges to 1. This might imply superlinear convergence results as discussed in Xiao
[93, Section 4.3]. In this case, the notion of the distribution mismatch coefficients νµ no longer exists
for the superlinear convergence analysis.

We also refer to Yuan et al. [98, Appendix H] for more discussions on the distribution mismatch
coefficient.

J Sample complexity for neural network parameterization

We prove here Corollary 4.5 through a result by Allen-Zhu et al. [3, Theorem 1 and Example 3.1].
We first give a simplified version of this result and then we show how to use it to prove Corollary 4.5.

Consider learning some unknown distribution D of data points z = (x, y) ∈ Rd × Y , where x is the
input point and y is the label. Without loss of generality, assume ∥x∥2 = 1 and xd = 1/2. Consider
a loss function L : Rk × Y → R such that for every y ∈ Y , the function L(·, y) is non-negative,
convex, 1-Lipschitz continuous and L(0, y) ∈ [0, 1]. This includes both the cross-entropy loss and
the L2-regression loss (for bounded Y).

Let g : R→ R be a smooth activation function such that g(z) = ez, sin(z), sigmoid(z), tanh(z)
or is a low degree polynomial.

Define F ⋆ : Rd → Rk such that OPT = ED[L(F
⋆(x), y)] is the smallest population error made by

a neural network of the form F ⋆ = A⋆g(W ⋆x), where A⋆ ∈ Rk×p and W ⋆ ∈ Rp×d. Assume for
simplicity that the rows of W ∗ have ℓ2-norm 1 and each element of A∗ is less or equal than 1.
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Define a ReLU neural network F (x,W0) = A0σ(W0x + b0), where A0 ∈ Rk×m, W0 ∈ Rm×d,
the entries of W0 and b0 are i.i.d. random Gaussians from N (0, 1/m) and the entries of A are i.i.d.
random Gaussians from N (0, εA), for εA ∈ (0, 1]. We train the weights W of this neural network
through stochastic gradient descent over a dataset with N i.i.d. samples from D, i.e., we update
Wt+1 = Wt − ηgt, where E[gt] = ∇ED[L(F (x,W0 +Wt), y)].

Theorem J.1 (Theorem 1 of Allen-Zhu et al. [3]). Let ε ∈ (0, O(1/pk)), choose εA = ε/Θ̃(1) for
the initialization and learning rate η = Θ̃

(
1

εkm

)
. SGD finds a set of parameters such that

1

J

J−1∑
n=0

E(x,y)∼D

[
L
(
F (x;W (0) +Wt), y

)]
≤ OPT + ε

with probability 1− e−c log2 m over the random initialization, for a sufficiently large constant c, with

size m =
poly(k, p)

poly(ε)
and sample complexity min{N, J} = poly(k, p, logm)

ε2
.

Theorem J.1 shows that it is possible to achieve the population error OPT by training a two-layer
ReLU network with SGD, and quantifies the number of samples needed to do so.

We make the following assumption to address the population error in our setting.
Assumption J.2. Let g : R → R be a smooth activation function such that g(z) = ez, sin(z),
sigmoid(z), tanh(z) or is a low degree polynomial. For all time-steps t, we assume that there exists
a target network F ⋆,t : Rd → Rk, with

F ⋆,t = (f⋆,t
1 , . . . , f⋆,t

k ) and f⋆,t
r (x) =

p∑
i=1

a⋆,tr,ig(⟨w
⋆,t
1,i , x⟩)⟨w

⋆,t
2,i , x⟩

where w⋆,t
1,i ∈ Rd, w⋆,t

2,i ∈ Rd, and a⋆,tr,i ∈ R, such that

E
[ ∥∥F ⋆,t −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

]
≤ OPT.

We assume for simplicity ∥w⋆,t
1,i∥2 = ∥w⋆,t

2,i∥2 = 1 and |a⋆,tr,i | ≤ 1.

Assumptions similar to Assumption J.2 have already been made in the literature, such as the bias
assumption in the compatible function approximation framework studied by [1]. The term OPT
represents the minimum error incurred by a target network parameterized as F ⋆,t when solving the
regression problem in Line 1 of Algorithm 1.

We are now ready to prove Corollary 4.5, which uses Algorithm 4 to obtain an unbiased estimate of
the current Q-function. We assume to be in the same setting as Theorem J.1

Proof of Corollary 4.5. We aim to find a policy πT such that

V ⋆(µ)− E
[
V T (µ)

]
≤ ε. (66)

Suppose the total number of iterations, that is policy optimization steps, in AMPO is T . We need
the bound in Assumption (A1) to hold for all T with probability 1− e−c log2 m, which means that
at each iteration the bound should hold with probability 1− T−1e−c log2 m. Through Algorithm 4,
the expected number of samples needed to obtain an unbiased estimate of the current Q-function is
(1− γ)−1. Therefore, using Theorem J.1, at each iteration of AMPO we need at most

poly(k, p, logm, log T )

ε2approx(1− γ)

samples for SGD to find parameters that satisfy Assumption (A1) with probability 1−T−1e−c log2 m.
To obtain (66), we need

1

1− γ

(
1− 1

νµ

)T(
1 +

D⋆
0

η0(νµ − 1)

)
≤ ε

2
and

2(1 + νµ)
√
Cvεapprox

1− γ
≤ ε

2
. (67)
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Algorithm 4: Sampler for an unbiased estimate Q̂t(s, a) of Qt(s, a)

Input: Initial state-action couple (s0, a0), policy πt, discount factor γ ∈ [0, 1)

1 Initialize Q̂t(s0, a0) = r(s0, a0), the time step n = 0.
2 while True do
3 With probability γ:
4 Sample sn+1 ∼ P (· | sn, an)
5 Sample an+1 ∼ πt(·|sn+1)

6 Q̂t(s0, a0)← Q̂t(s0, a0) + r(sn+1, an+1)
7 n← n+ 1

8 Otherwise with probability (1− γ):
9 break ▷ Accept Q̂sh,ah

(θ)

Output: Q̂t(s0, a0)

Solving for T and εapprox and multiplying them together, we obtain the sample complexity of AMPO,
that is

Õ

(
poly(k, p, logm)C2

vν
5
µ

ε4(1− γ)6

)
.

Due to the statement of Theorem J.1, we cannot guarantee the approximation error incurred by the
learner network to be smaller than OPT . Consequently, we have that

ε ≥ 4(1 + νµ)
√
CvOPT

1− γ
.

A similar bound can be applied to any proof that contains the bias assumption introduced by [1].

We can obtain an improvement over Corollary 4.5 by using the relaxed assumptions in Appendix G,
in particular using the condition in (65).

Corollary J.3. In the setting of Theorem 4.3, replace Assumption (A1) with the condition

E
[
E
∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

]
≤

ν2µ
T 2

(
1− 1

νµ

)−2(T−t)

εapprox, (68)

for all t < T . Let the parameterization class FΘ consist of sufficiently wide shallow ReLU neural
networks. Using an exponentially increasing step-size and solving the minimization problem in Line 1
with SGD as in (19), the number of samples required by AMPO to find an ε-optimal policy with high
probability is Θ̃(C2

vν
4
µ/ε

4(1− γ)6).

Proof. The proof follow that of Corollary 4.5. Using Theorem J.1, at each iteration t of AMPO, we
need at most

T 2

ν2µ

(
1− 1

νµ

)2(T−t)
poly(k, p, logm, log T )

ε2approx(1− γ)
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samples for SGD to find parameters that satisfy condition (68) with probability 1− T−1e−c log2 m.
Summing over T total iterations of AMPO we obtain that the total number of samples needed is∑

t≤T

T 2

ν2µ

(
1− 1

νµ

)2(T−t)
poly(k, p, logm, log T )

ε2approx(1− γ)

=
T 2

ν2µ

(
1− 1

νµ

)2T
poly(k, p, logm, log T )

ε2approx(1− γ)

∑
t≤T

(
1− 1

νµ

)−2t

=
T 2

ν2µ

(
1− 1

νµ

)2T
poly(k, p, logm, log T )

ε2approx(1− γ)

((
1− 1

νµ

)−2(T+1)

− 1

)
((

1
1−νµ

)−2

− 1

)
≤ O

(
T 2

ν2µ

poly(k, p, logm, log T )

ε2approx(1− γ)

)
Replacing T and εapprox with the solutions of (67) gives the result.

At this stage, it is important to note that choosing a method different from the one proposed by
Allen-Zhu et al. [4] to solve Line 1 in Algorithm 1 of our paper with neural networks can lead to
alternative, and possibly better, sample complexity results for AMPO. For example, we can obtain
a sample complexity result for AMPO that does not involve a target network using results from
[39] and [16], although this requires introducing more notation and background results compared to
Corollary 4.5 (since in [16] they employ a temporal-difference-based algorithm, that is Algorithm
3 in their work, to obtain a neural network estimate Q̂t of Qt, while in [39] they provide a method
based on Fourier transforms to approximate a target function through shallow ReLU networks). We
outline below the steps in order to do so (and additional details including the precise statements of
the results we use and how we use them are provided thereafter for the sake of completeness).

Step 1) We first split the approximation error in Assumption (A1) into a critic error

E[
√
∥Q̂t −Qt∥2L2(vt)] ≤ εcritic and an actor error E[

√
∥f t+1 − Q̂t − η−1

t ∇h(πt)∥2L2(vt)] ≤ εactor.
In this case, the linear convergence rate in our Theorem 4.3 becomes

V ⋆(µ)− E
[
V T (µ)

]
≤ 1

1− γ

(
1− 1

νµ

)T(
1 +

D⋆
0

η0(νµ − 1)

)
+

2(1 + νµ)
√
Cv(εcritic + εactor)

1− γ
.

[We can obtain this alternative statement by modifying the passages in Appendix D.2. In particular,
writing f t+1 −Qt − η−1

t ∇h(πt) = (f t+1 − Q̂t − η−1
t ∇h(πt)) + (Qt − Q̂t) and bounding the two

terms with the same procedure in Appendix D.2 leads to this alternative expression for the error.]

We will next deal with the critic error and actor error separately.

Step 2) Critic error. Under a realizability assumption that we provide below along with the statement
of the theorem (Assumption 2 in [16]), Theorem 1 from [16] gives that the sample complexity
required to obtain E[

√
∥Q̂t −Qt∥2L2(dt

µ·πt)] ≤ ε is Õ(ε−4(1 − γ)−2), while the required network

width is Õ(ε−2).

Step 3) Actor error. Using Theorem E.1 from [39], we obtain that

E[
√
∥f t+1 − Q̂t − η−1

t ∇h(πt)∥2L2(vt)] can be made arbitrarily small by tuning the width of

f t+1, without using further samples.

Step 4) Replacing Equation (67) with the sample complexity of the critic, we obtain the following
corollary on the sample complexity of AMPO, which does not depend on the error made by a target
network.
Corollary J.4. In the setting of Theorem 4.3, let the parameterization class FΘ consist of sufficiently
wide shallow ReLU neural networks. Using an exponentially increasing step-size and using the
techniques above to update fθ, the number of samples required by AMPO to find an ε-optimal policy
with high probability is Õ(C2

vν
5
µ/ε

4(1− γ)7).
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To the best of our knowledge, this result improves upon the previous best result on the sample
complexity of a PG method with neural network parameterization [16], i.e., Õ(C2

v/ε
6(1− γ)9).

We now provide the statements of the aforementioned results we used.

Recalling Theorem 1 in [16] and its assumptions. Consider the following space of mappings:

Hν̄ = {v : Rd → Rd : sup
w∈Rd

∥v(w)∥2 ≤ ν̄},

and the function class:

Fν̄ =
{
g(·) = Ew0∼N (0,Id)[⟨v(w0), ·⟩I{⟨w0, ·⟩ > 0}] : v ∈ Hν̄

}
.

Consider the following realizability assumption for the Q-function.
Assumption J.5 (Assumption 2 in [16]). For any t ≥ 0, we assume that Qt ∈ Fν̄ for some ν̄ > 0.
Theorem J.6 (Theorem 1 in [16]). Under Assumption 2 in [16], for any error probability δ ∈ (0, 1),
let

ℓ(m′, δ) = 4
√
log(2m′ + 1) + 4

√
log(T/δ),

and R > ν̄. Then, for any target error ε > 0, number of iterations T ′ ∈ N, network width

m′ >
16
(
ν̄ +

(
R+ ℓ(m′, δ)

)(
ν̄ +R

))2
(1− γ)2ε2

,

and step-size

αC =
ε2(1− γ)

(1 + 2R)2
,

Algorithm 3 in [16] yields the following bound:

E
[√
∥Q̂t −Qt∥2L2(dt

µ·πt)IA2

]
≤ (1 + 2R)ν̄

ε(1− γ)
√
T ′

+ 3ε,

where A2 holds with probability at least 1− δ over the random initializations of the critic network
Q̂t.

As indicated in [16], a consequence of this result is that in order to achieve a target error less than
ε > 0, a network width of m′ = Õ

(
ν̄4

ε2

)
and iteration complexity O

(
(1+2ν̄)2ν̄2

(1−γ)2ε4

)
suffice.

The statement of Theorem 1 in [16] can be readily applied to obtain the sample complexity of the
critic.

Recalling Theorem E.1 in [39] and its assumptions Let g : Rn → R be given and define the
modulus of continuity ωg as

ωg(δ) := sup
x,x′∈Rn

{g(x)− g(x′) : max(∥x∥2, ∥x′∥2) ≤ 1 + δ, ∥x− x′∥2 ≤ δ}.

If g is continuous, then ωg is not only finite for all inputs, but moreover limδ→0 ωg(δ)→ 0.

Denote ∥p∥L1 =
∫
|p(w)|dw. Define a sample from a signed density p : Rn+1 → R with ∥p∥L1 <

∞ as (w, b, s), where (w, b) ∈ R is sampled from the probability density |p|/∥p∥L1
and s =

sign(p(w, b))

Theorem J.7 (Theorem E.1 in [39]). Let g : Rn → R, δ > 0 and ωg(δ) be as above and define for
x ∈ Rn

M := sup
∥x∥≤1+δ

|g(x)|, g|δ(x) = f(x)I[∥x∥ ≤ 1 + δ], α :=
δ√

δ +
√
2 log(2M/ωg(δ))

.

Let Gα be a gaussian distribution on Rn with mean 0 and variance α2I. Define the Gaus-
sian convolution l = g|δ ∗ Gα with Fourier transform l̂ satisfying radial decomposition l̂(w) =

|l̂(w)| exp(2πiθh(w)). Let P be a probability distribution supported on ∥x∥ ≤ 1. Additionally define
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c := g(0)g(0)

∫
|l̂(w)|

[
cos(2π(θl(w)− ∥w∥2))− 2π∥w∥2 sin(2π(θl(w)− ∥w∥2))

]
dw

a =

∫
w|l̂(w)|dw

r =
√
n+ 2

√
log

24π2(
√
d+ 7)2∥g|δ∥L1

ωg(δ)

p := 4π2|l̂(w)| cos(2π(∥w∥2 − b))I[|b| ≤ ∥w∥ ≤ r],

and for convenience create fake (weight, bias, sign) triples

(w, b, s)m+1 := (0, c,m sign(c)), (w, b, s)m+2 := (a, 0,m), (w, b, s)m+3 := (−a, 0,−m).

Then

|c| ≤M + 2
√
n∥g|δ∥L1

(2πα2)−d/2,

∥p∥L1
≤ 2∥g|δ∥L1

√
(2π)3n

(2πα2)n+1
,

and with probability at least 1− 3λ over a draw of ((sj , wj , bj))
m
j=1 from p√√√√∥∥∥g − 1

m

m+3∑
j=1

sjσ(⟨wj , x⟩+ bj)
∥∥∥
L(P )

≤ 3ωg(δ) +
r∥p∥L1√

m

[
1 +

√
2 log(1/λ)

]
.

We can then characterize the error of the actor by choosing x = (s, a), g = Q̂t + η−1
t ∇h(πt), and

f t+1 = 1
m

∑m+3
j=1 sjσ(⟨wj , x⟩+ bj). We can then make the actor error arbitrarily small by tuning

the network width m and δ (note that, since both Q̂t and f t are continuous neural networks, g is a
continuous function).
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