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Abstract

While contextual bandit has a mature theory, effectively leveraging different feed-
back patterns to enhance the pace of learning remains unclear. Bandits with feed-
back graphs, which interpolates between the full information and bandit regimes,
provides a promising framework to mitigate the statistical complexity of learning.
In this paper, we propose and analyze an approach to contextual bandits with
feedback graphs based upon reduction to regression. The resulting algorithms are
computationally practical and achieve established minimax rates, thereby reducing
the statistical complexity in real-world applications.

1 Introduction

This paper is primarily concerned with increasing the pace of learning for contextual bandits [Auer
et al., 2002, Langford and Zhang, 2007]. While contextual bandits have enjoyed broad applicabil-
ity [Bouneffouf et al., 2020], the statistical complexity of learning with bandit feedback imposes a
data lower bound for application scenarios [Agarwal et al., 2012]. This has inspired various mitigation
strategies, including exploiting function class structure for improved experimental design [Zhu and
Mineiro, 2022], and composing with memory for learning with fewer samples [Rucker et al., 2022].
In this paper we exploit alternative graph feedback patterns to accelerate learning: intuitively, there is
no need to explore a potentially suboptimal action if a presumed better action, when exploited, yields
the necessary information.

The framework of bandits with feedback graphs is mature and provides a solid theoretical foundation
for incorporating additional feedback into an exploration strategy [Mannor and Shamir, 2011, Alon
et al., 2015, 2017]. Succinctly, in this framework, the observation of the learner is decided by a
directed feedback graph G: when an action is played, the learner observes the loss of every action
to which the chosen action is connected. When the graph only contains self-loops, this problem
reduces to the classic bandit case. For non-contextual bandits with feedback graphs, [Alon et al.,
2015] provides a full characterization on the minimax regret bound with respect to different graph
theoretic quantities associated with G according to the type of the feedback graph.

However, contextual bandits with feedback graphs have received less attention [Singh et al., 2020,
Wang et al., 2021]. Specifically, there is no prior work offering a solution for general feedback graphs
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and function classes. In this work, we take an important step in this direction by adopting recently
developed minimax algorithm design principles in contextual bandits, which leverage realizability
and reduction to regression to construct practical algorithms with strong statistical guarantees [Foster
et al., 2018, Foster and Rakhlin, 2020, Foster et al., 2020, Foster and Krishnamurthy, 2021, Foster
et al., 2021, Zhu and Mineiro, 2022]. Using this strategy, we construct a practical algorithm for
contextual bandits with feedback graphs that achieves the optimal regret bound. Moreover, although
our primary concern is accelerating learning when the available feedback is more informative than
bandit feedback, our techniques also succeed when the available feedback is less informative than
bandit feedback, e.g., in spam filtering where some actions generate no feedback. More specifically,
our contributions are as follows.

Contributions. In this paper, we extend the minimax framework proposed in [Foster et al., 2021]
to contextual bandits with general feedback graphs, aiming to promote the utilization of different
feedback patterns in practical applications. Following [Foster and Rakhlin, 2020, Foster et al., 2021,
Zhu and Mineiro, 2022], we assume that there is an online regression oracle for supervised learning
on the loss. Based on this oracle, we propose SquareCB.G, the first algorithm for contextual bandits
with feedback graphs that operates via reduction to regression (Algorithm 1). Eliding regression regret
factors, our algorithm achieves the matching optimal regret bounds for deterministic feedback graphs,
with Õ(

√
αT ) regret for strongly observable graphs and Õ(d 1

3T
2
3 ) regret for weakly observable

graphs, where α and d are respectively the independence number and weakly domination number
of the feedback graph (see Section 3.2 for definitions). Notably, SquareCB.G is computationally
tractable, requiring the solution to a convex program (Theorem 3.6), which can be readily solved
with off-the-shelf convex solvers (Appendix A.3). In addition, we provide closed-form solutions for
specific cases of interest (Section 4), leading to a more efficient implementation of our algorithm.
Empirical results further showcase the effectiveness of our approach (Section 5).

2 Problem Setting and Preliminary

Throughout this paper, we let [n] denote the set {1, 2, . . . , n} for any positive integer n. We consider
the following contextual bandits problem with informed feedback graphs. The learning process goes
in T rounds. At each round t ∈ [T ], an environment selects a context xt ∈ X , a (stochastic) directed
feedback graph Gt ∈ [0, 1]A×A, and a loss distribution Pt : X → ∆([−1, 1]A); where A is the
action set with finite cardinality K. For convenience, we use A and [K] interchangeably for denoting
the action set. Both Gt and xt are revealed to the learner at the beginning of each round t. Then the
learner selects one of the actions at ∈ A, while at the same time, the environment samples a loss
vector ℓt ∈ [−1, 1]A from Pt(·|xt). The learner then observes some information about ℓt according
to the feedback graph Gt. Specifically, for each action j, she observes the loss of action j with
probability Gt(at, j), resulting in a realization At, which is the set of actions whose loss is observed.
With a slight abuse of notation, denote Gt(·|a) as the distribution of At when action a is picked.
We allow the context xt, the (stochastic) feedback graphs Gt and the loss distribution Pt(·|xt) to be
selected by an adaptive adversary. When convenient, we will consider G to be a K-by-K matrix and
utilize matrix notation.

Other Notations. Let ∆(K) denote the set of all Radon probability measures over a set [K].
conv(S) represents the convex hull of a set S. Denote I as the identity matrix with an appropriate
dimension. For a K-dimensional vector v, diag(v) denotes the K-by-K matrix with the i-th diagonal
entry vi and other entries 0. We use RK

≥0 to denote the set of K-dimensional vectors with non-negative
entries. For a positive definite matrix M ∈ RK×K , we define norm ∥z∥M =

√
z⊤Mz for any vector

z ∈ RK . We use the Õ(·) notation to hide factors that are polylogarithmic in K and T .

Realizability. We assume that the learner has access to a known function class F ⊂ (X ×A 7→
[−1, 1]) which characterizes the mean of the loss for a given context-action pair, and we make the
following standard realizability assumption studied in the contextual bandit literature [Agarwal et al.,
2012, Foster et al., 2018, Foster and Rakhlin, 2020, Simchi-Levi and Xu, 2021].

Assumption 1 (Realizability). There exists a regression function f⋆ ∈ F such that E[ℓt,a | xt] =
f⋆(xt, a) for any a ∈ A and across all t ∈ [T ].
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Two comments are in order. First, we remark that, similar to [Foster et al., 2020], misspecification can
be incorporated while maintaining computational efficiency, but we do not complicate the exposition
here. Second, Assumption 1 induces a “semi-adversarial” setting, wherein nature is completely free
to determine the context and graph sequences; and has considerable latitude in determining the loss
distribution subject to a mean constraint.

Regret. For each regression function f ∈ F , let πf (xt) := argmina∈A f(xt, a) denote the
induced policy, which chooses the action with the least loss with respective to f . Define π⋆ := πf⋆

as the optimal policy. We measure the performance of the learner via regret to π⋆: RegCB :=∑T
t=1 ℓt,at −

∑T
t=1 ℓt,π⋆(xt), which is the difference between the loss suffered by the learner and the

one if the learner applies policy π⋆.

Regression Oracle We assume access to an online regression oracle AlgSq for function class F ,
which is an algorithm for online learning with squared loss. We consider the following protocol.
At each round t ∈ [T ], the algorithm produces an estimator f̂t ∈ conv(F), then receives a set of
context-action-loss tuples {(xt, a, ℓt,a)}a∈At

where At ⊆ A. The goal of the oracle is to accurately
predict the loss as a function of the context and action, and we evaluate its performance via the square
loss

∑
a∈At

(f̂t(xt, a)− ℓt,a)
2. We measure the oracle’s cumulative performance via the following

square-loss regret to the best function in F .
Assumption 2 (Bounded square-loss regret). The regression oracle AlgSq guarantees that for any
(potentially adaptively chosen) sequence {(xt, a, ℓt,a)}a∈At,t∈[T ] in which At ⊆ A,

T∑
t=1

∑
a∈At

(
f̂t(xt, a)− ℓt,a

)2
− inf

f∈F

T∑
t=1

∑
a∈At

(f(xt, a)− ℓt,a)
2 ≤ RegSq.

For finite F , Vovk’s aggregation algorithm yields RegSq = O(log|F|) [Vovk, 1995]. This regret is
dependent upon the scale of the loss function, but this need not be linear with the size of At, e.g., the
loss scale can be bounded by 2 in classification problems. See Foster and Krishnamurthy [2021] for
additional examples of online regression algorithms.

3 Algorithms and Regret Bounds

In this section, we provide our main algorithms and results.

3.1 Algorithms via Minimax Reduction Design

Our approach is to adapt the minimax formulation of [Foster et al., 2021] to contextual bandits with
feedback graphs. In the standard contextual bandits setting (that is, Gt = I for all t), Foster et al.
[2021] define the Decision-Estimation Coefficient (DEC) for a parameter γ > 0 as decγ(F) :=

supf̂∈conv(F),x∈X decγ(F ; f̂ , x), where

decγ(F ; f̂ , x) := inf
p∈∆(K)

decγ(p,F ; f̂ , x)

:= inf
p∈∆(K)

sup
a⋆∈[K]
f⋆∈F

Ea∼p

[
f⋆(x, a)− f⋆(x, a⋆)− γ

4
·
(
f̂(x, a)− f⋆(x, a)

)2]
.

(1)

Their proposed algorithm is as follows. At each round t, after receiving the context xt, the algorithm
first computes f̂t by calling the regression oracle. Then, it solves the solution pt of the minimax
problem defined in Eq. (1) with f̂ and x replaced by f̂t and xt. Finally, the algorithm samples an
action at from the distribution pt and feeds the observation (xt, at, ℓt,at

) to the oracle. Foster et al.
[2021] show that for any value γ, the algorithm above guarantees that

E[RegCB] ≤ T · decγ(F) + γ
4 ·RegSq. (2)

However, the minimax problem Eq. (1) may not be solved efficiently in many cases. Therefore,
instead of obtaining the distribution pt which has the exact minimax value of Eq. (1), Foster et al.
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Algorithm 1 SquareCB.G. Note Theorem 3.6 provides an efficient implementation of Eq. (4).
Input: parameter γ ≥ 4, a regression oracle AlgSq

for t = 1, 2, . . . , T do
Receive context xt and directed feedback graph Gt.
Obtain an estimator f̂t from the oracle AlgSq.
Compute the distribution pt ∈ ∆(K) such that pt = argminp∈∆(K) decγ(p; f̂t, xt, Gt), where

decγ(p; f̂t, xt, Gt)

:= sup
a⋆∈[K]
f⋆∈Φ

Ea∼p

[
f⋆(xt, a)− f⋆(xt, a

⋆)− γ

4
EA∼Gt(·|a)

[∑
a′∈A

(f̂t(xt, a
′)− f⋆(xt, a

′))2
]]

, (4)

and Φ := X × [K] 7→ R.
Sample at from pt and observe {ℓt,j}j∈At

where At ∼ Gt(·|at).
Feed the tuples {(xt, j, ℓt,j)}j∈At

to the oracle AlgSq.
end

[2021] show that any distribution that gives an upper bound Cγ on decγ(p,F ; f̂ , x) also works and
enjoys a regret bound with decγ(F) replaced by Cγ in Eq. (2).

To extend this framework to the setting with feedback graph G, we define decγ(F ; f̂ , x,G) as follows

decγ(F ; f̂ , x,G)

:= inf
p∈∆(K)

decγ(p,F ; f̂ , x,G)

:= inf
p∈∆(K)

sup
a⋆∈[K]
f⋆∈F

Ea∼p

[
f⋆(x, a)− f⋆(x, a⋆)− γ

4
EA∼G(·|a)

[∑
a′∈A

(f̂t(x, a
′)− f⋆(x, a′))2

]]
. (3)

Compared with Eq. (1), the difference is that we replace the squared estimation error on action a by
the expected one on the observed set A ∼ G(·|a), which intuitively utilizes more feedbacks from
the graph structure. When the feedback graph is the identity matrix, we recover Eq. (1). Based on
decγ(F ; f̂ , x,G), our algorithm SquareCB.G is shown in Algorithm 1. As what is done in [Foster
et al., 2021], in order to derive an efficient algorithm, instead of solving the distribution pt with
respect to the supremum over f⋆ ∈ F , we solve pt that minimize decγ(p; f̂ , xt, Gt) (Eq. (4)), which
takes supremum over f⋆ ∈ (X × [K] 7→ R), leading to an upper bound on decγ(F ; f̂ , xt, Gt). Then,
we receive the loss {ℓt,j}j∈At

and feed the tuples {(xt, j, ℓt,j)}j∈At
to the regression oracle AlgSq.

Following a similar analysis to [Foster et al., 2021], we show that to bound the regret RegCB, we
only need to bound decγ(pt; f̂t, xt, Gt).

Theorem 3.1. Suppose decγ(pt; f̂t, xt, Gt) ≤ Cγ−β for all t ∈ [T ] and some β > 0, Algorithm 1

with γ = max{4, (CT )
1

β+1Reg
− 1

β+1

Sq } guarantees that E [RegCB] ≤ O
(
C

1
β+1T

1
β+1Reg

β
β+1

Sq

)
.

The proof is deferred to Appendix A. In Section 3.3, we give an efficient implementation for solving
Eq. (4) via reduction to convex programming.

3.2 Regret Bounds

In this section, we derive regret bounds for Algorithm 1 when Gt’s are specialized to deterministic
graphs, i.e., Gt ∈ {0, 1}A×A. We utilize discrete graph notation G = ([K], E), where E ⊆
[K]× [K]; and define N in(G, j) ≜ {i ∈ A : (i, j) ∈ E} as the set of nodes that can observe node
j. In this case, at each round t, the observed node set At is a deterministic set which contains any
node i satisfying at ∈ N in(Gt, i). In the following, we introduce several graph-theoretic concepts
for deterministic feedback graphs [Alon et al., 2015].
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Strongly/Weakly Observable Graphs. For a directed graph G = ([K], E), a node i is observable
if N in(G, i) ̸= ∅. An observable node is strongly observable if either i ∈ N in(G, i) or N in(G, i) =
[K]\{i}, and weakly observable otherwise. Similarly, a graph is observable if all its nodes are
observable. An observable graph is strongly observable if all nodes are strongly observable, and
weakly observable otherwise. Self-aware graphs are a special type of strongly observable graphs
where i ∈ N in(G, i) for all i ∈ [K].

Independent Set and Weakly Dominating Set. An independence set of a directed graph is a subset
of nodes in which no two distinct nodes are connected. The size of the largest independence set of a
graph is called its independence number. For a weakly observable graph G = ([K], E), a weakly
dominating set is a subset of nodes D ⊆ [K] such that for any node j in G without a self-loop, there
exists i ∈ D such that directed edge (i, j) ∈ E. The size of the smallest weakly dominating set of a
graph is called its weak domination number. Alon et al. [2015] show that in non-contextual bandits
with a fixed feedback graph G, the minimax regret bound is Θ̃(

√
αT ) when G is strongly observable

and Θ̃(d
1
3T

2
3 ) when G is weakly observable, where α and d are the independence number and the

weak domination number of G, respectively.

3.2.1 Strongly Observable Graphs

In the following theorem, we show the regret bound of Algorithm 1 for strongly observable graphs.
Theorem 3.2 (Strongly observable graphs). Suppose that the feedback graph Gt is deterministic and
strongly observable with independence number no more than α. Then Algorithm 1 guarantees that

decγ(pt; f̂t, xt, Gt) ≤ O
(
α log(Kγ)

γ

)
.

In contrast to existing works that derive a closed-form solution of pt in order to show how large the
DEC can be [Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021], in our case we prove the
upper bound of decγ(pt; f̂t, xt, Gt) by using the Sion’s minimax theorem and the graph-theoretic
lemma proven in [Alon et al., 2015]. The proof is deferred to Appendix A.1. Combining Theorem 3.2
and Theorem 3.1, we directly have the following corollary:
Corollary 3.3. Suppose that Gt is deterministic, strongly observable, and has independence number
no more than α for all t ∈ [T ]. Algorithm 1 with choice γ = max

{
4,
√

αT/RegSq

}
guarantees

that
E[RegCB] ≤ Õ

(√
αTRegSq

)
.

For conciseness, we show in Corollary 3.3 that the regret guarantee for Algorithm 1 depends on the
largest independence number of Gt over t ∈ [T ]. However, we in fact are able to achieve a move

adaptive regret bound of order Õ
(√∑T

t=1 αtRegSq

)
where αt is the independence number of Gt.

It is straightforward to achieve this by applying a standard doubling trick on the quantity
∑T

t=1 αt,
assuming we can compute αt given Gt, but we take one step further and show that it is in fact unneces-
sary to compute αt (which, after all, is NP-hard [Karp, 1972]): we provide an adaptive tuning strategy
for γ by keeping track the the cumulative value of the quantity minp∈∆(K) decγ(p; f̂t, xt, Gt) and

show that this efficient method also achieves the adaptive Õ
(√∑t

t=1 αtRegSq

)
regret guarantee;

see Appendix D for details.

3.2.2 Weakly Observable Graphs

For the weakly observable graph, we have the following theorem.
Theorem 3.4 (Weakly observable graphs). Suppose that the feedback graph Gt is deterministic and
weakly observable with weak domination number no more than d. Then Algorithm 1 with γ ≥ 16d
guarantees that

decγ(pt; f̂t, xt, Gt) ≤ O

(√
d

γ
+

α̃ log(Kγ)

γ

)
,
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where α̃ is the independence number of the subgraph induced by nodes with self-loops in Gt.

The proof is deferred to Appendix A.2. Similar to Theorem 3.2, we do not derive a closed-form
solution to the strategy pt but prove this upper bound using the minimax theorem. Combining
Theorem 3.4 and Theorem 3.1, we are able to obtain the following regret bound for weakly observable
graphs, whose proof is deferred to Appendix A.2.
Corollary 3.5. Suppose that Gt is deterministic, weakly observable, and has weak domination
number no more than d for all t ∈ [T ]. In addition, suppose that the independence number of the
subgraph induced by nodes with self-loops in Gt is no more than α̃ for all t ∈ [T ]. Then, Algorithm 1

with γ = max{16d,
√
α̃T/RegSq, d

1
3T

2
3Reg

− 2
3

Sq } guarantees that

E[RegCB] ≤ Õ
(
d

1
3T

2
3Reg

1
3

Sq +
√

α̃TRegSq

)
.

Similarly to the strongly observable graph case, we also derive an adaptive tuning strategy for γ

to achieve a more refined regret bound Õ
(√∑T

t=1 α̃tRegSq +
(∑T

t=1

√
dt

) 2
3

Reg
1
3

Sq

)
where α̃t

is the independence number of the subgraph induced by nodes with self-loops in Gt and dt is the
weakly domination number of Gt. This is again achieved without explicitly computing α̃t and dt; see
Appendix D for details.

3.3 Implementation

In this section, we show that solving argminp∈∆(K) decγ(p; f̂ , x,G) in Algorithm 1 is equivalent to
solving a convex program, which can be easily and efficiently implemented in practice.

Theorem 3.6. Solving argminp∈∆(K) decγ(p; f̂ , x,G) is equivalent to solving the following convex
optimization problem.

min
p∈∆(K),z

p⊤f̂ + z (5)

subject to ∀a ∈ [K] :
1

γ
∥p− ea∥2diag(G⊤p)−1 ≤ f̂(x, a) + z,

G⊤p ≻ 0,

where f̂ in the objective is a shorthand for f̂(x, ·) ∈ RK , ea is the a-th standard basis vector, and ≻
means element-wise greater.

The proof is deferred to Appendix A.4. Note that this implementation is not restricted to the deter-
ministic feedback graphs but applies to the general stochastic feedback graph case. In Appendix A.3,
we provide the 20 lines of Python code that solves Eq. (5).

4 Examples with Closed-Form Solutions

In this section, we present examples and corresponding closed-form solutions of p that make the
value decγ(p; f̂ , x,G) upper bounded by at most a constant factor of minp decγ(p; f̂ , x,G). This
offers an alternative to solving the convex program defined in Theorem 3.6 for special (and practically
relevant) cases, thereby enhancing the efficiency of our algorithm. All the proofs are deferred to
Appendix B.

Cops-and-Robbers Graph. The “cops-and-robbers” feedback graph GCR = 11⊤ − I , also known
as the loopless clique, is the full feedback graph removing self-loops. Therefore, GCR is strongly
observable with independence number α = 1. Let a1 be the node with the smallest value of f̂ and
a2 be the node with the second smallest value of f̂ . Our proposed closed-form distribution p is only
supported on {a1, a2} and defined as follows:

pa1
= 1− 1

2 + γ(f̂a2 − f̂a1)
, pa2

=
1

2 + γ(f̂a2 − f̂a1)
. (6)
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In the following proposition, we show that with the construction of p in Eq. (6), decγ(p; f̂ , x,GCR) is
upper bounded by O(1/γ), which matches the order of minp decγ(p; f̂ , x,G) based on Theorem 3.2
since α = 1.

Proposition 1. When G = GCR, given any f̂ , context x, the closed-form distribution p in Eq. (6)
guarantees that decγ(p; f̂ , x,GCR) ≤ O

(
1
γ

)
.

Apple Tasting Graph. The apple tasting feedback graph GAT =

[
1 1
0 0

]
consists of two nodes,

where the first node reveals all and the second node reveals nothing. This scenario was originally
proposed by Helmbold et al. [2000] and recently denoted the spam filtering graph [van der Hoeven
et al., 2021]. The independence number of GAT is 1. Let f̂1 be the oracle prediction for the first node
and let f̂2 be the prediction for the second node. We present a closed-form solution p for Eq. (4) as
follows:

p1 =

{
1 f̂1 ≤ f̂2

2

4+γ(f̂1−f̂2)
f̂1 > f̂2

, p2 = 1− p1. (7)

We show that this distribution p satisfies that decγ(p; f̂ , x,GAT) is upper bounded by O(1/γ) in the
following proposition. We remark that directly applying results from [Foster et al., 2021] cannot lead
to a valid upper bound since the second node does not have a self-loop.

Proposition 2. When G = GAT, given any f̂ , context x, the closed-form distribution p in Eq. (7)
guarantees that decγ(p; f̂ , x,GAT) ≤ O( 1γ ).

Inventory Graph. In this application, the algorithm needs to decide the inventory level in order
to fulfill the realized demand arriving at each round. Specifically, there are K possible chosen
inventory levels a1 < a2 < . . . < aK and the feedback graph Ginv has entries G(i, j) = 1 for all
1 ≤ j ≤ i ≤ K and G(i, j) = 0 otherwise, meaning that picking the inventory level ai informs
about all actions aj≤i. This is because items are consumed until either the demand or the inventory is
exhausted. The independence number of Ginv is 1. Therefore, (very) large K is statistically tractable,
but naively solving the convex program Eq. (5) requires superlinear in K computational cost. We
show in the following proposition that there exists an analytic form of p, which guarantees that
decγ(p; f̂ , x,Ginv) can be bounded by O(1/γ).

Proposition 3. When G = Ginv, given any f̂ , context x, there exists a closed-form distribution
p ∈ ∆(K) guaranteeing that decγ(p; f̂ , x,Ginv) ≤ O( 1γ ), where p is defined as follows: pj =

max{ 1

1+γ(f̂j−mini f̂i)
−
∑

j′>j pj′ , 0} for all j ∈ [K].

Undirected Self-Aware Graph. For the undirected and self-aware feedback graph G, which means
that G is symmetric and has diagonal entries all 1, we also show that a certain closed-form solution
of p satisfies that decγ(p; f̂ , x,G) is bounded by O(αγ ).

Proposition 4. When G is an undirected self-aware graph, given any f̂ , context x, there exists a
closed-form distribution p ∈ ∆(K) guaranteeing that decγ(p; f̂ , x,G) ≤ O

(
α
γ

)
.

5 Experiments

In this section, we use empirical results to demonstrate the significant benefits of SquareCB.G
in leveraging the graph feedback structure and its superior effectiveness compared to SquareCB.
Following Foster and Krishnamurthy [2021], we use progressive validation (PV) loss as the evaluation
metric, defined as Lpv(T ) = 1

T

∑T
t=1 ℓt,at . All the feedback graphs used in the experiments are

deterministic. We run experiments on CPU Intel Xeon Gold 6240R 2.4G and the convex program
solver is implemented via Vowpal Wabbit [Langford et al., 2007].
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Figure 1: Left figure: Performance of SquareCB.G on RCV1 dataset under three different feedback
graphs. Right figure: Performance comparison between SquareCB.G and SquareCB under random
directed self-aware feedback graphs.

5.1 SquareCB.G under Different Feedback Graphs

In this subsection, we show that our SquareCB.G benefits from considering the graph structure
by evaluating the performance of SquareCB.G under three different feedback graphs. We conduct
experiments on RCV1 dataset and leave the implementation details in Appendix C.1.

The performances of SquareCB.G under bandit graph, full information graph and cops-and-robbers
graph are shown in the left part of Figure 1. We observe that SquareCB.G performs the best under
full information graph and performs worst under bandit graph. Under the cops-and-robbers graph,
much of the gap between bandit and full information is eliminated. This improvement demonstrates
the benefit of utilizing graph feedback for accelerating learning.

5.2 Comparison between SquareCB.G and SquareCB

In this subsection, we compare the effectiveness of SquareCB.G with the SquareCB algorithm. To
ensure a fair comparison, both algorithms update the regressor using the same feedbacks based on
the graph. The only distinction lies in how they calculate the action probability distribution. We
summarize the main results here and leave the implementation details in Appendix C.2.

5.2.1 Results on Random Directed Self-aware Graphs

We conduct experiments on RCV1 dataset using random directed self-aware feedback graphs. Specif-
ically, at round t, the deterministic feedback graph Gt is generated as follows. The diagonal elements
of Gt are all 1, and each off-diagonal entry is drawn from a Bernoulli(3/4) distribution. The results
are presented in the right part of Figure 1. Our SquareCB.G consistently outperforms SquareCB and
demonstrates lower variance, particularly when the number of iterations was small. This is because
when there are fewer samples available to train the regressor, it is more crucial to design an effective
algorithm that can leverage the graph feedback information.

5.2.2 Results on Synthetic Inventory Dataset

In the inventory graph experiments, we create a synthetic inventory dataset and design a loss function
for each inventory level at ∈ [0, 1] with demand dt ∈ [0, 1]. Since the action set [0, 1] is continuous,
we discretize the action set in two different ways to apply the algorithms.

Fixed discretized action set. In this setting, we discretize the action set using fixed grid size
ε ∈ { 1

100 ,
1

300 ,
1

500}, which leads to a finite action set A of size 1
ε + 1. Note that according

to Theorem 3.2, our regret does not scale with the size of the action set (to within polylog factors), as
the independence number is always 1. The results are shown in the left part of Figure 2.
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Figure 2: Performance comparison between SquareCB.G and SquareCB on synthetic inventory
dataset. Left figure: Results under fixed discretized action set. Right figure: Results under adaptive
discretization of the action set. Both figures show the superiority of SquareCB.G compared with
SquareCB.

We remark several observations from the results. First, our algorithm SquareCB.G outperforms
SquareCB for all choices K ∈ {101, 301, 501}. This indicates that SquareCB.G utilizes a bet-
ter exploration scheme and effectively leverages the structure of Ginv. Second, we observe that
SquareCB.G indeed does not scale with the size of the discretized action set A, since under different
discretization scales, SquareCB.G has similar performances and the slight differences are from the
improved approximation error with finer discretization. This matches the theoretical guarantee that
we prove in Theorem 3.2. On the other hand, SquareCB does perform worse when the size of the
action set increases, matching its theoretical guarantee which scales with the square root of the size
of the action set.

Adaptively changing action set. In this setting, we adaptively discretize the action set [0, 1]
according to the index of the current round. Specifically, for SquareCB.G, we uniformly discretize
the action set [0, 1] with size ⌈

√
t⌉, whose total discretization error isO(

√
T ) due to the Lipschitzness

of the loss function. For SquareCB, to optimally balance the dependency on the size of the action
set and the discretization error, we uniformly discretize the action set [0, 1] into ⌈t 1

3 ⌉ actions. The
results are illustrated in the right part of Figure 2. We can observe that SquareCB.G consistently
outperforms SquareCB by a clear margin.

6 Related Work

Multi-armed bandits with feedback graphs have been extensively studied. An early example is
the apple tasting problem of Helmbold et al. [2000]. The general formulation was introduced by
Mannor and Shamir [2011]. Alon et al. [2015] characterized the minimax rates in terms of graph-
theoretic quantities. Follow-on work includes relaxing the assumption that the graph is observed
prior to decision [Cohen et al., 2016]; analyzing the distinction between the stochastic and adversarial
settings [Alon et al., 2017]; considering stochastic feedback graphs [Li et al., 2020, Esposito et al.,
2022]; instance-adaptivity [Ito et al., 2022]; data-dependent regret bound [Lykouris et al., 2018, Lee
et al., 2020]; and high-probability regret under adaptive adversary [Neu, 2015, Luo et al., 2023].

The contextual bandit problem with feedback graphs has received relatively less attention. Wang
et al. [2021] provide algorithms for adversarial linear bandits with uninformed graphs and stochastic
contexts. However, this work assumes several unrealistic assumptions on both the policy class
and the context space and is not comparable to our setting, since we consider the informed graph
setting with adversarial context. Singh et al. [2020] study a stochastic linear bandits with informed
feedback graphs and are able to improve over the instance-optimal regret bound for bandits derived
in [Lattimore and Szepesvari, 2017] by utilizing the additional graph-based feedbacks.
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Our work is also closely related to the recent progress in designing efficient algorithms for classic
contextual bandits. Starting from [Langford and Zhang, 2007], numerous works have been done to the
development of practically efficient algorithms, which are based on reduction to either cost-sensitive
classification oracles [Dudik et al., 2011, Agarwal et al., 2014] or online regression oracles [Foster
and Rakhlin, 2020, Foster et al., 2020, 2021, Zhu and Mineiro, 2022]. Following the latter trend, our
work assumes access to an online regression oracle and extends the classic bandit problems to the
bandits with general feedback graphs.

7 Discussion

In this paper, we consider the design of practical contextual bandits algorithm with provable guaran-
tees. Specifically, we propose the first efficient algorithm that achieves near-optimal regret bound for
contextual bandits with general directed feedback graphs with an online regression oracle.

While we study the informed graph feedback setting, where the entire feedback graph is exposed to
the algorithm prior to each decision, many practical problems of interest are possibly uninformed
graph feedback problems, where the graph is unknown at the decision time. It is unclear how to
formulate an analogous minimax problem to Eq. (1) under the uninformed setting. One idea is to
consume the additional feedback in the online regressor and adjust the prediction loss to reflect this
additional structure, e.g., using the more general version of the E2D framework which incorporates
arbitrary side observations [Foster et al., 2021]. Cohen et al. [2016] consider this uninformed setting
in the non-contextual case and prove a sharp distinction between the adversarial and stochastic
settings: even if the graphs are all strongly observable with bounded independence number, in the
adversarial setting the minimax regret is Θ(T ) whereas in the stochastic setting the minimax regret
is Θ(

√
αT ). Intriguingly, our setting is semi-adversarial due to realizability of the mean loss, and

therefore it is apriori unclear whether the negative adversarial result applies.

In addition, bandits with graph feedback problems often present with associated policy constraints,
e.g., for the apple tasting problem, it is natural to rate limit the informative action. Therefore, another
interesting direction is to combine our algorithm with the recent progress in contextual bandits with
knapsack [Slivkins and Foster, 2022], leading to more practical algorithms.
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A Omitted Details in Section 3

Theorem 3.1. Suppose decγ(pt; f̂t, xt, Gt) ≤ Cγ−β for all t ∈ [T ] and some β > 0, Algorithm 1

with γ = max{4, (CT )
1

β+1Reg
− 1

β+1

Sq } guarantees that E [RegCB] ≤ O
(
C

1
β+1T

1
β+1Reg

β
β+1

Sq

)
.

Proof. Following [Foster et al., 2020], we decompose RegCB as follows:

E[RegCB]

= E

[
T∑

t=1

f⋆(xt, at)−
T∑

t=1

f⋆(xt, π
⋆(xt))

]

= E

[
T∑

t=1

(
f⋆(xt, at)− f⋆(xt, π

⋆(xt))−
γ

4
EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2])]

+
γ

4
E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]

≤ E

 T∑
t=1

max
a⋆∈[K]

f∈(X×[K] 7→R)

Eat∼pt

[
f(xt, at)− f(xt, a

⋆)− γ

4
EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f(xt, a)

)2]]
+

γ

4
E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]

= E

[
T∑

t=1

decγ(pt; f̂t, xt, Gt)

]
+

γ

4
E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]
(8)

≤ CTγ−β +
γ

4
E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]
.

Next, since E[ℓt,a | xt] = f⋆(xt, a) for all t ∈ [T ] and a ∈ A, we know that

E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]

= E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− ℓt,a

)2
−
∑
a∈A

(f⋆(xt, a)− ℓt,a)
2

]]
≤ RegSq, (9)

where the final inequality is due to Assumption 2.

Therefore, we have

E[RegCB] ≤ CTγ−β +
γ

4
RegSq.

Picking γ = max

{
4,
(

CT
RegSq

) 1
β+1

}
, we obtain that

E [RegCB] ≤ O
(
C

1
β+1T

1
β+1Reg

β
β+1

Sq

)
.

A.1 Proof of Theorem 3.2

Before proving Theorem 3.2, we first show the following key lemma, which is useful in proving
that decγ(p; f̂ , x,G) is convex for both strongly and weakly observable feedback graphs G. We
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highlight that the convexity of decγ(p; f̂ , x,G) is crucial for both proving the upper bound of
minp∈∆(K) decγ(p; f̂ , x,G) and showing the efficiency of Algorithm 1.

Lemma A.1. Suppose u, v, x ∈ Rd with ⟨v, x⟩ > 0. Then both g(x) = ⟨u,x⟩2
⟨v,x⟩ and h(x) = (1−⟨u,x⟩)2

⟨v,x⟩
are convex in x.

Proof. The function f(x, y) = x2/y is convex for y > 0 due to

∇2f(x, y) =
2

y3

[
y
−x

][
y
−x

]⊤
⪰ 0.

By composition with affine functions, both g(x) = f(⟨u, x⟩ , ⟨v, x⟩) and h(x) = f(1−⟨u, x⟩ , ⟨v, x⟩)
are convex.

Theorem 3.2 (Strongly observable graphs). Suppose that the feedback graph Gt is deterministic and
strongly observable with independence number no more than α. Then Algorithm 1 guarantees that

decγ(pt; f̂t, xt, Gt) ≤ O
(
α log(Kγ)

γ

)
.

Proof. For conciseness, we omit the subscript t. Direct calculation shows that for all a⋆ ∈ [K],

Ea∼p

f⋆(x, a)− f⋆(x, a⋆)− γ

4

∑
a′∈N in(G,a)

(f̂(x, a′)− f⋆(x, a′))2


=

K∑
a=1

paf
⋆(x, a)− f⋆(x, a⋆)− γ

4

K∑
a=1

Wa

(
f̂(x, a)− f⋆(x, a)

)2
,

where Wa =
∑

a′∈N in(G,a) pa′ . Therefore, taking the gradient over f∗(x, ·) and we know that

sup
f⋆∈(X×[K] 7→ R)

[
K∑

a=1

paf
⋆(x, a)− f⋆(x, a⋆)− γ

4

K∑
a=1

Wa

(
f̂(x, a)− f⋆(x, a)

)2]

=

K∑
a=1

paf̂(x, a)− f̂(x, a⋆) +
1

γ
∥p− ea⋆∥2diag(W )−1 .

Then, denote f̂ ∈ RK to be f̂(x, ·) and consider the following minimax form:

inf
p∈∆(K)

sup
a⋆∈A

{
K∑

a=1

paf̂(x, a)− f̂(x, a⋆) +
1

γ
∥p− ea⋆∥2diag(W )−1

}

= min
p∈∆(K)

max
a⋆∈A


K∑

a=1

paf̂(x, a)− f̂(x, a⋆) +
1

γ

∑
a̸=a⋆

p2a
Wa

+
1

γ

(1− pa⋆)2

Wa⋆

 (10)

= min
p∈∆K

max
q∈∆K

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
(11)

= max
q∈∆K

min
p∈∆K

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
, (12)

where the last equality is due to Sion’s minimax theorem and the fact that Eq. (10) is convex in
p ∈ ∆(K) by applying Lemma A.1 with u = ea and v = ga for each a ∈ [K], where ga ∈ {0, 1}K
is defined as ga,i = 1{(i, a) ∈ E}, G = ([K], E), ∀i ∈ [K].

Choose pa = (1− 1
γ )qa +

1
γK for all a ∈ [K]. Let S be the set of nodes in [K] that have a self-loop.

Then we can upper bound the value above as follows:

max
q∈∆(K)

min
p∈∆(K)

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
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≤ max
q∈∆(K)

 2

γ
+

1

γ

K∑
a=1

(
(1− 1

γ )qa +
1

γK

)2
(1− qa) + qa

(
1− (1− 1

γ )qa −
1

γK

)2
Wa


≤ max

q∈∆(K)

 2

γ
+

1

γ

K∑
a=1

2
(
(1− 1

γ )
2q2a +

1
γ2K2

)
(1− qa) + qa

(
1− (1− 1

γ )qa

)2
Wa


≤ max

q∈∆(K)

 2

γ
+

2

γ2
+

1

γ

K∑
a=1

2q2a(1− qa) + 2qa (1− qa)
2
+

2q3a
γ2

Wa


(Wa =

∑
j∈N in(G,a) pj ≥

1
γK for all a ∈ [K])

≤ max
q∈∆(K)

{
2

γ
+

2

γ2
+

2

γ

K∑
a=1

qa(1− qa)

Wa
+

2

γ3

K∑
a=1

q3a
Wa

}

= max
q∈∆(K)

{
2

γ
+

2

γ2
+

2

γ

K∑
a=1

qa(1− qa)

Wa
+

2

γ3

∑
a∈S

q3a
Wa

+
2

γ3

∑
a/∈S

q3a
Wa

}
(13)

≤ max
q∈∆(K)

{
2

γ
+

2

γ2
+

2

γ

K∑
a=1

qa(1− qa)

Wa
+

2

γ3

∑
a∈S

q2a +
2

γ3

∑
a/∈S

q3a
K−1
γK

}
(if a /∈ S, Wa = 1− pa ≥ K−1

γK )

≤ max
q∈∆(K)

{
8

γ
+

2

γ

K∑
a=1

qa(1− qa)

Wa

}
. (K ≥ 2)

Next we bound 2qa(1−qa)
Wa

for each a ∈ [K]. If a ∈ [K]\S, we have Wa = 1− pa and

2qa(1− qa)

Wa
≤ 2qa(1− qa)

1− (1− 1
γ )qa −

1
γK

≤ 2qa(1− qa)

(1− 1
γ )(1− qa) +

K−1
γK

≤ 2

1− 1
γ

qa ≤ 4qa. (14)

If a ∈ S, we know that∑
a∈S

2qa(1− qa)

Wa
≤
∑
a∈S

2qa(1− qa)∑
j∈N in(G,a)((1−

1
γ )qj +

1
γK )

≤ γ

γ − 1

∑
a∈S

2((1− 1
γ )qa +

1
γK )(1− qa)∑

j∈N in(G,a)((1−
1
γ )qj +

1
γK )

≤ 4
∑
a∈S

((1− 1
γ )qa +

1
γK )∑

j∈N in(G,a)((1−
1
γ )qj +

1
γK )

≤ O(α log(Kγ)), (15)

where the last inequality is due to Lemma 5 in Alon et al. [2015]. We include this lemma (Lemma E.1)
for completeness. Combining all the above inequalities, we obtain that

inf
p∈∆(K)

sup
a⋆∈A

{
K∑

a=1

paf̂(x, a)− f̂(x, a⋆) +
1

γ
∥p− ea⋆∥2diag(W )−1

}

= max
q∈∆(K)

min
p∈∆(K)

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}

≤ max
q∈∆(K)

{
8

γ
+

2

γ

K∑
a=1

qa(1− qa)

Wa

}
≤ O

(
α log(Kγ)

γ

)
.
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A.2 Proof of Theorem 3.4

Theorem 3.4 (Weakly observable graphs). Suppose that the feedback graph Gt is deterministic and
weakly observable with weak domination number no more than d. Then Algorithm 1 with γ ≥ 16d
guarantees that

decγ(pt; f̂t, xt, Gt) ≤ O

(√
d

γ
+

α̃ log(Kγ)

γ

)
,

where α̃ is the independence number of the subgraph induced by nodes with self-loops in Gt.

Proof. Similar to the strongly observable graphs setting, for weakly observable graphs, we know that

decγ(p; f̂ , x,G)

= max
q∈∆K

min
p∈∆K

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
. (16)

Choose pa = (1 − 1
γ − ηd)qa + 1

γK + η1{a ∈ D} where D with |D| = d is the minimum weak
dominating set of G and 0 < η ≤ 1

4d is some parameter to be chosen later. Substituting the form of p
to Eq. (16) and using the fact that |f̂a| ≤ 1 for all a ∈ [K], we can obtain that

decγ(p; f̂ , x,G)

≤ max
q∈∆K

{
2

γ
+ ηd+

1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
.

Then we can upper bound the value above as follows:

decγ(p; f̂ , x,G)

≤ max
q∈∆K

 2

γ
+ ηd+

1

γ

K∑
a=1

(
(1− 1

γ − ηd)qa +
1

γK + η1{a ∈ D}
)2

(1− qa)

Wa

+

K∑
a=1

qa

(
1− (1− 1

γ − ηd)qa

)2
Wa


≤ max

q∈∆K

 2

γ
+ ηd+

1

γ

∑
a/∈D

(
qa +

1
γK

)2
(1− qa) + qa

(
(1− qa) +

1
γ qa + ηdqa

)2
Wa

+
1

γ

∑
a∈D

(
qa +

1
γK + η

)2
(1− qa) + qa

(
(1− qa) +

1
γ qa + ηdqa

)2
Wa


≤ max

q∈∆K

 2

γ
+ ηd+

1

γ

∑
a/∈D

2
(
q2a +

1
γ2K2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

+
1

γ

∑
a∈D

3
(
q2a +

1
γ2K2 + η2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

 . (17)

Now consider a ∈ D. If a ∈ S, then we know that Wa ≥ η; Otherwise, we know that this node can
be observed by at least one node in D, meaning that Wa ≥ η. Combining the two cases above, we
know that

1

γ

∑
a∈D

3
(
q2a +

1
γ2K2 + η2

)
(1− qa) + 3qa

(
(1− qa)

2 + 1
γ2 q

2
a + η2d2q2a

)
Wa

16



≤ 3

ηγ

∑
a∈D

[(
q2a +

1

γ2K2
+ η2

)
(1− qa) + qa

(
(1− qa)

2 +
1

γ2
q2a + η2d2q2a

)]
≤ 3

ηγ

∑
a∈D

[
qa − q2a +

1

γ2
q3a + η2d2q3a +

1

γ2K2
+ η2

]
≤ O

(
1

ηγ
+

dη

γ
+

1

ηγ3K

)
(η ≤ 1

4d and γ ≥ 16d)

≤ O
(

1

ηγ

)
, (18)

where the last inequality is because η ≤ 1
4d and γ ≥ 16d. Consider a /∈ D. Let S0 be the set of

nodes which either have a self loop or can be observed by all the other node. Recall that S represents
the set of nodes with a self-loop. Then similar to the derivation of Eq. (13), we know that for a ∈ S0,

1

γ

∑
a/∈D,a∈S0

2
(
q2a +

1
γ2K2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

≤ 1

γ

∑
a/∈D,a∈S0

2q2a(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

+O
(

1

γ2
+

1

ηγ3K

)
(Wa ≥ 1

γK if a ∈ S and Wa ≥ η if a ∈ [K]\S)

≤ O

 1

γ

∑
a∈S0,a/∈D

qa(1− qa)

Wa
+

1

γ3

∑
a∈S,a/∈D

q2a +
1

γ3

∑
a∈S0,a/∈D∪S

q3a
K−1
γK

+
1

γ2
+

1

ηγ3K


+O

 1

γ

∑
a∈S,a/∈D

η2d2q2a +
1

γ

∑
a∈S0,a/∈D∪S

η2d2q3a
η


(for a ∈ S0, a /∈ S, Wa ≥ max{K−1

γK , η})

≤ O

 1

γ

∑
a∈S0,a/∈D

qa(1− qa)

Wa
+

1

ηγ

 . (19)

For a /∈ S0, we know that Wa ≥ η. Therefore,

1

γ

∑
a/∈D∪S0

2
(
q2a +

1
γ2K2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

≤ 1

γη

∑
a/∈D∪S0

(
2

(
q2a +

1

γ2K2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2

+
1

16
q2a

))

≤ 1

γη

∑
a/∈D∪S0

(
2qa(1− qa) +

1

γ2K2
+

2q3a
γ2

+
3

16
q3a

)

≤ O
(

1

γη

)
. (20)

Plugging Eq. (18), Eq. (19), and Eq. (20) to Eq. (17), we obtain that

decγ(p; f̂ , x,G) ≤ O

 1

γ
+ ηd+

1

γη
+

1

γ

∑
a∈S0,a/∈D

qa(1− qa)

Wa

 (21)

Consider the last term. If a ∈ S0\S, similar to Eq. (14), we know that

qa(1− qa)

Wa
≤ qa(1− qa)

1− (1− 1
γ − dη)qa − 1

γK

≤ qa(1− qa)

(1− 1
γ − ηd)(1− qa)

≤ 1

1− 1
γ − ηd

qa ≤ O(qa),
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where the last inequality is due to γ ≥ 16d and η ≤ 1
4d . If a ∈ S, similar to Eq. (15), we know that∑

a∈S

qa(1− qa)

Wa
≤
∑
a∈S

qa(1− qa)∑
j∈N in(G,a)((1−

1
γ − ηd)qj +

1
γK )

≤ γ

γ − 1− γηd

∑
a∈S

((1− 1
γ − ηd)qa +

1
γK )(1− qa)∑

j∈N in(G,a)((1−
1
γ − ηd)qj +

1
γK )

≤ 2
∑
a∈S

(
(1− 1

γ − ηd)qa +
1

γK

)
∑

j∈N in(G,a)

(
(1− 1

γ − ηd)qj +
1

γK

) (γ ≥ 4, η ≤ 1
4d )

≤ O(α̃ log(Kγ)), (22)

where the last inequality is again due to Lemma 5 in [Alon et al., 2015] and α̃ is the independence
number of the subgraph induced by nodes with self-loops in G. Plugging Eq. (22) to Eq. (21) gives

decγ(p; f̂ , x,G) ≤ O
(
ηd+

1

γη
+

α̃ log(Kγ)

γ

)
.

Picking η =
√

1
γd ≤

1
4d proves the result.

Next, we prove Corollary 3.5 by combining Theorem 3.4 and Theorem 3.1.
Corollary 3.5. Suppose that Gt is deterministic, weakly observable, and has weak domination
number no more than d for all t ∈ [T ]. In addition, suppose that the independence number of the
subgraph induced by nodes with self-loops in Gt is no more than α̃ for all t ∈ [T ]. Then, Algorithm 1

with γ = max{16d,
√
α̃T/RegSq, d

1
3T

2
3Reg

− 2
3

Sq } guarantees that

E[RegCB] ≤ Õ
(
d

1
3T

2
3Reg

1
3

Sq +
√

α̃TRegSq

)
.

Proof. Combining Eq. (8), Eq. (9) and Theorem 3.4, we can bound RegCB as follows:

E[RegCB] ≤ O

(√
d

γ
T +

α̃T log(Kγ)

γ
+ γRegCB

)
.

Picking γ = max
{
16d,

√
α̃T/RegSq, d

1
3T

2
3Reg

− 2
3

Sq

}
finishes the proof.

A.3 Python Solution to Eq. (5)

def makeProblem(nactions):
import cvxpy as cp

sqrtgammaG = cp.Parameter((nactions, nactions), nonneg=True)
sqrtgammafhat = cp.Parameter(nactions)
p = cp.Variable(nactions, nonneg=True)
sqrtgammaz = cp.Variable()
objective = cp.Minimize(sqrtgammafhat @ p + sqrtgammaz)
constraints = [

cp.sum(p) == 1
] + [

cp.sum([ cp.quad_over_lin(eai - pi, vi)
for i, (pi, vi) in enumerate(zip(p, v))
for eai in (1 if i == a else 0,)

]) <= sqrtgammafhata + sqrtgammaz
for v in (sqrtgammaG @ p,)
for a, sqrtgammafhata in enumerate(sqrtgammafhat)

]
problem = cp.Problem(objective, constraints)
assert problem.is_dcp(dpp=True) # proof of convexity
return problem, sqrtgammaG, sqrtgammafhat, p, sqrtgammaz
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This particular formulation multiplies both sides of the constraint in Eq. (5) by
√
γ while scaling the

objective by
√
γ. While mathematically equivalent to Eq. (5), empirically it has superior numerical

stability for large γ. For additional stability, when using this routine we recommend subtracting off the
minimum value from f̂ , which is equivalent to making the substitutions

√
γf̂ ← √γf̂ −√γmina f̂a

and z ← z +
√
γmina f̂a and then exploiting the 1⊤p = 1 constraint.

A.4 Proof of Theorem 3.6

Theorem 3.6. Solving argminp∈∆(K) decγ(p; f̂ , x,G) is equivalent to solving the following convex
optimization problem.

min
p∈∆(K),z

p⊤f̂ + z (5)

subject to ∀a ∈ [K] :
1

γ
∥p− ea∥2diag(G⊤p)−1 ≤ f̂(x, a) + z,

G⊤p ≻ 0,

where f̂ in the objective is a shorthand for f̂(x, ·) ∈ RK , ea is the a-th standard basis vector, and ≻
means element-wise greater.

Proof. Denote f⋆ = f⋆(x, ·) ∈ RK . Note that according to the definition of G, we know that
(G⊤p)i denotes the probability that action i’s loss is revealed when the selected action a is sampled
from distribution p. Then, we know that

decγ(p; f̂ , x,G)

= sup
a⋆∈[K]

f⋆∈RK

Eat∼p

[
f⋆
at
− f⋆

a⋆ −
γ

4
EA∼G(·|at)

[∑
a∈A

(
f̂a − f⋆

a

)2]]

= sup
a⋆∈[K]

f⋆∈RK

(p− ea⋆)⊤f⋆ − γ

4

∑
a∈[K]

∥f̂ − f⋆∥2diag(G⊤p)

= sup
a⋆∈[K]

(p− ea⋆)⊤f̂ +
1

γ
∥p− ea⋆∥2diag(G⊤p)−1

(
G⊤p ≻ 0

)
= p⊤f̂ + max

a⋆∈[K]

{
1

γ
∥p− ea⋆∥2diag(G⊤p)−1 − e⊤a⋆ f̂

}
,

where the third equality is by picking f⋆ to be the maximizer and introduces a constraint. Therefore,
the minimization problem minp∈∆(K) decγ(p; f̂ , x,G) can be written as the following constrained
optimization by variable substitution:

min
p∈∆(K),z

p⊤f̂ + z

subject to ∀a ∈ [K] :
1

γ
∥p− ea∥2diag(G⊤p)−1 ≤ e⊤a f̂ + z,

G⊤p ≻ 0.

The convexity of the constraints follows from Lemma A.1.

B Omitted Details in Section 4

In this section, we provide proofs for Section 4. We define Wa :=
∑

a′∈N in(G,a) pa′ to be the
probability that the loss of action a is revealed when selecting an action from distribution p. Let
f̂ = f̂(x, ·) ∈ RK and f = f(x, ·) ∈ RK . Direct calculation shows that for any a⋆ ∈ [K],

f⋆ = argmax
f∈RK

Ea∼p

f(x, a)− f(x, a⋆)− γ

4
·

∑
a′∈N in(G,a)

(f̂t(x, a
′)− f(x, a′))2


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=
2

γ
diag(W )−1(p− ea⋆) + f̂ .

Therefore, substituting f⋆ into Eq. (4), we obtain that

decγ(p; f̂ , x,G) = max
a⋆∈[K]

{
1

γ

(
K∑

a=1

p2a
Wa

+
1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉}
. (23)

Without loss of generality, we assume the mini∈[K] f̂i = 0. This is because shifting f̂ by mini∈[K] f̂i

does not change the value of
〈
p− ea⋆ , f̂

〉
. In the following sections, we provide proofs showing that

a certain closed-form of p leads to optimal decγ(p; f̂ , x,G) up to constant factors for several specific
types of feedback graphs, respectively.

B.1 Cops-and-Robbers Graph

Proposition 1. When G = GCR, given any f̂ , context x, the closed-form distribution p in Eq. (6)
guarantees that decγ(p; f̂ , x,GCR) ≤ O

(
1
γ

)
.

Proof. We use the following notation for convenience: p1 := pa1
, p2 := pa2

, f̂1 := f̂a1
= 0,

f̂2 := f̂a2 . For the cops-and-robbers graph and closed-form solution p in Eq. (6), Eq. (23) becomes:

decγ(p; f̂ , x,GCR) = max
a⋆∈[K]

{
1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉}
.

If a⋆ ̸= a1 and a⋆ ̸= a2, we know that

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
=

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+ 1

)
+ p1f̂1 + p2f̂2 − f̂a⋆

≤ 1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+ 1

)
− p1f̂2 (f̂a⋆ ≥ f̂2 ≥ f̂1 = 0)

≤ 1

γ

(
1

1− p1
+ 1 + 1

)
− p1f̂2 (p1 ∈ [ 12 , 1], p1 ≥ p2 ∈ [0, 1

2 ])

=
1

γ

(
4 + γf̂2

)
−
(
1− 1

2 + γf̂2

)
f̂2

≤ 5

γ
.

If a⋆ = a2, we can obtain that

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
=

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2p2
p1

)
+ p1f̂1 + p2f̂2 − f̂2

≤ 1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2(1− p1)

p1

)
− p1f̂2 (f̂1 = 0)

≤ 1

γ

(
1

1− p1
+ 1 + 2− 1

p1

)
− p1f̂2 (p1 ∈ [ 12 , 1], p2 ∈ [0, 1

2 ])

≤ 1

γ

(
5 + γf̂2

)
−
(
1− 1

2 + γf̂2

)
f̂2 (p1 = 1

2+γf̂2
)

≤ 6

γ
.
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If a⋆ = a1, we have
1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
≤ 1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2p1
1− p1

)
+ (1− p1)f̂2

≤ 1

γ

(
1− p1 +

(1− p1)
2

p1

)
+ (1− p1)f̂2

≤ 1

γ

(
1 +

1

2

)
+

f̂2

2 + γf̂2
(p1 ∈ [ 12 , 1])

≤ 3

γ
.

Putting everything together, we prove that decγ(p; f̂ , x,GCR) ≤ 6
γ ≤ O

(
1
γ

)
.

B.2 Apple Tasting Graph

Proposition 2. When G = GAT, given any f̂ , context x, the closed-form distribution p in Eq. (7)
guarantees that decγ(p; f̂ , x,GAT) ≤ O( 1γ ).

Proof. For the apple tasting graph and closed-form solution p in Eq. (7), Eq. (23) becomes:

decγ(p; f̂ , x,G) = max
a⋆∈[K]

{
1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉}
.

Suppose f̂1 = 0, we know that p1 = 1, p2 = 0 and

1. If a⋆ = 1, we have
1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
= 0.

2. If a⋆ = 2, direct calculation shows that
1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
≤ 2

γ
.

Suppose f̂2 = 0, we know that p1 = 2

4+γf̂1
, p2 = 1− p1 and

1. If a⋆ = 1, we have
1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
=

1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2p1
p1

)
− (1− p1)f̂1

=
2(1− p1)

2

γp1
− (1− p1)f̂1

=
(2 + γf̂1)

2

γ(4 + γf̂1)
− (1− p1)f̂1

≤ 4 + γf̂1
γ

+
2f̂1

4 + γf̂1
− f̂1 ≤

6

γ
.

2. If a⋆ = 2, direct calculation shows that

1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
=

2p1
γ

+ p1f̂1 ≤
1

γ
+

2f̂1

4 + γf̂1
≤ 3

γ
.
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Putting everything together, we prove that decγ(p; f̂ , x,GAT) ≤ 6
γ ≤ O

(
1
γ

)
.

B.3 Inventory Graph

Proposition 3. When G = Ginv, given any f̂ , context x, there exists a closed-form distribution
p ∈ ∆(K) guaranteeing that decγ(p; f̂ , x,Ginv) ≤ O( 1γ ), where p is defined as follows: pj =

max{ 1

1+γ(f̂j−mini f̂i)
−
∑

j′>j pj′ , 0} for all j ∈ [K].

Proof. Based on the distribution defined above, define A ⊆ [K] to be the set such that for all i ∈ A,
pi > 0 and denote N = |A|. We index each action in A by k1 < k2 < · · · < kN = K. According
to the definition of pi, we know that pi is strictly positive only when f̂i < f̂j for all j > i and
specifically, when pi > 0, we know that Wi =

∑
j≥i pj =

1

1+γf̂i
(recall that mini f̂i = 0 since we

shift f̂ ). Therefore, define WkN+1
= 0 and we know that

decγ(p; f̂ , x,Ginv)

=

N∑
i=1

pki f̂ki +
1

γ

K∑
a=1

p2a
Wa

+ max
a⋆∈[K]

{
1− 2pa⋆

γWa⋆

− f̂a⋆

}

≤
N∑
i=1

(
Wki −Wki+1

)
f̂ki +

1

γ
+ max

a⋆∈[K]

{
1− 2pa⋆

γWa⋆

− f̂a⋆

}

≤ 2

γ
+

N−1∑
i=1

(
1

1 + γf̂ki

− 1

1 + γf̂ki+1

)
f̂ki

+ max
a⋆∈[K]

{
1− 2pa⋆

γWa⋆

− f̂a⋆

}

≤ 3

γ
+

N∑
i=2

f̂ki
− f̂ki−1

1 + γf̂ki

+ max
a⋆∈[K]

{
1− 2pa⋆

γWa⋆

− f̂a⋆

}
.

According to Lemma 9 of [Alon et al., 2013] (included as Lemma E.2 for completeness), we know
that

N∑
i=2

f̂ki − f̂ki−1

1 + γf̂ki

=
1

γ

N∑
i=2

f̂ki − f̂ki−1

1
γ + f̂ki

≤ mas(GA)

γ
=

1

γ
, (24)

where GA is the subgraph of G restricted to node set A and mas(G) is the size of the maximum
acyclic subgraphs of G. It is direct to see that any subgraph G of Ginv has mas(G) = 1.

Next, consider the value of a⋆ ∈ [K] that maximizes 1−2pa⋆

γWa⋆
− f̂a⋆ . If a⋆ ≤ k1, then we know that

Wa⋆ = 1 and 1−2pa⋆

γWa⋆
− f̂a⋆ ≤ 1

γ . Otherwise, suppose that ki < a⋆ ≤ ki+1 for some i ∈ [N − 1].
According to the definition of p, if a⋆ ̸= ki+1 we know that pa⋆ = 0 and

1

1 + γf̂a⋆

≤
∑
j′>a⋆

pj′ = Wki+1 = Wa⋆ .

Therefore,

1− 2pa⋆

γWa⋆

− f̂a⋆ =
1

γWa⋆

− f̂a⋆ ≤ 1

γ
.

Otherwise, Wa⋆ = Wki+1 and 1−2pa⋆

γWa⋆
− f̂a⋆ ≤ 1

γWki+1
− f̂ki+1 = 1

γ . Combining the two cases
above and Eq. (24), we obtain that

decγ(p; f̂ , x,Ginv) ≤
3

γ
+

1

γ
+

1

γ
= O

(
1

γ

)
.
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B.4 Undirected and Self-Aware Graphs

Proposition 4. When G is an undirected self-aware graph, given any f̂ , context x, there exists a
closed-form distribution p ∈ ∆(K) guaranteeing that decγ(p; f̂ , x,G) ≤ O

(
α
γ

)
.

Proof. We first introduce the closed-form of p and then show that decγ(p; f̂ , x,G) ≤ O(αγ ). Specif-

ically, we first sort f̂a in an increasing order and choose a maximal independent set by choosing
the nodes in a greedy way. Specifically, we pick k1 = argmini∈[K] f̂i. Then, we ignore all the
nodes that are connected to k1 and select the node a with the smallest f̂a in the remaining node
set. This forms a maximal independent set I ⊆ [K], which has size no more than α and is also
a dominating set. Set pa = 1

α+γf̂a
for a ∈ I\{k1} and pk1

= 1 −
∑

a̸=k1,a∈I pa. This is a valid
distribution as we only choose at most α nodes and pa ≤ 1/α for all a ∈ I\{k1}. Now we show
that decγ(p; f̂ , x,G) ≤ O(αγ ). Specifically, we only need to show that with this choice of p, for any
a⋆ ∈ [K],

K∑
a=1

paf̂a − f̂a⋆ +
1

γ

K∑
a=1

p2a
Wa

+
1− 2pa⋆

γWa⋆

≤ O
(
α

γ

)
.

Plugging in the form of p, we know that

K∑
a=1

paf̂a − f̂a⋆ +
1

γ

K∑
a=1

p2a
Wa

+
1− 2pa⋆

γWa⋆

≤
∑

a∈I\{k1}

f̂a

α+ γf̂a
− f̂a⋆ +

1− 2pa⋆

γWa⋆

+
1

γ
(pa ≤Wa for all a ∈ [K])

≤ α

γ
− f̂a⋆ +

1− 2pa⋆

γWa⋆

. (|I| ≤ α)

If a⋆ = k1, then we can obtain that 1−2pa⋆

γWa⋆
≤ 1

γWk1
≤ α

γ as pk1 ≥ 1
α according to the definition of

p. Otherwise, note that according to the choice of the maximal independent set I , Wa⋆ ≥ 1

α+γf̂a′
for

some a′ ∈ I such that f̂a′ ≤ f̂a⋆ . Therefore,

−f̂a⋆ +
1− 2pa⋆

γWa⋆

≤ −f̂a⋆ +
1

γWa⋆

≤ −f̂a⋆ +
α+ γf̂a′

γ
≤ α

γ
.

Combining the two inequalities above together proves the bound.

C Implementation Details in Experiments

C.1 Implementation Details in Section 5.1

We conduct experiments on RCV1 [Lewis et al., 2004], which is a multilabel text-categorization
dataset. We use a subset of RCV1 containing 50000 samples and K = 50 sub-classes. Therefore,
the feedback graph in our experiment has K = 50 nodes. We use the bag-of-words vector of each
sample as the context with dimension d = 47236 and treat the text categories as the arms. In each
round t, the learner receives the bag-of-words vector xt and makes a prediction at ∈ [K] as the
text category. The loss is set to be ℓt,at = 0 if the sample belongs to the predicted category at and
ℓt,at

= 1 otherwise.

The function class we consider is the following linear function class:

F = {f : f(x, a) = Sigmoid((Mx)a),M ∈ RK×d},

where Sigmoid(u) = 1
1+e−u for any u ∈ R. The oracle is implemented by applying online gradient

descent with learning rate η searched over {0.1, 0.2, 0.5, 1, 2, 4}. As suggested by [Foster and
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Krishnamurthy, 2021], we use a time-varying exploration parameter γt = c ·
√
αt, where t is the

index of the iteration, c is searched over {8, 16, 32, 64, 128}, and α is the independence number of
the corresponding feedback graph. Our code is built on PyTorch framework [Paszke et al., 2019]. We
run 5 independent experiments with different random seeds and plot the mean and standard deviation
value of PV loss.

C.2 Implementation Details in Section 5.2

C.2.1 Details for Results on Random Directed Self-aware Graphs

We conduct experiments on a subset of RCV1 containing 10000 samples with K = 10 sub-classes.
Our code is built on Vowpal Wabbit [Langford and Zhang, 2007]. For SqaureCB, the exploration
parameter γt at round t is set to be γt = c ·

√
Kt, where t is the index of the round and c is the hyper-

parameter searched over set {8, 16, 32, 64, 128}. The remaining details are the same as described in
Appendix C.1.

C.2.2 Details for Results on Synthetic Inventory Dataset

In this subsection, we introduce more details in the synthetic inventory data construction, loss function
constructions, oracle implementation, and computation of the strategy at each round.

Dataset. In this experiment, we create a synthetic inventory dataset constructed as follows. The
dataset includes T data points, the t-th of which is represented as (xt, dt) where xt ∈ Rm is the
context and dt is the realized demand given context xt. Specifically, in the experiment, we choose
m = 100 and xt’s are drawn i.i.d from Gaussian distribution with mean 0 and standard deviation 0.1.
The demand dt is defined as

dt =
1√
m
x⊤
t θ + εt,

where θ ∈ Rm is an arbitrary vector and εt is a one-dimensional Gaussian random variable with mean
0.3 and standard deviation 0.1. After all the data points {(xt, dt)}Tt=1 are constructed, we normalize
dt to [0, 1] by setting dt ←

dt−mint′∈[T ] dt′

maxt′∈[T ] dt′−mint′∈[T ] dt′
. In all our experiments, we set T = 10000.

Loss construction. Next, we define the loss at round t when picking the inventory level at with
demand dt, which is defined as follows:

ℓt,at = h ·max{at − dt, 0}+ b ·max{dt − at, 0}, (25)

where h > 0 is the holding cost per remaining items and b > 0 is the backorder cost per remaining
items. In the experiment, we set h = 0.25 and b = 1.

Regression oracle. The function class we use in this experiment is as follows:

F = {f : f(x, a) = h ·max{a− (x⊤θ + β), 0}+ b ·max{x⊤θ + β − a, 0}, θ ∈ Rm, β ∈ R}.

This ensures the realizability assumption according to the definition of our loss function shown
in Eq. (25). The oracle uses online gradient descent with learning rate η searched over
{0.01, 0.05, 0.1, 0.5, 1}.

Calculation of pt. To make SquareCB.G more efficient, instead of solving the convex program
defined in Eq. (5), we use the closed-form of pt derived in Proposition 3, which only requires O(K)
computational cost and has the same theoretical guarantee (up to a constant factor) as the one enjoyed
by the solution solved by Eq. (5). Similar to the case in Appendix C.1, at each round t, we pick
γt = c ·

√
t with c searched over the set {0.25, 0.5, 1, 2, 3, 4}. Note again that the independence

number for inventory graph is 1.

We run 8 independent experiments with different random seeds and plot the mean and standard
deviation value of PV loss.
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D Adaptive Tuning of γ without the Knowledge of Graph-Theoretic Numbers

In this section, we show how to adaptively tune the parameter γ in order to

achieve Õ
(√∑T

t=1 αtRegSq

)
regret in the strongly observable graphs case and

Õ
((∑T

t=1

√
dt

) 2
3

Reg
1
3

Sq +
√∑T

t=1 α̃tRegSq

)
in the weakly observable graphs case.

D.1 Strongly Observable Graphs

In order to achieve Õ
(∑T

t=1 αtRegSq

)
regret guarantee without the knowledge of αt, we apply a

doubling trick on γ based on the value of minp∈∆(K) decγ(p; f̂t, xt, Gt). Specifically, our algorithm

goes in epochs with the parameter γ being γs in the s-th epoch. We initialize γ1 =
√

T
RegSq

. As

proven in Theorem 3.2, we know that

γ · min
p∈∆(K)

decγ(p; f̂t, xt, Gt) ≤ Õ(αt).

Therefore, within each epoch s (with start round bs), at round t, we calculate the value

Qt =

t∑
τ=bs

min
p∈∆(K)

decγs
(p; f̂t, xt, Gt), (26)

which is bounded by Õ
(

1
γs

∑t
τ=bs

ατ

)
and is in fact obtainable by solving the convex program.

Then, we check whether Qt ≤ γsRegSq. If this holds, we continue our algorithm using γs; otherwise,
we set γs+1 = 2γs and restart the algorithm.

Now we analyze the performance of the above described algorithm. First, note that for any t, within
epoch s,

γsQt ≤ Õ

(
T∑

τ=1

ατ

)
,

meaning that the number of epoch S is bounded by S = log2 C1 + log4

∑T
t=1 αt

T for certain C1 > 0
which only contains constant and log terms.

Next, consider the regret in epoch s with Is = [bs, es]. According to Eq. (8), we know that the regret
within epoch s is bounded as follows:

E

[∑
t∈Is

f⋆(xt, at)−
∑
t∈Is

f⋆(xt, π
⋆(xt))

]

≤ E

[∑
t∈Is

decγs(pt; f̂t, xt, Gt)

]
+

γs
4
RegSq

≤ E

 ∑
t∈[bs,es−1]

decγs
(pt; f̂t, xt, Gt)

+ Õ
(
αes

γs

)
+

γs
4
RegSq

≤ Õ(γsRegSq), (27)
where the last inequality is because at round t = es − 1, Qt ≤ γsRegSq is satisfied. Taking
summation over all S epochs, we know that the overall regret is bounded as

E[RegCB] ≤
S∑

s=1

Õ(γsRegSq) =

S∑
s=1

Õ
(
2s−1

√
TRegSq

)

≤ Õ
(
2S
√
TRegSq

)
= Õ


√√√√ T∑

t=1

αtRegSq

 , (28)

which finishes the proof.
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D.2 Weakly Observable Graphs

For the weakly observable graphs case, to achieve the target regret without the knowledge of α̃t

and dt, which are the independence number of the subgraph induced by nodes with self-loops
in Gt and the weak domination number of Gt, we apply the same approach as the one applied
in the strongly observable graph case. Note that according to Theorem 3.4, within epoch s, we

have Qt ≤ C2

(∑t
τ=bs

√
dτ√

γs
+

∑t
τ=bs

α̃τ

γs

)
for certain C2 > 1 only containing constants and log

factors. In the weakly observable graphs case, we know that the number of epoch is bounded by

S = 2 + log2 C2 +max

{
log4

∑T
t=1 α̃t

T , log2

(
(
∑T

t=1

√
dt)

2
3

√
T ·Reg

1
6
Sq

)}
since we have

γS = 4C2 ·
√

1

RegSq

max


√√√√ T∑

t=1

α̃t,
(
∑T

t=1

√
dt)

2
3

Reg
1
6

Sq

 ,

and at round t in epoch S,

Qt ≤ C2

(∑T
τ=1 α̃τ

γS
+

∑T
τ=1

√
dτ√

γS

)
≤ γSRegSq,

meaning that epoch S will never end. Therefore, following Eq. (27) and Eq. (28), we can obtain that

E[RegCB] ≤ Õ
(
2S
√
TRegSq

)
= Õ


√√√√ T∑

t=1

α̃tRegSq +

(
T∑

t=1

√
dt

) 2
3

Reg
1
3

Sq

 ,

which finishes the proof.

E Auxiliary Lemmas

Lemma E.1 (Lemma 5 in [Alon et al., 2015]). Let G = (V,E) be a directed graph with |V | = K,
in which i ∈ N in(G, i) for all vertices i ∈ [K]. Assign each i ∈ V with a positive weight wi such
that

∑n
i=1 wi ≤ 1 and wi ≥ ε for all i ∈ V for some constant 0 < ε < 1

2 . Then

K∑
i=1

wi∑
j∈N in(G,i) wj

≤ 4α(G) log
4K

α(G)ε
,

where α(G) is the independence number of G.

Lemma E.2 (Lemma 9 in [Alon et al., 2013]). Let G = (V,E) be a directed graph with vertex set
|V | = K, in which i ∈ N in(G, i) for all i ∈ [K]. Let p be an arbitrary distribution over [K]. Then,
we have

K∑
i=1

pi∑
j∈N in(G,i) pj

≤ mas(G),

where mas(G) is the size of the maximum acyclic subgraphs of G.
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