
A Data Analysis

The LoRA Dataset Project page: https://lora-vqa.github.io/.

The LoRA Dataset Generation code is available at GitHub: LoRA Dataset Generation GitHub link.
Link: https://github.com/CarolineGao/LoRA-Dataset.git

The LoRA Dataset can be found on GoogleDrive: LoRA Dataset.

Link:https://drive.google.com/drive/folders/1H4msZ4ae1msEDApxOT7cr1A1QwQ33Pkn

A.1 The Ontology Analysis

The LoRA Ontology (Knowledge Base) consists of 12 categories of things, such as food, vegetables,
fruits, meat, fish, grains, dairy products, seeds, tools, kitchen utensils, tableware, and plants. Each
category includes around 20 classes, such as Apple, Banana, Orange. Each class includes different
instances, such as red apple, green apple, etc. It also contains 15 relations and 101 attributes that
describe the features and parameters of the categories and instances, such as Color, Taste, Country,
Recipe, Edible, Dietary, etc. It contains 100 instance types. The categories and instances have a
clear hierarchical relationship. For example, every vegetable, fruit, and meat sub-category belongs to
the food category; food and utensils belong to things; and all plants belong to things. The ontology
relationship is built based on formal Description Logic to define the relationships between classes,
instances and attributes.

Figure 1 shows the ontology analysis that we performed to build our ontology. The ontology consists
of different categories of concepts, instances and relationships that represent the knowledge in our
domain. The figure also shows the proportion of each concept in the ontology by the size of the nodes.
The larger the node, the more data it contains in that category.

A.2 Question Statistics

A.2.1 Question Word Frequency

Figure 2 (a) shows a word cloud of the most frequently appearing words in the question texts.
Repeated words that do not contain any semantic meaning, such as “in”, “the”, “image”, are removed
to give us a clearer view of the semantic range of LoRA dataset. The diagram indicates that LoRA
covers the main logic connectives, as well as a wide range of topics related to food, such as different
categories of food, visible and invisible attributes and relationship information. The words from
different topics are distributed across the word cloud.

Figures 2 (b) (c) (d) show the word clouds for each of the three levels of logical questions. The
word clouds reflect the different levels of logical complexity in the questions. In Level 1 logical
questions, words such as “not” and “and” appear frequently, indicating that our logical questions
involve not only simple conjunctions but also negations. In Level 2 logical questions, words such as
multiple logical operators are common, indicating that our logical questions involve comparisons and
combinations of multiple logic connectives. In Level 3 logical questions, words such as “If we do
not” are frequent, indicating that our logical questions involve conditional rules.

A.2.2 Question Types Distribution

Figure 3 presents the distribution of question types based on categories of the question domain (Figure
3a), such as questions requiring knowledge of vegetable and fruit, which account for the majority,
but also cover a wide range of the main food and kitchen domains. Additionally, question types are
distributed according to queries (Figure 3b), such as questions beginning with “Which” or “What”,
verification type questions like “Is there” or “Are there”, and conditional type questions such as
“If...then”.

Figure 4 illustrates the question length distribution for each level of logical questions. The word
length for the three levels of logical questions varies from 8 to 30, indicating a higher compositional
diversity compared to other VQA datasets. On the other hand, the word length of questions in other
VQA datasets, such as VQA, GQA, and CLEVR, lies between 3 and 15. This indicates that our
questions present more significant language understanding challenges as they do not solely consist
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Figure 1: Ontology hierarchy analysis: concepts, relationships, and instances

of single queries. Instead, they involve a combination of multiple logical reasoning tasks, queries,
comparisons, etc.

A.3 The Distribution of Logics

The LoRA dataset offers a diverse array of logical questions, encompassing more than 16 different
types. Answering these multimodal logical questions requires complex logical reasoning, requiring 3
to 9 steps to infer the correct response.

Table 1 on page 6 categorizes these logical questions based on the complexity of the inference steps
and question syntax. It also provides examples and required information to infer the answers for each
logical question category.

Figure 5 illustrates the distribution of logical reasoning question types, which spans a broad range.
This includes conjunction, disjunction, existential restriction, universal restriction, inclusion, ex-
clusion, conditional reasoning, and other complex logical questions. It’s important to note that the
conjunction questions in LoRA are not simple queries based on visual features; they demand much
more intricate reasoning, which involves visual, linguistic, and knowledge-based logical reasoning.
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(a) Word cloud distribution in LoRA.
(b) Word cloud distribution for Level 1 logical
questions.

(c) Word cloud distribution for Level 2 logical ques-
tions.

(d) Word cloud distribution for Level 3 logical
questions.

Figure 2: Question word frequency

(a) Question types distribution by ontology cate-
gories (b) Question types distribution

Figure 3: Question types distribution

B Question Difficulty

To evaluate how complex the logical questions are, we formally define the concept of question
difficulty, based on two criteria: the logical-syntactic complexity of the question and the complexity
of the reasoning needed for the answer.

B.1 Question Logical Syntactic Complexity

We define question syntactic complexity by evaluating the quantity and diversity of logical connective
operators used. The complexity is determined by the count of logical connectives, with each additional
connective or negation incrementally augmenting the complexity. For rule-based questions, such as
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Figure 4: Question length distribution for each level of logical questions

“if... then” propositions, it can be considered as logical implications C → D ≡ ¬C ⊔D, the question
complexity increases by 2 according to the logical syntax.

Definition 1 (Logical Syntactic Complexity) Let D be the VQA dataset and K be the Knowledge
Base. For each type of question in D, let φ be a formula in Description Logic representing that
question. We define the syntactic complexity of φ as follows:

complexity(φ) = {

0,
if φ is a concept or role,

complexity(φ1) + complexity(φ2) + 1 ,

if φ = φ1 Oφ2 , where O ∈ { ⊓, ⊔, ≥, ≤ },

complexity(φ1) + 1 ,

if φ = ¬φ1,

complexity(φ1) + complexity(φ2) + 2 ,

if φ = φ1 → φ2 }

B.2 Answer Inference Complexity

The process and steps required to infer an answer from a seemingly simple question may actually be
far more complex than finding an answer from a question with a complex grammatical structure.

Take for instance the query: “If we ran out of milk, are there other dairy food in the image that could
be used as substitutes?” While this question is formulated as a straightforward, rule-based query, the
inference process required to resolve it may be more intricate than what is needed for questions with
more complex grammatical structures or for compound questions that employ multiple conjunctions,
such as “Can you enumerate the quantities of red apples, yellow bananas, and tomatoes present in the
image?" The complexity of reasoning and answering a question is not always directly proportional to
the apparent complexity of the question’s syntax.

The answer inference complexity is defined as the level of difficulty in deriving the correct answer
through logical inference steps queried to a knowledge base. For compound connectives, we use a
matrix to assign numerical values based on knowledge base queries, summing these to determine the
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Figure 5: Logical reasoning question types distribution

necessary inference steps for answer derivation, attributing one point per query that cannot be simpli-
fied. For conditional reasoning, which involves drawing conclusions from “if-then” propositions, the
inference steps are calculated by the reasoner checking each query in the knowledge base based on
deductive reasoning.

C Dataset Generation Additional Details

This is additional content for Section 3 in the main paper. Our automation method could facilitate
customization for dataset and extension to other domain knowledge areas.

C.1 Ontology Creation Additional Details

We employed Owlready2 for the initial ontology framework construction. Owlready2 is a Python
package for ontology-oriented programming, capable of loading, modifying, and saving OWL
ontologies and performing reasoning using the embedded HermiT. OWL, the acronym for the W3C
Web Ontology Language, is the industry-standard ontology format.

Our ontology defines domain knowledge through three elements: concepts (e.g., Food, Fruit, Vegeta-
bles, Tool), roles representing atomic relations (e.g., hasTaste, hasColor), and individuals (e.g., apple,
pumpkin). Utilizing the OWL ontology structure, we populated the framework with 12 categories
under ‘Things’ such as Food and Tool, 100 instance types, such as orange, carrot, egg, 101 attributes
(e.g., Color: ‘green’, ‘red’; Taste: ‘bitter’, ‘sweet’), and 15 relations, such as hasTaste, hasColor.
Further ontology analysis is detailed in Section A.1 The Ontology Analysis.

Post content integration, we designated relationships and attributes to individuals, linking them with
concepts. An illustrative example is: apple = Fruit(“apple”, has_color=[green, red],
has_taste=[sweet], has_shape=[round], is_ingredient_of=[juice, pie]). In addi-
tion, we also employed OWL Semantic Web Rule Language (SWRL) to frame rules, including
conditional “if...then” statements.
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Complexity of

Inference Steps Logical Types Question Type Features Logical Operator Examples

3 C ⊓D Query V,Q,KB AND Which food has a taste similar to onion AND can used to make broth?

3 C ⊔D Count V,Q,KB OR How many vegetables in the picture are green in color
OR usually have leaves as the edible part?

3 ≥ nP.C Compare V,Q,KB Value Restriction Is the quantity of the item to the right of the watermelon greater than
the number of distinct fruits in the picture?

3 ≤ nP.C Compare V,Q,KB Restriction,OR Are there 10 or fewer eggs in the carton?

4 ¬C ⊓D Verify V,Q,KB NOT, AND Is the item to the left of the meat not suitable for vegans
and is free of fat?

4 ¬C ⊔D Query V,Q,KB NOT, OR Are there any vegetables in the picture that are typically
eaten cooked or are not categorized as stem vegetables?

4-5 C ⊓D ⊓ E Query V,Q,KB AND, AND Which food in the picture is a type of fruit and the same color
as the avocado and has a pungent flavor?

4-5 C ⊔D ⊔ E Query V,Q,KB OR, OR Which food in the picture is a root vegetable that is orange in color
or commonly used for Halloween decorations??

4-5 C ⊓D ⊔ E Verify V,Q,KB AND, OR In the picture, is there a kitchenware item that is used
for stirring, and is made of either wood or silicone?

6-7

¬C ⊓D ⊓ E

Query V,Q,KB NOT,AND,AND
Which food in the picture is the same colour as the item directly
behind the pumpkin but is not the closest item to the garlic,
and is in the same half of the picture as the watermelon?

¬C ⊔D ⊔ E

¬C ⊓D ⊔ E

4
C ⊑ D,R1 ⊓R2

Query V,Q,KB Inclusive, AND Which green vegetable on the table contains nutrition
with vitamin A, B and has consumable roots?

C ⊑ D,R1 ⊔R2

5

C ⊑ D,¬R1 ⊓R2

Query VQKB NOT, AND, OR Identify the food on the table in the image that isn’t classified
as a fruit, but can be used to make juice or eaten raw?C ⊑ D,¬R1 ⊔R2

¬C ⊑ D,R1 ⊔R2

6-7

C ⊑ D,¬R1 ⊓R2 ⊓R3

Query V,Q,KB NOT,NOT,AND,Compare
Which food in the picture is a type of vegetable that is not
red inside, but is bigger than the item next to the avocado which
is not a fruit, and has a flavour that is not sour?

C ⊑ D,¬R1 ⊔R2 ⊔R3

C ⊑ D,¬R1 ⊓R2 ⊔R3

6-7

C ⊑ D,¬R1 ⊓R2 ⊓R3 ≥ n

Verify V,Q,KB NOT,AND,AND,Inclusive
Is there a dairy food in the picture that is not the same colour
as the wine in the glass, but contains protein and can be used
to make pasta sauce?

C ⊑ D,¬R1 ⊔R2 ⊔R3 ≤ n

C ⊑ D,¬R1 ⊓R2 ⊔R3 ≤ n

3-4 C → D, if...then Query V,Q,KB Necessary Conditions What tool is missing for cooking vegetable noodles?

4-5 C → D, if...then Query V,Q,KB Conditional Utility Evaluation I want to boil an egg or fry an egg, what tools
in the image are suitable respectively?

5-6 C → D, if...then Query V,Q,KB Conditional substitution If we don’t have chili, what can we use as a substitute from
the items in the image to prepare spicy noodles?

5-6 C → D, if...then Query V,Q,KB Alternative Item Substitution If we want to cook fried eggs with rice noodles but don’t have any rice noodles,
what other ingredients from the image can we use to make a similar dish?

6-7 C → D, if...then Query V,Q,KB Criteria-Based Exclusion Which foods in the image should be avoided when preparing a meal
for someone who follows a vegetarian diet?

6-7 C → D, if...then Query V,Q,KB Exclusion of Non-essential Conditions Which ingredients in the image are not necessary for preparing
a spicy vegetarian dish?

7-9 C → D, if...then Query V,Q,KB Dissimilarity Reasoning Which vegetables in the image have at least two nutritional differences
compared to the vegetable located between the apple and pear?

Table 1: Logical question types in LoRA with their complexity, syntax, semantics and examples. For
each type of logical question, we provide the number of logical inference steps, the logical syntax,

the question semantic type, and an example. V, Q, KB stand for visual, question and knowledge base
information required to infer the answers.

Furthermore, Owlready’s transparent access to OWL ontologies allows integration of any ontology
complying with OWL specifications. To enhance and standardize our ontology’s domain knowledge,
we assimilated content from public ontologies like FoodOn and FoodKG, augmenting attributes and
other domain-specific details.
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C.2 Question Generation Additional Details

The ontology, constructed on the standard OWL framework, comprises concepts, roles, and individu-
als. This structure enabled the design of an algorithm to transform the ontology into table dataframes.
Refer to Section 3.3.1, Unroll Ontology in our main paper, for an in-depth discussion on the unrolling
process. It should be noted that our method is capable of unrolling any ontology compatible with or
convertible to owlready2, beyond just our custom-built ontology.

This dataframe forms the foundation for question generation. Our objective is to generate logical
questions with distinct complexity levels. The methodology, rooted in populating matrices with
elements from our ontology and formal description logics, involves strategically placing logical
operators to ensure a variety of reasoning types and difficulty tiers. Details on the generation of
foundational and Level 2 logical questions can be found in the main paper’s Section 3.3.2 and more
complex conditional logical question generation is detailed in Section 3.3.3, respectively.

This section supplements two subsequent steps of our question generation pipeline: (4) Filter Rules
to Avoid Repetition and (5) Enrich Question Diversity.

C.2.1 Filter Rules to Avoid Repetition

To avoid generating repetitive questions or questions without practical meaning, the below rules are
set in the question generation engine: Rule 1: unique concat program to ensure the uniqueness of the
question and no duplicate questions are generated; Rule 2: avoid conjunction or disjunction of two
identical clauses; Rule 3: filter to maintain answer diversity by avoiding too many questions with the
same answer; Rule 4: the generated question is limited to a compound sentence that uses two logical
symbols to connect three sub-clauses to match the logic expression in human language.

C.2.2 Enrich Question Diversity

Figure 6: Distribution of LoRA questions by first four words
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Figure 6 shows the distribution of LoRA dataset questions by first four words. It demonstrates that
questions in LoRA dataset have a rich variety of types and range widely.

We develop a relation map program that uses a dictionary to match the same relation paradigm with
various natural language expressions. This program replaces the original question expression and
makes the regenerated question more natural and diverse. It also conforms to the expression and rich
expressiveness of natural human language.

relation map = { ‘has_for_taste’: [‘has the taste’, ‘tastes’, ‘tastes like’, ‘is’], ‘has_child_food’: [ ‘is
the parent of’, ‘contains the subcategory of’, ‘is made with the food’], ‘apple’: [‘gala’, ‘fuji’, ‘pink
lady’] }

In this way, the question language of our automatically generated template becomes varied and fluent.
For example, “Which vegetables in the picture are commonly carved into decorative lanterns called
jack-o’-lanterns for the Halloween season and are orange?”

C.3 Image Generation Additional Details

For LoRA’s image generation, we utilized Blender, an open-source platform, known for its com-
prehensive repository of realistic objects across various domains, including food and kitchen. With
Blender’s scripting capability (Python), we developed automated scripts to position objects in a scene,
creating realistic images.

Our process ensures the uniqueness of each question-answer-image triplet. Upon crafting questions
and their corresponding answers, we generate images reflecting the correct answers, augmented with
random ‘noisy’ objects which are not in the correct answer range. The process initiates with setting
a background in the scene, such as including a table, a window, and a shelf. All ontology-based
individual objects are housed within the blender file. For rendering an object in the final image, it is
positioned in predefined locations on the scene. Specifically, we designated ten empty positions, such
as varied table locations in the scene. To make this object visible in the final image, the script will
copy this object and place it in one of the ten positions.

Each question and answer group has a unique list of corresponding visuals used for image creation.
The list of visible objects, which combines the correct-answer objects with an arbitrary ‘noise’ object
selected outside the answer range, forms the objects that will be rendered in the scene. These visible
objects will be rendered and displayed in the final image and they are tailored to match specific
question-answer combinations, enhancing the necessity of image context for accurate question
interpretation.

Blender’s precision in object positioning is instrumental for visual reasoning. To craft images
reflecting the visual reasoning in our questions, we start by defining a set of visual relations, e.g.,
right, left, front, between. These are integrated into our question matrix, enhancing questions with
spatial references. For instance, the base query,“What are the foods that is unsuitable for vegans and
free of fat?”, evolves into “What are the foods to the left of the meat unsuitable for vegans and free of
fat?”.

Given the spatial relationship of “to the left of” and the anchor object “meat”, we earmark one
position to the anchor object (meat)’s right and nine to its left. We position one correct answer object
to meat’s right and fill the remaining left-side positions with other answers and ‘noisy’ objects. This
approach challenges models to discern spatial relationships in their responses beside the logical
reasoning we focused on.

D Answers Statistics

Figure 7 illustrates the answer length distribution based on the word count of answers in the LoRA
dataset, which exhibits a wide and diverse range of answer lengths. Figure 7(a) shows the distribution
of answer types, primarily encompassing five categories: individual object, multiple objects, number,
yes/no, and none. The “none” category is designed to test logical reasoning skills, implying that the
ground truth answer should be “none”. For instance, after logical reasoning, it could be concluded
that “none of the food in the image” satisfies the question’s logical queries.
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(a) Answer Type Distrubtion
(b) Answer Length Distribution for Words counts
of Answers

Figure 7: Answer statistics.

E Experiments

E.1 Experiment Details

In Section 5 of the main paper, we conduct experiments involving various state-of-the-art VQA
baselines along with large vision-and-language models.

Input Size. For VQA baselines, we use the maximum count of input words or tokens at 150.

Batch Size. The baselines of VQA are executed with batch sizes of 32.

Zero-Shot and Few-Shot Baselines. We iterate over our test dataset to evaluate cutting-edge large
vision-and-language models. Specifically, we assess MiniGPT4, Multimodal-GPT, InstructBLIP,
and Multimodal Chain-of-Thought (MMCoT) using our LoRA test dataset. For Multimodal Chain-
of-Thought, we input the logical operators that are used to construct the questions as the prompt
context.

The baseline evaluations are available in Baseline GitHub.

E.2 Human Performance Study

The human performance study engaged a group of one hundred individuals, coming from varied
careers, including students as well as professionals. They were tasked with answering logical
challenges within the LoRA framework that span levels 1 through 3, requiring reasoning that ranged
from a minimum of three steps to over nine.

In our evaluation methodology for each logical difficulty level, we provided potential answers
including two formats: (i) open-ended and (ii) multiple-choice. In open-ended and multiple-choice
formats, we expect exactly that. We measure the final accuracy of human answers based on the
average score of human answers provided to the same level of logical questions, using the given
metrics:

accuracy =

∑
scores of human answers

# humans that provided that answer
(1)

In addition, we sought to assess the suitability of this logical complexity for human understanding. We
curated a set of 50 sample questions and engaged humans reviewers to validate the logical complexity
assigned to these questions. This process allowed for a rigorous and human-centered evaluation of the
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logical complexity in our dataset. We discovered that humans struggle more with logical questions
that involve more than two logical operators and logical expressions with negation logic. However,
there is variability in logical reasoning skills among individuals. The sample questions, along with
human reviews, are available in LoRA GitHub.

F LoRA Dataset Case Study

Figures 8 through 11 below demonstrate the LoRA dataset’s zero-shot testing performance on
MiniGPT4. It is evident that the latest large vision and language models are prone to logical errors.
For instance, these models struggle to correctly interpret and answer questions involving negation.
They often interpret a negation query as a standard query. For example, when asked, “not the same
color as the wine in the glass”, the model can correctly identify both the wine as red and the tomato
as red, but struggles to reason that the question is asking for something that is not the same color.
Furthermore, large vision and language models have a tendency to concoct answers that are either
entirely unrelated to the questions or to generate generalized answers devoid of logical reasoning.
This issue is not limited to the MiniGPT4 model; it also extends to other large vision and language
models. Our experiments demonstrate that the LoRA dataset presents a significant challenge to
models attempting to answer complex logical questions.

G Societal impact

The LoRA dataset is a self-constructed dataset based on the food and kitchen domain, designed to
provide complex logical questions. The dataset does not include any user usage data or personally
sensitive information. We have not identified any negative societal impact associated with the dataset.

H Limitations of our work

H.1 Domain Specificity and Expandability

The food and kitchen domains serve as representative scenarios to demonstrate the intricacies of
logical reasoning in VQA. While our focus is on logic problems related to the food-and-kitchen
domain, the framework can be adapted to other domain ontologies.

Our approach and pipeline to create the dataset is generalizable. The framework utilizes the industry-
standard OWL format for ontologies which is adaptable. It can work with any ontology (knowledge
base) that adheres to the OWL specifications (standard W3C Web Ontology Language).

In addition, logical constructs employed by humans, such as conjunction, disjunction, negation,
and conditionals, are consistent across diverse knowledge domains, such as food-kitchen, outdoor
scenarios, or mathematics. The essence of logical inference remains unchanged irrespective of the
content domain. Our dataset seeks to probe the performance of current VQA methods across varying
logical complexities, rather than their capacity to leverage external knowledge.

H.2 Logical Framework

Our logical reasoning model is rooted in a three-tiered structure, consistent with language sequence
processing. This design stems from the observation that human language typically uses up to three
logical operators.

H.3 Image Generation Limitation and Expandability

For LoRA’s image generation, we used Blender, an open-source software, due to its rich repository
of realistic food-and-kitchen objects. It offers precise object positioning vital for visual reasoning.
Emerging AI tools like stable diffusion promise broader image diversity, but they have current
limitations in generating specific structured visuals, such as positioning an apple to the left of a
banana and behind an orange. Our future work intends to incorporate these advanced generative tools
to enhance our dataset further.
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Figure 8: LoRA dataset’s zero-shot testing performance on MiniGPT4. The correct answer should
include a variety of foods such as garlic, mushroom, and cheese, but it should not include tomato.
The case study demonstrates that the model lacks an understanding of the logic of negation and fails
to infer the reasoning behind it. When asked what the colors of tomatoes and wine are respectively,
the model gives both red. The model’s answer merely describes an object in the image, but incorrectly
provides the response “tomato sauce.”

Figure 9: LoRA dataset’s zero-shot testing performance on MiniGPT4. The question involves logical
types such as and, negation, and inclusion, for example, the phrase “not dairy”. The correct answer
should be “yes, watermelon.” However, the model incorrectly answers it as “pizza”, which does not
exist in the image. Furthermore, the model’s response provides a description of the image rather than
providing a reasoned answer.
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Figure 10: LoRA dataset’s zero-shot testing performance on MiniGPT4. The question requires
inclusive logical reasoning, first identifying if it is asking about vegan food, rather than other types of
food. Then, visual information is needed to identify the visual relationship, specifically the object
closest to meat, and to identify food contained in multiple pots. The correct answer is “no”. However,
the model failed to use commonsense knowledge to provide the reasoning answer.

Figure 11: LoRA dataset’s zero-shot testing performance on MiniGPT4. This is a verification question
that requires both visual information to identify all the objects and commonsense knowledge to reason
the answer that the animal’s primary diet is meat, while the objects on the table are vegetables and
fruit. The correct answer is “no”. However, the model incorrectly answered "yes" and listed some
objects in the image, making mistakes in the logical reasoning and visual relationships.
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