
A Appendix: Proofs and Algorithms

A.1 Proofs of results in Section 4

Proof of Proposition 4.1. Plug Bq
s in (3) into (4), and apply the minimax theorem, the original

problem [T(v)]s, 8s 2 S is given by:

max
⇡s2�A

min
p1
s,··· ,pN

s

X

a2A
⇡sa

1

N

NX

i=1

pi
sa

!>

(rsa + �v)

s.t.
1

N

NX

i=1

��pi
s � p̂i

s

��q
q
 ✓q,

pi
sa 2 �S , 8i 2 [N], 8a 2 A

= min max
⇡s2�A

1

N

X

a2A
⇡sa

NX

i=1

(rsa + �v)> pi
sa

s.t.
1

N

NX

i=1

��pi
s � p̂i

s

��q
q
 ✓q,

pi
sa 2 �S , 8i 2 [N], 8a 2 A

= min max
a2A

1

N

NX

i=1

(rsa + �v)> pi
sa

s.t.
1

N

NX

i=1

X

a2A

��pi
s � p̂i

s

��q
q
 ✓q,

pi
sa 2 �S , 8i 2 [N], 8a 2 A.

Hence (5) is a direct consequence of above formulation by introducing the following epigraph variable

� which satisfies � � maxa2A
1

N

NX

i=1

(rsa + �v)> pi
sa.

Proof of Proposition 4.2. To prove the upper bound of �?, we consider �̄ =
maxa2A

1
N

PN
i=1 b

>
sap̂

i
sa, which equals to �̄ � 1

N

PN
i=1 b

>
sap̂

i
sa, 8a 2 A. This implies

{p̂i
sa}

N
i=1 satisfies every constraint in problem (6) with the lowest possible objective value 0, for

every a 2 A. Therefore,
P

a2A P
�
{p̂i

sa}
N
i=1; rsa + �v, �̄

�
= 0 < ✓q. At this time, �̄ is feasible

for (5). Hence, we provide an upper bound �̄ = maxa2A
1
N

PN
i=1 b

>
sap̂

i
sa.

To prove the lower bound of �?, we assume the contrary maxa2A {min {bsa}} > �?. So there exists
â 2 A with �? < min {bsâ}. Then there is no pi

sâ satisfies the first constraint in (5) for a = â. This
contradiction verifies the lower bound � = maxa2A {min {bsa}}.

Proof of Proposition 4.3 . By definition, for any fixed s 2 S and a 2 A, we have

P
�
{p̂i

sa}
N
i=1; bsa, �

�
= min

1

N

NX

i=1

��pi
sa � p̂i

sa

��q
q

s.t.
1

N

NX

i=1

b>sap
i
sa �,

pi
sa 2 �S , 8i 2 [N] .

Then, we introduce the dual variable ↵ � 0 for the constraint 1
N

PN
i=1 b

>
sap

i
sa � and obtain

P
�
{p̂i

sa}
N
i=1; bsa, �

�
= max

↵�0

(
min

pi
sa2�S , 8i2[N]

1

N

NX

i=1

��pi
sa � p̂i

sa

��q
q
+ ↵

1

N

NX

i=1

b>sap
i
sa � �

!)

= max
↵�0

�↵� +
1

N

NX

i=1

Dq(p̂
i
sa, bsa,↵),

14

where Dq(p̂i
sa, bsa,↵) is defined in the Proposition 4.3.

To show ↵̄ defined in the proposition is indeed an upper bound of the optimal ↵?, we denote

f(↵) = �↵� +
1

N

NX

i=1

Dq(p̂
i
sa, bsa,↵).

Notice that 8↵ � maxi2[N]
kej�p̂i

sak
q

q

��min{bsa} ,where j 2 argmin
s02S

bsas0 :

f(↵) �↵� +
1

N

NX

i=1

��ej � p̂i
sa

��q
q
+ ↵b>saej

=
1

N

NX

i=1

��ej � p̂i
sa

��q
q
+ (min {bsa}� �)↵

 0 = f(0),

where the first inequality is from the definition of Dq(p̂i
sa, bsa,↵), the second equality is due to the

selection of j, and the last inequality is due to the selection of ↵. Hence ↵?
2 [0, ↵̄] by f(↵) is

concave w.r.t. ↵ (otherwise 9↵? > ↵̄ such that f(↵?) > f(0) � f(↵̄), where nonconcavity of f
follows), and (8) is true. One can further compute the subdifferential of f(↵) by Danskin’s theorem
(Bertsekas, 1999). Typically,

�� +
1

N

NX

i=1

b>sap
i,?
sa 2 @f(↵),

where pi,?
sa is any minimizer of the inner minimization problem corresponding with given ↵ � 0.

Proof of Theorem 4.4. For simplicity of notations, throughout this proof we use

� , A✏2
2

✓
max
a2A

max{bsa}+ �̄

◆
and f(�) ,

X

a2A
P
�
{p̂i

sa}
N
i=1; bsa, �

�
, 8� 2 [�, �̄].

By (6), we can get that P
�
{p̂i

sa}
N
i=1; bsa, �

�
and f(�) are non-increasing in [�, �̄]. For each given

� 2 [�, �̄] and a 2 A, we denote P̂
�
{p̂i

sa}
N
i=1; bsa, �

�
the corresponding value calculated by the

Algorithm 1. Furthermore, we call

f̂(�) ,
X

a2A
P̂
�
{p̂i

sa}
N
i=1; bsa, �

�
, 8� 2 [�, �̄].

We can show that
|f(�)� f̂(�)| �, 8� 2 [�, �̄]. (14)

We fix � 2 [�, �̄], and consider (8). Algorithm 1 provides the optimal solution for (8) with tolerance
✏2/2, so we have |↵?

sa,� � ↵̂sa,� | ✏2/2, where ↵?
sa,� is the true optimal solution of (8) and ↵̂sa,� is

the solution computed in the inner bisection in Algorithm 1. Thus we get
���P

�
{p̂i

sa}
N
i=1; bsa, �

�
� P̂

�
{p̂i

sa}
N
i=1; bsa, �

����

=� ↵?
sa,�� +

1

N

NX

i=1

Dq(p̂
i
sa, bsa,↵

?
sa,�)�

�↵̂sa,�� +

1

N

NX

i=1

Dq(p̂
i
sa, bsa, ↵̂sa,�)

!

��↵?

sa,� � ↵̂sa,�

�� � +
1

N

NX

i=1

��Dq(p̂
i
sa, bsa,↵

?
sa,�)�Dq(p̂

i
sa, bsa, ↵̂sa,�)

��

✏2
2

✓
�̄ +max

a2A
max{bsa}

◆
,

15

where the last step is due to that

Dq(p̂
i
sa, bsa,↵

?
sa,�)�Dq(p̂

i
sa, bsa, ↵̂sa,�)

= min
pi
sa2�S

��pi
sa � p̂i

sa

��q
q
+ ↵?

sa,� · b>sap
i
sa �

✓
min

pi
sa2�S

��pi
sa � p̂i

sa

��q
q
+ ↵̂sa,� · b>sap

i
sa

◆

�
↵?
sa,� � ↵̂sa,�

�
b>sap

i,↵̂
sa

✏2
2
max
a2A

max{bsa},

and

Dq(p̂
i
sa, bsa, ↵̂sa,�)�Dq(p̂

i
sa, bsa,↵

?
sa,�)

= min
pi
sa2�S

��pi
sa � p̂i

sa

��q
q
+ ↵̂sa,� · b>sap

i
sa �

✓
min

pi
sa2�S

��pi
sa � p̂i

sa

��q
q
+ ↵?

· b>sap
i
sa

◆

�
↵̂sa,� � ↵?

sa,�

�
b>sap

i,↵?

sa

✏2
2
max
a2A

max{bsa},

here pi,↵̂
sa and pi,↵?

sa are the optimal solutions to (9) for ↵ = ↵̂sa,� and ↵ = ↵?
sa,� respectively.

Hence, (14) is the direct consequence of above estimation, together with the definitions of f, f̂ and �.
And we have �? = inf{� 2 [�, �̄] : f(�) ✓q}. We further define �̂ , inf{� 2 [�, �̄] : f̂(�) ✓q}.
The outer bisection of Algorithm 1 implies that |�0

� �̂| ✏1
2 , so to prove the claimed result in the

theorem, it suffices to show that

|�?
� �̂|

2�

✓
max
a2A

max{bsa}� �

◆

✓q
. (15)

Notice that P̂
�
{p̂i

sa}
N
i=1; bsa, �

�
 P

�
{p̂i

sa}
N
i=1; bsa, �

�
, 8� 2 [�, �̄] by definitions, we get f̂(�)

f(�), so {� 2 [�, �̄] : f(�) ✓q} ✓ {� 2 [�, �̄] : f̂(�) ✓q}, hence we get �̂ �?.

We assume that �?
� � �

2�(maxa2A max{bsa}��)
✓q , otherwise (15) is trivially satisfied. To achieve

(15), we claim the following statement:

f

0

BB@�?
�

2�

✓
max
a2A

max{bsa}� �

◆

✓q

1

CCA > ✓q + �. (16)

If the statement is true, we have 8� 2 [�, �?
�
�
maxa2A max{bsa}� �

�
(2�/✓q)]:

f̂(�) � f(�)� � � f

0

BB@�?
�

2�

✓
max
a2A

max{bsa}� �

◆

✓q

1

CCA� � > ✓q,

where the first inequality is from (14) and f̂(�) f(�), the second inequality is due to that f(�) is
non-increasing, and the third inequality is from the above statement.
So {� 2 [�, �̄] : f̂(�) ✓q} ✓ (�?

�
�
maxa2A max{bsa}� �

�
(2�/✓q), �̄], thus

�?
�

2�
�
maxa2A max{bsa}� �

�

✓q
 �̂ �?,

which implies the desired (15).
For the proof of the statement (16). We argue that

8� 2 [�?
�

2�
�
maxa2A max{bsa}� �

�

✓q
, �?) :

X

a2A
↵?
sa,� �

✓q�
maxa2A max{bsa}� �

� , (17)

16

by contradiction. Assume there is some �00
2 [�?

�
2�(maxa2A max{bsa}��)

✓q , �?) with thatP
a2A ↵?

sa,�00 < ✓q

(maxa2A max{bsa}��)
. Clearly f(�00) > ✓q since �00 < �?. Then

✓q >
X

a2A
↵?
sa,�00

✓
max
a2A

max{bsa}� �

◆

�

X

a2A
↵?
sa,�00

1

N

NX

i=1

�
b>sap̂

i
sa � �

�
!

=
X

a2A

1

N

NX

i=1

↵?
sa,�00

�
b>sap̂

i
sa � �

�

�

X

a2A

1

N

NX

i=1

min
pi
sa2�S

��pi
sa � p̂i

sa

��q
q
+ ↵?

sa,�00 ·
�
b>sap

i
sa � �

�

=
X

a2A
�↵?

sa,�00�00 +
1

N

NX

i=1

Dq(p̂
i
sa, bsa,↵

?
sa,�00)

=
X

a2A
P
�
{p̂i

sa}
N
i=1; bsa, �

00�

=f(�00),

which is contradicted with f(�00) > ✓q . This contradiction implies that (17) is true.

For simplicity of notations, we call �000 = �?
�

2�(maxa2A max{bsa}��)
✓q , and we fix any �`

2 (�000, �?),
then

✓q � f

�?
�

2�
�
maxa2A max{bsa}� �

�

✓q

!

<f(�`)� f (�000)

=
X

a2A

�
P
�
{p̂i

sa}
N
i=1; bsa, �

`
�
�P

�
{p̂i

sa}
N
i=1; bsa, �

000��

X

a2A
�↵?

sa,�`�` +
1

N

NX

i=1

Dq(p̂
i
sa, bsa,↵

?
sa,�`)�

�↵?

sa,�`�000 +
1

N

NX

i=1

Dq(p̂
i
sa, bsa,↵

?
sa,�`)

!

=
X

a2A
↵?
sa,�`(�000

� �`)

(�000
� �`)

✓q�
maxa2A max{bsa}� �

� ,

where the first step is due to �` < �? and definition of �000, the second step is from the definition of
function f , the third step is from the definition of P({p̂i

sa}
N
i=1; bsa, �) and ↵?

sa,� , and the last step is
due to (17) and �`

2 (�000, �?). Notice that above inequality is true for all �`
2 (�000, �?), we could

let �`
! �?, which leads to

✓q � f

�?
�

2�
�
maxa2A max{bsa}� �

�

✓q

!
 �2� < ��.

Then (16) is the direct consequence of above inequality. This finishes the proof of statement, hence
finishes the proof of the theorem.

Proof of Theorem 4.5 . The Algorithm 1 is the direct consequence of the procedures in the content,
except computing the slope, which has been explained at the end of the proof of Proposition 4.3.
For the time complexity, we can see that the bisection method on � and ↵ uses complexity
O(log ✏�1

1 log ✏�1
2). For the subproblem (9), which costs time complexity hq(S), we need to solve

17

Algorithm 2: Fast algorithm to solve (9) with q = 1

Input: Sorted bsa with bsan1 � bsan2 � · · · � bsanS .
Initialization: r b>sap̂

i
sa and pi

sa p̂i
sa.

for k = 1, . . . , S � 1 do
if 2p̂isank

+ ↵(bsanS � bsank)p̂
i
sank

� 0 then break
else

r+ = 2p̂isank
+ ↵(bsanS � bsank)p̂

i
sas0 .

pisanS
+ = pisank

and pisank
= 0.

end
Result: Optimal objective value r and optimal solution pi

sa of (9) with q = 1.

it NA times. Besides, computing the upper bound claimed in Proposition 4.2 requires finding
min{bsa} for each a 2 A, which is in time complexity O(AS). So we get the time complexity of
Algorithm 1 is O

�
hq(S)NA log ✏�1

1 log ✏�1
2 +AS

�
.

Proof of Proposition 4.6. Plug B1
s in (3) into (4), we get the Bellman update is given by

1

N
max

⇡s2�A

(
min

X

a2A

NX

i=1

⇡sap
i
sa

>
(rsa + �v) :

��pi
sa � p̂i

sa

��
1 ✓, pi

sa 2 �S , 8i 2 [N], 8a 2 A

)

=
1

N
max

⇡s2�A

X

a2A
⇡sa

NX

i=1

min
n
pi
sa

>
(rsa + �v) :

��pi
sa � p̂i

sa

��
1 ✓, pi

sa 2 �S

o

=
1

N
max
a2A

NX

i=1

min
pi
sa2�S

�
b>sap

i
sa :

��pi
sa � p̂i

sa

��
1 ✓

.

The first equality is due to that the decision varaibles pi
sa, 8i 2 [N] and 8a 2 A, are independent

from each other. Then we can divide the orignal problem into NA subproblems. The second equality
is from the fact that the objective function is affine w.r.t. ⇡sa, and the maximum is simply the greatest
coefficient of ⇡sa.

A.2 Proofs of results in Section 5

A.2.1 Proof of results in Section 5.1

Proof of Proposition 5.1. We introduce the variable v � kpi
sa � p̂i

sak1, so

D1(p̂i
sa, bsa,↵) = min

pi
sa2�S

��pi
sa � p̂i

sa

��
1
+ ↵ · b>sap

i
sa

= min
v�0

min
pi
sa2�S

�
v + ↵b>sap

i
sa : kpi

sa � p̂i
sak1 v

= min
v�0

⇢
v + ↵ min

pi
sa2�S

b>sap
i
sa : kpi

sa � p̂i
sak1 v

�
.

(18)

Proof of Theorem 5.2. We denote the objective function in (11) as

F (v) = v + ↵

⇢
min

pi
sa2�S

b>sap
i
sa : kpi

sa � p̂i
sak1 v

�
.

18

W.L.O.G., we assume that bsa1 > bsa2 > · · · > bsaS , and p̂i
sa > 0. We claim that

F (v) =

8
>>>>>>>><

>>>>>>>>:

v + ↵

✓
�
v (bsa1 � bsaS)

2
+ b>sap̂

i
sa

◆
if v 2

⇥
0, 2p̂isa1

�
,

v + ↵
SX

k=K+1

rkbsak if v 2

"
2

KX

k=1

p̂isak, 2
K+1X

k=1

p̂isak

!
, for some K 2 [S � 2],

v + ↵bsaS if v 2

"
2
S�1X

k=1

p̂isak,+1

!
,

where

rk =

8
>>>><

>>>>:

p̂isa(K+1) �

v � 2

KX

k=1

p̂isak

!�
2 if k = K + 1,

p̂isak if K + 2 k S � 1,

p̂isaS +
v

2
if k = S.

To prove the first case of the claim, it suffices to show that the optimal solution for the minimization
problem in F (v) is given by p?, whose components are p?1 = p̂isa1 �

v
2 , p?k = p̂isak, 82 k S � 1

and p?S = p̂isaS + v
2 . It can be easily verified that p? defined in this way satisfies the constraints of

the minimization problem in F (v).
To see the optimality, we consider any optimal solution p̄. We first notice that p̄1 > 0 and p̄S < 1.
Actually, Let

N = {k 2 [S] : p̄k < p̂isak},

P = {k 2 [S] : p̄k > p̂isak},

E = {k 2 [S] : p̄k = p̂isak}.

Then by e>p̄ = e>p̂i
sa = 1 and kp̄� p̂i

sak1 v, we get
X

k2N
p̂isak � p̄k =

X

k2P
p̄k � p̂isak

X

k2N
(p̂isak � p̄k) +

X

k2P
(p̄k � p̂isak) v

Hence
P

k2N p̂isak � p̄k =
P

k2P p̄k � p̂isak
v
2 < p̂isa1, so we get p̄1 > 0 and p̄S < 1.

Next we show that p̄k = p̂isak, 82 k S � 1. Otherwise we have some 2 k̂ S � 1 such
that |p̄k̂ � p̂i

sak̂
| > 0. If p̄k̂ > p̂i

sak̂
, we define p̃ with that p̃k̂ = p̄k̂ � " and p̃S = p̄S + ", here

0 < " < min{
|p̄k̂�p̂i

sak̂
|

2 , 1�p̄S

2 }, while keeping the other components of p̃ same as p̄. We can
see that p̃ achieves smaller objective value than p̄ does due to bsak̂ > bsaS , which contradicts the
optimality of p̄. If p̄k̂ < p̂i

sak̂
, then we define p̃ with that p̃k̂ = p̄k̂ + " and p̃1 = p̄1 � ", here

0 < " < min{
|p̄k̂�p̂i

sak̂
|

2 , p̄1

2 }, while keeping the other components of p̃ same as p̄. Similarly, p̃
achieves smaller objective value and this implies the contradiction.
Finally, we verify the rest two components. We introduce the variables d1 = p̄1 � p̂isa1 and
dS = p̄S � p̂isaS , then we get the equivalent reformulation of the inner minimization in F (v):

min
d1,dS

bsa1d1 + bsaSdS

s.t. d1 + dS = 0, |d1|+ |dS | v.

The optimal d1 and dS are given by �v/2 and v/2 respectively. Hence we proved p? is indeed an
optimal solution.

To prove the second case of the claim, the optimal solution for the minimization problem in F (v)
is given by p?, whose components are p?k = 0, 8k 2 [K], and p?k = rk, 8K + 1 k S. The
decision variables p? defined in this way satisfies the constraints of the minimization problem in
F (v).
To see the optimality, we consider any optimal solution p̄. We first notice that p̄K+1 > 0 and p̄S < 1.

19

To argue this by contradiction, we suppose the contrary p̄K+1 = 0. Define the notations N ,P and E

same as before. Then there exists k̂ K with p̄k̂ > 0, otherwise we assume that p̄k = 0, 8k 2 [K],
which implies the contradiction as follows.

K+1X

k=1

p̂isak >
v

2
�

X

k2N
p̂isak � p̄k �

K+1X

k=1

p̂isak.

Here the first inequality is due to the selection of v, the second inequality has been deduced in the
first case and the third inequality is from p̄k = 0, 8k 2 [K + 1]. So we are able to find k̂ K with

p̄k̂ > 0. By moving probability " = min{
p̄k̂
2 ,

p̂i
sa(K+1)

2 } from p̄k̂ to p̄K+1, we can achieve smaller
objective value while keeping the feasibility, hence we get the contradiction, which implies that
p̄K+1 > 0 and p̄S < 1. By applying the similar procedures in the first case (moving some probability
from p̄K+1 or to p̄S), we can show that p̄k = p̂isak = rk for K + 2 k S � 1.
Next we prove that p̄k = rk = 0 for k 2 [K] . Suppose the contrary is true; that is, p̄k̂ > 0

for some k̂ K. Then we are able to apply the same procedures as before which illustrate that
p̄k = p̂isak, 8k̂ < k < S. Provided this, one can verified that the optimal strategy is putting all the
rest probability 1�

PS�1
k=k̂+1

p̂isak to p̄S since bsa1 > bsa2 > · · · > bsaS , and v � 2
PK

k=1 p̂
i
sak �

2
Pk̂

k=1 p̂
i
sak, which implies p̄sak̂ = 0 and we get a contradiction. Hence p̄k = rk = 0, 8k 2 [K].

Finally, we verify the rest two components. We introduce the variables dK+1 = p̄K+1 � p̂isa(K+1)

and dS = p̄S � p̂isaS , then we get the equivalent reformulation of the inner minimization in F (v):

min
dK+1,dS

bsa(K+1)dK+1 + bsaSdS

s.t. dK+1 + dS =
KX

k=1

p̂isak, |dK+1|+ |dS | v �
KX

k=1

p̂isak.

The optimal dK+1 and dS are given by � v�2
PK

k=1 p̂i
sak

2 and v
2 respectively. Hence we proved p? is

an optimal solution.

To prove the third case of the claim, we notice that the optimal solution eS to minpi
sa2�S

b>sap
i
sa is

also feasible for the inner minimization problem in F (v), hence it becomes the optimal solution we
desire, which implies F (v) = v + ↵bsaS at this time. This finishes the proof of our claim.

Our claim directly illustrates that F (v) is a piecewise-linear function in v with breakpoints {0} [
{2

PK
k=1 p̂

i
sak : 8K 2 [S � 1]}. Furthermore, based on the provided formulation of F (v), we can

compute the difference of value for F (·) between any two adjacent breakpoints, given by

F (vK)� F (vK�1) = 2p̂isaK + ↵(bsaS � bsaK)p̂isaK 8K 2 [S � 1],

where vK = 2
PK

k=1 p̂
i
sak, 8K 2 [S � 1] and v0 = 0.

Hence we provide Algorithm 2 to compute (11), whose time complexity is O(S logS) generally and
can be reduced to O(S) if the sorted bsa is provided.

Proof of Corollary 5.2.1. We can see that Algorithm 2 is in time complexity O(S) if [a2Absa are
sorted, which can be done at the Initialization step in Algorithm 1 with time complexity O(AS logS).
So by Theorem 4.5, we get the overall complexity is O

�
NAS log ✏�1

1 log ✏�1
2 +AS logS

�
.

20

Algorithm 3: Fast algorithm to solve the inner minimization problem in (10)
Input:v, rsa, and p̂i

sa 2 �S .
Initialization:pi,?

sa = 0.
Sort bsa as bsan1 · · · bsanS .
Find the smallest k such that

Pk
j=1

⇣
p̂isanj

+ ✓
⌘
� 1.

Set pi,?sanj
= p̂isanj

+ ✓ for j k � 1 and pi,?sank
= 1�

Pk�1
j=1

⇣
p̂isanj

+ ✓
⌘

.

r = b>sap
i,?
sa .

Result: Optimal objective value r and optimal solution p?
sa of the inner minimization problem in

(10).

A.2.2 Proof of results in Section 5.2

Proof of Theorem 5.3. From problem (9), we can get the minimization problem for q = 2

min
pi
sa2�S

��pi
sa � p̂i

sa

��2
2
+ ↵b>sap

i
sa

= min
pi
sa2�S

��pi
sa

��2
2
� 2pi

sa
>
p̂i
sa +

��p̂i
sa

��2
2
+ ↵b>sap

i
sa

= min
pi
sa2�S

��pi
sa

��2
2
�
�
2p̂i

sa � ↵bsa
�>

pi
sa +

��p̂i
sa

��2
2

= �
↵2
kbsak

2
2

4
+ ↵b>sap̂

i
sa + min

pi
sa2�S

����p
i
sa �

2p̂i
sa � ↵bsa

2

����
2

2

.

So it suffices to solve minpi
sa2�S

����p
i
sa �

2p̂i
sa � ↵bsa

2

����
2

2

, which can be done by Euclidean projec-

tion algorithm (Wang and Carreira-Perpinán, 2013) with time complexity O(S logS).

Proof of Corollary 5.3.1. The result is the direct consequence of Theorem 4.5 with h2(S) is
O(S logS), provided by Theorem 5.3.

A.2.3 Proof of results in Section 5.3

Proof of Theorem 5.4. We claim that the Algorithm 3 solves problem (13) with time complexity
O(S logS). By expanding the1-norm, we formulate (13) as the following box constraints problem.

min b>sap
i
sa

s.t. max
�
0, p̂i

sa � ✓e

 pi

sa min
�
e, p̂i

sa + ✓e

,

e>pi
sa = 1,

pi
sa 2 RS .

To get the optimal solution, we put the probability on the index where bsa is small as much as possible.
Specifically, we assume bsa1 < bsa2 < · · · < bsaS w.l.o.g., and assume k is the smallest index such
that

Pk
j=1

�
p̂isaj + ✓

�
� 1. We claim that

pi,?saj =

8
>>><

>>>:

p̂isaj + ✓ if 1 j k � 1

1�
k�1X

`=1

�
p̂isa` + ✓

�
if j = k

0 otherwise .

is the optimal solution to the above formulation. To see this, suppose p̄ is optimal and there is some
ĵ 2 [k � 1] with p̄ĵ 6= p̂isaj + ✓. By above box constraint, we get p̄ĵ < p̂i

saĵ
+ ✓, so there exists

j̄ � k such that p̄j̄ > pi,?
saj̄

. By moving the probability from p̄j̄ to p̄ĵ , we can achieve strictly smaller
objective value, which is a contradiction with that p̄ is optimal. This gives us an optimal solution
with the first k � 1 components coincides pi,?sa . Then we can get pi,?

sa is indeed optimal by putting the

21

extra 1�
Pk�1

`=1

�
p̂isa` + ✓

�
probability on pi,?sak, since bsak · · · bsaS .

The major time complexity of Algorithm 3 is sorting the vector bsa 2 RS , which is O(S logS).

Proof of Corollary 5.4.1. As for each a 2 A, we need to sort bsa, which costs O(AS logS), then
we need to solve NA subproblems, which costs O(NAS), so the whole problem is computed in time
O(AS logS +NAS).

B Appendix: Computational Complexity for General Convex Optimzation

To compare our algorithm with general convex optimization algorithm, we use general convex
optimization to compute the problem (5) and problem (8). The time complexities will be discussed in
different situations:

• Suppose q = 1: For general convex optimization problem, problem (5) is equivalent with
the following problem:

[T(v)]s =

2

666666664

minimize �

subject to
1

N

NX

i=1

(rsa + �v)>pi
sa �, 8a 2 A

1

N

NX

i=1

X

a2A

X

s02S

��pisas0 � p̂isas0
�� ✓

� 2 R, pi
sa 2 �S , 8i 2 [N] , 8a 2 A.

3

777777775

8s 2 S.

By introducing the variables tisas0 =
��pisas0 � p̂isas0

�� , 8i 2 [N], 8a 2 A, 8s0 2 S, the
above problem is equivalent with

minimize �

subject to
1

N

NX

i=1

(rsa + �v)>pi
sa �, 8a 2 A

1

N

NX

i=1

X

a2A

X

s02S
tisas0 ✓

tisas0 � pisas0 � p̂isas0 , t
i
sas0 � p̂isas0 � pisas0 , 8i 2 [N] , 8a 2 A, 8s0 2 S

� 2 R, pi
sa 2 �S , tisas0 2 R, 8i 2 [N] , 8a 2 A, 8s0 2 S.

There are 1 +NSA+NSA = O(NSA) decision variables, and the number of bits in the
input is O(1) +O(NAS) +O(NAS) +O(NAS) +O(NAS) +O(NAS) = O(NAS).
So by (Karmarkar, 1984), the complexity of solving this LP is O(N4.5S4.5A4.5).

We utilize our outer bisection, solving (6) directly using convex optimization. Typically, for
each fixed a 2 A and �, (6) is equivalent with the LP that

minimize
1

N

NX

i=1

X

s02S
tisas0

subject to
1

N

NX

i=1

b>sap
i
sa �

tisas0 � pisas0 � p̂isas0 , t
i
sas0 � p̂isas0 � pisas0 , 8i 2 [N] , 8s0 2 S

pi
sa 2 �S , tisas0 2 R, 8i 2 [N] , 8s0 2 S.

There are 2NS decision variables, and the number of bits in the input is
O(NS + NS + NS + NS) = O(NS). So the complexity of solving this LP is
O(N4.5S4.5). Together with the outer bisection, the total complexity for each Bellman
update with ✏1 tolerance is O(N4.5S4.5A log ✏�1

1).

22

We utilize our nested bisection scheme, solving (9) using the general convex optimization
algorithm. Typically, for each fixed a 2 A, i 2 [N] and ↵, (9) is equivalent with

minimize
X

s02S
tisas0 + ↵ · b>sap

i
sa

subject to tisas0 � pisas0 � p̂isas0 , t
i
sas0 � p̂isas0 � pisas0 , 8s

0
2 S

pi
sa 2 �S , tisas0 2 R, 8s0 2 S.

There are 2S decision variables, and the number of bits in the input is O(S+S+S) = O(S).
So the complexity of solving this LP is O(S4.5). Together with the nested bisection, the
total complexity for each Bellman update where the tolerances of bisections are ✏1 and ✏2, is
O(NS4.5A log ✏�1

1 log ✏�1
2).

• Suppose q = 2: For general convex optimization problem, problem (5) is equivalent with
the following SOCP:

[T(v)]s =

2

666666664

minimize �

subject to
1

N

NX

i=1

(rsa + �v)>pi
sa �, 8a 2 A

1

N

NX

i=1

X

a2A

��pi
sa � p̂i

sa

��2
2
 ✓2

� 2 R, pi
sa 2 �S , 8i 2 [N] , 8a 2 A.

3

777777775

8s 2 S.

There are 1 + NSA = O(NSA) decision variables, and the number of constraints are
A+1+NA(S+2) = O(NAS). So the complexity of solving the SOCP with ✏-accuracy is
O(
p
NAS log ✏�1

·(NSA)2(NAS+1+2(A+NA(S+2)))) = O(N3.5S3.5A3.5 log ✏�1).

We utilize our outer bisection, solving (6) directly using convex optimization. Typically, for
each fixed a 2 A and �, (6) is equivalent with the SOCP that

minimize �

subject to
1

N

NX

i=1

b>sap
i
sa �

1

N

NX

i=1

��pi
sa � p̂i

sa

��2
2
 �

� 2 R, pi
sa 2 �S , 8i 2 [N] .

There are 1 + NS = O(NS) decision variables, and the number of constraints
are O(NS). So the complexity of solving the above SOCP with ✏-accuracy is
O(
p
NS log ✏�1

· N2S2(NS + 1 + 2(1 + N(S + 2)))) = O(N3.5S3.5 log ✏�1), hence
the total complexity of the Bellman update is O(N3.5S3.5A log ✏�1 log ✏�1

1).

We utilize our nested bisection scheme, solving problem (9) using the general convex
optimization algorithm. For each fixed a 2 A, i 2 [N] and ↵, problem (9) is equivalent with

minimize � + ↵ · b>sap
i
sa

subject to
��pi

sa � p̂i
sa

��2
2
 �

pi
sa 2 �S , � 2 R.

There are 1 + S = O(S) decision variables, and the number of constraints
are O(S). So the complexity of solving the above SOCP with ✏-accuracy is
O(
p
S log ✏�1

· S2(S + 1 + 2(1 + S))) = O(S3.5 log ✏�1), hence the total com-
plexity of the Bellman update is O(NS3.5A log ✏�1 log ✏�1

1 log ✏�1
2).

• Suppose q = 1: We can also consider solving the inner problem in (10) using general
convex optimization, which is equivalent with

minimize b>sap
i
sa

subject to pisas0 � p̂isas0 ✓, p̂isas0 � pisas0 ✓, 8s0 2 S

pi
sa 2 �S ,

23

Table 1: Comparisons of runtime (average and standard deviation)(second) of Bellman updates for
all algorithms in L1 norm.

Algorithm
N = S = A

10 20 30 40

Fast 0.0253 (0.02) 0.1243 (0.02) 0.2794 (0.02) 0.5112 (0.02)
Gurobi 0.039 (0.02) 0.7084 (0.03) 4.3617 (0.05) 22.6013 (0.92)

FOM(3 its) 0.644 (1.0193) 4.0821 (1.05) 12.6608 (1.00) 29.22 (1.18)

Table 2: Comparisons of runtime (average and standard deviation)(second) of Bellman updates for
all algorithms in L2 norm.

Algorithm
N = S = A

50 60 70 80

Fast 7.3717 (0.11) 10.8293 (0.12) 16.8888 (0.12) 24.6080 (0.07)
Gurobi 5.1669 (0.09) 11.6760 (0.14) 23.6852 (0.34) 44.3305 (0.18)

FOM(3 its) 9.1936 (1.83) 14.5653 (2.01) 21.3651 (1.97) 31.1326 (1.79)

where i 2 [N] and a 2 A are fixed.
There are S decision variables, and the number of bits in the input is O(S+S+S) = O(S).
So the complexity of solving this LP is O(S4.5). Then the total complexity for each Bellman
update is O(NS4.5A).

C Appendix: Details for Numerical Experiments

We compare our fast algorithm with the state-of-the-art solver Gurobi with version v10.0.1rc0 (Gurobi
Optimization, LLC, 2023) and the first-order method of (Grand-Clément and Kroer, 2021a). All
experiments are implemented in Python 3.8, and they are run on a 2.3 GHz 4-Core Intel Core i7 CPU
with 32 GB 3733 MHz DDR4 main memory. We will release our code to ensure reproducibility.
https://github.com/Chill-zd/Fast-Bellman-Updates-DRMDP

Our algorithms are tested on some random instances generated by the Generalized Average Reward
Non-stationary Environment Test-bench (Garnet MDPs) (Archibald et al., 1995; Bhatnagar et al.,
2009). The Garnet MDPs are a collection of assessment problems designed to assess the performance
of reinforcement learning algorithms in non-stationary environments. It is convenient to construct
and implement these problems. We utilize the parameter nb to regulate the proportion of the next
states accessible for each state-action pair (s, a). Following the same setting as (Grand-Clément and
Kroer, 2021a), we set nb to be 0.2 and random uniform rewards to be in [0, 10]. The discount factor
� is fixed at 0.8, and parameter ✏ = 0.1. For each MDP instance, we generate the sampled kernels
p1, . . . ,pN , considering N small random (Garnet) perturbations around the nominal kernel p0. We
set parameter ✓ in Proposition 4.1 to be

p
nbA.

To test the speed of Bellman update, we run the random instances 50 times for all the algorithms, and
show the average time of them in tables 1, 2 and 3. We can see that our algorithm performs better
than Gurobi and the first-order method. When the states number increases, the running time of our
algorithm keeps a small standard deviation.

We also compare the speed of value iteration for all algorithms using the same convergence criteria:
kv � v?

k1 2�✏(1 � �)�1, which follows (Grand-Clément and Kroer, 2021a). The results are
shown in tables 4, 5 and 6. The runtimes that exceed 4000s for L1 and L1 case or exceed 10000s for

Table 3: Comparisons of runtime (average and standard deviation) (millisecond) of Bellman updates
for all algorithms in L1 norm.

Algorithm
N = S = A

10 20 30 40

Fast 0.06 (0.1) 0.21 (0.1) 0.47 (0.2) 0.80 (0.4)
Gurobi 0.92 (0.1) 7.33 (0.8) 26.50 (3.8) 65.22 (7.9)
FOM 144.92 (981.1) 166.19 (966.5) 237.24 (978.2) 366.74 (976.6)

24

L2 case will be shown as “�”. We can see from tables 4, 5 and 6 that our algorithm always performs
better than Gurobi and the first-order method. We point out that our algorithm generally becomes
better as the state number increases.

Table 4: Runtime (second) of value iteration for all algorithms in L1 norm.

Algorithm
N = S = A

10 20 30 40

Fast 3.6164 34.0930 116.4698 281.9007
Gurobi 5.7131 202.0723 1967.9552 �

FOM 202.4039 3578.1377 � �

Table 5: Runtime (second) of value iteration for all algorithms in L2 norm.

Algorithm
N = S = A

40 50 60 70

Fast 2198.5413 4847.4994 7223.7663 12387.5601
Gurobi 2543.9588 4861.4114 7949.4562 22096.7578
FOM � � � �

Table 6: Runtime (second) of value iteration for all algorithms in L1 norm.

Algorithm
N = S = A

10 20 30 40

Fast 0.0045 0.0348 0.1371 0.3181
Gurobi 0.0907 0.8746 3.9243 11.5589
FOM 16.4344 97.44293 1131.5260 3933.8585

25

