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Abstract

Querying knowledge graphs (KGs) using deep learning approaches can naturally
leverage the reasoning and generalization ability to learn to infer better answers.
Traditional neural complex query answering (CQA) approaches mostly work on
entity-centric KGs. However, in the real world, we also need to make logical
inferences about events, states, and activities (i.e., eventualities or situations) to
push learning systems from System I to System II, as proposed by Yoshua Bengio.
Querying logically from an EVentuality-centric KG (EVKG) can naturally provide
references to such kind of intuitive and logical inference. Thus, in this paper, we
propose a new framework to leverage neural methods to answer complex logical
queries based on an EVKG, which can satisfy not only traditional first-order logic
constraints but also implicit logical constraints over eventualities concerning their
occurrences and orders. For instance, if we know that Food is bad happens before
PersonX adds soy sauce, then PersonX adds soy sauce is unlikely to be the cause of
Food is bad due to implicit temporal constraint. To facilitate consistent reasoning
on EVKGs, we propose Complex Eventuality Query Answering (CEQA), a more
rigorous definition of CQA that considers the implicit logical constraints governing
the temporal order and occurrence of eventualities. In this manner, we propose
to leverage theorem provers for constructing benchmark datasets to ensure the
answers satisfy implicit logical constraints. We also propose a Memory-Enhanced
Query Encoding (MEQE) approach to significantly improve the performance of
state-of-the-art neural query encoders on the CEQA task.

1 Introduction

Querying knowledge graphs (KGs) can support many real applications, such as fact-checking and
question-answering. Using deep learning methods to answer logical queries over KGs can naturally
leverage the inductive reasoning and generalization ability of learning methods to overcome the
sparsity and incompleteness of existing KGs, and thus has attracted much attention recently, which
are usually referred to as Complex Query Answering (CQA) [37, 26, 38]. As the computational
complexity of answering complex logical queries increases exponentially with the length of the
query [37, 26], brute force search and sub-graph matching algorithms [29, 30, 28] are unsuitable
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Queries Type Interpretations

𝑞1 = V? . ∃𝑉: Interact V? ,V
∧ Assoc V,Alzheimer ∧ Assoc V,MadCow

Entity Find the substances that interact with the proteins 
associated with Alzheimer’s and Mad cow disease.

𝑞2 = V? . Precedence Food is bad,PersonX add soy sauce
∧ Reason Food is bad,V?

Eventuality Food is bad before PersonX add soy sauce. What is the 
reason for food being bad?

𝑞3 = V? . Precedence V? , PersonX go home
∧ ChosenAlternative PersonX go home,PersonX buy an umbrella

Eventuality Instead of buying an umbrella, PersonX go home.  
What happened before PersonX go home?

Figure 1: Complex query examples and corresponding interpretations in natural language. q1 is a
query on an entity knowledge graph, while q2 and q3 are queries on an eventuality knowledge graph.

for processing complex queries. To overcome these challenges, various techniques, such as query
encoding [23] and query decomposition [2], have been proposed. These techniques enable effective
and scalable reasoning on incomplete KGs and facilitate the processing of complex queries.

Most of the existing work in this field has primarily focused on entity-centric KGs that only describe
entities and their relationships. As Yoshua Bengio described in his view2 of moving from System I
to System II [16–18, 25, 13], we need to equip machine learning systems with logical, sequential
reasoning, and other abilities. Particularly, such a system requires the understanding of how actions
(including events, activities, or processes) interact with changes in distribution which can be reflected
by states. Here we can summarize events, activities, and states as a linguistic term, eventualities (or
situations), according to the linguistics literature [33, 4]. As with many other KG querying tasks,
querying eventuality-centric knowledge graphs can also support many applications, such as providing
references for making logical and rational decisions of intuitive inferences or eventual planning.
This requires the CQA models to perform reasoning at the eventuality level. To provide resources
for achieving eventuality-level reasoning, recently constructed KGs, such as ATOMIC [41, 24],
Knowlywood [43], and ASER [52, 53], tend to use one or more discourse relations to represent the
relationships between eventuality instances. For example, PersonX went to the store and PersonX
bought some milk are two simple eventuality instances, with the latter being a possible consequence
of the former. The construction of these EVentuality-centric Knowledge Graphs (EVKGs) thoroughly
maps the relationships between eventualities and enables us to reason about eventuality instances
and their relationships using logical queries, thereby facilitating a more comprehensive approach to
modeling complex relationships than traditional knowledge graphs.

Aside from the importance of querying EVKGs, reasoning on EVKG also significantly dif-
fers from that on an entity-centric KG because eventualities involve considering their occur-
rences and order. In entity-centric KGs, as shown in Figure 1 q1, the vertices represent en-
tities such as Alzheimer or Mad Cow Disease, and truth values are assigned to the edges
between entities to indicate their relationships. For example, the statement Assoc(Beta −
amyloid,Alzheimer) is true. In contrast, during the reasoning process on EVKG, the even-
tualities may or may not occur, and determining their occurrence is a crucial part of the rea-
soning. For instance, given ChosenAlternative(PersonX gohome, PersonX buy umbrella)
in Figure 1 q2, it implicitly suggests that “PersonX go home” occurs, while “PersonX
buy umbrella” does not. Moreover, there are relationships that explicitly or implicitly
describe the order of occurrences, such as temporal and causal relations. For example,
Reason(PersonX study hard, PersonX pass exam) indicates the causality between “PersonX
pass the exam” and “PersonX study hard,” which also implies that “PersonX pass the exam” occurs
after “PersonX study hard.” When multiple edges are presented in a given situation, it is essen-
tial to ensure that there are no contradictions regarding the occurrence of these eventualities. For
example, in Figure 1 q3, ChosenAlternative(PersonX gohome, PersonX buy umbrella) ∧
Succession(PersonX gohome, PersonX buy umbrella) is contradictory because the former
suggests that PersonX did not buy an umbrella, while the latter implies otherwise.

To enable complex reasoning on eventuality knowledge graphs, we formally define the problem
of complex eventuality query answering (CEQA). CEQA is a more rigorous definition of CQA on
EVKG that consider not only the explicitly given relational constraints, but also the implicit logical
constraints on the occurrences and temporal order of eventualities. The implicit constraints are derived
from the relational constraints and can be further divided into two types: occurrence constraints and
temporal constraints. Incorporating these implicit constraints into complex query answers drastically

2http://www.iro.umontreal.ca/~bengioy/AAAI-9feb2020.pdf
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(B)

𝜂(Food is bad) ∧ 𝜂(PersonX adds soy sauce)
∧ 𝝉(Food is bad) ≺ 𝝉(PersonX adds soy sauce)

𝜂(Food is bad) ∧ 𝜂 V? ∧ 𝜂 V? → 𝜂 Food is bad

∧ 𝝉 Food is bad ≻ 𝝉 V?

q = 𝑉? .Precedence V?, PersonX go home ∧ ChosenAlternative PersonX go home,PersonX buy an umbrella(A)

𝜏 V? ≺ 𝜏 PersonX go home ∧ 𝜼 V? ∧ 𝜂 PersonX go home ∧ 𝜂 PersonX go home ∧ ¬ 𝜼 PersonX buy an umbrella

𝜼 V? ∧ 𝜂 PersonX go home ∧ ¬ 𝜼 PersonX buy an umbrella

𝜏 V? ≺ 𝜏 PersonX go home

𝜂(Food is bad) ∧ 𝜂(PersonX adds soy sauce) ∧ 𝜂(Food is bad) ∧ 𝜂 V? ∧ (𝜂 V? → 𝜂 Food is bad )

𝝉(Food is bad) ≺ 𝝉(PersonX adds soy sauce) ∧ 𝝉 Food is bad ≻ 𝝉 V?

∧

Occurrence:

Temporal  :

Constraints:

q = V? . Precedence(Food is bad, PersonX adds soy sauce)   ∧ Reason(Food is bad, V?)

Query:

Occurrence:

Temporal  :

Constraints:

Query:

Figure 2: Complex eventuality queries with their implicit temporal and occurrence constraints

changes the nature of the reasoning process. Unlike conventional CQA, the reasoning process of
CEQA is defeasible because when additional knowledge is presented, the original reasoning could be
weakened and overturned [19]. For example, we showed in Figure 2, PersonX adds soy sauce is a
possible answer to the query What is the reason for food being bad. However, if more knowledge is
given, like Food is bad is before PersonX adds soy sauce, then it cannot be the proper reason anymore
due to temporal constraints. However, all the existing methods for CQA cannot incorporate additional
knowledge to conduct defeasible reasoning in CEQA.

To address this problem, we propose the method of memory-enhanced query encoding
(MEQE). In the MEQE method, we first separate the logic terms in a query into two
categories, computational atomics and informational atomics. Computational atomics, like
Reason(Food is bad, V?), contains at least one variable in their arguments, and informational atom-
ics, like Precedence(Food is bad, PersonX add soy sauce), does not contain variables. For the
computational atomics, following previous work, we construct the corresponding computational
graph to recursively compute its query embedding step-by-step. For the informational atomics, we
put them into a key-value memory module. For each of the informational atomics, its head argument
is used as the memory key, and its relation type and tail arguments are used as memory values.
In the query encoding process, after each operation in the computational graph, a relevance score
is computed between the query embedding and memory heads. This relevance score is then used
to retrieve the corresponding memory values of the corresponding relation and tail. Then these
memory values are aggregated, adjusted, and added back to the query embedding. By doing this,
the query encoder is able to leverage implicit logical constraints that are given by the informational
atomics. We evaluate our proposed MEQE method on the eventuality knowledge graph, ASER,
which involves fourteens types of discourse relations between eventualities. Experiment results show
that our proposed MEQE is able to consistently improve the performance of four frequently used
neural query encoders on the task of CEQA. Code and data are publicly available 3.

2 Problem Definition

In this section, we first introduce the definitions of the complex queries on entity-centric and
eventuality-centric KGs. Then we give the definition of implicit logical constraints and the informa-
tional atomics that specifically provide such constraints to the eventuality queries.

2.1 Complex Queries

Complex query answering is conducted on a KG: G = (V,R). The V is the set of vertices v, and
the R is the set of relation r. The relations are defined in functional forms to describe the logical
expressions better. Each relation r is defined as a function with two arguments representing two
vertices, v and v′. The value of function r(v, v′) = 1 if and only if there is a relation between the
vertices v and v′.

In this paper, the queries are defined in conjunctive forms. In such a query, there are logical operations
such as existential quantifiers ∃ and conjunctions ∧. Meanwhile, there are anchor eventualities
Va ∈ V , existential quantified variables V1, V2, ...Vk ∈ V , and a target variable V? ∈ V . The query

3https://github.com/HKUST-KnowComp/CEQA
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Table 1: The discourse relations and their implicit logical constraints. η(V ) is True if and only if V
occurs. τ(V ) indicates the happening timestamp of V . Meanwhile, the instance-based temporal logic
operator ≺, ≻, or = means V1 is before, after, or at the same time as V2.

Discourse Relations (ei) Semantics Implicit Constraints
Occurrence Constraints (oi) Temoral Constraints (ti)

Precedence(V1, V2) V1 occurs before V2 . η(V1) ∧ η(V2) τ(V1) ≺ τ(V2)
Succession(V1, V2) V1 occurs after V2 happens. η(V1) ∧ η(V2) τ(V1) ≻ τ(V2)
Synchronous(V1, V2) V1 occurs at the same time as V2 . η(V1) ∧ η(V2) τ(V1) = τ(V2)

Reason(V1, V2) V1 occurs because V2 . η(V1) ∧ η(V2) ∧ (η(V1)← η(V2)) τ(V1) ≻ τ(V2)
Result(V1, V2) V1 occurs as a result V2 . η(V1) ∧ η(V2) ∧ (η(V1)→ η(V2)) τ(V1) ≺ τ(V2)
Condition(V1, V2) If V2 occurs, V1 . η(V1)→ η(V2) τ(V1) ≻ τ(V2)

Concession(V1, V2) V2 occurs, although V1 . η(V1) ∧ η(V2) -
Constrast(V1, V2) V2 occurs, but V1 . η(V1) ∧ η(V2) -

Conjunction(V1, V2) V1 and V2 both occur. η(V1) ∧ η(V2) -
Instantiation(V1, V2) V2 is a more detailed description of V1 . η(V1) ∧ η(V2) -
Restatement(V1, V2) V1 restates the semantics of V2 . η(V1)↔ η(V2) -
Alternative(V1, V2) V1 and V2 are alternative situations. η(V1) ∨ η(V2) -
ChosenAlternative(V1, V2) Instead of V2 occurs, V1 . η(V1) ∧ ¬η(V2) -
Exception(V1, V2) V1 , except V2 . ¬η(V1) ∧ η(V2) ∧ (¬η(V2)→ η(V1)) -

is written to find the answers V? ∈ V , such that there exist V1, V2, ...Vk ∈ V satisfying the logical
expression:

q[V?] = V?.∃V1, ..., Vk := e1 ∧ e2 ∧ ... ∧ em. (1)

Each ei is an atomic expression in any of the following forms: ei = r(va, V ), or ei = r(V, V ′). Here
va is an anchor eventuality, and V, V ′ ∈ {V1, V2, ..., Vk, V?} are distinct variables.

2.2 Complex Eventuality Queries

For complex eventuality queries, they can also be written in the form of a conjunctive logical
expression as Eq. (1). Differently, each atomic ei can all be in the form of ei = r(vi, vj), where
vi, vj ∈ V are given eventualities. These atomics, which do not include variables, are called
informational atomics, because they only provide implicit constraints .

The relations r in CEQA are discourse relations, and they exert implicit constraints over the eventual-
ities, and these constraints can be categorized into occurrence constraints and temporal constraints.
Suppose the occurrence and temporal constraints derived from the i-th atomic ei is denoted as oi and
ti. Then complex eventuality query, including its implicit constraints can be written as

q[V?] = V?.∃V1, ..., Vk := (e1 ∧ ... ∧ em) ∧ (o1 ∧ ... ∧ om) ∧ (t1 ∧ ... ∧ tm). (2)

The constraints brought from each type of discourse relations are presented in Table 1. Further
justifications of the derivation process are given in the Appendix B.

2.2.1 Occurrence Constraints

The occurrence constraints determine whether certain eventuality occurs or not. For instance, consider
Figure 2 (A), where the logical query means that Instead of buying an umbrella, PersonX goes home.
What occurred before PersonX went home? If we rely solely on relational constraints, as in the
conventional definition of CQA, the answers are only determined by the latter part of the query,
What happened before PersonX went home? Consequently, PersonX buys an umbrella could be a
solution to this query. However, within the query, there is an information atomic saying, instead
of buying an umbrella, PersonX goes home, which denies the occurrence of PersonX buying an
umbrella. To formally express such constraint, we use the function η(V ). If eventuality V occurs,
then η(V ) = True, otherwise it is False. As depicted in Figure 2, the occurrence constraint of this
query comprises the terms η(V?)∧¬η(PersonX buy umbrella). In this case, V? cannot be PersonX
buys an umbrella or there is an contradiction.

Most discourse relations assume the occurrence of the argument eventualities, for example,
Precedence, Conjunction, and Reason. However, there are also relations that do not imply
the occurrence of the arguments, such as Condition and Restatement. Moreover, the Exception
and ChosenAlternative relations restrict certain eventualities from happening. For instance, in the
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Food is bad before he adds soy sauce. Instead of adding vinegar, he adds ketchup. 
She complains after V. She leaves restaurant after V.  The reason of V is V?. What is V?

V V?

PersonX
complains

PersonX leaves 
restaurant

Food is 
bad

Precedence

Reason

PersonY adds 
soy sauce

ChosenAlternative

PersonY adds 
ketchup

PersonY
adds vinegar

Answer: V?  ∈ {Staff is new, PersonY adds ketchup,
PersonY adds soy sauce, PersonY adds vinega𝑟}

Answer: V?  ∈ {Staff is new,PersonY adds ketchup}

Computational Atomics:

Informational Atomics:
PersonY adds 

soy sauce

PersonY adds 
vinegar

PersonY adds 
ketchup

PersonX
complains

PersonX leaves 
restaurant

Food is 
bad

Service 
is bad

Staff is new

Reason

Precedence

C
h
o
s
e
n
A
l
t
e
r
n
a
t
i
v
e

ReasonSuccession

Succession

Eventuality Knowledge Graph:

q = V? . ∃ V: Succession(PersonX complains, V) ∧ Succession(PersonX leaves restaurant, V) ∧ Reason(V, V?) ∧
Precedence(Food is bad, PersonY adds soy sauce) ∧ ChosenAlternative(PersonY adds ketchup, PersonY adds vinegar)

Figure 3: An example complex eventuality query with the computational and informational atomics.
V is something that happens before a person complains and leaves the restaurant, according to the
KG, the V could be either Service is bad or Food is bad. If V? is the reason of V , then according
to the graph, V? could be either Staff is new, PersonY adds ketchup, PersonY adds soy sauce, and
PersonY adds vinegar. However, in the query we also know that PersonY adds vinegar does not
happen, and PersonY adds soy sauce happens after the Food is bad, thus cannot be the reason for
Food is bad. The conflict here is causality implies precedence.

case of ChosenAlternative(PersonX read books, PersonX play games), it implies that Per-
sonX reads books: η(PersonX read books), and does not play games: ¬η(PersonX play games).
Another example is Exception(Room is empty, PersonX stay in room), which implies that the
room is not empty and PersonX is present in the room. Furthermore, if PersonX is not in
the room, then the room is empty. This can be formally expressed as ¬η(Room is empty) ∧
η(PersonX stay in room) ∧ (¬η(PersonX stay in room) → η(Room is empty)). For a com-
prehensive overview of the occurrence constraints, please refer to Table 1.

2.2.2 Temporal Constraints

The temporal constraints reflect the order of occurrence of the eventualities. As shown in Figure
2 (B), the complex query on the eventuality knowledge graph can be interpreted as Food is bad
before PersonX adds soy sauce. What is the reason for food being bad? If we only considered the
relational constraints, like in the conventional setting of CQA, then PersonX adds soy sauce is a
possible answer. However, in the definition of CEQA, the answer PersonX adds soy sauce is incorrect
because the food is bad already occurred before PersonX added soy sauce, but something that occurs
later is impossible to be the reason for something that previously occurred. Formally, we use the
expression of temporal logic ≻, ≺, and = to describe the temporal order between two eventualities
[22]. τ(A) ≺ τ(B) means A occurs before B, and τ(A) = τ(B) means they happen at the same
time, and τ(A) ≻ τ(B) means A occurs after B. For example in Figure 2 (B), the temporal constraint
is represented by τ(Food is bad) ≺ τ(PersonX add soy sauce)∧ τ(Food is bad) ≻ τ(V?), which
can be interpreted as Food is bad is before PersonX adds soy sauce and V? is before Food is bad.
Because of this, V? cannot PersonX adds soy sauce, otherwise there exists a contradiction.

The temporal relations Precedence(A,B), Succession(A,B), and Synchronous(A,B) naturally
describes the temporal constraint. Meanwhile, previous studies also assume that causation implies
precedence [40, 10, 54], With this assumption, the temporal constraints can also be derived from
relations like Reason and Result. The descriptions of temporal constraints are given in Table 1.

3 Memory-Enhanced Query Encoding

In this section, we first introduce the method of query encoding, and then introduce how to use the
memory module to represent the informational atomics to conduct reasoning on EVKGs.
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V

V?

PersonX complains PersonX leaves restaurant

Food is 
bad

Precedence

Succession

Reason

He adds 
soy sauce

ChosenAlternative

PersonY adds ketchup

He adds 
vinegar

Answer: V?  ∈ {Staff is new, He adds
ketchup,

He adds soy sauce, He adds vinega𝑟}

Answer: V?  ∈ {Staff is new, He adds ketchup}

Computational Graph

Constraint Atoms:

Constraint Memory

Food is bad

…

Precedence

ChosenAlter. PersonY adds vinegar

PersonY adds soy sauce

… …

Key Value

Succession

Intersection

Reason

Figure 4: The example computational graph and the memory-enhanced query encoding process.

3.1 Computational Graph and Query Encoding

Figure 3 and 4 show that there is a computational graph for each query. This computational graph is
a directed acyclic graph (DAG) that consists of nodes and edges representing intermediate encoding
states and neural operations, respectively. By recursively encoding the sub-queries following the
computational graph, the operations implicitly model the set operations of the intermediate query
results. The set operations are defined as follows: (1) Relational Projection: Given a set of vertices A
and a relation r ∈ R, the relational projection operation returns all eventualities that hold the relation
r with at least one entity e ∈ A. This can be expressed as: Pr(A) = {v ∈ V | ∃v′ ∈ A, r(v′, v) = 1};
(2) Intersection: Given sets of eventualities A1, . . . , An ⊆ V , the intersection computes the set that is
the subset to all of the sets A1, . . . , An. This can be expressed as

⋂n
i=1 Ai.

Various query encoding methods are proposed to recursively encode the computational graph. How-
ever, the query embeddings of these methods can be translated into d-dimensional vectors. As shown
in Figure 4, the computations along the computation graph start with the anchor eventualities, such as
PersonX complains. Suppose the embedding of an anchor v is denoted as ev ∈ Rd. Then, the initial
query embedding is computed as q0 = ev. As for the relational projection operation, suppose the
erel ∈ Rd is the embedding vector of the relation rel. The relation projection Fproj is expressed as

qi+1 = Fproj(qi, erel), (3)
where the qi and qi+1 are input and output query embeddings for this relational projection operation.

Meanwhile, for the Intersection operations, suppose there are k embeddings of sub-queries,
q
(1)
i , q

(2)
i , ..., q

(k)
i , as the input for this operation, then the output can be expressed as:

qi+1 = Finter(q
(1)
i , q

(2)
i , ..., q

(k)
i ), (4)

where the Finter is a neural network that is permutation-invariant to the input sub-query embeddings
adopted from the backbone models [23, 5, 1, 12].

3.2 Memory-Enhanced Query Encoding

The computational graph is capable of encoding computational atomics presented in the logical
expression. However, informational atomics can influence the reasoning outcomes by introducing
implicit temporal or occurrence constraints. As depicted in Figure 3, the absence of informational
atomics results in two false answers from the knowledge graph. When informational atomics are
included, providing implicit constraints, the only two correct answers can be derived.

Based on this observation, we propose using a memory module to encode the constraint information
provided by the informational atomics. Suppose that there are M informational atomics in the query.
Their head embeddings, relation embeddings, and tail embeddings are represented as c

(m)
h , c

(m)
r ,

and c
(m)
t respectively. For each operator output qi from the computational graph, we compute its

relevance score si,m towards each head eventuality m,

si,m =< qi, c
(m)
h > . (5)

Then we use the si,m to access the values from the constraint relation and tails, and then aggregate
the memory values according to the relevance scores

vi =

M∑
m=1

si,m(c(m)
r + c

(m)
t ). (6)
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Table 2: The dataset details for CEQA. #Ans. reports the number of answers that are proved to be not
contradictory by theorem provers. #Contr. Ans. reports the number of answers that can be searched
from the ground truth KG, but are contradictory due to the occurrence or temporal constraints.

Data Split #Types OccurrenceConstarints Temporal Constraints
#Queries #Ans. #Contr. Ans. #Queries #Ans. # Contr. Ans.

Train 6 124,766 5.02 1.53 35,962 5.02 1.15
Validation 15 30,272 7.68 1.75 23,905 9.17 1.44
Test 15 30,243 8.40 1.81 24,226 11.40 1.50

Finally, as shown in Figure 4, the constraint values are added back to the query embedding after
going through a feed-forward layer FFN, and this process is described by

qi = qi + FFN(vi). (7)

3.3 Learning Memory-Enhanced Query Encoding

To train the model, we compute the normalized probability of v being the correct answer to query q
by applying the softmax function to all similarity scores:

p(q, v) =
e<q,ev>∑

v′∈V e<q,ev′>
, (8)

where < ·, · > denotes the dot product of two vectors, when q is the query embedding after the last
operation. A cross-entropy loss is used to maximize the log probabilities of all correct answer pairs:

L = − 1

N

N∑
i=1

log p(q(i), v(i)), (9)

where (q(i), v(i)) denotes one of the positive query-answer pairs, and N is the total number of them.

4 Experiments

To ensure a fair comparison of various methods for the CEQA problem, we generated a dataset by
sampling from ASER [53], the largest eventuality knowledge graph, which encompasses fourteen
types of discourse relations. The division of edges within each knowledge graph into training,
validation, and testing sets was performed in an 8:1:1 ratio, as illustrated in Table 5. The training
graph Gtrain, validation graph Gval, and test graph Gtest were constructed using the training edges,
training+validation edges, and training+validation+testing edges, respectively, following the estab-
lished configuration outlined in prior research by [37]. Moreover, we conducted evaluations using
different reasoning models, consistent with settings in previous studies.

4.1 Query Sampling with Theorem Prover

We employ the sampling algorithm proposed by [37] with the conjunctive query types outlined in [46].
Specifically, for the training dataset, we sample queries that have a maximum of two anchor nodes,
while for the validation and test sets, we select queries containing up to three anchor eventualities.
The query types in our framework reflect the structure of the computational graph and are represented
using a Lisp-like format [46, 7]. Once the query-answer pairs are sampled, we randomly select up to
three edges that share common vertices with the reasoning chain of the query-answer pairs. These
selected edges are then used as the informational atomics for the corresponding query. Subsequently,
we employ the z3 prover [15] to filter the queries. We retain only those queries where the informational
atomics incorporate effective implicit constraints, ensuring the presence of meaningful constraints
in the data. The detailed query types and their numbers of answer with/without contradictions are
shown in Table 6, in which the p is for projection, the i is for intersection, and e is for eventuality.

In detail, for each eventuality present on the reasoning path towards an answer in the complex
query, we create a corresponding boolean variable in the z3 prover. We then incorporate the relevant

7



Table 3: Experiment results of different query encoding models. In this experiment, we compare the
performance of the query encoder with or without the memory-enhanced query encoding method.

Models OccurrenceConstraints Temporal Constraints Average
Hit@1 Hit@3 MRR Hit@1 Hit@3 MRR Hit@1 Hit@3 MRR

GQE 8.92 14.21 13.09 9.09 14.03 12.94 9.12 14.12 13.02
+ MEQE 10.20 15.54 14.31 10.70 15.67 14.50 10.45 15.60 14.41

Q2P 14.14 19.97 18.84 14.48 19.69 18.68 14.31 19.83 18.76
+ MEQE 15.15 20.67 19.38 16.06 20.82 19.74 15.61 20.74 19.56

Nerual MLP 13.03 19.21 17.75 13.45 19.06 17.68 13.24 19.14 17.71
+ MEQE 15.26 20.69 19.32 15.91 20.63 19.47 15.58 20.66 19.40

FuzzQE 11.68 18.64 17.07 11.68 17.97 16.53 11.68 18.31 16.80
+ MEQE 14.76 21.12 19.45 15.31 21.01 19.49 15.03 21.06 19.47

occurrence constraints based on the relations between these eventualities, as outlined in Table 1, and
feed them into the z3 prover. If the result returned by the prover is unsat, it indicates a contradiction
in the reasoning process. Regarding temporal constraints, we follow a similar approach. We create
corresponding floating variables that represent the timestamps of the occurrence of the eventualities.
We then establish constraints on the temporal order by utilizing floating operators such as >, =, or
< between the variables. By doing so, for each query, we establish a corresponding linear program.
Once again, if the prover outputs unsat, it signifies a contradiction, namely, there is no solution for
the timestamps of these events. Queries that have no contradictory answers and queries where all
the answers are contradictory are discarded. The remaining queries are then categorized into two
types: queries with occurrence constraints and queries with temporal constraints. Table 6 presents the
average number of contradictory and non-contradictory answers per query.

4.2 Baselines and Metrics

In this section, we introduce several baseline query encoding models that use different neural network
architectures to parameterize the operators in the computational graph and recursively encode the
query into various embedding structures: (1) GQE [23] uses vectors to encode complex queries; (2)
Q2P [5] uses multiple vectors to encode queries; (3) Neural MLP [1] use MLP as the operators; (4)
FuzzQE [12] uses fuzzy logic to represent logical operators.

To define the evaluation metrics, we use q to represent a testing query, and Gval and Gtest to represent
the validation and testing knowledge graphs, respectively. We use [q]val and [q]test to represent the
answers to query q on Gval and Gtest, respectively. Eq. (10) shows how to compute the metrics. When
the evaluation metric is Hit@K, m(r) is defined as m(r) = 1[r ≤ K], where m(r) = 1 if r ≤ K,
and m(r) = 0 otherwise. For mean reciprocal ranking (MRR), m(r) is defined as m(r) = 1

r .

metric(q) =

∑
v∈[q]test/[q]val

m(rank(v))

|[q]test/[q]val|
. (10)

During the training process, the testing graph Gtest is unobserved. In the hyper-parameters selection
process, we use the same metrics as Eq. (10), but replace the graphs Gtest/Gval with Gval/Gtrain.

4.3 Details

To ensure fair comparisons, we replicate all the models under a unified framework. We use the
same number of embedding sizes of three hundred for all models and use grid-search to tune the
hyperparameters of the learning rate ranging from {0.002, 0.001, 0.0005, 0.0002, 0.0001} and batch
size ranging from {128, 256, 512}. All the experiments can be run on NVIDIA RTX3090 GPUs.
Experiments are repeated three times, and the averaged results are reported.
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Table 4: The Hit@3 and MRR on different query types with a various number of anchor nodes.

#Anc. Query Type Metric GQE Q2P Neural MLP FuzzQE
Base. MEQE Base. MEQE Base. MEQE Base. MEQE

2

(p,(i,(p,(e)),(p,(e)))) Hit@3 12.97 13.76 17.74 18.88 15.93 17.32 15.23 18.02
MRR 11.86 12.75 16.90 18.35 15.31 16.51 14.38 16.58

(i,(p,(e)),(p,(e))) Hit@3 33.52 34.48 44.65 39.54 38.39 40.29 43.71 39.77
MRR 30.53 32.80 39.79 34.77 35.02 35.16 36.92 36.53

(i,(p,(e)),(p,(p,(e)))) Hit@3 12.40 12.42 15.22 15.96 15.03 15.69 15.56 16.45
MRR 11.46 11.38 14.36 15.25 14.21 14.74 14.82 15.36

(i,(p,(p,(e))),(p,(p,(e)))) Hit@3 14.16 14.87 17.49 19.86 17.06 19.07 16.58 18.65
MRR 13.16 13.19 16.48 18.89 15.49 18.27 14.69 17.22

3

(p,(i,(i,(p,(e)),(p,(e))),(p,(e)))) Hit@3 14.63 18.02 25.67 26.17 23.93 24.34 18.58 26.31
MRR 13.47 16.95 24.38 25.13 22.63 23.41 17.72 24.92

(i,(p,(e)),(p,(i,(p,(e)),(p,(e))))) Hit@3 17.20 20.63 22.52 22.92 23.22 23.99 22.67 24.53
MRR 15.63 19.61 21.76 21.93 21.73 22.67 21.51 23.01

(i,(i,(p,(e)),(p,(e))),(p,(e))) Hit@3 24.66 28.11 45.10 44.12 40.28 40.62 47.14 47.56
MRR 22.57 24.22 40.14 37.87 35.71 36.70 40.95 41.65

(i,(i,(p,(e)),(p,(p,(e)))),(p,(e))) Hit@3 13.17 13.31 17.06 16.72 18.04 18.80 16.62 18.31
MRR 11.81 12.38 17.00 16.44 16.86 17.42 15.88 17.24

(i,(i,(p,(p,(e))),(p,(p,(e)))),(p,(e))) Hit@3 16.94 19.63 22.06 22.94 21.66 23.85 19.70 22.65
MRR 15.62 17.59 20.76 21.60 20.45 22.19 17.52 21.70

(i,(p,(i,(p,(e)),(p,(e)))),(p,(p,(e)))) Hit@3 16.23 19.75 24.45 25.59 23.39 25.45 22.33 25.63
MRR 15.05 18.36 23.30 24.15 21.60 24.26 20.87 24.00

(i,(i,(p,(e)),(p,(e))),(p,(p,(e)))) Hit@3 20.43 23.08 34.52 36.44 36.56 42.00 35.88 41.80
MRR 19.26 21.74 31.91 33.45 32.46 37.41 33.74 36.65

(i,(i,(p,(e)),(p,(p,(e)))),(p,(p,(e)))) Hit@3 13.29 15.05 20.08 20.87 21.79 22.94 19.65 22.81
MRR 12.34 14.04 19.31 19.81 19.57 21.65 17.85 21.37

(i,(i,(p,(p,(e))),(p,(p,(e)))),(p,(p,(e)))) Hit@3 15.64 17.67 22.63 25.10 22.97 24.50 20.22 25.44
MRR 14.54 16.39 21.08 23.13 20.70 23.04 21.93 23.22

4.4 Experiment Results

Table 3 presents the results of the main experiment, which compares different query encoding
models with and without MEQE. The table includes the performance metrics of Hit@1, Hit@3,
and MRR for both occurrence constraints and temporal constraints, along with the average scores
across all categories. The experimental results demonstrate that our proposed memory-enhanced
query encoding (MEQE) model consistently improves the performance of existing query encoders
in complex eventuality query answering. We conduct experiments on four commonly used query
encoders, and the MEQE model, leveraging the memory model depicted in Figure 4, outperforms the
baselines. The MEQE models differ structurally from the baseline models by incorporating a memory
module that contains informational atomics. By reading this memory module, MEQE effectively
incorporates implicit constraints from these atomics, leading to improved performance.

Additionally, we observed that combining MEQE with the Q2P [5] model yields the best average
performance across three metrics: Hit@1, Hit@3, and MRR. Furthermore, on average, MEQE
enhances the Hit@1 metric by 17.53% and the Hit@3 metric by 9.53%. The greater improvement in
the Hit@1 metric suggests that the model’s ability to accurately predict the top-ranked answer has
improved more significantly compared to predicting answers within the top three rankings. Moreover,
MEQE demonstrates a 13.85% improvement in performance on queries with temporal constraints
and an 11.15% improvement on occurrence constraints. This indicates that MEQE is particularly
effective in handling temporal constraints compared to occurrence constraints.

Table 4 displays the Hit@3 and MRR results of various types of complex queries. The table demon-
strates the superiority of MEQE over the baseline models across different query types. Furthermore,
the table indicates that, on average, MEQE achieves an improvement of 8.1% and 11.6% respectively.
This suggests that MEQE is particularly adept at handling queries with multiple eventualities.

5 Related Work

Complex query answering is a task in deductive knowledge graph reasoning, where a system or model
is required to answer a logical query on an incomplete knowledge graph. Query encoding [23] is a
fast and robust method for addressing complex query answering. Various query embedding methods
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utilize different structures to encode logical KG queries, enabling them to handle different types of
logical queries. The GQE method, introduced by Hamilton et al. [23], represents queries as vector
representations to answer conjunctive queries. Ren et al. [37] employed hyper-rectangles to encode
and answer existential positive first-order (EPFO) queries. Simultaneously, Sun et al. [42] proposed
the use of centroid-sketch representations to enhance the faithfulness of the query embedding method
for EPFO queries. Both conjunctive queries and EPFO queries are subsets of first-order logic (FOL)
queries. The Beta Embedding [36] is the first query embedding method that supports a comprehensive
set of operations in FOL by encoding entities and queries into probabilistic Beta distributions.
Moreover, Zhang et al. [55] utilized cone embeddings to encode FOL queries. Meanwhile, there
are also neural-symbolic methods for query encoding. Xu et al. [49] proposes an entangled neural-
symbolic method, ENeSy, for query encoding. Wang et al. [47] propose using pre-trained knowledge
graph embeddings and one-hop message passing to conduct complex query answering. Additionally,
Yang et al. [50] propose using Gamma Embeddings to encode complex logical queries. Finally, Liu
et al. [27] propose pre-training on the knowledge graph with kg-transformer and then fine-tuning
on the complex query answering. Recently, Bai et al. [7] proposes to use sequence encoders to
encode the linearized computational graph of complex queries. Galkin et al. [20] propose to conduct
inductive logical reasoning on KG, and Zhu et al. [56] proposes GNN-QE to conduct reasoning on
KG with message passing on the knowledge graph. Meanwhile, Bai et al. [6] formulate the problem
of numerical CQA and propose the corresponding query encoding method of NRN.

Another approach to addressing complex knowledge graph queries is query decomposition [2]. In this
research direction, the probabilities of these atomic queries are modeled using link predictors, and
then an inference time optimization is used to find the answers. In addition, an alternative to query
encoding and query decomposition is proposed by Wang et al. [47]. They employ message passing
on one-hop atomic queries to perform complex query answering. A recent neural search-based
method called QTO is introduced by Bai et al. [8], which has shown impressive performance in
complex question answering (CQA). Theorem proving is another deductive reasoning task applied to
knowledge graphs. Neural theorem proving methods [39, 31, 32] have been proposed to tackle the
incompleteness of KGs by using embeddings to conduct inference on missing information.

6 Limitation

Although our experiments demonstrate that MEQE improves the performance of existing models on
the CEQA task, the evaluation is conducted on specific benchmark datasets constructed with theorem
provers from the largest general-domain eventuality graph ASER [53]. The generalizability of the
proposed approach to specific or professional fields may require further investigation and evaluation.

7 Conclusion

In this paper, we introduced complex eventuality query answering (CEQA) as a more rigorous
definition of complex query answering (CQA) for eventuality knowledge graphs (EVKGs). We ad-
dressed the issue of implicit logical constraints on the occurrence and temporal order of eventualities,
which had not been adequately considered in the existing definition of CQA. To ensure consistent
reasoning, we leveraged theorem provers to construct benchmark datasets that enforce implicit logical
constraints on the answers. Furthermore, we proposed constraint memory-enhanced query encoding
with (MEQE) to enhance the performance of state-of-the-art neural query encoders on the CEQA
task. Our experiments showed that MEQE significantly improved the performance of existing models
on the CEQA task. Overall, our work provides a more comprehensive and effective solution to the
complex query-answering problem on eventuality knowledge graphs.
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A Broader Impact

This paper is the first work discussing how to conduct logical reasoning over knowledge graphs that
describe events, states, and actions, known as eventualities. The proposed method, MEQE, is capable
of effectively and efficiently answering logical queries over eventuality knowledge graphs.

The experiments were conducted on publicly available knowledge graphs, eliminating any data privacy
concerns. However, one possible concern is that our proposed reasoning method is susceptible to
adversarial attacks [14, 57, 9] and data poisoning [51] on knowledge graph reasoning systems, which
may result in unintended outcomes for users.

B Logical Constraints from Discourse Relations

In this paper, we utilize discourse structures based on the early work by Asher [3], where discourse
relations are considered as predicates that involve two abstract objects, such as events, states, and
propositions [48]. We have adopted the discourse relation definitions from the Penn Discourse Tree-
bank (PDTB) [34], which consist of four general classes: Temporal, Comparison, Contingency,
and Expansion. Each general class comprises various types, and the logical constraints are derived
based on the semantic meaning of these discourse types.

The Temporal class is used when there is a temporal relationship between the described situations in
the arguments. It includes Precedence(A,B), Succession(A,B), and Synchronous(A,B). In
Temporal relations, we employ the temporal logic expressions ≻, ≺, and = to represent the temporal
order between two eventualities [22]. A ≺ B denotes that A occurs before B, A = B implies that they
happen simultaneously, and A ≻ B indicates that A occurs after B.

The Contingency class is used when one of the described situations in A and B causally influences
the other. It encompasses Reason, Result, and Condition. Reason describes a cause-and-effect
relationship between two eventualities. We use the conditional operator > [21] to represent conditional
and causal relations. Reason(B,A), Result(A,B), and Condition(B,A) can all implies A > B,
indicating that A causes B [21]. Moreover, Reason and Result also imply they both occur.

The Comparison class depicts a discourse relation between A and B to to highlight significant
differences between the two situations. Semantically, it indicates that the underlying values of A
and B are independent of the connective [35]. Therefore, we simply use A ∧ B to represent both
sub-types of Contrast(A,B) and Consession(A,B), signifying that both eventualities indeed
occur.

Expansion class describes those relations that expand the discourse and move its narratives or
exposition forward. The Conjunction(A,B) is used to indicate new situations that provide new
information in B that is related to the situation described in A. The logical formulation from
the conjunction can be expressed as A ∧ B. Meanwhile, the Instantiation(A,B) relation also
requires both arguments to hold [35]. Thus it can also be described by the expression A ∧ B.
Exception(A,B) indicates that B specifies an exception to the generalization specified by A. In
other words, A is false because B is true, but if B were false, A would be true. The semantics of
an exception is expressed in ¬A ∧B ∧ (¬B → A). Restatement(A,B) describes the relationship
that the semantics of B restates the semantics of A. So the A and B hold true at the same time
A ↔ B. Alternative(A,B) relationship applies when two eventualities describe alternative
situations. The semantics of Alternative(A,B) is A ∨ B. ChosenAlternative(A,B) means
that two alternatives A and B are given, but the first one A is not chosen. Its semantic meaning is
represented as (A ∨B) ∧ ¬A.

The Expansion class encompasses relations that expand the discourse and advance its narratives or
exposition [35]. Conjunction(A,B) is used to indicate new situations in B that provide related
information to the situation described in A. The logical formulation from conjunction can be
expressed as A∧B. Similarly, Instantiation(A,B) also requires both arguments to hold [35] and
can be described by the expression A∧B. Exception(A,B) indicates that B specifies an exception
to the generalization specified by A. In other words, A is false because B is true, but if B were
false, A would be true. The semantics of an exception can be expressed as ¬A ∧ B ∧ (¬B → A).
Restatement(A,B) describes a relationship where the semantics of B restates the semantics of A.
Therefore, A and B hold true simultaneously, represented as A ↔ B. Alternative(A,B) applies
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Table 5: The basic information about the ASER-50K used for the experiments, and its standard
training, validation, and testing edges separations.

Dataset Relation Types Entities Training Validation Testing All Edges

ASER50K 14 54,557 113,608 13,860 13,784 141,252

Table 6: A breakdown of the detailed query types is provided in the training, validation, and testing
sets, along with corresponding statistics. Specifically, we report the number of samples, the number
of non-contradictory answers, and the number of answers that satisfy the relational constraints but
are contradictory due to occurrence or temporal constraints.

Split #Anc. Type Depths OccurrenceConstarint Temporal Constraints
# Queries # Ans. # Contr. Ans. # Queries # Ans. # Contr. Ans.

Trn.

1 (p,(e)) 1 4,231 2.29 1.15 112 3.41 1.06
(p,(p,(e))) 2 21,010 6.03 2.09 1,876 6.16 1.36

2

(p,(i,(p,(e)),(p,(e)))) 2 40,728 7.59 1.63 15,941 7.44 1.20
(i,(p,(e)),(p,(e))) 1 3,048 1.78 1.07 84 1.60 1.00
(i,(p,(e)),(p,(p,(e)))) 2 18,088 4.93 1.38 1,940 4.10 1.10
(i,(p,(p,(e))),(p,(p,(e)))) 2 37,661 7.50 1.87 16,009 7.43 1.19

Val.

1 (p,(e)) 1 1,023 4.47 1.36 69 4.77 1.22
(p,(p,(e))) 2 2,317 12.82 3.33 965 13.57 1.81

2

(p,(i,(p,(e)),(p,(e)))) 2 2,482 10.77 2.02 2,357 13.80 1.65
(i,(p,(e)),(p,(p,(e)))) 2 2,130 8.01 1.59 877 8.07 1.37
(i,(p,(e)),(p,(e))) 1 821 2.85 1.19 71 2.08 1.21
(i,(p,(p,(e))),(p,(p,(e)))) 2 2,391 10.13 2.32 2,338 12.50 1.50

3

(p,(i,(i,(p,(e)),(p,(e))),(p,(e)))) 2 2,452 10.02 1.73 2,618 12.57 1.57
(i,(p,(e)),(p,(i,(p,(e)),(p,(e))))) 2 2,428 9.08 1.57 2,394 10.68 1.37
(i,(i,(p,(e)),(p,(e))),(p,(e))) 1 1,026 2.43 1.15 281 2.20 1.23
(i,(i,(p,(e)),(p,(p,(e)))),(p,(e))) 2 1,952 7.64 1.52 977 8.19 1.43
(i,(i,(p,(p,(e))),(p,(p,(e)))),(p,(e))) 2 2,327 7.89 1.59 2,368 10.86 1.39
(i,(p,(i,(p,(e)),(p,(e)))),(p,(p,(e)))) 2 2,399 9.12 1.90 2,555 11.64 1.46
(i,(i,(p,(e)),(p,(e))),(p,(p,(e)))) 2 1,862 3.10 1.30 1,068 3.67 1.44
(i,(i,(p,(e)),(p,(p,(e)))),(p,(p,(e)))) 2 2,329 7.73 1.61 2,399 10.73 1.42
(i,(i,(p,(p,(e))),(p,(p,(e)))),(p,(p,(e)))) 2 2,333 9.20 2.07 2,568 12.19 1.45

Tst.

1 (p,(e)) 1 1,091 4.83 1.38 50 6.78 1.18
(p,(p,(e))) 2 2,261 14.19 3.39 954 16.50 1.85

2

(p,(i,(p,(e)),(p,(e)))) 2 2,425 11.77 2.20 2,434 17.13 1.95
(i,(p,(e)),(p,(e))) 1 899 3.29 1.23 91 2.88 1.29
(i,(p,(e)),(p,(p,(e)))) 2 2,093 8.53 1.65 845 10.30 1.38
(i,(p,(p,(e))),(p,(p,(e)))) 2 2,402 10.89 2.30 2,315 15.11 1.53

3

(p,(i,(i,(p,(e)),(p,(e))),(p,(e)))) 2 2,386 11.26 1.81 2,648 15.95 1.77
(i,(p,(e)),(p,(i,(p,(e)),(p,(e))))) 2 2,368 9.67 1.62 2,470 13.00 1.47
(i,(i,(p,(e)),(p,(e))),(p,(e))) 1 1,234 2.67 1.18 310 2.97 1.27
(i,(i,(p,(e)),(p,(p,(e)))),(p,(e))) 2 1,928 7.76 1.55 1,049 10.24 1.45
(i,(i,(p,(p,(e))),(p,(p,(e)))),(p,(e))) 2 2,282 9.13 1.72 2,420 12.97 1.40
(i,(p,(i,(p,(e)),(p,(e)))),(p,(p,(e)))) 2 2,346 10.09 1.93 2,607 13.89 1.64
(i,(i,(p,(e)),(p,(e))),(p,(p,(e)))) 2 1,910 3.44 1.42 1,052 5.94 1.41
(i,(i,(p,(e)),(p,(p,(e)))),(p,(p,(e)))) 2 2,297 8.33 1.63 2,423 12.68 1.39
(i,(i,(p,(p,(e))),(p,(p,(e)))),(p,(p,(e)))) 2 2,321 10.13 2.17 2,558 14.66 1.57

when two eventualities describe alternative situations. The semantics of Alternative(A, B) is A ∨ B.
ChosenAlternative(A,B) means that two alternatives, A and B, are given, but only the first one
A is chosen. Its semantic meaning is represented as (A ∨B) ∧ ¬B.

C Differences Between Commonsense Reasoning and Eventuality Reasoning

Our task is different from other QA or implicit reasoning tasks in several ways. Firstly, it has a
broader scope, encompassing various relationships, including non-common sense discourse relations
found in Treebank 2.0, which is even challenging for large language models [11]. This resource
provides additional relations, which include four general types: temporal (before/after), contingency
(because/result), comparison (but/although), and expansions (and/or/except/instead). In contrast,
common sense relations mainly focus on the first two types of relations: contingency and temporal.
The occurrence constraints discussed in this paper primarily exist in the expansion type, which does
not appear in common sense KG but exists in the event KG. This makes our task more complex, and
it cannot be effectively addressed using common sense question-answering methods [44].
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Moreover, our main focus is on complex query answering, where queries center around intricate
relationships between eventualities. Unlike existing common sense knowledge graphs (CSKGs),
which typically handle relations involving two events in a triple, our task involves multiple events
within a single query-answer pair. This presents a challenge in formulating our task as either a
knowledge graph completion (KGC) or question-answering (QA) task, as such formulations would
require discarding most query constraints, reducing complexity, and simplifying it into a basic query
answering task. While commonsense knowledge may play a role in answering our queries, it is
not as prevalent as in other tasks [45]. Additionally, our task does not heavily rely on the semantic
information of the query itself; instead, it relies on learning graph structures to perform query
answering and reasoning. We utilize the inherent structure of the graph rather than relying solely
on natural language processing. Finally, there are several complex query-answering tasks that share
similar settings with the one in our paper, such as the EFO-1 benchmarks [46].

D Knowledge Graph Details

The eventuality knowledge graph, ASER-50K, is derived from a sub-sample of ASER2.14. ASER2.1
includes the Co-Occurrence relations, which indicate that two eventualities co-occur in two consec-
utive sentences in the original text. However, in this paper, we exclude the co-occurrence relation to
focus on discourse relations. To remove noise from ASER 2.1, we eliminate edges with low frequen-
cies and retain only those with a frequency higher than two. The ASER graph is constructed using an
extractive method from natural language text, which may result in the inclusion of eventualities with
high frequency but vague semantics, such as PersonX know and PersonX think. To address this issue,
we remove the most frequent one hundred vertices and retain the remaining densest vertices. The
resulting ASER-50K dataset comprises 54,557 eventualities and 141,252 edges. Subsequently, we
randomly partition the edges into training, evaluation, and testing sets in an 8:1:1 ratio. The numbers
of edges in each set are presented in Table 5.

The query types in our framework reflect the structure of the computational graph and are represented
using a Lisp-like format [46, 7]. For instance, the query (i,(p,(e)),(p,(e))) represents a query
with two anchor eventualities, each having a relational projection, and the answer eventualities are
the intersection of these two projection results. Additionally, this query type is also referred to as
2i in related work [37, 36]. However, our naming approach is more flexible and can be extended
to accommodate more complex query structures. We sample our queries based on the query types,
limiting them to a maximum of three anchors and a maximum depth of two. Specifically, in the
training set, we only sample queries with a maximum of two anchors. Further details regarding the
query types in the training, validation, and testing sets can be found in Table 6.

E Query Sampling Algorithm

The query sampling algorithm employed in this study is based on the work by Ren et al. [37]. We
replicate the sampling algorithm and provide the pseudo-code for the sampling process in Algorithm
1. Our focus in this paper is on conjunctive logical queries derived from eventuality knowledge
graphs. As a result, the query sampling process involves only the operations of relational projections
and intersections. Given a knowledge graph G and a query type T , we initiate the query generation
process by starting with a random node v. The goal is to recursively construct a query that has v as
its answer, following the structure specified by T . During each recursive step, we examine the last
operation in the query. If the operation is a projection, we randomly select one of its predecessors
u that holds the corresponding relation to v, which will serve as the answer to the sub-query. The
recursion is then applied to node u and the sub-query type of T . Similarly, for intersection, we
recursively apply the process to their respective sub-queries on the same node v. The recursion
continues until the current node contains an anchor entity, at which point the process terminates. This
recursive approach allows us to systematically construct queries that satisfy the given query type T
and have v as the desired answer.

4https://hkust-knowcomp.github.io/ASER/html/index.html
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Algorithm 1 The algorithm used for sampling a complex query from a knowledge graph starting
from a random vertex v from the knowledge graph G with query structure T .
Require: G is a knowledge graph.

function SAMPLEQUERY(T, v)
T is an arbitrary node of the computation graph.
v is an arbitrary knowledge graph vertex
if T.operation = p then

u← SAMPLE({u|(u, v)is an edge in G})
RelType← type of (u, v) in G
ProjectionType← p
SubQuery ← SAMPLEQUERY(T.child, u)
return (ProjectionType,RelType, SubQuery)

else if T.operation = i then
IntersectionResult← (i)
for child ∈ T.Children do

SubQuery ← SAMPLEQUERY(T.child, v)
IntersectionResult.PUSHBACK(child, v)

end for
return IntersectionResult

else if T.operation = e then
return (e, T.value)

end if
end function

Table 7: Ablation Studies on Constraints and Feed-Forward Network in MEQE.

Models Occurrence Constraints Temporal Constraints Average
Hit@1 Hit@3 MRR Hit@1 Hit@3 MRR Hit@1 Hit@3 MRR

GQE 8.92 14.21 13.09 9.09 14.03 12.94 9.12 14.12 13.02
+ MEQE 10.20 15.54 14.31 10.70 15.67 14.50 10.45 15.60 14.41
+ MEQE - Constraints 8.29 12.87 11.62 8.80 13.02 12.17 8.54 12.95 11.90
+ MEQE - FFN 0.67 1.17 1.13 0.74 1.23 1.12 0.70 1.19 1.08

Q2P 14.14 19.97 18.84 14.48 19.69 18.68 14.31 19.83 18.76
+ MEQE 15.15 20.67 19.38 16.06 20.82 19.74 15.61 20.74 19.56
+ MEQE - Constraints 14.16 20.00 18.86 14.72 19.92 18.79 14.44 19.96 18.82
+ MEQE - FFN 12.77 16.63 15.89 12.74 16.83 14.75 12.76 16.73 15.32

Nerual MLP 13.03 19.21 17.75 13.45 19.06 17.68 13.24 19.14 17.71
+ MEQE 15.26 20.69 19.32 15.91 20.63 19.47 15.58 20.66 19.40
+ MEQE - Constraints 13.33 19.15 17.94 13.49 19.18 14.48 13.41 19.16 18.08
+ MEQE - FFN 10.35 14.67 13.71 10.94 14.67 12.74 10.64 14.67 14.53

FuzzQE 11.68 18.64 17.07 11.68 17.97 16.53 11.68 18.31 16.80
+ MEQE 14.76 21.12 19.45 15.31 21.01 19.49 15.03 21.06 19.47
+ MEQE - Constraints 12.69 19.92 17.68 13.53 18.25 17.91 13.11 19.08 17.80
+ MEQE - FFN 9.81 15.26 14.46 10.17 15.37 14.87 9.99 15.31 14.66

F Further Ablation Study on the memory module and FFN layer

To demonstrate the effectiveness of the relevance score and the feed-forward module, we conducted
an ablation study on our proposed MEQE method, and the results are presented below.

When we removed the feed-forward network, as shown in the rows of “MEQE - FFN” and directly
added the relations and tails embedding to the query embedding, the performance was negatively
impacted. This is because the query embedding is more likely to have a higher similarity to the
answers that should be excluded. This effect was more significant in the GQE model, as the GQE
model uses the simplest operation as the relations projection.

We also conducted another ablation study by replacing the constraints with random triples so that there
are no contradictory answers in the rows of “MEQE-Constraints”. We observed that the performance
of the model is comparable to the baseline model. This indicates that the performance improvement
is gained from the constraints instead of the structural changes of the query encoder.
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q = V? . ∃ V: Succession(PersonX complains, V) ∧ Succession(PersonX leaves restaurant, V) ∧ Reason(V, V?) ∧
Precedence(Food is bad, PersonY adds soy sauce) ∧ ChosenAlternative(PersonY adds ketchup, PersonY adds vinegar)

Implicit Constraints: 

Logical Query: 

ReasonSuccession

Succession

PersonX complains

PersonX leaves 
restaurant 

Informational Atomics:

Intersection

{PersonX receives a call, 
Service is bad, …}

{Service is bad, 
Food is bad, …}

{Service is bad, 
Food is bad}

{Staff is new, 
PersonY adds ketchup,
PersonY adds vinegar,
PersonY adds soy sauce }

Precedence

PersonY adds 
soy sauce

Food is bad

ChosenAlternative

PersonY adds 
ketchup

PersonY
adds vinegar

Computational Graph:

Temporal Constraints

Query Types: 

𝜏 V ≺ 𝜏 PersonX complains ∧ 𝜂 V ∧ 𝜂 PersonX complains
∧ 𝜏 V ≺ 𝜏 PersonX leaves restaurant ∧ 𝜂 V ∧ 𝜂 PersonX leaves restaurant
∧ 𝜂(V) ∧ 𝜂 V? ∧ 𝜂 V? → 𝜂 V ∧ 𝜏 V ≻ 𝜏 V?

∧ 𝜂(Food is bad) ∧ 𝜂(PersonY adds soy sauce) ∧ 𝜏(Food is bad) ≺ 𝜏(PersonY adds soy sauce)
∧ 𝜂 PersonY adds ketchup ∧ ¬ 𝜂 PersonY adds vinegar

V V?

(p,(i,(p,(e)),(p,(e)))))

Figure 5: The example provided showcases a complex eventuality query along with its implicit
constraints, query type, computational graph and atomics visualization.

These experiments prove two things. First, the relevance score is effective in finding the corresponding
constraints. Second, the feed-forward layer is useful and necessary to adjust the direction of the
memory contents to incorporate into the query embedding.

G Detailed Example of Complex Eventuality Query

Figure 5 provides a detailed example of a complex eventuality query. This query corresponds to the
query type (p,(i,(p,(e)),(p,(e)))), and its corresponding computational graph is depicted.
The implicit constraints of the atomics in the logical query are derived according to the discourse
relations. When the computational graph is executed on the eventuality knowledge graph, without
considering the logical constraints, there would be four potential answers: Staff is new, PersonY adds
ketchup, PersonY adds vinegar, and PersonY adds soy sauce.

However, the answer PersonY adds vinegar is contradictory due to occurrence constraints, as one of
the informational atomics indicates that PersonY adds vinegar did not occur. Furthermore, the answer
PersonY adds soy sauce is contradictory due to temporal constraints, as it occurs after Food is bad,
indicating that PersonY adds soy sauce cannot be the reason for Food is bad.
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