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A Experimental details

A.1 Architecture

As mentioned in §3 of the main paper, we use C2FAR-LSTMs [2] for our sub-series RNNs. The
detailed architecture of the LSTMs follows the description in [2, supplement]. In particular, network
layers include bias weights, and the same number of hidden units are used in each LSTM layer when
multi-layer LSTMs are used. Like C2FAR, we also follow DeepAR [11] in using the same network
to encode (i.e., process the conditioning range) and decode (i.e., generate values in the prediction
range). Like C2FAR, during training we only compute loss over the prediction range.

A.2 Form of output distribution and input encoding

As mentioned in §3 of the main paper, when training DeepAR-style models, values in the conditioning
and prediction ranges are normalized based on the amplitudes in the conditioning range. Likewise,
during inference, conditioning values are normalized based on the conditioning range; forecasts are
subsequently made in the normalized space before they are ultimately unnormalized in order to create
the final output sample. In SutraNets, we use min-max scaling [8] to normalize values for a target
sub-series, based on the min and max of the conditiong range of that sub-series. In other words, each
sub-series is forecast in its own normalized space. Theoretically, this could be advantageous if the
sub-series have very different amplitudes as it would allow each sub-series to make use of the full
range of bins in the coarse-to-fine discretization, ultimately increasing the precision of the forecasts.

However, also recall that for each sub-series RNN, at each step we encode and provide as inputs
both previous values of that sub-series (the target sub-series), as well as covariate features from
other sub-series (autoregressively). We therefore have two options for normalizing the covariate
values from the other sub-series: (1) normalize these values according to the dynamic range in the
conditioning range of the target sub-series, or (2) normalize these values according to the dynamic
range of their own conditioning range. In preliminary experiments on validation data, we found the
former approach to be slightly more effective, so adopt this approach with SutraNets. The advantage
of target-specific normalization is that covariate sub-series values are always normalized consistently
with the target sub-series. The disadvantage is that any covariate sub-series that has very different
amplitudes than the target could become normalized to very high or very low values; this could result
in the discretization of all such values to only a few bins, and therefore only very coarse information
from the covariate series would be conveyed by the covariate features. In future work, we plan to
investigate this issue further and ascertain whether other normalization strategies could prove more
effective in certain cases.

A.3 Training
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Table 1: Fixed hyperparameters.

Hyperparameter Value Note

n_train_batch_size 128 Total num. prediction ranges per training batch
n_train_ranges_per_checkpoint 8192 Total num. prediction ranges in one checkpoint (train loss reported)
n_max_checkpoints 750 Maximum num. checkpoints (n_train_ranges_per_checkpoint sets)
n_rollouts (validation) 25 Num. samples for sampling when evaluating on validation set
n_validation_set 8192 Total num. prediction ranges per validation evaluation
n_stop_evals_no_improve 37 Num. validation evals without improvement before early stop
n_rollouts (test) 500 Num. samples for sampling when evaluating on test set

Table 2: Tuning ranges for hyperparameter grid-search optimization.

Hyperparameter Range

learning_rate [1e-4, 1e-3, 1e-2, 1e-1]
weight_decay [1e-7, 1e-6, 1e-5, 1e-4]

A.3.1 Slicing of training windows

As mentioned in §3 of the main paper, recall that SutraNets, like other autoregressive forecasting
models, are trained by slicing many training series into many windows, i.e., conditioning+prediction
ranges at different start points. During training, we randomly select windows for training batches
without replacement, until all such windows have been exhausted, at which point we repeat the
random slicing process.

These windows are clock-aligned in the sense that, for example, the ith hourly value in a window is
assumed to correspond to some hour of the day (e.g., 2pm-3pm). However, as noted in Footnote 2
of the main paper, these windows do not begin and end at fixed hours of the day; one window may
begin at 2pm (and span two weeks) and the next may begin at 7am (and again span two weeks).
This means each sub-series sequence model does not learn hour-of-day-specific (or, more generally,
season-specific) patterns.

A.4 Training parallelism

We vectorize across multiple conditioning+prediction windows during training. The number of
windows that we parallelize over is referred to as the n_train_batch_size (currently set to 128, see Ta-
ble 1). We evaluate 8192 windows during each training checkpoint (n_train_ranges_per_checkpoint),
and train for a maximum of 750 checkpoints (n_max_checkpoints).

A.5 Tuning

As mentioned in §4 of the main paper, we tune the hyperparameters weight decay and initial learning
rate over a 4×4 grid. Tuning via grid search is commonly performed in forecasting [13, 14, 9, 10].
The specific values used in our grid are given in Table 2. We tune directly for normalized deviation
(ND) on validation data, evaluating after every training checkpoint. ND evaluation requires running
the Monte Carlo sampling procedure in order to generate a forecast distribution (§A.9); we use
the median of this forecast distribution as the point forecast for evaluation. We use n_rollouts=25
samples in the Monte Carlo estimate, over a fixed validation set of n_validation_set=8192 prediction
ranges. We stop a tuning trial early if we see n_stop_evals_no_improve evaluations without a new
top score (currently set to 37, see Table 1). As training times are roughly comparable for C2FAR
and SutraNets (Fig. 2), total tuning cost is similar for both approaches, as well as for C2FAR+lags,
C2FAR+dropout, and Low2HighFreq.

A.6 Evaluation

We use 500 separate rollouts during the forecasting process on held-out data (n_rollouts=500).
We compute rolling evaluations with a stride of 1, i.e., we forecast and evaluate over overlapping
prediction ranges, as in [5].
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Table 3: Dataset details. ∗Note: while other datasets use disjoint temporal periods for Dev and Test
data, totally disjoint series (MNIST images) are used for the Dev and Test sets of mnist and mnistπ .

Dataset Domain Freq Num. Vals Dev Test Condit. Pred.
series per vals per vals per range range

series series series size size

elec Discrete Hourly 321 21212 504 504 168 168
traff Real Hourly 862 14204 504 504 168 168
wiki Discrete Daily 9535 912 91 182 91 91

azure Discrete 5-minute 4048 8628 864 864 2016 288
mnist Real 1 pixel 70000 784 784∗ 784∗ 392 392

mnistπ Real 1 pixel 70000 784 784∗ 784∗ 392 392

Table 4: Dataset-specific parameter settings for different systems.

Dataset C2FAR C2FAR SutraNets SutraNets Lag
Binning Binning Binning Binning Period

Low High Low High

elec -0.01 1.06 -0.06 1.20 24 (one day)
traff -0.01 1.01 -0.02 1.23 24 (one day)
wiki -0.16 2.34 -0.79 5.13 7 (one week)

azure -0.05 1.15 -0.08 1.20 288 (one day)
mnist 0.00 1.00 0.00 1.00 28 (one row)

mnistπ 0.00 1.00 0.00 1.00 28 (one row)

A.7 Computational resources

SutraNets are implemented in PyTorch [7], version 1.9.1+cu102. We use GPUs from Nvidia: four
Tesla P100 GPUs with 16280MiB and two Tesla K80 GPUs with 11441MiB.

A.8 Datasets

A.8.1 Azure VM demand dataset

The azure dataset was first used for forecasting in [2]; this work leveraged the publicly-available Azure
Public Dataset1, originally released in [4] under a Creative Commons Attribution 4.0 International
Public License. We converted the event stream in the Azure Public Dataset into time series by exactly
following the approach in [2, supplement], except rather than aggregating the data over a 1-hour
period, we aggregated the data over a 5-minute period. This is actually the most precise aggregation
possible given the original dataset quantizes all timestamps using 5-minute precision. We also used
the same experimental splits as in [2], using 20 days as training, 3 days for validation, and 3 final
days for testing. Compared to hourly granularity, with 5-minute intervals, there are 12× as many
rolling windows to evaluate, and each has 12× as many steps. To alleviate the computational burden
for this dataset, we evaluate all systems on a random, fixed 53% subset of the 4.1M+ windows in the
test period.

A.8.2 Other datasets

The elec, traff , and wiki datasets were obtained using scripts in GluonTS [1]. Compared to the
training/validation/test splits used in prior work [10, 8, 5], here we use more validation/test values
(Table 3), reflecting the longer forecast horizons that we evaluate on.

The mnist dataset was obtained from [6]. The standard 10,000 test images were used as our test set,
while a random 10,000-element subset of the 60,000 training images were used as a validation set.
The mnistπ dataset was obtained by applying a fixed random permutation to every element of these
same datasets. The pixel values were used in their original floating-point format, i.e., they were not
binarized or modified in any way beyond the ToTensor() transform in torchvision. Also, note

1https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
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that even though mnist and traff dynamic ranges are actually bounded (between 0 and 1), we do not
use this information explicitly; that is, we read the conditioning ranges and normalize in the same
way as we do on all datasets.

Table 3 provides the details of these datasets and azure. In Table 4, we note some system-specific
configurations for each dataset. To help explain this table, we now provide some background
information. First of all, note that a C2FAR binning always has a fixed extent from a low to a high
cutoff, over the min-max normalized values [2]. The binning extent is selected in order to cover from
roughly the 1% to the 99% percentiles of normalized values in the conditioning and prediction ranges
of training data for each series. These values are normalized, as noted above, using min-max values
from the conditioning range; the prediction range can go below the min and above the max. Also as
noted above, recall that in SutraNets, each sub-series is normalized using the conditioning min and
max values of that sub-series. We see in Table 4 that this generally corresponds to a wider binning
range than with standard C2FAR, likely because there is greater variance between conditioning and
prediction ranges when using the shorter sub-series sequences. Table 4 also gives the lag period used
in C2FAR+lags.

A.9 Metrics

Let yi,t be the tth value of the ith time series, that is, i indexes over time series and t indexes over time
steps. Recall that autoregressive forecasting approaches create a Monte Carlo estimate of the forecast
distribution by repeatedly sequentially sampling the model in the prediction range. Forecast quantiles
at a given horizon are then estimated by calculating quantiles of the sampled forecasts at that horizon.
Let α represent the quantile of interest, e.g., α=0.5 indicates we want quantile 0.5, i.e., the 50th
percentile, while α=0.9 indicates the 90th percentile, etc. Let ŷ(qα)i,t be the actual estimated α quantile

of the forecast distribution for time series i at point t, e.g. ŷ(q0.9)i,t is the value such that 90% of possible
values for point yi,t are expected to be below this value (and, as noted above, we obtain this estimate
from quantiles of our Monte Carlo samples). Our evaluation metrics always involve comparing an
estimated quantile of the forecast distribution, ŷ(qα)i,t , at some horizon of the forecast, to an observed
true value at that horizon yi,t. For normalized deviation (ND), we compare the 50th percentile of the
forecast distribution to the observed true value, i.e., we use the 50th percentile as a point estimate.
For wQL, following [8, 2], we compare multiple estimated quantiles (at α={0.1, 0.2 . . . 0.9}), to the
same observed true value.

More formally, let I(·) denote the indicator function. We define pinball loss and quantile loss as
part of the derivation of weighted quantile loss. Weighted quantile loss and normalized deviation are
reported in the main paper, as percentages.

Pinball loss:
Λα(ŷ

(qα)
i,t , yi,t) = (α− I(yi,t < ŷ

(qα)
i,t ))(yi,t − ŷ(qα)i,t )

Quantile loss:

QLα =

∑
i,t 2Λα(ŷ

(qα)
i,t , yi,t)∑

i,t |yi,t|

Weighted quantile loss:

wQL =
1

9
(QL0.1 + QL0.2 + · · ·+ QL0.9)

Normalized deviation:

ND =

∑
i,t |yi,t − ŷ

(q0.5)
i,t |∑

i,t |yi,t|
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Figure 1: Total number of parameters (x-axis) and total memory consumed during inference (y-
axis, lower is better), measured via nvidia-smi on NVIDIA Tesla P100, in MiB, for C2FAR and
Backfill-alt systems of Table 3 in the main paper, for elec (left) and traff (right). Accuracy labeled at
each point in boxes , with best result in bold.
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Figure 2: Total number of parameters (x-axis) and training time in hours (y-axis, lower is better)
for C2FAR and Backfill-alt systems of Table 3 in the main paper, for elec (left) and traff (right).
Accuracy labeled at each point in boxes , with best result in bold.

B Experimental results

B.1 Computational performance and resource requirements

See Fig. 5 in the main paper for inference time, and Fig. 1 here for inference memory usage, for
the systems of Table 3 in the main paper. All measurements of speed and memory were made on
NVIDIA Tesla P100 GPUs, with a common test batch size of 32, and 500 Monte Carlo samples for
the forecast distribution estimation.

Fig. 2 has the training times for the systems of Table 3 in the main paper. Training time naturally
reflects both the speed of convergence in learning (number of training epochs) and the speed of
operating the specific architecture.

Table 5: Number of parameters for C2FAR and different SutraNet variations, as the number of layers
and hidden units in the LSTMs vary. Note the number of SutraNet parameters is not affected by the
sub-series ordering (backfill versus regular).

nlayer nhidden C2FAR 6-alt 6-non-alt 7-alt 7-non-alt 12-alt 12-non-alt

1 64 81,830 1,320,420 905,700 1,734,026 1,153,418 4,631,496 2,806,728
1 128 261,926 3,230,436 2,400,996 4,155,914 2,994,698 10,442,184 6,792,648
1 256 917,030 8,819,940 7,161,060 11,064,074 8,741,642 25,602,504 18,303,432
2 64 181,670 1,919,460 1,504,740 2,432,906 1,852,298 5,829,576 4,004,808
2 128 658,214 5,608,164 4,778,724 6,929,930 5,768,714 15,197,640 11,548,104
2 256 2,496,038 18,293,988 16,635,108 22,117,130 19,794,698 44,550,600 37,251,528
3 64 281,510 2,518,500 2,103,780 3,131,786 2,551,178 7,027,656 5,202,888
3 128 1,054,502 7,985,892 7,156,452 9,703,946 8,542,730 19,953,096 16,303,560
3 256 4,075,046 27,768,036 26,109,156 33,170,186 30,847,754 63,498,696 56,199,624
4 64 381,350 3,117,540 2,702,820 3,830,666 3,250,058 8,225,736 6,400,968
4 128 1,450,790 10,363,620 9,534,180 12,477,962 11,316,746 24,708,552 21,059,016
4 256 5,654,054 37,242,084 35,583,204 44,223,242 41,900,810 82,446,792 75,147,720
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Exact numbers of parameters for the different models (and others that have not been evaluated), are
given in Table 5.

Looking holistically at all of the performance figures, we can conclude two things:

1. For the same inference time, memory usage, or training time, SutraNets are typically more
accurate than standard C2FAR (comparing along horizontal lines of each plot).

2. For the same number of parameters, SutraNets are typically more accurate than standard
C2FAR (comparing along vertical lines of any plot).

The only exception to this rule is the two-level C2FAR model on traff (scoring 14.7%), which is
superior to the 1-level SutraNet model (15.3%) while using fewer parameters. This model is also
arguably competitive with SutraNets in terms of training and inference time (but uses more memory
than a more accurate SutraNet model at 14.2%). As noted in the main paper (§4), the signal path
problem predominates on the traff dataset. For this problem, it seems depth and SutraNets both offer
effective strategies for improving accuracy with minor increases in computational overhead. With
depth and SutraNets together, the 2-level SutraNet already dominates the deepest vanilla C2FAR
model along all performance dimensions, while using fewer parameters.

It is also worth noting here that the Regular-alt is a unique SutraNet in that the same sequence model
parameters could theoretically be used for each sub-series model. That is, each sub-series LSTM
could continue to predict a distinct every-Kth-value of the full sequence, and each such LSTM could
continue to evolve its own distinct hidden state, while conditioning on its own unique covariates.
However, each of these LSTMs could use the same trained LSTM parameters. This is a consequence
of the unique ordering of Regular-alt (and the fact that the starting points of conditioning+prediction
windows are not clock-aligned in training, as noted in §A.3.1). As such, a Regular-alt LSTM that
shares model parameters among its different sub-series models could use only 1/K of the parameters
compared to other SutraNets.

B.2 Stability of empirical results

In this section, we investigate the stability of our empirical results. Random seeds are used in both
our training/tuning process (via random sampling of windows for training batches, §A.3.1) and our
testing process (via Monte Carlo sampling of predicted future values). It is important to quantify
the stability of these sources of randomness separately [3]. Regarding our training/tuning process,
ideally, for each system on each dataset, we would repeat our entire grid search tuning procedure
multiple times with different random seeds, allowing us to determine the end-to-end stability of our
approach to model fitting. While such repetition is not practical to perform over all datasets and over
all depth/subseries variations, given the total time required, we elected to perform this procedure on
elec and traff , in order to get definitive quantification of stability on these two datasets, and through
these findings obtain a sense of the overall stability of our experimental results.

Fig. 3 provides the tuning stability results. Backfill-alt is remarkably stable across tuning runs on
both elec and traff , while C2FAR shows much greater variation. In general, we find our tuning results
to be very stable: SutraNets are superior to C2FAR across all repeats.

Meanwhile, Fig. 4 provides the testing stability results. In evaluation, both Backfill-alt and C2FAR
are extremely stable across different random seeds.

B.3 Evaluation by forecast horizon

Fig. 5 shows the forecast error of the systems as a function of the forecast horizon, for all datasets.
These plots provide an interesting perspective on the training/inference discrepancy versus signal path
problems. On datasets where discrepancy predominates (azure and especially mnist, main Table 2),
differences between C2FAR and SutraNets do seem to start small and grow over time. Meanwhile,
when signal path problems predominate (traff and especially mnistπ), differences between C2FAR
and SutraNets are immediately large. These observations are further evidence that SutraNets provide
both a useful diagnostic for errors in long-sequence generation, and a useful solution to these errors.
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Figure 3: Tuning stability: ND% for the original tuning run (first marker) and four subsequent
repeats with different random seeds, for both C2FAR and Backfill-alt, on elec (left) and traff (right).
SutraNets have less variation across seeds than C2FAR.
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Figure 4: Testing stability: ND% for the original evaluation run (first marker) and four subsequent
repeats with different random seeds, for both C2FAR and Backfill-alt, on elec (left) and traff (right).
The variation across seeds is difficult to detect visually in all cases.

B.4 Evaluation of a Backfill-Standard Model

Experimental results in the main paper (§4) clearly demonstrate improvements in forecasting accuracy
when SutraNets are applied in backfill order. For example, Backfill-alt improves over Regular-alt
on each of azure, elec, traff and mnist datasets. This raises an interesting question: could backfill
ordering alone — i.e., used without SutraNets — lead to improvements over standard RNNs that
process the values in regular order?

To investigate this question, we implemented a normal RNN model, with a single set of parameters
and a single evolving RNN hidden state, but where we step through the time series in backfill order in
segments of K consecutive values. That is, within blocks of K values, we visit the values in reverse
order, and then move to the next block, akin to reading a document downwards but from right-to-left
on each line. The resulting state transitions and feature dependencies are pictured in Fig. 6. This is
essentially the same generative order as the Backfill-alt model in Fig. 2f of the main paper, but where
a single state is updated at every value. We call this the Backfill-standard model.

Comparing the diagrams of Backfill-standard and Backfill-alt, it is clear that signal path will not be
improved by Backfill-standard. However, because they both takeK-step maximum generative strides,
both approaches may have similar improvements in error accumulation. We therefore hypothesize
that Backfill-standard may improve accuracy over the standard RNN, but remain less accurate than
the Backfill-alt SutraNet. Such an improvement would be of significant practical importance, since
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Figure 5: Normalized deviation (ND%) at different forecast horizons for all the datasets. Note the
very cyclical nature on mnist, with a period of 28 — i.e., one row of the image — is due to the images
being more predictable on the left/right edges of each row (where they are usually zero), but harder
toward the center (where they are usually non-zero). Note also that we use the running average in
mnistπ since the original errors fluctuate very wildly by horizon.
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standard RNN.
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Table 6: ND%, wQL% across three datasets for different RNNs. The Backfill-standard model
performs worse than vanilla C2FAR and worse than all SutraNet variations across all datasets.

elec traff mnist

C2FAR 10.6, 8.4 19.3, 16.0 67.9, 52.3
Regular-alt 9.9, 7.9 15.5, 13.0 67.9, 52.4

Regular-non 9.7, 7.8 15.6, 13.1 59.4, 45.4
Backfill-alt 9.3, 7.4 15.3, 12.8 64.4, 49.7

Backfill-non 9.3, 7.4 15.7, 13.1 58.9, 44.9
Backfill-standard 11.0, 8.8 22.4, 18.1 83.2, 67.3

Table 7: ND%, wQL% across three datasets, best results in bold. Applying SutraNets via Backfill-alt
improves both DeepAR-binned and C2FAR. C2FAR also improves over DeepAR-binned, and works
synergistically with SutraNets.

elec traff mnistπ

DeepAR-binned 10.6, 8.5 20.7, 17.1 82.8, 67.3
DeepAR-binned+Backfill-alt 9.6, 7.7 15.9, 13.3 76.4, 59.1

C2FAR 10.6, 8.4 19.3, 16.0 67.9, 52.3
C2FAR+Backfill-alt 9.3, 7.4 15.3, 12.8 64.4, 49.7

Backfill-standard is very straightforward to implement, simply requiring a kind of shuffling of the
values in the conditioning and generation windows (i.e., a simple pre-processing step), which could
be applied before using any standard sequence model.

To evaluate this question, we trained/tuned and tested Backfill-standard on three datasets, fol-
lowing the same experimental setup as we used for the main paper evaluations. Unfortunately,
Backfill-standard performed quite poorly, worse than all SutraNets and worse than the standard
C2FAR model (Table 6). One key point about Backfill-standard is that it not only does not improve
signal path, but actually hurts it in many cases. For example, when generating value y3 in row 5
of Fig. 6, the key information about the value of y2 was provided many steps in the past (back in
row 1, on the order of 2K steps in the past). The standard RNN, meanwhile, is always provided
the (i− 1) input directly when generating the ith output, while Backfill-alt has access to y2 at only
one step in the past (as an input for the value generated at the previous step, see Fig. 2f in the main
paper). Results for standard C2FAR and Backfill-standard are closer on elec, where signal path is
less of an issue, but C2FAR still performs better. It seems the potential benefits in reducing error
accumulation cannot be realized without also improving signal path; if the model cannot rely on
longer-range information, it struggles to take accurate, longer predictive strides. These results provide
further evidence that SutraNets are a useful approach because they solve both error accumulation and
signal path together, and their benefits cannot be achieved with simple preprocessing tricks.

B.5 Experiments with DeepAR-binned

Experimental results in the main paper (§4) show that SutraNets provide strong gains over the
standard C2FAR model. In this section, we investigate whether a different distributional estimator,
DeepAR-binned [8], also sees gains when used with SutraNets. To evaluate this question, we
trained/tuned and tested both DeepAR-binned alone, and DeepAR-binned+Backfill-alt SutraNets. In
both cases we use 1024 bins. We use the same three datasets as in §B.4 and again follow the same
experimental setup as was used in the main paper evaluations.

Results are in Table 7. First of all, note that we replicate the findings of [2], but in the long-sequence
setting: C2FAR alone performs better than DeepAR-binned alone in all cases (although ND% is quite
close on elec). Secondly, we observe that applying SutraNets via the Backfill-alt ordering substantially
improves DeepAR-binned on all datasets, demonstrating the broad applicability of the SutraNet
approach. Finally, we note that SutraNets and the C2FAR enhancement are synergistic: applying
both together results in the most accurate forecasting models. We also note that DeepAR-binned
requires significantly more memory than the C2FAR system; DeepAR-binned uses 1024 output bins,
while C2FAR uses only 12×3 output bins total via its efficient hierarchical factorization. Note the
main computational bottleneck in tuning is sampling the output rollouts in order to compute ND%
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Table 8: Comparison of CRPS for Informer and Scaleformer and wQL (a CRPS approximation) for
other systems, using results from our main Table 2 and from Table 9 in Shabani et al. [12]. Since the
implemented Scaleformer and Informer predictors cannot see values from one week (168 hours) ago,
it makes sense that they perform much worse than both SutraNets, and the SeasNaïve1w baseline,
on datasets with strong weekly seasonality. Practitioners and researchers should be aware of the
potential cost of restricting the look-back context.

System Length of Length of CRPS/wQL CRPS/wQL
conditioning prediction on elec on traff

Informer [13] via [12, Table 9] 96 96 0.330 0.372
Scaleformer [12] via [12, Table 9] 96 96 0.238 0.288

SeasNaïve1w 168 168 0.111 0.175
Low2HighFreq (Scaleformer for RNNs) 168 168 0.082 0.166

SutraNets (Backfill-alt) 168 168 0.074 0.128

on the validation set. Since DeepAR-binned requires more memory, we must perform this sampling
over smaller batch sizes. The net result is DeepAR-binned tuning taking roughly 3X-4X more total
GPU time to tune. C2FAR is therefore doubly synergistic with SutraNets: the combination allows for
accurate, coherent forecasts, and also reduces the computational cost of these forecasts.

B.6 Effects of shorter context windows

In the main paper, we mentioned that many recent systems for “long-term” forecasting use condition-
ining windows with a maximum length of 96 inputs, which amounts to 4 days of history at 1-hour
granularity. We explained that such restricted context is a serious limitation given that values from 7
days in the past are highly predictive on datasets with strong weekly seasonality, as reflected in the
good results for SeasNaïve1w on elec and traff in main Table 2.

Although Scaleformer with Transformers may be limited to short conditioning windows, the core
idea of Scaleformer can be applied with RNNs; indeed, we implemented and evaluated a similar
method to Scaleformer, but for RNNs (and using C2FAR as the output distribution), which we called
Low2HighFreq, as noted in main paper §2. To illustrate the impact of decreased context windows, we
compare the accuracy of Low2HighFreq and SutraNets in our work with those in Table 9 of Shabani
et al. [12], where Informer and Scaleformer were used to generate probabilistic forecasts. We provide
this comparison in Table 8.

Note that SutraNets predict 168 steps ahead vs. 96 for Scaleformer and Informer (which should
disadvantage SutraNet results). Also note Shabani et al. [12] evaluate using CRPS, while we evaluate
using wQL, a 10-point approximation to CRPS (for point predictors like seasonal-naive-1week, note
both CRPS and wQL reduce to normalized deviation). It is problematic to compare these systems
directly, as they have been trained and tuned in different ways, on different data splits, and with
different output distributions. However, these results are nevertheless suggestive of the large potential
drawbacks of using limited historical context. We hope that prior systems may find ways to use larger
amounts of context and dramatically improve their forecasting accuracy.
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