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Abstract

High-precision point cloud anomaly detection is the gold standard for identify-
ing the defects of advancing machining and precision manufacturing. Despite
some methodological advances in this area, the scarcity of datasets and the lack
of a systematic benchmark hinder its development. We introduce Real3D-AD,
a challenging high-precision point cloud anomaly detection dataset, addressing
the limitations in the field. With 1,254 high-resolution 3D items (from forty thou-
sand to millions of points for each item), Real3D-AD is the largest dataset for
high-precision 3D industrial anomaly detection to date. Real3D-AD surpasses
existing 3D anomaly detection datasets available regarding point cloud resolution
(0.0010mm-0.0015mm), 360 degree coverage and perfect prototype. Additionally,
we present a comprehensive benchmark for Real3D-AD, revealing the absence
of baseline methods for high-precision point cloud anomaly detection. To ad-
dress this, we propose Reg3D-AD, a registration-based 3D anomaly detection
method incorporating a novel feature memory bank that preserves local and global
representations. Extensive experiments on the Real3D-AD dataset highlight the
effectiveness of Reg3D-AD. For reproducibility and accessibility, we provide
the Real3D-AD dataset, benchmark source code, and Reg3D-AD on our web-
site:https://github.com/M-3LAB/Real3D-AD.

1 Introduction

Real 3D-AD Motivation: 3D > 2.5D. There is a solid need to propose a high-resolution point
cloud anomaly detection dataset to tap the gap between the academy and industry, which brings the
capabilities of point cloud anomaly detection to the factory floor. Point cloud anomaly detection is
widely deployed in real-world production lines. However, 3D anomaly detection datasets released in
the academy are RGBD (2.5D), which is outside the demand of industrial manufacturing. Advanced
machining and precision manufacturing require no blind spots throughout the inspection process.
Nevertheless, the blind spots exist because RGBD datasets are achieved via single-view scanning.
The lack of a real point cloud anomaly detection dataset hinders the further development of 3D
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Figure 1: Real3D-AD dataset examples for each category. The blue box indicates the normal images
in the training dataset. The red box denotes the abnormal images in the test dataset. There are no
blind spots in Real3D-AD since our dataset are achieved by scanning all the views of the object
instead of the single view photoed by RGBD camera.

anomaly detection. Because of this, it is crucial and urgent to propose a point cloud anomaly detection
dataset that meets industrial manufacturing needs.

Limitation of current 3D-AD dataset and Real3D-AD advantage. To address this problem, we
present a large-scale, high-resolution 3D anomaly detection dataset, Real3D-AD, to support the
research and development of 3D anomaly detection methods. Although two 3D anomaly detection
dataset (MVTec 3D-AD [20] and Eyescandies [3]) has been proposed, there are still several limitations:
1) the precision of MVTec 3D-AD are insufficient to satisfy the requirements of high-precision point
cloud anomaly detection. Specifically, MVTec 3D-AD offers a limited number of 4,147 point clouds
per object with a point precision of 0.11mm. Real3D-AD offers a significantly greater number of
point clouds per object, estimated at 1.3 million, compared to MVTec 3D-AD, which is approximately
100 times larger. Moreover, the point precision of Real3D-AD reaches up to 0.010mm, which is
ten times more advanced than MVTec 3D-AD. The detailed analysis is given in Table 1. 2) There
are blind spots of 3D anomaly detection datasets if adopting an RGBD camera to collect the 3D
data, like MVTec 3D and Eyescandies. Identifying defects may pose a challenge when relying
solely on a single view for inspection. Real3D-AD is collected using high-resolution laser scans,
perfect for spotting the product’s defects everywhere, as shown in Figure 1. 3) The simulated dataset
(Eyescandies) makes it hard to extend the realistic scenario. Due to the commercial privacy of real
products, it is difficult to collect the CAD model of real-world products. So most researchers adopt
the simulated software, like Blender framework [9]. Nevertheless, both synthesizing texture and
anomaly details are not achieved with high fidelity. Real3D-AD collects the products from real-world
applications and obtains excellent prototypes via the high-resolution 3D scanner. Hence, as shown
in Table 3, we can conclude that three key characteristics distinguish Real3D-AD relative to prior
work on the 3D anomaly detection dataset: high precision, no blind spot, and realistic high-accuracy
prototype.

Benchmark & Baseline.To expedite research efforts towards developing a universal high-precision
point cloud anomaly detection approach, we have constructed a comprehensive and structured large-
scale benchmark, referred to ADBENCH-3D. Additionally, we have developed a registration-based
baseline method that aligns with the prerequisites of high-resolution 3D anomaly detection. Given
the practical constraints, the number of training datasets available for each category is restricted (less
than or equal to four), as creating a high-accuracy prototype for each category is a time-intensive
process (requiring up to two days per category). The configuration of ADBENCH-3D varies from
contemporary unsupervised anomaly detection tasks in the realm of 3D. Section 4.1 provides a
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comprehensive description of the setting. To be more specific, the training examples are limited (≤
4), and the test samples are only scanned by one side. The motivation is to simulate the real-world
application: The scanning positions on the production line are fixed, and one position can only scan
the results of one product side. Furthermore, to facilitate precise performance comparison within the
community and guarantee replicability, the ADBENCH-3D framework encompasses a comprehensive
end-to-end pipeline that includes data preprocessing, 3D-AD algorithms, evaluation scripts, metrics,
and a visualization toolkit. ADBENCH-3D comprises a set of 8 fundamental 3D anomaly detection
methodologies that have been implemented and tested on the Real3D-AD dataset. Moreover, the
results presented in Table 4 indicate that the majority of current 3D-AD techniques are unable to attain
satisfactory performance in Real3D-AD, as evidenced by their object-level AUROC score falling
short of 50%. Consequently, we propose a registration-based 3D-AD method (Reg3D-AD) that serves
as a versatile solution to cater to the requirements of the Real3D-AD dataset. The Rege3D-AD model
introduces a novel feature memory bank, as illustrated in Figure 8, designed to preserve both the
local and global features. The test objects are aligned with the training prototype during the inference
process, and their features are extracted locally and globally. The defects are identified by assessing
the distance between the features of the test object and the training prototypes. Therefore, Real3D-AD
and ADBENCH-3D present a step towards unifying disjoint efforts in 3D anomaly detection research
and pave the way toward a deeper understanding of 3D anomaly detection models.

Overall, the main contributions of this paper are:

• We create the first-ever high-resolution 3D anomaly detection dataset (Real3D-AD), enabling
the design of high-resolution 3D anomaly detection algorithms and applying it to publicly
available. Real3D-AD exhibits three primary attributes that set it apart from previous studies
on 3D anomaly detection datasets. These attributes include a high level of precision, an
absence of blind spots, and a realistic, high-accuracy prototype.

• The end-to-end pipeline offered by ADBENCH-3D includes data preparation, data splits,
evaluation metrics and scripts, and visualization toolkits. ADBENCH-3D conducts a large-
scale systematic assessment (8 main algorithms on Real3D-AD).

• We propose a general-purposed registration-based 3D anomaly detection method (Reg3D-
AD). The efficacy of Reg3D-AD has been demonstrated through comprehensive experi-
mentation on the Real3D-AD dataset, surpassing the performance of the subsequent most
effective approach by a significant degree.

2 Related work

3D-AD Datasets. The datasets for 2D anomaly detection (2D-AD) are abundant, with a history
tracing back to 2007 [29]. Over 20 different datasets are available for 2D-AD [11, 25, 17, 31]. The
numerous 2D-AD datasets have given rise to many related works. Some studies have approached
it from the perspective of image reconstruction [35, 8], feature distillation [12, 4, 27], and feature
comparison [22]. A body of research also focuses on specific scenarios such as few-shot anomaly
detection [30, 36, 7] and noisy anomaly detection [16]. In contrast, the number of datasets for 3D
anomaly detection (3D-AD) is considerably limited. The first 3D-AD dataset was introduced in
2021, and today, there are only two 3D-AD datasets, MVTec 3D-AD dataset [20] and Eyecandies
dataset [3]. MVTec 3D-AD [20] is a new dataset designed for 3D point cloud anomaly detection,
and it is the only point cloud dataset for AD. It contains 2,656 pairs of images as training sets,
294 pairs of images as validation sets, 249 pairs of normal images, and 948 pairs of abnormal
images to form a test set. The dataset comprises a total of 41 distinct types of anomalies, with a
combined count of 1148 anomaly regions. Each pair of images consists of RGB images and tiff
images representing the spatial coordinates of each pixel. The resolution of the images varies from
400×400 to 900×900. The Eyecandies dataset [3] is a novel synthetic dataset comprising ten different
categories of candies rendered in a controlled environment. It consists of 13,250 pairs of normal
samples and 2,250 pairs of abnormal samples. Each depth image corresponds to six RGB images
under different lighting conditions. Both MVTec 3D-AD and Eyecandies are RGBD datasets, limited
to single-view information. To further explore the value of spatial information in the AD task, we
propose the Real 3D-AD dataset, which expands the object information to 3D space. Prototypes in
the Real 3D-AD training set encompass comprehensive object information from various views. The
test set also includes multi-view information on objects, allowing for a more extensive exploration of
the value of 3D information in AD tasks.
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3D-AD methods. Recently, many high-quality papers have emerged in the field of 2D-AD [33,
37, 32, 26]. The release of MVTec 3D-AD also sparked interest in 3D-AD anomaly detection
methods [15, 23, 5, 28, 8]. However, more research on 3D than 2D anomaly detection still needs to
be done. Some methods only use depth information to remove background noise, which limits the
use of depth information. Meanwhile, combining RGB and depth information without compromising
performance remains a challenge. Bergmann et al. [1] propose a point cloud feature extraction
network based on the teacher-student model. During training, the student and teacher networks
maintain consistent features and use the differences in extracted features to locate anomalies during
testing. Horwitz et al. [15] combine hand-crafted 3D descriptors with the classical AD approach
KNN framework. While both of these methods are effective, their performance is poor. AST [23]
performs well in MVTec 3D-AD but only uses depth information to remove background. AST
still uses the 2D-AD method to detect anomalies, ignoring the depth information of the object.
M3DM [28] extracts features from point clouds and RGB images separately and fuses them for
better decision-making. This approach is superior to BTF but relies heavily on pre-trained large
models and memory libraries. CPMF [6] also uses the KNN paradigm. However, it projects the point
cloud into a two-dimensional image from different angles, significantly reducing feature extraction’s
complexity and computational cost and fusing the resulting information for detection. In summary,
existing 3D-AD models either perform poorly or rely heavily on pre-trained models and memory
libraries. Currently, there is a lack of anomaly detection methods that use point cloud information,
and the available datasets for research in this field are only MVTec 3D-AD with depth information
and artificially synthesized Eyescandies [3] datasets. To bring attention and research to this area, we
introduce the Real3D-AD dataset.

3 Real3D-AD dataset

3.1 Data Collection

We outline the pipeline for generating the Real3D-AD dataset, including the description of a high-
resolution scanner, the construction of prototypes, the generation of anomalies, and an assessment of
the labor and time required for the process.

Figure 2: PMAX-S130.

Table 1: Comparison of data collection equipment.
Scanner PMAX-S130 Zivid One-Plusa

Dataset Real3D-AD (Ours) MVTec 3D-AD [1]
FOV 100cm to 400cm 60cm to 200cm
Point Precision 0.011mm-0.015mm 0.11mm
Spatial Distance 0.04mm-0.07mm 0.37mm
3D Format ASC, PLY, STL, OBJ, IGES TIFF

ahttps://www.zivid.com

Description of high-resolution and high-precision 3D scanner. To obtain precise 3D anomaly
detection data, we utilize a high-resolution binocular 3D scanner called PMAX-S130, as illustrated in
Figure 2. The PMAX-S130 optical system comprises a pair of lenses with low distortion properties, a
high luminance LED, and a blue-ray filter. The blue light scanner has a lens filter that selectively
allows only the blue light of a specific wavelength to pass through. The filter effectively screens
most blue light due to its relatively low concentration in natural and artificial lighting. Nevertheless,
using blue light-emitting light sources could pose a unique obstacle in this context. The image sensor
can collect light using the lens aperture. Hence, the influence exerted by ambient light is vastly
reduced. The device exhibits the ability to perform scanning operations under intricate lighting
circumstances that are frequently encountered in workshop environments. The abovementioned
objective is accomplished by employing a cold light source of high-brightness LEDs. This approach
prolongs the device’s longevity and reduces heat emissions while ensuring consistent scanning
precision. Moreover, the precision of the device’s scanning is augmented by integrating a lens with
minimal distortion. The data presented in Table 1 demonstrates that the PMAX-S130 performs better
than the Zivid camera (utilized by MVTec 3D-AD), particularly regarding point precision. Real3D-
AD exhibits a higher point precision and spatial distance per cloud than MVTec 3D-AD, with a factor
of 10 and 4.28, respectively. Thus, Real3D-AD provides a pathway to enhance comprehension in
high-precision point cloud anomaly detection.
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Figure 3: A prototype in the training set is made from two or more scan results.

Prototype construction. The prototype construction process is shown in Figure 3. Initially, the
stationary object undergoes scanning while the turntable completes a full revolution of 360°, enabling
the scanner to capture images of the various facets of the object. Subsequently, the object undergoes
reversal, and the process of rotation and scanning is reiterated. Following the manual calibration of
the front and back scanning outcomes, the algorithm precisely calibers the stitching process. If there
are any gaps in the outcome, the scan stitching process is reiterated until the point cloud is rendered.

Original point clouds

Abnormal point cloud area

Normal point cloud area

Using bound-box 
to annotation

Annotation

Annotated point clouds

Ground truth file

Figure 4: Anomalies annotation in Real3D-AD.

normal sample(a) abnormal sample(a) annotation(a)

normal sample(b) abnormal sample(b) annotation(b)

Figure 5: Incompleteness annotation in Real3D-AD. The first column refers to the normal sample.
The second column denotes the abnormal sample. The third column presents the annotation for the
incompleteness. Specific, we mark the cross-section and the broken edges as abnomalies, which do
not introduce the extra points in the annotation.

Anomalies types and labeling. The anomalies pertaining to point clouds can be classified into two
categories: incompleteness and redundancy. CloudCompare (2016) [10] is utilized to annotate the
point cloud data. The process of labeling is depicted in Figure 4. The first step involves importing
a pcd file into the CloudCompare software and modifying the angle view and point cloud file size.
Afterward, the anomalous and non-anomalous regions were segregated and assigned corresponding
labels for each point cloud. The ultimate outcome is presented in a text file.

Labor and time-consuming. A significant requirement for labor characterizes the process of
collecting and labeling the Real3D-AD dataset. Each prototypical construction requires 1.2 days
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to complete each object with a team of three individuals. The initial individual assumes the task of
conducting a scan, while the subsequent individual directs their attention toward manual calibration.
The third individual is primarily responsible for the labeling aspect of the task. To generate anomalies,
a team of four individuals is utilized to complete the task. The initial individual directs their
attention towards the inadequacy of point cloud anomalies, while the subsequent individual assumes
responsibility for the superfluousness of point cloud anomalies. The second individual is primarily
concerned with the process of labeling anomalies. Each atypical specimen requires 5 hours to
complete. Real3D-AD involves a team of seven individuals and a time frame of four months to
complete, owing to the substantial workload involved.

3.2 Data Statistics

The statistical information of the Real3D-AD dataset is presented in Table 2. The table consists
of the dataset category, the number of training prototypes, the number of normal and abnormal
samples in the test dataset, the mean proportion of abnormal points in the test. Real3D-AD comprises
a total of 1,254 samples that are distributed across 12 distinct categories. Each training set for
a specific category contains only four samples, similar to the few-shot scenario in 2D anomaly
detection. These categories include but are not limited to Airplane, Candybar, Chicken, Diamond,
Duck, Fish, Gemstone, Seahorse, Shell, Starfish, and Toffees. All these categories are toys from
manufacturing lines. The data presented in Table 2 demonstrates that the low anomaly point ratio
poses a challenge for detecting anomalies. The majority of the attributes in the category pertain
to transparency, indicating that the Real3D-AD dataset is highly suitable for tasks involving the
detection of anomalies in point clouds.

Table 2: The statistics of Real3D-AD. Note that ∆ refers to the proportion of abnormal points in
abnormal samples.

Category Real Size [mm] Attribute Training Test Total Anomaly Point Ratio
Length Width Height Normal Normal Abnormal ∆

Airplane 34.0 14.2 31.7 Transparency 4 50 50 104 1.18%
Car 35.0 29.0 12.5 Transparency 4 50 50 104 1.99%
Candybar 33.0 20.0 8.0 Transparency 4 50 50 104 2.37%
Chicken 25.0 14.0 20.0 White 4 52 54 110 4.39%
Diamond 29.0 29.0 18.7 Transparency 4 50 50 104 5.41%
Duck 30.0 22.2 29.4 Transparency 4 50 50 104 2.00%
Fish 37.7 24.0 4.0 Transparency 4 50 50 104 2.86%
Gemstone 22.5 18.8 17.0 Transparency 4 50 50 104 2.06%
Seahorse 38.0 11.2 3.5 Transparency 4 50 50 104 4.57%
Shell 21.7 22.0 7.7 Transparency 4 52 48 104 2.25%
Starfish 27.4 27.4 4.8 Transparency 4 50 50 104 4.47%
Toffees 38.0 12.0 10.0 Transparency 4 50 50 104 2.46%
Mean 30.9 20.3 13.9 — 4 50 50 104 3.00%
Total — — — — 48 604 602 1254 —

Furthermore, a box-and-whisker plot represents the distribution of data points across all samples in
the Real3D-AD dataset, as depicted in Figure 6. Two inferences can be made from the illustration in
Figure 6. The observed differences in point count variability among distinct item categories within
the point cloud demonstrate notable dissimilarity. In specific, the training samples provide complete
prototypes of 3D objects while the test samples are scanned on only one side. Therefore, the number
of training samples is much larger than that of test samples. Secondly, it can be observed that the
disparity in point values between the normal and abnormal samples is comparatively minor within
each test set.

3.3 Real3D-AD and other datasets

The findings presented in Table 3 demonstrate that Real3D-AD exhibits superior performance
compared to MVTec 3D-AD [20] and Eyescandies [3], particularly in terms of point resolution,
point precision, absence of blind spots, and dataset authenticity. Real3D-AD demonstrates a point
resolution and precision of 0.04mm and 0.011mm, respectively. This is notably higher than MVTec
3D-AD, with a factor of 4.28 and 9 for point resolution and precision, respectively. Furthermore, the
Real3D-AD system benefits from multi-view scanning, which eliminates any potential blind spots
and thereby improves its anomaly detection capabilities. Therefore, Real3D-AD is deemed more
suitable for achieving high levels of precision in point cloud anomaly detection and can accommodate
industrial manufacturing requirements.
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Figure 6: Point numbers for all samples on a logarithmic scale, visualized by a box-and-whisker plot.

Table 3: Comparison results of main datasets.

Dataset MVTec 3D-AD Eyescandies Real 3D-AD (Ours)
Point Resolution 0.37mm Not applicable 0.04mm
Point Precision 0.11mm Not applicable 0.011mm
All Views (No Blind Spot) % % !
Real/Synthesis Real Synthesis Real

4 Benchmark and Baseline

4.1 Problem Definition and Challenges

Problem definition. ADBENCH-3D setting can be formally stated as follows. Given a set of training
examples T = {ti}Ni=1, in which {t1, t2, · · · , tN} are the training prototypes. In Real3D-AD, the
number of prototypes for each category is limited(≤ 4). In addition, Tn belongs to one certain
category, cj ∈ C, where C denotes the set of all categories. During test time, given a normal or
abnormal sample from a target category cj , the AD model should predict whether or not the test 3D
object is anomalous and localize the anomaly region if the prediction result is anomalous.

Training and test samples visualization. Figure 7 shows the training prototype and test dataset.
The images in the blue box labeled (a)-(d) represent the prototype. The training prototype undergoes
a 360◦ scan, ensuring no areas of limited visibility exist. The images in the orange box (e)-(h)
represent the test sample. To simulate real-world conditions, the test sample is scanned on only
one side. Since we desire to follow the real-world application: the workers or quality inspection
equipments in the production line randomly check one side of the product to identify the defects
by matching the scanned data with the prototype.

Training sample (full object) Test sample (one side)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Examples of training and test samples in
Real3D-AD.

Challenges. The following are the three chal-
lenges. (1) Each category’s training dataset con-
tains only normal prototypes, i.e., no object
or point-level annotations. (2) There are few
normal prototypes of the training set available.
There are fewer than four training prototypes
in the setting of ADBENCH-3D. (3) There are
unavoidable differences between the test set and
the training set samples, which need to be ad-
dressed.

4.2 ADBENCH-3D

Metrics. We standardize evaluation using met-
rics designed for 3D anomaly detection, includ-
ing Area Under the Receiver Operating Characteristic Curve (AUROC) and the Area Under the
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Table 4: ADBENCH-3D for Real3D-AD. The score indicates object-level AUROC ↑. The best results
are highlighted in bold.

Category BTF M3DM PatchCore Reg3D-AD
Raw FPFH PointMAE PointBERT FPFH FPFH+Raw PointMAE

Airplane 0.730 0.520 0.434 0.407 0.882 0.848 0.726 0.716
Car 0.647 0.560 0.541 0.506 0.590 0.777 0.498 0.697
Candybar 0.539 0.630 0.552 0.562 0.541 0.570 0.663 0.685
Chicken 0.789 0.432 0.683 0.673 0.837 0.853 0.827 0.852
Diamond 0.707 0.545 0.602 0.627 0.574 0.784 0.783 0.900
Duck 0.691 0.784 0.433 0.466 0.546 0.628 0.489 0.584
Fish 0.602 0.549 0.540 0.556 0.675 0.837 0.630 0.915
Gemstone 0.686 0.648 0.644 0.617 0.370 0.359 0.374 0.417
Seahorse 0.596 0.779 0.495 0.494 0.505 0.767 0.539 0.762
Shell 0.396 0.754 0.694 0.577 0.589 0.663 0.501 0.583
Starfish 0.530 0.575 0.551 0.528 0.441 0.471 0.519 0.506
Toffees 0.703 0.462 0.450 0.442 0.565 0.626 0.585 0.827
Average 0.635 0.603 0.552 0.538 0.593 0.682 0.594 0.704

Precision-Recall curve (AUPR/AP). The details of metrics are introduced in the supplementary
material.

Methods. As discussed in Section 2, 3D anomaly detection methods mainly focus on RGBD
anomaly detection but not point anomaly detection tasks. So we adopt BTF [15] and M3DM [28]
as our benchmark methods. We build a systematic benchmark, ADBENCH-3D, for our proposed
Real3D-AD dataset, as shown in Table 4. In Table 4, BTF(Raw) refers to that we just adopt the
coordinate features (xyz) into the BTF pipeline. BTF(FPFH) denotes we incorporate fast point
feature histogram (FPFH) [24] into the BTF pipeline. M3DM(PointMAE) denotes M3DM using
PointMAE [19] as a point cloud feature extractor and ignoring the RGB branch. M3DM(PointBERT)
denotes M3DM using PointBert [34] as a point cloud feature extractor and ignoring the RGB branch.
PatchCore+FPFH indicates we replace ResNet [14] as FPFH feature extractor and merge it into
PathCore [21]. PatchCore+FPFH+Raw indicates we use FPFH and coordinates of each point cloud’s
feature and inject them into the PatchCore pipeline. PatchCore+PointMAE denotes that we adopt the
PointMAE feature extractor and merge the feature into PatchCore architecture.

Toolkit. To complement ADBENCH-3D, we release a comprehensive toolkit as a starter code
for high-precision point cloud anomaly detection, which implements 8 core methods in (1) data
preprocessing, (2) evaluation scripts and metrics, and (3) visualization toolkit. Due to the page length
limit, the toolkit details are put into the Github Repo.

4.3 Reg3D-AD

Inspired by PatchCore [22], we develop a general-purposed registration-based point cloud anomaly
detection method (Reg3D-AD), as shown in Figure 8, which greatly meets the demands of Real3D-
AD. Reg3D-AD utilizes a dual-feature representation approach to preserve the training prototypes’
local and global features. Two distinct features are present in the dataset under consideration. The
first feature pertains to the coordinate values of each point cloud, namely the x-, y-, and z-values.
The second feature is the PointMAE feature, which characterizes the training prototypes in their
entirety. The coordinate value encapsulates the localization attribute of individual points, whereas
the PointMAE model prioritizes attaining a comprehensive representation of the training prototypes.
The training phase aims to establish a repository of neighborhood-sensitive characteristics derived
from all regular prototypes intended to serve as a memory bank. Before incorporating the novel
functionalities into the memory repository, we implement the Coreset sampling technique to preserve
the memory bank’s size.

Anomaly score calculation. Before anomaly score calculation, the test 3D object needs to be
registered via RANSAC algorithm [2]. After finishing the registration, the test 3D object is predicted
as an anomaly if at least one point cloud is anomalous, and point-level anomaly segmentation is
computed via the mean score of the point-level feature and global feature. In particular, with local
feature bank Ml and global feature bank Mg, the object-level anomaly scores s for the test object
xtest is computed by the mean value of local feature anomaly score sl and the global feature anomaly
score sg. The local feature anomaly score is the maximum score sl∗ between the test 3D object’s
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Figure 8: Pipeline of our baseline method. We extract features from the training set and sample
the most representative features to the memory bank during training. During inference, we use the
prototype as the target to calibrate the test sample and then extract the characteristics of the test
sample to compare with the memory bank. We compute the anomaly score for each point according
to the distance between test features and the memory bank.

point-level feature P(xtest) and its respective nearest neighbour ml∗ in Ml:

mtest,∗ = argmax
mtest∈P(xtest)

min
ml∈Ml

∥∥mtest −ml
∥∥
2
, ml∗ = argmin

ml∈Ml

∥∥mtest −ml
∥∥
2
, (1)

sl∗ =
∥∥mtest,∗ −ml∗∥∥

2
. (2)

To enhance the robustness of the anomaly detection model, PatchCore employs an important re-
weighting method [18] to tune the anomaly score:

sl =

(
1−

exp ∥mtest,∗ −m∗∥2∑
m∈Nb(m∗) exp ∥mtest,∗ −m∥2

)
· sl∗, (3)

where Nb(m
∗) denotes b nearest patch-features in M for test patch-feature m∗. The calculation of

global feature anomaly scores sg is similar to sl and is achieved via the global feature memory bank
Mg . Finally, the total anomaly score of each point cloud st = (sl + sg)/2.

Analysis of ADBENCH-3D. The findings presented in Table 4 indicate that most of the 3D anomaly
detection algorithms do not meet the requirements for Real3D-AD. Upon revisiting the setting outlined
in Section 4.1, there appear to be notable similarities between this setting and that of few-shot anomaly
detection. This is due to the fact that the training dataset for each category is comprised of a mere
4 prototypes. The majority of contemporary state-of-the-art 3D anomaly detection algorithms are
not specifically designed for tasks involving the detection of anomalies in a few-shot scenario. To
tackle this challenge, it is imperative to optimize the utilization of prototype data and guarantee that
the acquired point cloud data remains unaffected by spatial relative positions. From Table 4, it can
be clearly shown that our baseline method, Reg3D-AD, outperforms state-of-the-art 3D anomaly
detection methods for the Real3D-AD dataset.

5 Limitations & Potential negative societal impacts

Limitations. There is still a broad scope for improvement and exploration based on our work. For
example, our data is sourced from the 3D scanner and only contains spatial information, a common
practice in industrial production. However, obtaining standardized RGB point cloud templates may
be possible by calibrating and stitching multiple RGBD images or using modeling software rendering.
RGB point cloud templates may be simultaneously applied to RGB image (2D) anomaly detection and
point cloud (3D) anomaly detection. Additionally, our data can generate depth images from different
angles by controlling rendering conditions, enabling anomaly detection from that perspective. This

9



has yet to be explored. Furthermore, although our baseline outperforms existing anomaly detection
methods, it is still susceptible to false detection because the test point cloud edges are truncated.
Therefore, more advanced models are expected to address these issues more effectively. Our work, as
a first attempt at full-view point cloud anomaly detection, will inspire further exploration in this field.

Potential negative societal impacts. Our data is obtained from scanning industrial products, so no
negative social impact will exist.

6 Conclusion

In this work, we propose a Real3D-AD dataset to investigate high-precision point cloud anomaly
detection problems, which aims to facilitate the research of defect identification for advancing
machining and precision manufacturing. The most extraordinary high-precision 3D industrial anomaly
detection dataset to date, Real3D-AD, comprises 1,254 high-resolution 3D items (≥ one million point
clouds for each item) spanning 12 objects of real-world applicability. Regarding point cloud resolution
(0.0010mm-0.0015mm), 360◦ degree coverage, and flawless prototype, Real3D-AD outperforms
currently available 3D anomaly detection datasets. In addition, we provide a thorough assessment
of Real3D-AD datasets, highlighting the absence of baseline approaches to enable high-precision
point cloud anomaly detection applications. We put forth a general registration-based 3D anomaly
detection technique (Reg3D-AD) and 3D feature coupling unit that keeps local features and global
representations. Experiments on the Real3D-AD dataset show that Reg3D-AD performs significantly
better than the next-best approach.

Acknowledgments. This work is supported by the National Key R&D Program of China (Grant NO.
2022YFF1202903) and the National Natural Science Foundation of China (Grant NO. 62122035,
62206122).
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construction embedding for surface anomaly detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8330–8339, 2021.

[36] Lingrui Zhang, Shuheng Zhang, Guoyang Xie, Jiaqi Liu, Hua Yan, Jinbao Wang, Feng Zheng,
and Yaochu Jin. What makes a good data augmentation for few-shot unsupervised image
anomaly detection? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4344–4353, 2023.

[37] Ying Zhao. Omnial: A unified cnn framework for unsupervised anomaly localization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3924–3933, 2023.

12



A Experiment setup

Due to the limitation of GPU memory, we make subsampling on benchmark methods. For BTF [15],
we sample and store the points of training samples at a ratio of 100:1, and for testing samples, we
sample the points at a ratio of 500:1. After calculating the anomaly scores for each point, we estimate
the anomaly scores for the unsampled points using the k-nearest neighbors (KNN) algorithm [13]. As
for M3DM [28], we set the point groups number of point transformer to 16384. In our experiments
based on PatchCore [22], we uniformly set the size of the memory bank to 10000.

B Experiments

Due to the page limit, we only give the object level auroc results in the main text, here we show the
object level au-pr in Table 5, point level auroc in Table 6 and point level au-pr in Table 7. Among all
the methods, our Reg3D-AD only slightly underperforms BTF (Raw) in terms of point-level AUROC,
and slightly underperforms our self-designed PatchCore (FPFH+Raw) in terms of point-level AUPR.
Overall, Reg3D-AD remains a reliable baseline. In addition, we adjusted different memory bank
sizes and PointMAE point group numbers for comparison. As shown in Table 8, a larger PointMAE
point group number improves model performance, while a larger memory bank does not always lead
to performance improvements.

Table 5: ADBENCH-3D for Real3D-AD. The score indicates object-level AUPR ↑.

Category BTF M3DM PatchCore Reg3D-AD
Raw FPFH PointMAE PointBERT FPFH FPFH+Raw PointMAE

airplane 0.659 0.506 0.479 0.497 0.852 0.807 0.747 0.703
car 0.653 0.523 0.508 0.517 0.611 0.766 0.555 0.753
candybar 0.638 0.490 0.498 0.480 0.553 0.611 0.576 0.824
chicken 0.814 0.464 0.739 0.716 0.872 0.885 0.864 0.884
diamond 0.677 0.535 0.620 0.661 0.569 0.767 0.801 0.884
duck 0.620 0.760 0.533 0.569 0.506 0.560 0.488 0.588
fish 0.638 0.633 0.525 0.628 0.642 0.844 0.720 0.939
gemstone 0.603 0.598 0.663 0.628 0.411 0.411 0.444 0.454
seahorse 0.567 0.793 0.518 0.491 0.508 0.763 0.546 0.787
shell 0.434 0.751 0.616 0.638 0.573 0.553 0.590 0.646
starfish 0.557 0.579 0.573 0.573 0.491 0.473 0.561 0.491
toffees 0.505 0.700 0.593 0.569 0.506 0.559 0.708 0.721
Average 0.624 0.603 0.572 0.581 0.599 0.676 0.626 0.723

Table 6: ADBENCH-3D for Real3D-AD. The score indicates point-level AUROC ↑.

Category BTF M3DM PatchCore Reg3D-AD
Raw FPFH PointMAE PointBERT FPFH FPFH+Raw PointMAE

airplane 0.738 0.564 0.530 0.523 0.471 0.556 0.579 0.631
car 0.708 0.647 0.607 0.593 0.643 0.740 0.610 0.718
candybar 0.864 0.735 0.683 0.682 0.637 0.749 0.635 0.724
chicken 0.693 0.608 0.735 0.790 0.618 0.558 0.683 0.676
diamond 0.882 0.563 0.618 0.594 0.760 0.854 0.776 0.835
duck 0.875 0.601 0.678 0.668 0.430 0.658 0.439 0.503
fish 0.709 0.514 0.600 0.589 0.464 0.781 0.714 0.826
gemstone 0.891 0.597 0.654 0.646 0.830 0.539 0.514 0.545
seahorse 0.512 0.520 0.561 0.574 0.544 0.808 0.660 0.817
shell 0.571 0.489 0.748 0.732 0.596 0.753 0.725 0.811
starfish 0.501 0.392 0.555 0.563 0.522 0.613 0.641 0.617
toffees 0.815 0.623 0.679 0.677 0.411 0.549 0.727 0.759
Average 0.722 0.566 0.637 0.636 0.592 0.692 0.634 0.700
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Table 7: ADBENCH-3D for Real3D-AD. The score indicates point-level AUPR ↑.

Category BTF M3DM PatchCore Reg3D-AD
Raw FPFH PointMAE PointBERT FPFH FPFH+Raw PointMAE

airplane 0.027 0.012 0.007 0.007 0.027 0.016 0.016 0.017
car 0.028 0.014 0.018 0.017 0.034 0.160 0.069 0.135
candybar 0.118 0.025 0.016 0.016 0.142 0.092 0.020 0.109
chicken 0.044 0.049 0.310 0.377 0.040 0.045 0.052 0.044
diamond 0.239 0.032 0.033 0.038 0.273 0.363 0.107 0.191
duck 0.068 0.020 0.011 0.011 0.055 0.034 0.008 0.010
fish 0.036 0.017 0.025 0.039 0.052 0.266 0.201 0.437
gemstone 0.075 0.014 0.018 0.017 0.093 0.066 0.008 0.016
seahorse 0.027 0.031 0.030 0.028 0.031 0.291 0.071 0.182
shell 0.018 0.011 0.022 0.021 0.031 0.049 0.043 0.065
starfish 0.034 0.017 0.040 0.040 0.037 0.035 0.046 0.039
toffees 0.055 0.016 0.021 0.018 0.040 0.055 0.055 0.067
Average 0.065 0.022 0.046 0.052 0.074 0.129 0.058 0.113

Table 8: Ablation experiment for our Reg3D-AD. We modified the point groups number of Point
Transformer and the memory size of the memory bank. Note that O in O-AUROC refers to object-
level, and P in P-AUROC refers to point-level.

Category Ours(point groups 16384, memory size 10000) Ours(point groups 8192, memory size 10000) Ours(point groups 16384, memory size 20000)

O-AUROC P-AUROC O-AUPR P-AUPR O-AUROC P-AUROC O-AUPR P-AUPR O-AUROC P-AUROC O-AUPR P-AUPR
airplane 0.716 0.631 0.703 0.017 0.873 0.704 0.819 0.024 0.737 0.622 0.761 0.014
car 0.697 0.718 0.753 0.135 0.752 0.777 0.744 0.183 0.719 0.735 0.706 0.170
candybar 0.827 0.724 0.824 0.109 0.693 0.751 0.709 0.077 0.732 0.704 0.744 0.070
chicken 0.852 0.676 0.884 0.044 0.621 0.457 0.628 0.040 0.648 0.689 0.636 0.052
diamond 0.900 0.835 0.884 0.191 0.794 0.792 0.794 0.297 0.882 0.817 0.877 0.122
duck 0.584 0.503 0.588 0.010 0.570 0.342 0.515 0.012 0.572 0.521 0.564 0.012
fish 0.915 0.826 0.939 0.437 0.836 0.818 0.848 0.325 0.948 0.825 0.953 0.418
gemstone 0.417 0.545 0.454 0.016 0.386 0.737 0.421 0.087 0.420 0.544 0.458 0.032
seahorse 0.762 0.817 0.787 0.182 0.713 0.773 0.702 0.191 0.726 0.811 0.707 0.202
shell 0.583 0.811 0.646 0.065 0.665 0.753 0.574 0.042 0.542 0.803 0.583 0.061
starfish 0.506 0.617 0.491 0.039 0.422 0.591 0.432 0.039 0.485 0.593 0.460 0.034
toffees 0.685 0.759 0.721 0.067 0.562 0.419 0.554 0.036 0.710 0.764 0.744 0.071
Average 0.705 0.700 0.723 0.113 0.666 0.681 0.653 0.120 0.674 0.697 0.677 0.108
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