
A Algorithm

A.1 Fair-ARD

Algorithm 1 is Fair Adversarial Robustness Distillation (Fair-ARD). Fair-ARD utilizes Eq.(5) to
obtain adversarial data and geometric values. For each class, Fair-ARD reweights the distillation
loss according to the average distance of its examples to the decision boundary and then updates the
model parameters by minimizing the sum of the reweighted losses.

Algorithm 1 Fair Adversarial Robustness Distillation (Fair-ARD)
Input: Student model S, teacher model T , training dataset D = {(xi, yi)}ni=1, number of classes C,

learning rate η, number of epochs N , batch size m, number of batches M , temperature parameter
τ , the hyperparameter of ARD α, smoothness hyperparameter β

Output: Adversarially robust and fair student model S
1: ω = {1, . . . , 1}C1
2: for epoch = 1, . . . , N do
3: for mini-batch = 1, . . . ,M do
4: sample a mini-batch {(xi, yi)}mi=1 from D
5: for i = 1, . . . , m (in parallel) do
6: Obtain adversarial data x̃i of xi and geometry value d (xi, yi) based on Eq. (5)
7: end for
8: θ ← θ − η∇θ

{
ω
{
(1− α) CE (Sτ (xi) , yi) + ατ2 KL (Sτ (x̃i) , T

τ (yi))
}}

9: end for
10: Compute ω for each class based on Eq.(6) and Eq.(7) with β.
11: end for

A.2 Fair-IAD

Let ωi be the weight for the i-th class; we formulate a Fair Introspective Adversarial Distillation
(Fair-IAD) method as follows:

min
θS

1

C

C∑
i=1

1

ni

ni∑
j=1

ωiLIAD

(
S, T, xj

i , yi, τ, α
)
, (8)

where

LIAD

(
S, T, xj

i , yi, τ, α
)

= Ty

(
x̃j
i

)α

KL
(
Sτ

(
x̃j
i

)
, T τ

(
xj
i

))
+
(
1− Ty

(
x̃j
i

)α)
KL

(
Sτ

(
x̃j
i

)
, Sτ

(
xj
i

))
,

(9)

The method of IAD to generate adversarial examples is the same as that of ARD, and Eq. (5) is
used to generate adversarial examples. Algorithm 2 is Fair Introspective Adversarial Distillation
(Fair-IAD). Fair-IAD utilizes Eq. (5) to obtain adversarial data and geometric values.

A.3 Fair-RSLAD

Let ωi be the weight for the i-th class; we formulate a Fair Robust Soft Label Adversarial Distillation
(Fair-RSLAD) method as follows:

min
θS

1

C

C∑
i=1

1

ni

ni∑
j=1

ωiLRSLAD

(
S, T, xj

i , α
)
, (10)

where

LRSLAD

(
S, T, xj

i , α
)
= (1− α)KL

(
S
(
xj
i

)
, T

(
xj
i

))
+ αKL

(
S
(
x̃j
i

)
, T

(
xj
i

))
. (11)

The method of RSLAD to generate adversarial examples is different from that of ARD, and Eq. (12) is
used to generate adversarial examples. Algorithm 3 is Fair Robust Soft Label Adversarial Distillation

13



Algorithm 2 Fair Introspective Adversarial Distillation (Fair-IAD)
Input: Student model S, teacher model T , training dataset D = {(xi, yi)}ni=1, number of classes C,

learning rate η, number of epochs N , batch size m, number of batches M , temperature parameter
τ , the hyperparameter of IAD α, smoothness hyperparameter β

Output: Adversarially robust and fair student model S
1: ω = {1, . . . , 1}C1
2: for epoch = 1, . . . , N do
3: for mini-batch = 1, . . . ,M do
4: sample a mini-batch {(xi, yi)}mi=1 from D
5: for i = 1, . . . , m (in parallel) do
6: Obtain adversarial data x̃i of xi and geometry value d (xi, yi) based on Eq. (5)
7: end for

8: θ ← θ − η∇θ


ω

{
Ty (x̃i)

α
KL (Sτ (x̃i) , T

τ (xi))

+ (1− Ty (x̃i)
α
)KL (Sτ (x̃i) , S

τ (xi))

}


9: end for
10: Compute ω for each class based on Eq. (6) and Eq. (7) with β.
11: end for

(Fair-RSLAD). Fair-RSLAD utilizes Eq. (12) to obtain adversarial data and geometric values.
x̃(t+1) = ΠBϵ[x]

(
x̃(t) + γ sign

(
∇x̃(t) KL

(
S
(
x̃(t)

)
, T

(
x̃(t)

))))
,

d(x, y) = argmin
t∈[0,K]

(
S
(
x̃(t)

)
̸= y

)
,

(12)

Algorithm 3 Fair Robust Soft Label Adversarial Distillation (Fair-RSLAD)
Input: Student model S, teacher model T , training dataset D = {(xi, yi)}ni=1, number of classes C,

learning rate η, number of epochs N , batch size m, number of batches M , the hyperparameter of
RSLAD α, smoothness hyperparameter β

Output: Adversarially robust and fair student model S
1: ω = {1, . . . , 1}C1
2: for epoch = 1, . . . , N do
3: for mini-batch = 1, . . . ,M do
4: sample a mini-batch {(xi, yi)}mi=1 from D
5: for i = 1, . . . , m (in parallel) do
6: Obtain adversarial data x̃i of xi and geometry value d (xi, yi) based on Eq. (12)
7: end for
8: θ ← θ − η∇θ {ω {(1− α)KL (S (xi) , T (xi)) + αKL (S (x̃i) , T (xi))}}
9: end for

10: Compute ω for each class based on Eq. (6) and Eq. (7) with β.
11: end for

A.4 Fair-MTARD

Let ωi be the weight for the i-th class; we formulate a Fair Multi-Teacher Adversarial Robustness
Distillation (Fair-MTARD) method as follows:

min
θS

1

C

C∑
i=1

1

ni

ni∑
j=1

ωiLMTARD

(
S, Tnat, Tadv, x

j
i , α

)
, (13)

14



where
LMTARD

(
S, Tnat, Tadv, x

j
i , α

)
= (1− α)KL

(
S
(
xj
i

)
, Tnat

(
xj
i

))
+ αKL

(
S
(
x̃j
i

)
, Tadv

(
xj
i

))
,

(14)

where Tnat is the natural teacher model, Tadv is the robust teacher model.

The method of MTARD to generate adversarial examples is the same as that of ARD, and Eq. (5) is
used to generate adversarial examples. Algorithm 4 is Fair Multi-Teacher Adversarial Robustness
Distillation (Fair-MTARD). Fair-MTARD utilizes Eq. (5) to obtain adversarial data and geometric
values.

Algorithm 4 Fair Multi-Teacher Adversarial Robustness Distillation (Fair-MTARD)
Input: Student model S, natural teacher model Tnat, robust teacher model Tadv training dataset

D = {(xi, yi)}ni=1, number of classes C, learning rate η, number of epochs N , batch size m,
number of batches M , the hyperparameter of MTARD α, smoothness hyperparameter β

Output: Adversarially robust and fair student model S
1: ω = {1, . . . , 1}C1
2: for epoch = 1, . . . , N do
3: for mini-batch = 1, . . . ,M do
4: sample a mini-batch {(xi, yi)}mi=1 from D
5: for i = 1, . . . , m (in parallel) do
6: Obtain adversarial data x̃i of xi and geometry value d (xi, yi) based on Eq. (5)
7: end for
8: Update α
9: θ ← θ − η∇θ {ω {(1− α)KL (S (xi) , Tnat (xi)) + αKL (S (x̃i) , Tadv (xi))}}

10: end for
11: Compute ω for each class based on Eq. (6) and Eq. (7) with β.
12: end for

B Related Work

B.1 Adversarial Attack

It has been observed that adding small perturbations to natural data to generate adversarial examples
can lead to misclassifications in deep neural networks [31, 10]. Subsequently, a multitude of
adversarial attack methods have been proposed. Adversarial attacks are divided into two types
according to the information that the attacker can obtain. One is white-box attack, and the attacker
can obtain all the information of the model, such as fast gradient sign method (FGSM) [10], projected
gradient descent (PGD) [24], Carilini and Wagner attack (C&W) [4]; the other is a black-box
attack, where the attacker can only obtain part of the output information of the model, including
transfer-based attacks and query-based attacks. To provide a fuller evaluation of adversarial defenses,
AutoAttack (AA) [8] was proposed, which is the most powerful attack so far.

B.2 Adversarial Training

In the face of adversarial attacks, many defense methods have been proposed. Among them, adver-
sarial training (AT) [24, 40, 34, 37, 41] has been proven to be the strongest defense method. AT
enhances the model’s robust generalization performance by incorporating adversarial examples into
the training set. The objective function of AT can be summarized as follows:

argmin
θ
Lmin (fθ (x̃) , y) , where x̃ = argmax

∥x̃−x∥p≤ϵ

Lmax (fθ (x̃) , y) , (15)

where fθ is the DNN model with the parameter θ, x̃ is the adversarial example of natural example x
within bounded Lp distance ϵ,Lmin is the outer minimization loss and Lmax is the the inner maxi-
mization loss. The inner maximization generates adversarial examples, and the outer minimization
optimizes the model.

15



Geometry-Aware Instance-Reweighted Adversarial Training (GAIRAT) [41] introduces an adversarial
training method that assigns varying weights to adversarial examples. The weights are determined
by approximating the distance of each natural example to the decision boundary. The underlying
premise of GAIRAT is that natural examples closer to the decision boundary are less robust, as their
corresponding adversarial counterparts can more readily cross the decision boundary.

B.3 Adversarial Robustness Distillation

Although AT is helpful for defending against adversarial examples, it is eager for large-capacity
models (e.g., WideResNet-34-10 [39]), i.e., the larger the model capacity, the higher the robustness [1,
36, 45]. But for resource-constrained devices, small models (e.g. ResNet-18 [13], MobileNetV2 [30])
are more popular [30, 42, 32]. Therefore, adversarial robustness distillation (ARD) methods [9,
44, 45, 43] have been developed, leveraging both knowledge distillation and adversarial training
techniques to augment the robustness of small models. Initially, [9] proposed ARD to transfer the
robustness from a large model (teacher model) to improve the robustness of a small model (student
model) by knowledge distillation. Following ARD, [44] proposed IAD, where student models trust
their teacher models partially rather than fully; [45] proposed RSLAD, which leverages the robust
soft labels of the teacher model to guide the learning of natural and adversarial examples in all loss
terms; and [43] proposed MTARD, using a robust teacher and a natural teacher to jointly guide
the learning of the student model. While these methods treat each class equally, we advocate class
re-weighting to promote robust fairness.

B.4 Robust Fairness

[38, 33] identified a significant disparity in the robustness of the adversarially trained model, which
demonstrated high robustness on some classes while being exceedingly vulnerable on other classes,
and [38] refers to this issue as robust fairness. [23] observed that with the increasing of the
perturbation radius, stronger AT methods will lead to more severe robust fairness issues. Given
the “buckets effect,” the security of a system is typically predicated upon the robustness of its most
vulnerable component. As such, even with an overall high robustness, a model’s poor performance
on a specific class of data may still introduce potential security threats. Considering that ARD is
based on AT, it may also be susceptible to this inherent vulnerability.

Besides, [26] also introduced the concept of robustness bias, pointing out that different classes of
data should have the same robustness, but did not propose specific implementation methods and
did not consider the impact of knowledge distillation on robust fairness. Furthermore, the fairness
metrics used in [26] differ from ours: [26] uses self-defined AUC, while we utilize the worst-class
robustness and NSD.

In addition, we clarify the distinction between our notion of robust fairness and conventional machine
learning (ML) fairness [12]. Firstly, robust fairness pertains to consistent predictive accuracy across
classes under both standard and adversarial conditions [23]. In contrast, conventional ML fairness
involves eliminating bias based on sensitive attributes like gender, race, etc. Secondly, prior works
have studied fairness in classification, e.g., equalized odds [12]. However, to the best of our knowl-
edge, we are the first to investigate the problem of achieving adversarially robust fairness through
knowledge distillation.

B.5 Fairness-oriented Distillation

In this subsection, we will clarify the difference between fairness in existing fairness-oriented
distillation methods [18] and the fairness we are addressing.

First, their meanings differ. Prior work on fair distillation [18] aims to prevent discriminatory biases
stemming from sensitive attributes. Our robust fairness focuses instead on minimizing differences in
robustness across classes.

Second, their metrics for measuring fairness differ. [18] measures fairness via equalized odds metrics
DEOM and DEOA which account for sensitive attributes. In contrast, our metrics of the worst-class
accuracy and NSD are solely based on model performance across classes.

16



C Extensive Experiments

C.1 More Experimental Setup

In this subsection, we provide further details on the experiments conducted in Section 4.

Adversarial Examples. We use 10-step PGD (PGD-10) with a step size of 2/255 to generate
adversarial examples, and the training perturbation is bounded to the L∞ norm ϵ = 8/255 for both
datasets.

Teachers’ Performance. Table 5 reports the average robustness and worst-class robustness of the
teacher models under different attacks.

Experimental Environment. All experiments are run on NVIDIA RTX 3090, utilizing the PyTorch
framework.

Table 5: The average (Avg.) and worst-class (Worst) robustness of the teacher models used in our
experiments. RN: ResNet; PRN:PreActResNet; WRN: WideResNet.

Dataset Model Type Clean FGSM PGD C&W AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

CIFAR-10 RN-56 Natural 92.72 84.40 8.23 1.60 0.00 0.00 0.00 0.00 0.00 0.00
WRN-34-10 Robust 84.92 67.00 61.11 33.00 55.32 26.80 53.91 24.40 52.55 23.30

CIFAR-100 WRN-22-6 Natural 76.67 48.00 5.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WRN-70-16 Robust 60.96 24.00 35.92 6.00 33.56 5.00 31.12 3.00 28.80 6.00

SVHN WRN-34-10 Robust 94.53 88.92 91.80 80.60 59.48 34.22 58.60 33.61 57.24 31.75

Tiny-ImageNet PRN-18 Robust 40.58 16.85 19.80 3.10 18.18 2.50 13.90 1.10 13.45 1.00

C.2 More Results of Section 2

In this subsection, we present the complete results of Table 1 in Table 6. As observed from the
results in Table 6, easier classes (those with higher robustness in the teacher model) exhibit a higher
proportion of robustness inheritance, implying that the student model is more inclined towards these
easier classes.

C.3 Experiments on CIFAR100

In this subsection, we provide the experimental results for CIFAR100. The experimental setup
for CIFAR100 is essentially the same as that for CIFAR10, except for differences in the teacher
model. Moreover, we cannot reproduce the ARD [9] results on CIFAR100; hence, no ARD-related
experiments are conducted on CIFAR100.

Teacher-Student Pairs. Following [45, 43], we consider two student networks, ResNet-18 [13] and
MobileNetV2 [30], and a robust teacher network WideResNet-70-16 provided by [11], and a natural
teacher network WideResNet-22-6 [39]. Natural teacher networks trained with cross-entropy loss are
used by MTARD. The average and worst-class robustness of teacher models are in Table 5.

Results. We present the average robustness and worst-class robustness of various algorithms in Table
7 and Table 8, and the NSD of vanilla ARD and Fair-ARD in Fig. 6 and Fig. 7. The results show
that, in alignment with the experimental results on CIFAR10, our Fair-ARD manifests a distinct
superiority in augmenting the robust fairness of the student model on CIFAR100.

C.4 Experiments on Other Datasets

In this subsection, we provide the experimental results for SVHN and Tiny-ImageNet. The experi-
mental setup for SVHN and Tiny-ImageNet is essentially the same as that for CIFAR10, except for
differences in the teacher model. Moreover, since the worst-class robustness is extremely low and
there are only 50 images for each class in the test set, we report the average of the worst-20% class
robustness on Tiny-ImageNet following [35].

17



Table 6: The robustness of the teacher model WideResNet-34-10 on each class and the percentage
of the robustness for each class inherited by the student model ResNet-18 with respect to the
corresponding class robustness of the teacher model. The dataset is CIFAR10.
Attack Method plane car bird cat deer dog frog horse ship truck

FGSM

Teacher 68.50 83.10 44.60 33.00 54.70 44.70 64.50 68.30 75.10 74.60

ARD 94.31% 94.95% 88.34% 85.15% 88.30% 99.78% 94.11% 100.73% 105.46% 100.67%
IAD 100.29% 96.39% 97.76% 84.55% 84.83% 101.79% 96.74% 102.78% 96.40% 96.25%

RSLAD 102.48% 95.07% 95.74% 90.30% 95.80% 102.01% 96.90% 99.56% 101.73% 98.79%
MTARD 102.48% 99.28% 101.79% 89.70% 88.30% 105.59% 102.02% 105.12% 95.34% 100.94%

PGD

Teacher 63.40 79.00 40.10 27.00 43.40 41.30 57.20 63.60 69.20 69.20

ARD 93.85% 92.78% 80.80% 80.60% 82.49% 94.48% 90.02% 100.32% 103.02% 98.70%
IAD 99.05% 94.42% 94.76% 81.72% 82.03% 98.08% 93.87% 102.21% 92.23% 93.77%

RSLAD 103.00% 93.79% 94.01% 88.81% 98.39% 99.52% 95.62% 100.32% 102.01% 97.54%
MTARD 98.42% 96.70% 89.28% 75.37% 70.28% 93.53% 88.44% 101.74% 87.34% 94.64%

C&W

Teacher 62.90 78.00 38.40 24.40 40.60 40.70 53.70 62.40 68.50 69.50

ARD 95.23% 93.59% 80.99% 80.74% 83.50% 97.30% 95.34% 101.44% 105.26% 98.85%
IAD 100.16% 95.26% 94.53% 86.89% 76.85% 98.77% 96.09% 103.69% 93.14% 91.80%

RSLAD 102.54% 94.36% 93.49% 92.62% 95.32% 100.25% 95.34% 100.32% 102.34% 97.27%
MTARD 97.93% 96.41% 88.02% 71.31% 67.49% 92.38% 87.90% 101.28% 87.88% 91.94%

AA

Teacher 62.40 77.20 37.30 23.30 37.60 39.40 51.60 61.80 67.10 67.80

ARD 93.75% 93.13% 78.55% 72.53% 81.38% 95.43% 90.50% 100.00% 104.92% 98.53%
IAD 98.24% 94.69% 92.49% 79.83% 74.47% 96.95% 91.86% 102.10% 92.55% 93.22%

RSLAD 101.28% 94.56% 93.57% 89.70% 96.01% 99.75% 94.38% 99.19% 102.38% 96.90%
MTARD 95.35% 96.11% 84.99% 63.52% 60.37% 88.58% 78.29% 98.54% 83.61% 89.38%

Table 7: The average (Avg.) and worst-class (Worst) robustness for various algorithms using ResNet18
on CIFAR-100. Better results in comparison with vanilla ARD and our proposed fair version are
bolded.

Method Clean FGSM PGD C&W AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

Natural 75.32 46.00 8.29 0.00 0.01 0.00 0.00 0.00 0.00 0.00
SAT 57.81 18.00 29.09 5.00 24.07 2.00 23.69 2.00 21.80 2.00

TRADES 54.10 16.00 30.20 4.00 27.70 3.00 24.23 3.00 23.37 2.00

IAD 55.76 16.00 32.43 2.00 29.38 2.00 26.73 2.00 25.04 1.00
Fair-IAD (ours) 57.08 18.00 32.87 7.00 29.38 6.00 26.92 3.00 25.55 2.00

RSLAD 58.06 15.00 34.33 5.00 30.82 3.00 28.30 2.00 26.57 2.00
Fair-RSLAD (ours) 58.33 21.00 34.48 5.00 30.94 5.00 28.37 4.00 26.37 3.00

MTARD 64.34 4.00 30.07 0.00 23.51 0.00 22.95 0.00 20.16 0.00
Fair-MTARD (ours) 57.72 22.00 33.72 6.00 30.39 5.00 27.85 3.00 26.18 3.00

Teacher-Student Pairs. Following [45, 43], we adopt ResNet-18 as the student network. For SVHN,
a robust WideResNet34-10, trained via TRADES, serves as the teacher network. For Tiny-ImageNet,
we use a robust teacher network PreActResNet-18 [14] provided by [17]. The average and worst-class
robustness of teacher models are in Table 5.

Results. As the Table 9 shows, compared to IAD, our Fair-ARD framework improved worst-class
(worst-20% class) robustness under AA by 3.98% (0.45%) on SVHN (Tiny-ImageNet). These
consistent enhancements on additional benchmark datasets further demonstrate the generality of our
method.

18



IAD
RSL

AD
MTA

RD
0.4

0.5

0.6

0.7

0.8

NS
D

FGSM

IAD
RSL

AD
MTA

RD
0.4

0.5

0.6

0.7

0.8
PGD

IAD
RSL

AD
MTA

RD
0.4

0.5

0.6

0.7

0.8
C&W

IAD
RSL

AD
MTA

RD
0.4

0.5

0.6

0.7

0.8
AA

Teacher Vanilla Fair

Figure 6: The NSD of the vanilla ARD (Vanilla) and our proposed fair version (Fair) using ResNet18
on CIFAR-100. The red line represents the NSD of the teacher model (WideResNet34-10). From left
to right, the panels show results under FGSM, PGD, C&W, and AA, respectively.

Table 8: The average (Avg.) and worst-class (Worst) robustness for various algorithms using
MobileNetV2 on CIFAR-100. Better results in comparison with vanilla ARD and our proposed fair
version are bolded.

Method Clean FGSM PGD C&W AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

Natural 74.56 45.00 6.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SAT 56.67 7.00 31.61 0.00 28.28 0.00 26.60 0.00 24.43 0.00

TRADES 57.03 15.00 31.87 3.00 29.15 2.00 24.78 1.00 23.96 1.00

IAD 55.96 14.00 32.09 1.00 29.18 1.00 27.02 1.00 25.14 1.00
Fair-IAD (ours) 55.45 16.00 32.11 6.00 29.29 6.00 26.89 2.00 25.25 2.00

RSLAD 58.43 15.00 34.00 3.00 30.05 2.00 27.88 1.00 25.97 0.00
Fair-RSLAD (ours) 59.01 20.00 34.12 4.00 30.47 4.00 28.11 3.00 26.36 1.00

MTARD 52.62 0.00 27.90 0.00 22.69 0.00 22.11 0.00 19.35 0.00
Fair-MTARD (ours) 58.46 22.00 33.86 6.00 29.88 5.00 27.88 3.00 25.93 2.00

C.5 Standard Deviation

All training runs were independently conducted five times and reported averages, omitting negligible
standard deviations. We have presented the results of using ResNet18 on CIFAR100 in Table 10.
These minor standard deviations align with prior AT work [36, 22], further demonstrating the
stability.

C.6 Stability of Fair-ARD

Fig. 8 presented the variations in the weights of each class during training. And we found that the
weights initially fluctuated but gradually stabilized in the later stages.

C.7 Different PGD Step Sizes

We analyze the sensitivity of the step size theoretically and empirically as follows.

Increasing step size γ reduces steps for examples to cross decision boundaries, diminishing LPS
discrimination. As shown in Table 11, γ = 3/255 versus 2/255 maintains average robustness but
worsens worst-class due to weakened re-weighting from reduced LPS discrimination. However,
Fair-ARD still exceeds ARD.

Conversely, decreasing γ can raise steps to boundaries, potentially improving discrimination. But
smaller γ risks lower quality adversarial examples for training, hindering distillation. As shown
in Table 11, a 10x smaller γ substantially decreased robustness, which can be attributed to poorer
adversarial examples.

19



IAD
RSL

AD
MTA

RD
0.5

0.6

0.7

0.8

0.9

1.0

NS
D

FGSM

IAD
RSL

AD
MTA

RD
0.5

0.6

0.7

0.8

0.9

1.0
PGD

IAD
RSL

AD
MTA

RD
0.5

0.6

0.7

0.8

0.9

1.0
C&W

IAD
RSL

AD
MTA

RD
0.5

0.6

0.7

0.8

0.9

1.0
AA

Teacher Vanilla Fair

Figure 7: The NSD of the vanilla ARD (Vanilla) and our proposed fair version (Fair) using Mo-
bileNetV2 on CIFAR-100. The red line represents the NSD of the teacher model (WideResNet34-10).
From left to right, the panels show results under FGSM, PGD, C&W, and AA, respectively.

Table 9: The average (Avg.) and worst-class (Worst) robustness for various algorithms using ResNet18
on SVHN and Tiny-ImageNet. Better results in comparison with vanilla ARD and our proposed fair
version are bolded.

Dataset Method Clean FGSM PGD CW AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

SVHN IAD 90.28 74.04 81.61 53.98 58.19 25.84 57.31 25.48 43.58 20.12
Fair-IAD (ours) 91.66 83.19 80.39 61.87 68.08 41.14 66.96 40.78 44.55 24.10

Tiny-ImageNet IAD 40.07 15.95 21.04 3.80 19.33 2.85 15.35 1.35 14.46 1.15
Fair-IAD (ours) 40.94 16.80 21.90 4.65 20.09 3.90 16.08 1.85 15.35 1.60

In summary, γ tuning balances discrimination versus adversarial training efficacy. Careful adjustment
optimizes Fair-ARD performance.

C.8 Different Re-weighting Functions

In this subsection, to gain a more comprehensive understanding of Fair-ARD, we illustrate the
influence of different re-weighting functions on Fair-ARD. Specifically, we choose ResNet-18 as the
student model, ARD as the baseline method, and conduct the experiment on CIFAR10. Other settings
remain consistent with Section 4.1.

In the left panel of Fig. 9, besides power-type Eq. (7) (purple line), which we have consistently em-
ployed across all other experiments, we compare different types of re-weighting functions following
GAIRAT [41]. The orange line represents a linear-type function, i.e.,

ωi = 1− κi

K + 1
, (16)

where K is the PGD steps.

The green line represents a sigmoid-type function, i.e.,

ωi = σ(λ+ 5× (1− 2× κi/K)), (17)

where σ(x) = 1
1+e−x , λ is the parameter. Following [41], we adopt λ = 0.

The red line represents a tanh-type function, i.e.,

ωi =
(1 + tanh(λ+ 5× (1− 2× κi/K)))

2
, (18)

where λ is the parameter. Following [41], we adopt λ = 0.

We present the average robustness and worst-class robustness of Fair-ARD using different re-
weighting functions in Table 12, and their NSD in the right panel of Fig. 9. The results show
that Fair-ARD with the power-type function (Eq. (7)) achieves the best average and worst-case class
robustness, while Fair-ARD with the sigmoid-type function (Eq. (17)) has the optimal NSD.

20



Table 10: The average (Avg.) and worst-class (Worst) robustness and their standard deviations for
various algorithms using ResNet18 on CIFAR-100.

Method Clean PGD AA

Avg. Worst Avg. Worst Avg. Worst

Natural 75.32±0.65 46.00±0.47 0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00
SAT 57.81±0.61 18.00±0.55 24.07±0.56 2.00±0.41 21.80±0.47 2.00±0.41

TRADES 54.10±0.68 16.00±0.72 27.70±0.51 3.00±0.43 23.37±0.54 2.00±0.17

IAD 55.76±0.64 16.00±0.47 29.38±0.41 2.00±0.64 25.04±0.53 1.00±0.71
Fair-IAD (ours) 57.08±0.34 18.00±0.33 29.38±0.56 6.00±0.62 25.55±0.26 2.00±0.65

RSLAD 58.06±0.51 15.00±0.45 30.82±0.66 3.00±0.52 26.57±0.62 2.00±0.55
Fair-RSLAD (ours) 58.33±0.45 21.00±0.48 30.94±0.53 5.00±0.51 26.37±0.51 3.00±0.51

MTARD 64.34±0.28 4.00±0.43 23.51±0.58 0.00±0.00 20.16±0.73 0.00±0.00
Fair-MTARD (ours) 57.72±0.21 22.00±0.41 30.39±0.46 5.00±0.43 26.18±0.53 3.00±0.43

0 25 50 75 100 125 150 175 200
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

W
ei

gh
t

plane
car

bird
cat

deer
dog

frog
horse

ship
truck

Figure 8: The weights of each class in Fair-ARD using ResNet18 on CIFAR-10 across epochs.

C.9 Different Teachers

In this subsection, to further verify the effectiveness of Fair-ARD, we conduct experiments using
different teacher models. Specifically, we choose ResNet-18 as the student model, with ARD as the
baseline method, and performe the experiments on CIFAR10. Other settings remain consistent with
Section 4.1. Table 13 presents the average robustness and worst-class robustness for the different
teacher models.

We present the average robustness and worst-class robustness of Fair-ARD using different teacher
models in Table 14 and their NSD in Fig. 10. The results show that, regardless of the teacher model
used, our Fair-ARD demonstrates superiority in improving the robust fairness of the student model.

Interestingly, we observe that the average robustness and the worst-class robustness of the student
model do not monotonically increase with the robustness of the teacher model. The performance
of the student model under the guidance of WRN70-16 is inferior to that of WRN34-20 and even
WRN34-10. This aligns with the observations in [45], where the robustness of the student model
tends to decrease when the teacher model becomes overwhelmingly complex and unlearnable for the
student model. These findings indicate that selecting an appropriately large teacher model also poses
an unresolved challenge, a direction we aim to explore in our future work.

21



Table 11: The average (Avg.) and worst-class (Worst) robustness for various algorithms and step
sizes using ResNet18 on CIFAR-10. The best results are bolded, and the second best results are
underlined.

Method Step Size Clean FGSM PGD C&W AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

ARD 2/255 83.22 61.00 58.77 28.10 51.65 21.60 51.25 19.70 49.05 16.90
Fair-ARD (ours) 0.2/255 86.21 70.30 54.28 30.40 39.69 18.90 39.79 18.80 36.39 14.90
Fair-ARD (ours) 1/255 84.36 69.90 58.51 36.10 50.86 27.90 50.33 26.80 47.95 22.80
Fair-ARD (ours) 2/255 82.96 68.10 57.69 39.20 52.05 33.20 50.69 31.00 49.13 29.20
Fair-ARD (ours) 3/255 83.90 69.60 58.80 41.00 51.89 31.80 50.76 29.60 49.10 27.00

Table 12: The average (Avg.) and worst-class (Worst) robustness for Fair-ARD with different re-
weighting functions using ResNet18 on CIFAR-10. The best results are bolded, and the second best
results are underlined.

Function Clean FGSM PGD C&W AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

w/o 83.22 61.00 58.77 28.10 51.65 21.60 51.25 19.70 49.05 16.90
linear 82.69 68.60 58.23 38.70 51.75 31.60 50.73 29.10 48.97 27.00

sigmoid 82.91 67.90 57.87 39.10 51.59 31.10 50.16 28.30 48.58 26.60
tanh 76.90 55.70 51.08 28.50 46.22 24.80 45.04 22.90 43.62 22.60

power 82.96 68.10 57.69 39.20 52.05 33.20 50.69 31.00 49.13 29.20

C.10 More Discussions

In this subsection, to validate the effectiveness of our proposed fairness framework in AT, we apply
our proposed re-weighting strategy to TRADES [40] and then compare it with GAIRAT [41], Fair
Robust Learning (FRL) [38], and Fair Adversarial Training (FAT) [23].

Let ωi be the weight for the i-th class, we formulate a Fair-TRADES method as follows:

min
θf

1

C

C∑
i=1

1

ni

ni∑
j=1

ωiLTRADES

(
f, xj

i , y, β
′
)
, (19)

where
LTRADES

(
f, xj

i , y, β
′
)
= CE

(
f
(
xj
i

)
, y
)
+ β′ KL

(
f
(
x̃j
i

)
, f

(
xj
i

))
, (20)

where LTRADES is the loss of TRADES, f is the DNN model with the parameter θf , β′ is the
hyperparameter controlling the weight of the adversarial loss. The method of TRADES to generate
adversarial examples is different from that of ARD, and Eq. (21) is used to generate adversarial
examples. 

x̃(t+1) = ΠBϵ[x]

(
x̃(t) + γ sign

(
∇x̃(t) KL

(
f
(
x̃(t)

)
, f

(
x(t)

))))
d(x, y) = argmin

t∈[0,K]

(
f
(
x̃(t)

)
̸= y

)
,

(21)

For an equitable comparison, we apply the techniques of GAIRAT, FRL, and FAT to TRADES,
thereby forming GAIR-TRADES, FRL-TRADES, and FAT-TRADES, respectively, while maintaining
the same parameters as in their original papers. The results of these algorithms compared with Fair-
TRADES are presented in Table 15. From the results, GAIR-TRADES performs exceptionally well
under FGSM and PGD attacks, yet its robustness significantly diminishes when facing C&W and
AA, performing even poorer than vanilla TRADES. Although FRL-TRADES and FAT-TRADES
improve the worst-class robustness compared to vanilla TRADES, they noticeably decrease the
average robustness. Meanwhile, Fair-TRADES improves the worst-class robustness under all attacks
and maintains high average robustness, arguably making it the best method in terms of overall
performance among these algorithms.

22



1 4 7 10
0.00

0.25

0.50

0.75

1.00

w/o
linear
sigmoid

tanh
power

FGSM PGD C&W AA
Attack

0.20

0.25

0.30

0.35

0.40

NS
D

Teacher
w/o
linear

sigmoid
tanh
power

Figure 9: Effects of different re-weighting functions on Fair-ARD using ResNet18 on CIFAR10.
Left: ω values under different re-weighting functions. Right: the NSD of Fair-ARD with different
re-weighting functions. The red lines represent the NSD of the teacher model (WideResNet34-10)
under different attacks.

Table 13: The average (Avg.) and worst-class (Worst) robustness of different teacher models on
CIFAR-10. RN: ResNet; WRN: WideResNet.

Model Clean FGSM PGD C&W AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

RN-18 82.22 64.80 58.38 31.00 52.35 25.80 50.33 22.30 49.01 21.20
RN-34 84.12 70.10 60.20 34.50 52.66 26.20 51.74 24.50 49.73 22.20

WRN-34-10 84.92 67.00 61.11 33.00 55.32 26.80 53.91 24.40 52.55 23.30
WRN-34-20 85.65 71.60 64.48 38.80 59.84 33.60 57.80 29.30 56.85 28.40
WRN-70-16 85.29 72.30 64.40 38.20 59.59 32.50 58.26 30.70 57.17 29.20

C.11 Computational Cost Comparison

In this subsection, we compare the computational cost of vanilla ARD and Fair-ARD. Specifically,
we use WideResNet34-10 as the teacher model and ResNet18 as the student model, conducting
experiments on CIFAR10. We present the average training time per epoch and GPU memory
consumption of different algorithms in Table 16. The results show that Fair-ARD requires more time
than vanilla ARD due to the need to calculate class difficulty metrics and implement re-weighting
strategies. However, Fair-ARD and vanilla ARD consume the same amount of GPU memory, as the
additional memory overhead introduced by Fair-ARD is negligible.

D Broader Impacts

In safety-critical applications, deploying robust lightweight Deep Neural Networks (DNNs) with
robustness biases toward different classes of data can pose significant risks. For instance, if DNNs
in autonomous vehicles exhibit high robustness to inanimate objects on the road while being less
robust to pedestrians, they could potentially place pedestrians in dangerous situations when facing
adversarial attacks. In this paper, our Fair Adversarial Robustness Distillation (Fair-ARD) framework
can mitigate this safety concern. By promoting robust and fair lightweight models, our framework
enhances the comprehensive safety of DNNs deployed in resource-constrained and safety-critical
devices.

Moreover, in many areas sensitive to social ethics, it is crucial to ensure that DNNs do not exhibit
discriminatory behaviors towards certain classes (groups or populations). Our framework also offers
valuable contributions in this realm of research.

23



Table 14: The average (Avg.) and worst-class (Worst) robustness for vanilla ARD and Fair-ARD
using ResNet18 with different teacher models on CIFAR10. Better results in comparison with vanilla
ARD and our proposed fair version are bolded. RN: ResNet; WRN: WideResNet.

Teacher Method Clean FGSM PGD C&W AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

RN-18 ARD 81.36 59.30 56.81 27.80 50.45 20.80 49.49 20.10 47.83 17.00
Fair-ARD (ours) 81.85 66.80 56.81 33.70 50.83 26.90 49.37 24.80 47.76 22.30

RN-34 ARD 80.63 59.80 56.08 25.40 50.53 20.40 49.49 19.10 47.81 17.20
Fair-ARD (ours) 80.31 65.00 56.06 34.70 50.78 29.00 49.31 27.70 47.82 24.10

WRN34-10 ARD 83.22 61.00 58.77 28.10 51.65 21.60 51.25 19.70 49.05 16.90
Fair-ARD (ours) 82.96 68.10 57.69 39.20 52.05 33.20 50.69 31.00 49.13 29.20

WRN34-20 ARD 82.28 62.70 58.47 30.80 52.10 24.40 50.57 23.20 48.85 19.40
Fair-ARD (ours) 81.87 66.20 57.74 41.30 52.11 34.30 50.26 32.00 48.67 28.60

WRN70-16 ARD 82.52 61.30 57.76 28.50 51.73 23.40 50.09 20.10 48.45 18.10
Fair-ARD (ours) 81.80 66.50 58.03 38.00 52.01 30.70 50.47 29.30 48.91 26.20

RS-1
8

RS-3
4

WRN34
-10

WRN34
-20

WRN70
-16

0.20

0.25

0.30

0.35

0.40

NS
D

FGSM

RS-1
8

RS-3
4

WRN34
-10

WRN34
-20

WRN70
-16

0.20

0.25

0.30

0.35

0.40
PGD

RS-1
8

RS-3
4

WRN34
-10

WRN34
-20

WRN70
-16

0.20

0.25

0.30

0.35

0.40
C&W

RS-1
8

RS-3
4

WRN34
-10

WRN34
-20

WRN70
-16

0.20

0.25

0.30

0.35

0.40
AA

Teacher Vanilla Fair

Figure 10: The NSD of the vanilla ARD (Vanilla) and our proposed fair version (Fair) using ResNet18
with different teacher models on CIFAR-10. The red lines represent the NSD of the teacher models
under different attacks. From left to right, the panels show results under FGSM, PGD, C&W, and
AA, respectively.

E Limitations

Firstly, the re-weighting function of Fair-ARD is heuristic and may not be optimal. Given the diverse
perspectives in AT, there may exist more effective methods. Besides, our adopted re-weighting
algorithm is an intuitive design. More fine-grained re-weighting methods may achieve higher worst-
class robustness.

In addition, our Fair-ARD, like other existing ARD methods, is based on offline distillation, where the
student model learns from a pretrained, fixed-parameter teacher model. Offline distillation, however,
does not guarantee that the learning processes of the teacher and student models are matched, nor
does it allow the teacher’s knowledge teaching process to be adjusted in real-time based on the
learning state of the student model. If there is a significant gap in performance between the fully
trained teacher model and the student model, this may affect the student’s learning in the initial stage.
In contrast, online distillation is a mode in which both the teacher and student models participate in
training and parameter updates simultaneously. In the process of online distillation, both the teacher
and student models update their parameters synchronously. Therefore, the mode of distillation may
be a factor constraining the performance of the student model. We leave a detailed study of the impact
of distillation modes on robust fairness for future work.

24



Table 15: The average (Avg.) and worst-class (Worst) robustness for various algorithms using
ResNet18 on CIFAR-10. The best results are bolded, and the second best results are underlined.

Method Clean FGSM PGD C&W AA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

TRADES 82.22 64.80 58.38 31.00 52.35 25.80 50.33 22.30 49.01 21.20
GAIR-TRADES 82.37 66.00 59.35 42.90 54.78 38.80 43.19 16.20 39.66 12.10
FRL-TRADES 82.20 69.40 55.78 36.30 48.82 29.60 47.14 26.80 45.51 24.90
FAT-TRADES 79.92 66.30 56.19 35.20 51.76 30.20 48.87 23.80 47.67 22.10
Fair-TRADES 82.29 68.50 57.73 38.20 52.00 32.00 49.55 27.40 48.20 25.90

Table 16: Time and GPU Memory cost of vanilla ARD and Fair-ARD using ResNet18 on CIFAR-10.
Method Time (Avg. Epoch) GPU Memory

ARD 130.14s 3645MiB
Fair-ARD (ours) 154.96s 3645MiB

IAD 167.22s 4231MiB
Fair-IAD (ours) 207.70s 4231MiB

RSLAD 161.50s 3877MiB
Fair-RSLAD (ours) 215.23s 3877MiB

MTARD 229.96s 4017MiB
Fair-MTARD (ours) 232.87s 4017MiB

25


	Algorithm
	Fair-ARD
	Fair-IAD
	Fair-RSLAD
	Fair-MTARD

	Related Work
	Adversarial Attack
	Adversarial Training
	Adversarial Robustness Distillation
	Robust Fairness
	Fairness-oriented Distillation

	Extensive Experiments
	More Experimental Setup
	More Results of Section 2
	Experiments on CIFAR100
	Experiments on Other Datasets
	Standard Deviation
	Stability of Fair-ARD
	Different PGD Step Sizes
	Different Re-weighting Functions
	Different Teachers
	More Discussions
	Computational Cost Comparison

	Broader Impacts
	Limitations



