GSLB: The Graph Structure Learning Benchmark
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Abstract

Graph Structure Learning (GSL) has recently garnered considerable attention due
to its ability to optimize both the parameters of Graph Neural Networks (GNNs)
and the computation graph structure simultaneously. Despite the proliferation of
GSL methods developed in recent years, there is no standard experimental setting
or fair comparison for performance evaluation, which creates a great obstacle to
understanding the progress in this field. To fill this gap, we systematically analyze
the performance of GSL in different scenarios and develop a comprehensive Graph
Structure Learning Benchmark (GSLB) curated from 20 diverse graph datasets
and 16 distinct GSL algorithms. Specifically, GSLB systematically investigates the
characteristics of GSL in terms of three dimensions: effectiveness, robustness, and
complexity. We comprehensively evaluate state-of-the-art GSL algorithms in node-
and graph-level tasks, and analyze their performance in robust learning and model
complexity. Further, to facilitate reproducible research, we have developed an
easy-to-use library for training, evaluating, and visualizing different GSL methods.
Empirical results of our extensive experiments demonstrate the ability of GSL
and reveal its potential benefits on various downstream tasks, offering insights
and opportunities for future research. The code of GSLB is available at: https:
//github.com/GSL-Benchmark/GSLB.

1 Introduction

Graphs, structures made of vertices and edges, are ubiquitous in real-world applications. A wide
variety of applications spanning social network [51, 9], molecular property prediction [40, 14], fake
news detection [45, 1], and fraud detection [23, 27] have found graphs instrumental in modeling
complex systems. In recent years, Graph Neural Networks (GNNs) have attracted increasing attention
due to their powerful ability to learn node or graph representations. However, most of the GNNs
heavily rely on the assumption that the initial structure of the graph is trustworthy enough to serve as
ground-truth for training. Due to uncertainty and complexity in data collection, graph structures are
inevitably redundant, biased, noisy, incomplete, or the original graph structures are even unavailable,
which will bring great challenges for the deployment of GNNs in real-world applications.
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Table 1: An overview of GSLB. Both algorithms and datasets are divided into three categories:
homogeneous node-level, heterogeneous node-level, and graph-level. The evaluation is divided into
three dimensions: effectiveness, robustness, and complexity.

Algorithms

LDS [11], GRCN [48], ProGNN [18], IDGL [4], CoGSL [26], SUBLIME [28],
GEN [39], STABLE [21], NodeFormer [43], SLAPS [10], GSR [54], HES-GSL [42]

Heterogeneous GSL GTN [49], HGSL [53]
Graph-level GSL HGP-SL [52], VIB-GSL [36]

Homogeneous GSL

Datasets

Cora [47], Citeseer [47], Pubmed [47], ogbn-arxiv [15], Polblogs, Cornell [34],
Texas [34], Wisconsin [34], Actor [37]

Heterogeneous datasets ~ACM [49], DBLP [49], Yelp [29]

IMDB-B [3], IMDB-M [3], COLLAB [46], REDDIT-B [46], MUTAG [5],
PROTEINS [2], Peptides-Func [8], Peptides-Struct [8]

Homogeneous datasets

Graph-level datasets

Evaluations

Homogeneous node classification (Topology Refinement/Topology Inference),

Effectiveness Heterogeneous node classification, Graph-level tasks
Robustness Supervision signal robustness, Structure robustness, Feature robustness
Complexity Time complexity, Space complexity

To mitigate the aforementioned problems, Graph Structure Learning (GSL) [4, 55, 30, 10, 57, 50] has
become an important theme in graph learning. GSL aims to make the computation structure of GNNs
more suitable for downstream tasks and improve the quality of the learned representations. While it
is widespread in different communities and the research enthusiasm for GSL is increasing, there is no
standardized benchmark that could offer a fair and consistent comparison of different GSL algorithms.
Moreover, due to the complexity and diversity of graph datasets, the experimental setups in existing
work are not consistent, such as varying ratios of the training set and different train/validation/test
splits. This poses a great obstacle to a holistic understanding of the current research status. Therefore,
the development of a standardized and comprehensive benchmark for GSL is an urgent need within
the community.

In this work, we propose Graph Structure Learning Benchmark (GSLB), which serves as the first
comprehensive benchmark for GSL. Our benchmark encompasses 16 state-of-the-art GSL algorithms
and 20 diverse graph datasets covering homogeneous node-level, heterogeneous node-level, and graph-
level tasks. We systematically investigate the characteristics of GSL in terms of three dimensions:
effectiveness, robustness, and complexity. Based on these three dimensions, we conduct an
extensive comparative study of existing GSL algorithms in different scenarios. For effectiveness,
GSLB provides a fair and comprehensive comparison of existing algorithms on homogeneous node-
level, heterogeneous node-level, and graph-level tasks, where we consider both homophilic and
heterophilic graph datasets for homogeneous node-level tasks, and cover both Topology Refinement
(TR, i.e., refining graphs from data with the original topology) and Topology Inference (TI, i.e.,
inferring graphs from data without initial topology) settings. For robustness, GSLB evaluates GSL
models under three types of noise: supervision signal noise, structure noise, and feature noise. We also
compare GSL algorithms with the models specifically designed to improve these types of robustness.
For complexity, GSLB conducts a detailed evaluation of representative GSL algorithms in terms of
time complexity and space complexity.

Through extensive experiments, we observe that: (1) GSL generally brings performance improvement
for node-level tasks, especially on heterophilic graphs; (2) on graph-level tasks, current GSL models
bring limited improvement and their performance varies greatly across different datasets; (3) most
GSL algorithms (especially unsupervised GSL algorithms) show impressive robustness; (4) GSL
models require significant time and memory overhead, making them challenging to deploy on
large-scale graphs. In summary, we make the following three contributions:
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Figure 1: A general framework of Graph Structure Learning (GSL). GSL methods start with input
features and an optional initial graph structure. Its corresponding computation graph is refined/inferred
through a structure learning module. With the learned computation graph, Graph Neural Networks
(GNNps) are used to generate graph representations.

* We propose GSLB, the first comprehensive benchmark for graph structure learning. We integrate
16 state-of-the-art GSL algorithms and 20 diverse graph datasets covering homogeneous node-level,
heterogeneous node-level, and graph-level tasks. An overview of our benchmark is shown in
Table 1.

* To explore the ability and limitations of GSL, we systematically evaluate existing algorithms from
three dimensions: effectiveness, robustness, and complexity. Based on the results, we reveal the
potential benefits and drawbacks of GSL to assist future research efforts.

* To facilitate future work and help researchers quickly use the latest models, we develop an easy-to-
use open-source library. Besides, users can evaluate their own models or datasets with less effort.
Our code is available at https://github.com/GSL-Benchmark/GSLB.

2 Problem Definition

In this section, we will briefly review the advances and basic concepts of GSL. Given an undirected
graph G = (A, X), where A € RV*¥ is the adjacency matrix, a,, = 1 if edge (u, v) exists and
ayy = 0 otherwise, and X € RV*F is the node features matrix, N is the number of nodes, F is
the dimension of node features. Given an optional graph G, the goal of GSL is to jointly optimize
computation graph G* = (A*, X)) and the parameters of graph encoder O to obtain high-quality
node representations Z* € RN*¥" for downstream tasks, where A* is the refined graph by graph
learner.

In general, the objective of GSL can be summarized as the following formula:
Lost = Lrask(Z*,Y) + Alreg(A*, Z7,G) (D

where the first term L, refers to a task-specific objective with respect to the learned representation
Z* and ground-truth Y, the second term L., imposes constraints on the learned graph structure and
representations, and )\ is a hyper-parameter that controls the trade-off between the two terms. The
general framework of GSL is shown in Figure 1.

3 GSLB: Graph Structure Learning Benchmark

In this section, we introduce the overview of Graph Structure Learning Benchmark, with considera-
tions of algorithms (Section 3.1), datasets (Section 3.2) and evaluations (Section 3.3).

3.1 Benchmark Algorithms

Table 1 shows the overall 16 algorithms integrated in GSLB. They are divided into three categories:
homogeneous GSL, heterogeneous GSL, and graph-level GSL. We briefly introduce each category in
the following, and more details are provided in Appendix A.2.

Homogeneous GSL. Most of the existing GSL algorithms are designed for homogeneous graphs.
They assume there is only one type of nodes and edges in the graph. We select 7 TR-oriented
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algorithms including GRCN [48], ProGNN [18], IDGL [4], GEN [39], CoGSL [26], STABLE [21],
and GSR [54]. For TI-oriented algorithms, we select SUBLIME [28], NodeFormer [43], SLAPS [10],
and HES-GSL [42]. It is worth noting that TR-oriented algorithms can only be applied if the original
graph structure is available, but we can construct a preliminary graph based on node features (e.g.,
kNN graphs or e-graphs).

Heterogeneous GSL. We integrate two representative heterogeneous GSL algorithms: Graph Trans-
former Networks (GTN) [49] and Heterogeneous Graph Structure Learning (HGSL) [53], which can
handle the heterogeneity and capture complex interactions in heterogeneous graphs.

Graph-level GSL. Graph-level GSL algorithms aim to refine each graph structure in datasets. We
select two graph-level algorithms: Hierarchical Graph Pooling with Structure Learning (HGP-SL) [52]
and Variational Information Bottleneck guided Graph Structure Learning (VIB-GSL) [36].

3.2 Benchmark Datasets

To comprehensively and effectively evaluate the characteristics of GSL in the field of graph learning,
we have integrated a large number of datasets from various domains for different types of tasks.
For node-level tasks, to evaluate the most mainstream task of GSL, node classification, we use four
citation networks (i.e., Cora, Citeseer, Pubmed [47]), and ogbn-arxiv [15], three website networks
from WebKB (i.e., Cornell, Texas, and Wisconsin [34]), and a cooccurrence network Actor with
homophily ratio ranging from strong homophily to strong heterophily. Subsequently, to validate the
effectiveness of GSL in heterogeneous node classification, we utilized three heterogeneous graph
datasets (i.e., DBLP [49], ACM [49], and Yelp [29]). To investigate the robustness of GSL, we
further incorporate the Polblogs dataset for evaluation. For graph-level tasks, we select six public
graph classification benchmark dataset from TUDataset [31] for evaluation, including IMDB-B [3],
IMDB-M [3], RDT-B [46], COLLAB [46], MUTAG [5] and PROTEINS [2]. Each dataset is a
collection of graphs where each graph is associated with a level. Besides, exploring whether GSL can
capture long-range information is an exciting topic. Therefore, we have utilized recently proposed
long-range graph datasets: Peptides-func and Peptides-struct [8]. See more details and statistics about
datasets in Appendix A.1.

3.3 Benchmark Evaluations

To comprehensively investigate the pros and cons of GSL, our benchmark evaluations encompass three
dimensions: effectiveness, robustness, and complexity. For effectiveness, GSLB provides a fair
and comprehensive comparison of existing algorithms from three perspectives: homogeneous node
classification, heterogeneous node classification, and graph-level tasks. In the case of homogeneous
node classification, we evaluated them on both homophilic and heterophilic graph datasets, conducting
experiments in both TR and TI scenarios. For graph-level, we evaluate graph-level GSL algorithms
on TUDataset and long-range graph datasets for exploring the capabilities on graph-level tasks. For
most datasets, we use accuracy as our evaluation metric. For robustness, GSLB evaluates three
types of robustness: supervision signal robustness, structure robustness, and feature robustness. We
control the count of labels to explore the supervision signal robustness of GSL and find that GSL
exhibits excellent performance in the scenarios with few labels. We inject random structure noise and
graph topology attacks to investigate the structure robustness. We also study the feature robustness
by randomly masking a certain proportion of node features. For complexity, we conduct a detailed
evaluation of representative GSL algorithms in terms of time complexity and space complexity. It
will help to facilitate the deployment of GSL in real-world applications.

4 Experiments and Analysis

In this section, we systematically investigate the effectiveness, robustness, and complexity of GSL
algorithms by answering the following specific questions:

* For effectiveness, RQ1: How effective are the algorithms on node-level representation learning
(Section 4.2)? RQ2: Can GSL mitigate homophily inductive bias of traditional message-passing
based GNNs (Section 4.2)? RQ3: How does GSL perform on heterogeneous graph datasets
(Section 4.3)7 RQ4: How effective are the algorithms on graph-level representation learning
(Section 4.4)? RQS5: Can GSL methods capture long-range information on the graph (Appendix B)?



* For robustness, RQ6: How robust are GSL algorithms when faced with a scarcity of labeled
samples? RQ7: How robust are GSL algorithms in the face of structure attack or noise? RQS:
How is the feature robustness of GSL? (Section 4.5)

* For complexity, RQ9: How efficient are these algorithms in terms of time and space (Section 4.6)?

* Otherwise, RQ10: What does the learned graph structure look like (Appendix B.2)?

4.1 Experimental Settings

All algorithms in GSLB are implemented by PyTorch [33], and unless specifically indicated, the
encoders for all algorithms are Graph Convolutional Networks. All experiments are conducted on a
Linux server with GPU (NVIDIA GeForce 3090 and NVIDIA A100) and CPU (AMD EPYC 7763),
using PyTorch 1.13.0, DGL 1.1.0 [38] and Python 3.9.16.

4.2 Performance on node-level representation learning

For node-level representation learning, we conduct experiments on homogeneous graph datasets under
both TR and TI scenarios, and use classification accuracy as our evaluation metric. Table 2 shows
the experimental results of various GSL algorithms under the standard setting of transductive node
classification task in the TR scenario. We can observe that: 1) Most GSL algorithms generally show
improvements in node classification task, particularly on datasets with high heterophily ratio. Due
to the presence of heterophilic connections in heterophily graphs, where nodes are often connected
to nodes with different labels, it violates the homophily assumption of message-passing neural
networks. As a result, traditional GNNs like GCN and GAT exhibit poor performance. However,
GSL can improve significantly on heterophily graph datasets by learning new graph structures based
on downstream tasks and specific learning objectives, thus enhancing the homophily of the graph and
promoting the performance on node-level representation learning. 2) SUBLIME achieves optimal
or near-optimal results on most datasets. It learns graph structure through contrastive learning in an
unsupervised manner. As mentioned in the recent literature [10], optimizing graph structures solely
based on label information is insufficient. Leveraging a large and abundant amount of unlabeled
information can enhance the performance of GSL. 3) The scalability of GSL still needs improvement,
as only a few models can be trained on large-scale datasets (e.g., ogbn-arxiv). We will discuss the
scalability of GSL algorithms in detail in a subsequent section (Section 4.6).

Table 3 shows the experimental results of the transductive node classification task in the TI scenario.
Some GSL algorithms are designed for TR scenario (i.e., GRCN, IDGL, etc.), so we use kNN
graphs as their original graph structure. As we can observe, on the homophily graph datasets, GSL
outperforms baselines, such as MLP, GCNy,,,,, and GAT%,,,,. However, on the heterophily graph
datasets, most GSL algorithms often have difficulty achieving better results than baseline models. As
mentioned in earlier literature, a network with randomness tends to get better performance utilizing
kNN for direct information propagation [17]. Therefore, traditional message-passing neural networks
with kNN graphs demonstrate powerful performance. In addition, as observed in the TR scenario,
models that leverage self-supervision to extract abundant unlabeled information often achieve better
performance.

4.3 Performance on heterogeneous graph node-level representation learning

In this section, we evaluate the performance of GSL algorithms on heterogeneous node classification
task and use Macro-F1 and Micro-F1 as our evaluation metrics. Table 4 shows the experimental
results on heterogeneous graph datasets. By observing the results, we can find that: 1) Because
GTN and HGSL consider both heterogeneity and structure learning, they generally outperform other
models on heterogeneous graph datasets. 2) GSL algorithms generally outperform the vanilla GNN
models (e.g. GCN and GAT) since they have learned better structures to facilitate message passing. 3)
Due to the majority of GSL algorithms not explicitly accounting for heterogeneity, they may exhibit
poorer performance on heterogeneous graph datasets. 4) Some datasets (e.g. Yelp) exhibit stronger
heterogeneity, and on such datasets, models that consider heterogeneity (e.g. HAN, GTN, and HGSL)
perform significantly better.



Table 2: Accuracy £ STD comparison (%) under the standard setting of transductive node classifi-
cation task in the Topology Refinement (TR) scenario, which means the original graph structure is
available for each method. Performance is averaged from 10 independent repetitions. The highest

results are highlighted with bold , while the second highest results are marked with underline .
"OOM" denotes out of memory.

Cora Citeseer Pubmed ogbn-arxiv Cornell Texas Wisconsin Actor
Edge Hom. 0.81 0.74 0.80 0.65 0.12 0.06 0.18 0.22
GCN 81.46+058  71.36+031 79.18+0.29 70.77+019  47.84+555 57.83+2.76 57.45+430  30.01+077
GAT 81.41+077  70.69+058  77.85+042  69.90+025  46.22+633  54.05+735  57.65+775  28.91+083
GPRGNN 83.66+077  71.64+049  75.99+163  50.80+020  76.76+530  85.14+368 83.33+342  34.09+1.09
LDS 83.01+041 73.55+0.54 OOM OOM 47.87+714 58924432  61.704358  31.05+1.31
GRCN 83.87+049  72.43+0.61 78.92+0.39 OOM 54.32+824 62.16+7.05 56.08+7.19  29.97+071
ProGNN 80.30+057  68.51+052 OOM OOM 54.05+616  48.37+1217  62.54+756  22.35+0388
IDGL 83.88+042 72.20+1.18 80.00+0.38 OOM 50.00+898  62.43+609  59.41+411  28.16+141
GEN 80.21+172  71.15+1381 78.91+0.69 OOM 57.02+719  65.94+138  66.07+372  27.21+205
CoGSL 81.76+0.24 73.09+042 OOM OOM 52.16+321 59.46+436  58.82+152  32.95+1.20
SUBLIME 83.40+042  72.30+1.09 80.90+094  71.75+036  70.54+s598  77.03+423  78.82+655  33.57+0.68
STABLE 80.20+068  68.91+1.01 OOM OOM 44.03+405 55244604  53.00+527  30.18+1.00
NodeFormer  80.28+0s2  71.31+098  78.21+143  55.404023  42.704551 58924432  48.43+702  25.51+177
GSR 82.48+043  71.104025  78.09+0.53 OOM 44324216 60.81+487  56.86+124  30.23+038

Table 3: Accuracy &= STD comparison (%) under the standard setting of transductive node classifica-
tion task in the Topology Inference (TI) scenario, which means the original graph structure is not
available for each method.

Cora Citeseer Pubmed ogbn-arxiv Cornell Texas Wisconsin Actor
Edge Hom. 0.81 0.74 0.80 0.65 0.12 0.06 0.18 0.22
MLP 58.55+080  59.524064  73.00+030  55.21+011  71.354+619 80.27+593 84714314  35.49+1.04
GCNgnn 66.10+044  68.33+080  69.23+049  55.21+022  75.144265 75.95+443  84.124397  32.984049
GATknn 64.62+1.04  68.05+1.12  68.76+080 55.92+4030 74.0545.16  76.49+499  82.164406  31.67+1.19
GPRGNNyy,  69.27+062  70.29+054  68.19+1.19  51.394013  75.68+270 81.08+418 84.1243220  34.71+151
LDS 69.87+041  72.43+0s61 OOM OOM 72.65+386  70.20+507  78.14+450  32.39+079
GRCNgnp 69.48+066 68.41+050  68.96+0385 OOM 71.08+6.84 74324502  78.63+492  30.83+0.76
ProGNNg.n 67.11+056  64.55+095 OOM OOM T1.35+404  T1.89+5690  72.9447.93 31.56+1.14
IDGLknn 69.74+057  66.33+084  74.01+064 OOM 72.70+475  75.40+475  79.2143.94 33.07+1.37
GENgnn 66.95+140  67.29+1.17  69.76+153 OOM 71.08+554  74.594346  81.76+291 31.28+1.06
CoGSLknn 66.65+037  68.72+084 OoOM OOM 70.27+342  72.70+426  76.96+525  34.52+156
GSRinn 66.28+059  66.77+062  68.49+149 OOM 70.27+362  74.86+363  78.62+591 33.73+1.12
SLAPS 72.28+097  70.71+113  74.50+147  55.19+021  74.594367  79.19+499  81.96+326 37.16+0.91

SUBLIME 7274191 72.63+060 75.08+055  55.57+018  72.35+357  75.51+s508  82.14+262  32.20+1.02
NodeFormer 54.35+533  45.90+s542  59.83+650  55.37+023  42.70+s551  58.92+432  48.244663  29.24+168
HES-GSL 73.68+1.04 70.12+1.11 77.08+078 56.46+027 66.22+619 T4.05+642  79.61+528  36.73+0.76

4.4 Performance of GSL algorithms on graph-level tasks

In this section, we conduct graph classification experiments on four social datasets (i.e., IMDB-B,
RDT-B, COLLAB, and IMDB-M) and two biological datasets (i.e., MUTAG and PROTEINS). Table 5 shows
the experimental results of average accuracy and the standard deviation of 10-fold cross-validation.
We can observe that HGP-SL (with GCN as the encoder) consistently outperforms GCN on all
datasets. However, we find that VIB-GSL exhibits strong instability across different random seeds.
And due to the absence of training scripts in the official code”, we performed hyperparameter tuning
based on the parameter search space (8 € {1071,1072,1072,107%,107°,107%}) provided in the
paper, but we are unable to surpass the performance of the baseline models consistently. Lastly, we
conducted an analysis of graph-level GSL algorithms on long-range graph dataset [§]. For detailed
information, please refer to Appendix B.

https://github.com/RingBDStack/VIB-GSL
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Table 4: Macro-F1 and Micro-F1 £+ STD comparison (%) under the standard setting of heterogeneous

node classification task.

Method ACM DBLP Yelp
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GCN 90.27+059  90.18+0.61 90.01+032  90.99+0.2s8 78.01+1.89 81.03+1.81
GAT 91.52+062 91464062  90.22+0.37 91.13+040 82.12+1.47 84.43+1.56
HAN 91.67+039  91.47+022  90.53+024  91.47+022 88.49+1.73 88.78+1.40
LDS 92.35+043  92.05+026  88.11+086  88.74+085  75.98+235  78.14+1.98
GRCN 93.04+017 92.94+018  88.33+047  89.43+044  76.05+105  80.68+0.96
IDGL 91.69+124  91.63+124  89.65+060 90.61+056  76.98+578  79.15+506
ProGNN 90.57+103  90.50+129  83.13+156  84.83+136  51.76+146  58.39+1.25
GEN 87.91+278  87.88+261 89.74+069  90.65+0.71 80.43+378  82.68+234
STABLE 83.54+420 83.38+t4s1 75.18+195  76.42+195  71.48+4m 76.62+2.75
GEN 87.91+278  87.88+261 89.74+069  90.65+0.71 80.43+3.78 82.68+2.84
SUBLIME 92.42+016  92.13+037  90.98+0.37 91.82+027 79.68+0.79 82.99+0.82
NodeFormer 91.33+077  90.60+0.95 79.54+0.78 80.56+062  91.69+0.65 90.59+1.21
GSR 92.14+108  92.11+099  76.59+045 77.69+0.42 83.85+0.76 85.73+0.54
GTN 92.04+038  91.94+039  90.52+045 91.48+039  92.98+t0s2  92.44+046
HGSL 93.23 1050 93.13+0s1  91.58+040  92.49+035  92.79+044  92.24+o04s8

Table 5: Accuracy £ STD comparison (%) under the setting of graph-level classification task.

Method IMDB-B RDT-B COLLAB IMDB-M MUTAG PROTEINS
GCN 73.20+429  70.10+580 76.96+228 49.85+384  73.924884 67.52+6.71
VIB-GSL (GCN) 71.90+448 68.95+266 77.14+150 49.05+552  68.6345.15 65.68+38.53
HGP-SL (GCN) 74.10+4.55 OOM 78.06+217  51.07+200 78.07+1085 70.80-+4.25

S GAT 72304226 73.55+476 79.08=13 48904208 7871751  68.63+te24
VIB-GSL (GAT) 72.104+5.69 OOM 77.54+185 49.06+455  77.13+9.95 67.09+8.43
SAGE 72.60+360  70.20+411  75.58+204 48.55+203  68.65+431 64.47+7.15
VIB-GSL (SAGE)  73.00+478  65.7543.17  77.74+152  48.79+506 72.81+11.41 66.61+4.48
HGP-SL (SAGE) 71.50+5.24 OOM 78.64+147 49.67+300  77.13+3.29 73.32+2.06

“GIN 73.00+267 71704501 79.86+16¢ 50304352  87.19+s05s  69.07+562
VIB-GSL (GIN) 69.90+390 75.85+363 77.25+234 49974365 85.18+10.11 75.15+5.72
HGP-SL (GIN) 73.50+6.25 OOM 80.14+151 48.67+258  73.92+6.24 69.37+3.95

4.5 Robustness analysis of GSL algorithms

To investigate the robustness of GSL algorithms, we primarily focus on three aspects: structure robust-
ness, feature robustness, and supervision signal robustness. Due to limited space, we predominantly
investigate the transductive node classification task in our paper. Nevertheless, researchers can utilize

our GSLB library to efficiently and conveniently conduct experiments on other tasks as well.
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Table 6: Accuracy + STD comparison (%) with respect to different perturbation rates. Jaccard and
SimPGCN are representative state-of-the-art defense GNNs.

Dataset Ptb Rate GCN Jaccard SimPGCN IDGL GRCN ProGNN STABLE  SUBLIME

0% 83.68+037 83.78+0s50 82.66+048  84.69+113 84.43+026 84.53+089 83.70+030  83.84+0.28
5% 80.61+039 81.44+048  80.35+082  82.56+024 81.34+050 81.47+044 81.524085 79.93+058
Cora 10% 74384059  75.90+064  76.50+1.12  78.06+062 77.12+038 72.61+073 78.64+18  78.71+0.46
15% 65.17+099  77.14+070  73.77+188  76.88+044 73.74+061 65.68+197  79.70+1711  79.34+061
20% 61.98+123  70.71+091  69.084+278  67.19+060 69.54+058 61.07+061 76.44+247 75.25+1.08

0% 76.56+036 74.34+026 74.35+074  73.87+070 76.34+0.11  73.36+152 72.65+136  73.34+117
5% 72.514+030  70.01+079  72.99+105 72.46+047 74.66+027 71.46+047 69.66+095  72.63+0.50
Citeseer 10% 71.924+068 70.28+130  72.68+054 69.72+059  74.06+043 69.03+060 72.79+071  73.02+0.29
15% 64.44+053  67.13+128  T1.74+146  62.83+128 66.46+1.12  6542+120 70.98+061  73.90+052
20% 57514103  67.82+074  70.06+186  61.16+099 69.42+114 57.51+036 71.90+112  72.55+062

0% 95.624+069 94.93+028  94.50+043  94.83+020 95.65+028 94.84+019 95.63+032  95.27+0s1
5% 80.57+066  78.17+055  76.02+1.14  79.62+065 93.70+018 92.36+042 89.41+163  93.24+150
Polblogs 10% 71.83+237  71.86+13¢  70.12+110  74.54+060 87.99+156 84.66+052 89.87+0s2  93.62+0.50
15% 66.38+217  69.93+066 64.19+155  75.53+083 71.85+158  77.38+051 89.94+080 = 94.29+0.27
20% 68.19+224  69.22+034  63.64+141  71.63+062 71.73+158 73.57+020 87.42+069  92.60+0.72
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Figure 3: Analysis of robustness when injecting random noise on Cora and Citeseer.

ure 2, we can observe that GSL algorithms (for the sake of brevity, we opted to select only three
models: GRCN, IDGL, and SUBLIME) achieve the best results in scenarios with fewer labels
available. We speculate that this may be because the learned graph structure is denser and exhibits
cleaner community boundaries. As a result, the supervision signals can propagate more effectively
within such a structure.

Robustness analysis with respect to random noise. We randomly remove edges from or add
edges to the original graph structures of Cora and Citeseer, then evaluated the performance of
GSL algorithms on the corrupted graphs. We change the ratios of modified edges from O to 0.9
to simulate different attack intensities. As shown in Figure 3, as the noise intensity increases, the
models’ performance generally exhibits a downward trend. And we can observe that GSL algorithms
commonly demonstrate a certain degree of robustness, as they tend to exhibit more stable performance
than GCN when random noise is injected. Besides, we also found that, due to variations in the graph
modeling process, different algorithms display varying levels of robustness when facing edge deletion
and edge addition scenarios. For example, GRCN demonstrates strong robustness in edge deletion
scenarios. However, in the edge addition scenarios, it only exhibits slight performance improvements
compared to GCN. On the contrary, STABLE exhibits strong robustness in the edge deletion scenario,
while showing the opposite trend in edge addition.

Robust analysis with respect to graph topology attack. Following [21, 55], we conduct robust
analysis on three graph datasets, i.e., Cora, Citeseer, and Polblogs. First, we select the largest
connected component in the graph, and utilize Mettack [58], a non-targeted adversarial topology
attack method, to generate perturbed graphs. We select the perturbation rate from 0% to 20%. Table 6
shows the performance of GSL algorithms on three datasets with respect to various perturbation
rates. Surprisingly, we can observe that most GSL algorithms exhibit strong robustness against
graph topology attacks, even better than state-of-the-art defense GNNs (e.g., Jaccard [41] and
SimPGCN [19]). GSL can effectively remove the newly added adversarial edges, and recover
important edges to promote message passing. As mentioned in Li et al. [21], optimizing graph
structures based on either features or supervised signals might not be reliable. We found that
self-supervised graph structure modeling methods (e.g., STABLE and SUBLIME) show excellent
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performance on corrupted graph structure datasets, which means unsupervised representation learning
might produce more reliable and high-quality representations to conduct structure modeling.

Robust analysis with respect to feature noise. On the basis of exploring structural robustness, we
also study the feature robustness of GSL. We randomly mask a certain proportion of node features by
filling them with zeros, to investigate the performance of GSL algorithms when node features are
subjected to varying degrees of damage. As shown in Figure 4, we can observe that: 1) the node
features play a more critical role than the structure on certain datasets. Under the same noise degree,
feature noise brings more performance degradation compared with structure noise; 2) Interestingly,
while most existing GSL methods rely on feature similarity between pairs of nodes to learn graph
structure, they still exhibit good robustness when facing noisy node features; 3) edge-oriented
algorithms (e.g., ProGNN) show stronger feature robustness, because they optimize adjacency matrix
directly, and have less dependence on pairs of node features.

4.6 Efficiency and scalability analysis

In this section, we analyze the efficiency and scalability of GSL algorithms on Cora, Citeseer, and
Pubmed datasets. For time efficiency, we evaluate the efficiency of the algorithms by measuring
the time it takes for them to converge, i.e., achieve the best performance on the validation set.
For scalability, we set all models to their dense version to ensure a fair comparison. As shown
in Figure 5, GSL algorithms generally have higher time and space complexity compared to GCN.
This limitation restricts the application of GSL on large-scale graphs. We can observe that some
algorithms (e.g., GRCN) can achieve relatively good performance improvement with less complexity
increase. Besides, although some algorithms (e.g., IDGL, LDS, and SUBLIME) achieve remarkable
effectiveness improvement, they largely increase the complexity of time and space.

5 Conclusion and Future Directions

In this paper, we give a brief introduction and overview of graph structure learning. Then we present
the first Graph Structure Learning Benchmark (GSLB) consisting of 16 algorithms and 20 datasets



for various tasks. Based on GSLB, we conducted extensive experiments to reveal and analyze the
performance of GSL algorithms in different scenarios and tasks. Through our comparative study, we
find that GSL achieves promising results in heterophily, robustness, etc. The goal of this work is to
understand the current state of development of GSL and provide insights for future research.

Notwithstanding the promising results that have been made, there are still some critical challenges
and research directions worthy of future investigation.

* Insufficient scalability. Most existing works model the existence probability of edges based on
node pairs, with a complexity of O(IN?). This makes it challenging to employ GSL in large-scale
graphs in real-world applications. Future work should focus on overcoming the limitations of GSL
in terms of complexity.

* Surprising performance with few labels. We have observed that GSL learns denser and more
distinct graph structures, which facilitates the propagation of supervision signals. Most existing
GNNss that address few label problem are based on deep GNNs [25, 13] or semi-supervised
approaches [6, 35, 20], without refining the graph structure. In the future, it would be worth
exploring the combination of increasing the supervision signals and making the graph structure
more suitable for propagating those signals.

* Excellent performance of unsupervised GSL in robustness. Some algorithms using self-
supervised methods for learning graph structures exhibit excellent performance in robustness,
which may be attributed to the avoidance of unreliable supervision signals. In the future, further
exploration can be done to utilize unsupervised structure learning for designing defense models.

* Hard to apply on incomplete graphs. Most existing algorithms rely on pairwise node embeddings
to generate the probability of edge existence. The underlying assumption is that all attributes of
nodes on the graph are complete. However, it is common in practice that some nodes or all nodes
have no features. Future research should address the challenges of structure learning on incomplete
graphs.
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