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A Functionalities Provided by LithoBench

In addition to the data and data loaders, LithoBench also provides functionalities that can facilitate the
development of DNN-based and traditional ILT algorithms. Based on PyTorch [1] and OpenILT [2],
we implement the reference lithography simulation model as a PyTorch module, which can be used
like a DNN layer. The GPU-based fast Fourier transform (FFT) can boost the speed of lithography
simulation. PyTorch optimizers can be directly employed to optimize the masks according to ILT
loss functions, significantly simplifying the development of ILT algorithms.

To evaluate ILT results, LithoBench provides a simple interface to measure the L2 loss, PVB, EPE,
and shots of the output masks. It also incorporates Python programs that can train and test the models
mentioned in this paper. We provide the base classes of lithography simulation and mask optimization
models. By inheriting the classes, users can easily build their own models that can be trained and
tested by LithoBench, without the need of writing the code for data loading and evaluation. Fig. 1
shows a typical flow for training and evaluating an ILT model. The users only need to implement the
model and the five functions, i.e. pretrain, train, save, load, run. We include a pretraining interface to
support the commonly adopted two-stage training scheme. However, pretraining is optional since
methods like DOINN do not use two-stage training. Similar interfaces are required for lithography
simulation.

B Reference ILT Algorithm

The reference ILT algorithm generates the optimized masks in LithoBench, which can be utilized to
guide the pretraining or training of DNN-based mask optimization models. The forward pass of our
reference ILT algorithm is:

Z = σZ (H (σM (AvgPool (P )))) . (1)

For average pooling, we use a kernel size of 7 and a stride of 1. In σM (·), we choose β = 4 and
γ = 0.5. H(·) is computed according to the optical kernels from ICCAD-13 benchmark. σZ uses
a threshold Ith = 0.225 and a steepness factor α = 50. The forward pass is implemented using
PyTorch builtin functions so that an SGD optimizer with a learning rate of 0.5 can be used to optimize
the loss function:

Lf (Znom,Zmax,Zmax,T ) = ∥Zmax − T ∥22 + ∥Zmax −Zmin∥22 + Lcurv(Znom), (2)

For the optimization of L2 loss, we adopt ∥Zmax − T ∥22 rather than ∥Znom − T ∥22. This
technique is suggested by [3]. ∥Zmax − Zmin∥22 can improve the PVB. Lcurv(Znom) =∑

x,y (hcurv ⊗Znom(x, y)) approximates the curvature of the mask using the mean curvature
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Figure 1: ILT training and evaluation flow of LithoBench.

Table 1: Comparison Between ILT Methods
ILT [5] DevelSet [6] Multi-Level [3] Ours

Benchmarks EPE L2 PVB Time EPE L2 PVB Time EPE L2 PVB Time EPE L2 PVB Time
(nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s)

case1 6 49893 65534 318 10 49142 59607 1.50 3 39303 46077 1.4 3 39112 48831 6.6
case2 10 50369 48230 256 1 34489 52010 1.40 0 28986 37626 1.2 0 31082 39102 6.6
case3 59 81007 108608 321 64 93498 76558 1.29 22 66151 68021 1.4 17 63569 76183 6.6
case4 1 20044 28285 322 2 18682 29047 1.65 0 15890 23511 1.4 0 8844 23986 6.6
case5 6 44656 58835 315 1 44256 58085 0.91 0 29138 49987 1.4 0 28721 53856 6.6
case6 1 57375 48739 314 2 41730 53410 0.84 0 30558 44503 1.4 0 29981 49084 6.6
case7 0 37221 43490 239 0 25797 46606 0.76 0 15765 37009 1.4 0 14813 42364 6.6
case8 2 19782 22846 258 0 15460 24836 1.14 0 13943 21503 0.8 0 10937 21210 6.6
case9 6 55399 66331 322 0 50834 64950 1.21 0 36397 55600 1.4 0 34791 62161 6.6
case10 0 24381 18097 231 0 10140 21619 0.42 0 7492 16604 1.4 0 7558 17393 6.6

Average 9.1 44012 50899 289 8 38402 48672 1.1 2.5 28362 40044 1.2 2.0 26941 43417 6.6

estimation method in [4]. The convolution kernel hcurv is:
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We sequentially optimize the mask at resolutions 256× 256, 512× 512, and 1024× 1024 for 200,
100, and 100 iterations, respectively. Finally, we get the 2048× 2048 mask by interpolating the result.
Table 1 compares the performance of our reference ILT algorithm with SOTA ILT algorithms. It
achieves the best EPE and L2 among them.

C Data Format

We provide the PNG images of the all data. Before being fed to DNN models, each image is divided
by 255 and averaged along the channel dimension. In addition, GLP files of the target patterns are
also provided. As shown in Listing 1, GLP contains two types of shapes, polygon (PGON) and
rectangle (RECT). For PGON, the integer entries form a list of (x, y) coordinates that represent the
vertices of the polygon. The connections between adjacent vertices are horizontal or vertical. For
RECT, the four integer entries are the bottom-left (x, y) coordinates along with the width and height
of this rectangle.

CELL 0OBAN_SAIL PRIME
PGON N M1 128 128 209 128 209 263 515 263 515 344 209 344 209 479 128 479
PGON N M1 307 614 419 614 419 496 524 496 524 812 419 812 419 695 307 695
RECT N M1 689 321 105 315

ENDMSG

Listing 1: GLP Example

D Details of the Evaluated Models

In this section, we describe the details of the DNN models used in this paper. For all models, we use
Adam [7] optimizor with a learning rate of 1× 10−3.
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D.1 Lithography Simulation Models

D.1.1 LithoGAN

LithoGAN uses a CGAN with a resolution of 256× 256 to fit a lithography simulation model. The
generator of the CGAN is a fully convolutional network [8] and the discriminator is a convolutional
neural network (CNN). The generator consists of 8 convolutional layers and 8 transposed convolu-
tional layers, whose kernel size is 5× 5. The channel widths of the convolutional layers are listed as
follows:

1 → 64 → 128 → 256 → 512 → 512 → 512 → 512 → 512, (4)

where each arrow represents a layer. Each convolutional layer is followed by a 2× 2 max pooling
layer with a stride of 2. For the transposed convolutional layers, the channel widths are as follows:

512 → 512 → 512 → 512 → 512 → 256 → 128 → 64 → 2. (5)

The discriminator of LithoGAN is a CNN consisting of 4 convolutional layers and 1 fully connected
layer. The channel widths are as follows:

2 → 64 → 128 → 256 → 512. (6)

Following GAN, the loss function for the discriminator is binary cross entropy, guiding the model
to distinguish generated images from true images. For the generator, in addition to the loss used in
GAN, LithoGAN also uses the MSE loss between the generated images and ground truths. To train
LithoGAN, we use a batch size of 32. The numbers of epochs are 32 for MetalSet and 8 for ViaSet.
The principle of choosing these hyperparameters is to fully utilize the memory of one NVIDIA
RTX3090 GPU and train the model until it converges.

D.1.2 DAMO

DAMO is also based on CGAN. The generator consists of 5 convolutional layers, 9 residual convolu-
tional layers, and 5 transposed convolutional layers, which are organized sequentially. The numbers
of channels of the convolutional layers are listed as follows:

1 → 64 → 128 → 256 → 512 → 1024 (7)

The residual convolutional layers use 1024 channels. The numbers of channels of the transposed
convolutional layers are listed as follows:

1024 → 512 → 256 → 128 → 64 → 2. (8)

For all layers, the kernel size is 3× 3.

The discriminator of DAMO consists of two sub-nets. One of them works on a resolution of
1024 × 1024. The other one downscales the input image to 512 × 512 before feeding it to the
convolutional layers. Two sub-nets have an identical structure, containing 3 convolutional layers and
1 fully connected layer. The numbers of channels are:

2 → 64 → 128 → 1. (9)

The first layer is followed by a max pooling layer. For all layers, the kernel size is 4× 4. We use the
same loss function as LithoGAN for DAMO. To train DAMO, we use a batch size of 4. The numbers
of epochs are 8 for MetalSet and 2 for ViaSet.

D.1.3 DOINN

Inspired by Fourier Neural Operator (FNO) [9], DOINN utilizes a novel reduced FNO (RFNO)
architecture to fit the lithography simulation model. An RFNO layer is defined as:

FR(X) = σ
(
F−1 (F(X)⊗W P ·WR)

)
, (10)

where F and F−1 represent FFT and inverse FFT, respectively. W P is a complex-valued weight
matrix with a size of 1× C × 1× 1. In this paper, we use C = 64. WR is another complex-valued
weight matrix with the same size as the layer input. The sigmoid function is represented by σ.
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Figure 2: Samples of lithography simulation.

DOINN includes two branches, the global perception branch, and the local perception branch. The
former branch consists of an 8 × 8 average pooling layer and an RFNO layer. The latter branch
consists of three convolutional layers. The numbers of channels are:

1 → 16 → 32 → 64. (11)

The outputs of two branches are concatenated and then fed to 6 convolutional layers. The numbers of
channels are:

128 → 64 → 32 → 16 → 16 → 8 → 1. (12)
The first three layers are followed by 2× 2 upscaling layers. To train DOINN, we use a batch size of
16. The numbers of epochs are 32 for MetalSet and 8 for ViaSet.

D.1.4 CFNO

A Convolutional Fourier Neural Operator (CFNO) layer includes the following steps. The input
image is split into k × k patches. After that, each patch are processed by the following operations:

FC(X) = σ
(
F−1 (F(X) ·WC)

)
. (13)

Finally, we apply the token-wise convolution operation which is implemented by a separable convo-
lution layer with a kernel size of 3× 3.

To encode the input image, the complete CFNO network uses 4 branches. Three of them are CFNO
layers, with k = 16, k = 32, and k = 64. The 4th branch includes 9 successive 3× 3 convolutional
layers, whose channel widths are 32, 64, and 128 (3 layers for each width). The outputs of the
branches are concatenated to form the encoded features.

The decoding flow includes 12 convolutional layers, split into 4 groups. The layers in each group
share the same number of channels. The channel widths of the groups are:

128 → 64 → 32 → 32. (14)

Each group in the first three contains a 2× 2 upscaling layer. Finally, a convolutional layer with 2
channels outputs the predicted results. To train CFNO, we use a batch size of 4. The numbers of
epochs are 8 for MetalSet and 2 for ViaSet.

Fig. 2 presents some examples from the tested models. Except for LithoGAN, the outputs from other
models are visually similar, which is consistent with the quantitive results.

D.2 Mask Optimization Models

D.2.1 GAN-OPC

GAN-OPC also follows the design of CGAN. The generator consists of 5 convolutional layers and 5
pixel-shuffle [10] convolutional layers layer. The channel widths are listed as follows:

1 → 16 → 64 → 128 → 512 → 1024 → 512 → 128 → 64 → 16 → 1. (15)
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Figure 3: Samples of mask optimization.

The discriminator consists of 15 convolutional layers and 3 fully connected layers. The convolutional
layers are divided into 5 groups. The channel widths of the groups are:

1 → 64 → 128 → 256 → 512 → 512. (16)
The fully connected layers have the following sizes:

32768 → 2048 → 512 → 1. (17)

GAN-OPC involves two training stages. In the first stage, the generator is trained to minimize the
MSE between the generated images and the reference optimized masks. In the second stage, it
incorporates a lithography-guided loss function along with the GAN training process. Specifically,
we use the L2 loss as an additional objective, where the printed image Znom is obtained by the
reference lithography simulation model. To train GAN-OPC, we use a batch size of 64. The numbers
of epochs are 64 for MetalSet and 16 for ViaSet.

D.2.2 Neural-ILT

Neural-ILT consists of 8 convolutional layers and 8 transposed convolutional layers. Every 2 layers
are grouped together. The channel widths are:

1 → 64 → 128 → 256 → 512 → 256 → 128 → 64 → 1. (18)
Following UNet [11], skip connections are added to the model. Specifically, the features of the layers
that have the same size are concatenated before being fed to the next layer.

The training of Neural-ILT also consists of two stages. The first stage minimizes the MSE between
the generated images and the reference optimized masks. The second stage optimizes L2(Znom,T )+
PVB(Zmax,Zmin). To train Neural-ILT, we use a batch size of 12. The numbers of epochs are 16
for MetalSet and 4 for ViaSet.

D.2.3 DAMO

DAMO for mask optimization adopts L1(Znom,T ) + PVB(Zmax,Zmin) at the second training
stage. L1 is the Manhattan distance. Other details are similar to the DAMO for lithography simulation.
To train DAMO, we use a batch size of 4. The numbers of epochs are 8 for MetalSet and 4 for ViaSet.

D.2.4 CFNO

CFNO for mask optimization shares the same structure as the CFNO for lithography simulation. The
training process minimizes the distance between the generated masks and the reference masks. At
each training step, we compare the L2 loss of a generated mask and its corresponding reference mask.
If the L2 of the generated mask is better, the training on this datum is skipped. To train CFNO, we
use a batch size of 4. The numbers of epochs are 8 for MetalSet and 2 for ViaSet.

Fig. 3 presents some examples from the tested models. Compared to GAN-OPC, DAMO outputs
more regular shapes, while CFNO gets less complex patterns. Although Neural-ILT achieves the best
performance on StdContact, its outputs contain some weird lines, which should be avoided in future
mask optimization models.

5



Table 2: Comparison on Finetuned ILT Results
GAN-OPC [12] Neural-ILT [13] DAMO [14] CFNO [15]

Subtask L2 PVB EPE Shots L2 PVB EPE Shots L2 PVB EPE Shots L2 PVB EPE Shots
1 27091 43168 2.0 552 27407 42764 2.6 547 27300 43227 1.8 551 27608 42888 2.7 524
2 5359 9447 0.2 287 5131 9343 0.2 309 5603 9486 0.2 279 5515 9449 0.2 283
3 12841 24859 0.0 441 12700 24773 0.0 450 12883 24956 0.0 442 12957 24999 0.1 422
4 31223 41339 8.2 627 27559 42819 4.4 700 27910 43651 3.6 640 28053 43363 4.0 641

Average 19128 29703 2.6 476 18199 29924 1.8 501 18424 30330 1.4 478 18533 30174 1.7 467

(a) (b) (c) (d) (e)

Figure 4: Samples of finetuned mask optimization. (a) Reference; (b) GAN-OPC; (c) Neural-ILT; (d)
DAMO; (e) CFNO.

E Finetuned Results

In typical DNN-based ILT methods, the output masks from DNN models can be finetuned by
traditional ILT methods to get better results. In this paper, we use the reference ILT algorithm to
finetune the masks from the tested models. Table 2 compares the finetuned results. Finetuning bridges
the huge gaps between different methods. Nevertheless, each method still has its own strengths and
benefits. GAN-OPC achieves the best PVB. Neural-ILT keeps the lowest L2 loss. CFNO obtains
the smallest shot counts. Although the superiority of DAMO is not so significant, it achieves an
impressive EPE score. Fig. 4 shows some examples of the finetuned results. The difference between
the masks from different models is not as large as it was before finetuning.

F Limitations and Future Work

Although DAMO [14], DOINN [16], and AdaOPC [17] have pushed forward large-scale ILT for
simple patterns, the optimization for more production-level scale and complex layout patterns has not
been well studied. Thus, LithoBench has not included a super large-scale evaluation for DNN-based
lithography simulation and mask optimization models. However, this will not affect the quality of the
dataset and hence the efficacy of benchmarking AI lithography solutions, because of two reasons.
Firstly, the patterns that appear on one layer are somewhat similar because they are created through
standard chip physical design flows from EDA vendors. Secondly, ILT is typically performed in a
tile-based manner in real semiconductor foundries, due to limitations of computing resources [18].
Therefore, containing such a number of tile-based data in our benchmark suite is proper for a
comprehensive evaluation of the models. In future work, LithoBench can evolve to support more
production-level ILT based on the future progresses of corresponding research.

We hope LithoBench and our experimental results can contribute to the further development of com-
putational lithography. Since we use circuit layouts that have no personally identifiable information
or offensive content, users can be free to use LithoBench in their research.
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