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Abstract

Autoregressive sampling from large language models has shown to achieve state-of-1

the-art results in several natural language tasks. However, autoregressive sampling2

generates tokens one at a time making it slow, and even prohibitive in certain3

tasks. One way to speed up decoding is speculative decoding: use a small model4

to sample a draft (block or sequence of tokens), and then score all tokens in the5

draft by the large language model in parallel. The tokens in the draft are either6

accepted or rejected based on a statistical method to guarantee that the final output7

is a valid sample from the large model. In this work, we provide a principled8

understanding of speculative decoding through the lens of optimal transport (OT)9

with membership cost. This framework can be viewed as an extension of the well-10

known maximal-coupling problem. This new formulation enables us to generalize11

the sampling method to allow for a set of k candidates at the token-level, which12

leads to an improved optimal membership cost. We show that the optimal solution13

can be computed via linear programming, whose best-known runtime is exponential14

in k. We then propose an approximate solution whose acceptance probability is15

(1− 1/e)-optimal multiplicatively. Moreover, it can be computed in time almost16

linear with size of domain of a single token. Using this new OT algorithm, we17

develop a new autoregressive sampling algorithm called SpecTr. We experimentally18

demonstrate that the proposed approach achieves a speedup of 3X, a further 1.36X19

speedup over speculative decoding on standard benchmarks.20

1 Introduction21

Autoregressive language models have shown to achieve state-of-the-art results in several natural22

language tasks [2, 5, 20, 21]. During inference, given a context xt:=x(1), x(2) . . . , x(t), an autore-23

gressive modelMb generates successive tokens x(t+1), x(t+2), . . . via temperature sampling [1, 9],24

where the next token x(t + 1) is drawn from the temperature-scaled distributionMb(·|xt). If the25

temperature is zero, i.e., greedy decoding, the next token is determined by the maximum likelihood26

method i.e., x(t+ 1) = arg maxx∈ΩMb(x|xt), where Ω is the vocabulary. The sampling approach27

can be further combined with other sampling primitives such as nucleus sampling [13] and top-k28

sampling [8, 17]. All these approaches are autoregressive decoding methods, where tokens are29

generated serially one after another, which can be slow or even prohibitive in several applications30

[18]. Hence, several techniques have been proposed to improve the speed of generation. Before we31

proceed further, we first present some notations and a simplified computational model.32

Notations. We use xi:j to denote the sequence x(i), x(i+ 1), . . . , x(j) and when i = 1, we simply33

use xj = x1:j . x(i) denotes the i-th entry of x. Subscripts are used to distinguish between different34

sequences. e.g., xt1 and xt2 denote two sequences of length t. We use [n] to denote the set {1, . . . , n}.35
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Computational model.36

• Standard inference. Given a context xt, with O(t2) computation and O(1) time, an37

autoregressive modelMb can computeMb(y|xt), the (temperature-scaled) probability of38

all possible next tokens y ∈ Ω.39

• Parallelization along the time axis. Given a context xt, with O(t2) computation and40

O(1) time, an autoregressive modelMb can computeMb(y|xi), for all y ∈ Ω and i ∈41

{1, 2, . . . , t}.42

• Parallelization along time and batch axis1. Let K be the maximum batch size that43

can be used during the inference of the autoregressive model. Given a several contexts,44

xt1, x
t
2, . . . x

t
K , with O(Kt2) computation and O(1) time, an autoregressive modelMb can45

computeMb(y|xij), for all y ∈ Ω, i ∈ [t], and j ∈ [K].46

The above computation model shows that parallelizing along time and batch axes does not increase the47

computation time. It is a simplified characterization of the typical hardware, such as TPUs and GPUs,48

used in neural network inference. Previous approaches also assume similar computational model49

to devise faster decoding algorithms [15, 4]. In practice, there will be some overhead depending50

on hardware, implementation and resource utilization. In Section 8, we experimentally show that51

the assumptions roughly hold for a large transformer model. We also note that there are efficient52

transformer architectures, which reduces the computation cost from O(t2) to O(t log t) (see [19] for53

a detailed survey). Such approaches are orthogonal to the focus of this paper, and they can be easily54

combined with our approach.55

Broadly speaking, multiple previous approaches proposed to guess a few possible future tokens using56

an efficient model. They then compute several conditional probability distributions from the large57

model based on the guesses. Computing the distributions takes O(1) time due to parallelization. The58

guessed tokens are then accepted or rejected based on a statistical method such that the accepted59

tokens are effectively samples from the large model. When the guesses are good, multiple tokens will60

be accepted. While this approach incurs the same computation cost as vanilla decoding (assuming61

computing the guess is cheap), it can significantly improve decoding latency due to parallelization.62

The goal of this work is to provide a principled understanding of the above approaches and discuss63

optimality conditions and algorithmic improvements. We start by providing a more formal overview64

of speculative decoding and related works.65

2 Previous works and speculative decoding66

Previous approaches make use of parallelization along the time axis to provide speed-ups. They first67

predict multiple tokens and validate if these multiple tokens can be generated by the model with the68

corresponding sampling or decoding scheme. For greedy decoding, multiple tokens can be predicted69

by a separate model [18], aggressive decoding [10], or retrieval augmented text [23]. For sampling,70

recently [15, 4] proposed an algorithm called speculative decoding, and we provide an overview of71

this algorithm in the rest of the section.72

Suppose we have access to a computationally-inexpensive draft modelMs, which also predicts the73

token given the context and the predictions ofMs is similar to that ofMb for most contexts. Suppose74

we have decoded for t steps and have obtained prefix xt. The next step of the speculative algorithm75

can be broken down into three steps.76

1. Draft construction. The draft model can be used to efficiently and “speculatively” sample77

L tokens, extending the context to x(1), x(2), . . . , x(t), x̃(t+ 1), . . . , x̃(t+ L). We keep78

the conditional probabilities on the next tokenMs(y | xt, x̃t+1:t+i) for each i < L and79

∀y ∈ Ω.80

2. Conditional probability computation. After observing the samples, we compute the81

conditional distributionsMb(y | xt, x̃t+1:t+i) for each i < L and ∀y ∈ Ω in parallel (along82

time axis) in O(1) time.83

3. Draft selection. Select first L′ of the L tokens and set x(t+ i) = x̃(t+ i) for i ≤ L′ given84

the draft sequence and the conditional probabilities from both models.85

1This assumption also implies that naively batching multiple queries improves decoding throughput, but not
latency.
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After this step, we use xt+L
′

1 as prefix and sample the next sequence using speculative decoding86

iteratively. For completeness, we provide the full algorithm in Appendix A. The crux of the above87

three steps is draft selection, which given a draft sequence and the conditional probabilities from88

both models, selects a valid sequence such that the output has same distribution as that of the large89

model. In speculative decoding, this is achieved via recursively applying a token-level maximal90

coupling algorithm, which is provided in Algorithm 1. Note that for the draft selection, Algorithm 1 is91

applied where p is the conditional distribution of the draft modelMs(· | xt) and q is the conditional92

distribution of the large modelMb(· | xt) (which may be further conditioned on the context of the93

language model).

Algorithm 1 Token-level maximal coupling
Input: Distributions p, q, Draft sample X ∼i.i.d. p.

1: Compute pres where ∀x ∈ X , pres(x) = q(x)−min{p(x),q(x)}
1−

∑
x′ min{p(x′),q(x′)} .

2: Set Y = ⊥.
3: Sample η ∼ U(0, 1).
4: if η ≤ min

(
1, q(X)

p(X)

)
then

5: Y = X , accept = True
6: end if
7: Return Y ∼ pres, accept = False.

94

Algorithm 1 returns a random variable Y which either is the accepted input X (accept = True) or a95

sample from the residual distribution pres (accept = False), which is defined in Step 1 of Algorithm 1.96

The algorithm is recursively applied as long as the draft tokens are accepted (accept = True) to97

select the first L′ ≤ L tokens from the draft model. Previous works showed that ifX ∼ p, then Y ∼ q98

[15, 4]. In the case of the draft selection this means that the output of the algorithm is distributed99

according toMb(· | xt), which is exactly the desired outcome. Furthermore100

Pr(Y = X) =
∑
x∈V

min(p(x), q(x)) = 1− dTV(p, q),

where dTV is the total variation distance between p and q. Since Y is distributed according to q, it is a101

valid sample from the large model. Secondly, the more similar p and q are, the higher the chance of102

Pr(Y = X), and fewer the number of serial calls to the larger model. In the ideal case, if p = q, then103

Pr(Y = X) = 1, i.e., the draft token is always accepted, and when used for speculative decoding104

we have L′ = L. In such a case, based on our computational model (Section 1), assuming the draft105

model is very fast compared to the large model, the speedup is L times.106

3 Our contributions107

From a theoretical viewpoint, the speculative decoding algorithm raises multiple questions.108

• What is the relationship between speculative decoding and the broader literature of sampling in109

statistics?110

• Is speculative decoding optimal in an information-theoretic sense?111

• Speculative decoding uses parallelization along time to speed up decoding, would it be possible112

to use parallelization along batch (number of drafts) to further improve decoding speed?113

We provide answers to all the above questions in this work. We first relate the problem of speculative114

decoding to the broader and well-studied discrete optimal transport theory (Section 4). With this115

connection, it becomes clear that the token-level draft selection is the optimal solution for optimal116

transport with indicator cost function and also related to the problem of maximal coupling [7]. Based117

on the connection to optimal transport, we show that one can further speed up the decoding by118

parallelizing along the batch axis by using multiple drafts from the draft model (Section 5).119

More precisely, we formulate the draft selection problem as an discrete optimal transport problem120

with membership cost. Discrete optimal transport can be solved with a linear program, but the number121

of variables is exponential in batch size, which can be prohibitive. To address this, we propose an122
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approximate solution which achieves a (1−1/e)-approximation of the optimal acceptance probability123

(Section 6).124

With this theoretically motivated algorithm and guarantees, we circle back to speeding up decoding125

and propose a new algorithm called SpecTr and theoretically show that it can be used to derive valid126

sequences from the large model (Section 7). We then experimentally demonstrate the benefit of our127

approach on standard datasets (Section 8).128

4 Token-level draft selection as an optimal transport problem129

In this section, we formulate token-level draft as an optimal transport problem, where a cost function130

is associated with whether a draft token is accepted. To simplify notations, we assume the data comes131

from a discrete domain, but this can be easily generalized.132

Definition 1 (Coupling). For two probability distributions P over X and Q over Y , we say a joint133

distribution π supported over X × Y is a coupling between P and Q if134

∀y ∈ Y,
∑
x∈X

π(x, y) = Q(y),

∀x ∈ X ,
∑
y∈Y

π(x, y) = P (x).

We use Π(P,Q) to denote the set of all possible couplings between P and Q.135

When it is clear from context, we will overload notation and refer to the probabilistic mapping136

fπ : X → Y introduced by the conditional probability π(y | x):=π(x, y)/P (x) as a coupling, which137

is also referred to the transport plan from P to Q [22].138

Definition 2 (Optimal Transport (OT) [22]). For a cost function c : X ×Y → R+, the transportation139

cost of a coupling is defined as:140

C(π) = EX,Y∼π [c(X,Y )] .

The optimal transport plan is the coupling π ∈ Π(P,Q) that minimizes the transportation cost.141

With these definitions in place, we can see that with X = Y = Ω, which is the alphabet of the tokens,142

we recover the speculative decoding with the cost function of indicator cost, which captures the143

resampling cost, defined below:144

∀x ∈ Ω, y ∈ Ω, c(x, y) = 1 {y 6= x} .

The transportation cost of the coupling will be145

C(π) = EX,Y∼π [1 {Y 6= X}] = PX,Y∼π(Y 6= X).

This optimal transport with this specific cost function is also called maximal coupling [7], and the146

optimal cost is known to be147

min
π:Π

PX,Y∼π(Y 6= X) =
∑
x∈Ω

min(P (x), Q(x)). (1)

Moreover, it can be shown that Algorithm 1 is equivalent to the maximal coupling between p and q,148

and hence it achieves the optimal cost [7].149

5 Optimal transport with multiple draft tokens150

In this section, we generalize speculative decoding to allow for multiple drafts. More formally, let151

X = Ωk for some k ∈ N+, which is the set of k draft tokens from Ω and Y = Ω, which is the space152

of the final sampled token from the desired distribution. To characterize the resampling cost, we use153

the cost function of membership cost, defined below:154

∀x ∈ Ωk, y ∈ Ω, c(x, y) = 1 {y /∈ S(x)} ,
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where S(x) = {o ∈ Ω | o appears in x} denotes the set of distinct elements in x. When k = 1, this155

recovers the indicator cost mentioned above. The transportation cost of the coupling will be156

C(π) = EX,Y∼π [1 {Y /∈ S(X)}] = PX,Y∼π(Y /∈ S(X)). (2)

We will also refer to the above cost C(π) as the rejection probability due to its probabilistic interpre-157

tation. And similarly, α(π):=1− C(π) = (Y ∈ S(X)) will be the acceptance probability.158

From now on we will use membership cost as the default cost function and refer to the optimal159

transport solution as optimal transport with membership cost (OTM). We use π∗ to denote the160

coupling that minimizes this cost π∗ = arg minπ∈Π(P,Q) C(π);2 and the cost C(π∗) is referred161

to as the optimal transport cost between P and Q. We use α(P,Q) = 1 − C(π∗) to denote the162

corresponding optimal acceptance probability.163

Draft selection with i.i.d. draft tokens. In this paper, we will mainly focus on the case when the164

draft tokens are i.i.d. samples from a base distribution. Let p, q be supported over Ω and the goal is to165

obtain one valid token from q given k i.i.d. samples from p. This applies to the practical scenario166

where there exists a computationally efficient model, from which we can sample multiple independent167

draft tokens efficiently. We set P = p⊗k, a product distribution whose marginals are all p, and Q = q.168

And the OT problem we want to solve is the following:169

minC(π) s.t. π ∈ Π(p⊗k, q). (3)

In this case, we overload notation and denote the optimal acceptance probability as170

αk(p, q):=α(p⊗k, q) = 1−C(π∗). To better understand the quantity, below we state a few properties171

of αk.172

Lemma 1. (Appendix B.1) The optimal acceptance probability statisfies the following properties.173

• Monotonicity. For any p, q and k ≥ 1, αk(p, q) ≤ αk+1(p, q).174

• Consistency. If q(x)/p(x) is bounded ∀x ∈ Ω, we have175

lim
k→∞

αk(p, q) = 1.

Else,176

lim
k→∞

αk(p, q) =
∑
x∈Ω

1 {p(x) > 0} q(x).

With the above result, it is clear that increasing k might increase the acceptance probability, particu-177

larly when the draft model satisfies p(x) > 0 for all x ∈ Ω. We now focus on computing the optimal178

transport scheme and the optimal acceptance probability. Optimal transport in discrete domain has179

been studied extensively [14, 16, 11], and it is shown that the optimal transport problem is equivalent180

to the following linear programming problem:181

min
∑
x∈Ωk

∑
y∈Ω

π(x, y)1 {y /∈ S(x)} (4)

s.t. ∀y ∈ Ω,
∑
x

π(x, y) = Q(y)

∀x ∈ Ωk,
∑
y

π(x, y) = P (x)

∀x ∈ Ωk, y ∈ Ω, π(x, y) ≥ 0.

Linear programming can be solved in time polynomial in the number of variables and constraints182

[6, 16]. Linear program in (4) has |Ω|k+1 variables and |Ω|k + |Ω| equality constraints.183

Lemma 2. Given p, q over Ω, there exists an algorithm that computes a solution to Eq. (3) in time184

O(|Ω|O(k)).185

2The existence of optimal coupling in discrete domain is well-known, e.g., see [22]. When the optimal
coupling is not unique, we use π∗ to denote one of the optimal couplings.
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Figure 1: Optimal acc. prob.
as a function of k when p =
U(d) for d = 120.
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as a function of q when p =
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We refer to the optimal coupling obtained above as OTM-k and denote it as πOTM−k. For the case of186

k = 1, we have a closed form expression for the optimal acceptance cost (see Eq. (1)), whereas for187

larger values of k, we don’t have a general closed form expression.188

We illustrate for few simple cases and plot them in Figures 1, 2, 3 and provide analysis for these189

simple distributions in Appendix B.2. Let U(d) denote a uniform distribution over [d]. In Figure 1,190

we plot the optimal acceptance probability for different uniform functions q as a function of k.191

Observe that all acceptance probabilities are monotonically increasing and tend to one as k →∞,192

however the rate of convergence is vastly different. Furthermore if α1(p, q) > α1(p, q′), that does193

not necessarily mean αk(p, q) > αk(p, q′). In Figure 2, we plot the optimal acceptance probability194

for different Bernoulli distributions q as a function of k when p = Ber(0.25). Note that when p = q,195

the acceptance probability is always one (green line), but as we increase / decrease q the acceptance196

probability decreases. Finally, in Figure 3, we plot the acceptance probability for different values of197

k as a function of q, when p = Ber(0.25). In this scenario, note that if k is sufficiently large, say 8,198

then for most values of q, the acceptance probability is one, however if k is small, then the acceptance199

probability depends on how close p and q are. Even though, we don’t have a closed form solution200

for general k, we provide an information-theoretic upper bound in the next theorem. For the case of201

k = 1, this upper bound matches the optimal acceptance probability of previous results. We also note202

that this bound is tight for all of the above examples.203

Theorem 1 (Appendix B.3). For any two distributions p, q and ∀k ≥ 1, we have204

αk(p, q) ≤ min
Ω0⊂Ω

∑
y∈Ω0

min
{
q(y), 1− (1− p(y))k

}
+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈xk∩Ωc
0

q(y)}

 .

While this solution gives the optimal transportation cost, if we aim to use generic linear program205

solver to solve (4), to the best of our knowledge, the best-known runtime will be exponential in k,206

which can be prohibitive when either the vocabulary size Ω or the number of draft tokens k is large.207

In the next section, we will present an approximate solution to the OTM problem and show that for208

any pair of distributions, it gives a (1− 1/e) approximation to the optimal acceptance probability209

αk.210

6 Approximate OTM via k-sequential selection211

In this section, we present sequential selection algorithm (K-SEQ), an approximate solution to the212

optimal transport problem in Eq. (3), which can be efficiently computed in time almost linear in |Ω|213

and logarithmic in k. The algorithm is presented in Algorithm 2.214

At a high-level, the algorithm goes over all k samples X1, . . . , Xk generated from p sequentially, and215

decides on whether to accept each Xi based on the ratio q(Xi)/p(Xi). The algorithm output the first216

accepted sample or result from a residual distribution pres if none of the samples is accepted. To control217

the probability of accepting an x ∈ Ω with probability larger than q(x). We choose an appropriate γ ∈218

[1, k] and accept Xi with probability min(1, q(Xi)/(γ · p(Xi))) instead of min(1, q(Xi)/(p(Xi)))219

as in the single-draft case. Further, notice that Algorithm 2 recovers Algorithm 1 when γ = k = 1.220
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Algorithm 2 k-sequential selection algorithm (K-SEQ).
Input: Distributions p, q, samples X1, . . . , Xk ∼i.i.d. p. γ ∈ [1, k] : division factor.

1: Let βp,q(γ) =
∑
x∈Ω min(p(x), q(x)/γ) and pacc = 1− (1− βp,q(γ))k. Compute pres where

∀x ∈ Ω, pres(x) =
q(x)−min

{
p(x), q(x)

γ

}
pacc

βp,q(γ)

1− pacc
. (5)

2: for i = 1, 2, . . . , k do
3: Sample ηi ∼ U(0, 1).
4: if ηi ≤ min

(
1, q(Xi)

γ·p(Xi)

)
then

5: Y = Xi.
6: Return Y = Xi.
7: end if
8: end for
9: Return Y ∼ pres.

In Theorem 2, we show that family of joint distributions induced by Algorithm 2 is indeed valid221

transportation plans from p⊗k to q. Moreover, to find the best transportation plan within the family,222

we only need to search over a single parameter γ, which reduces the computation cost significantly.223

We also show that searching over this sub-family of couplings won’t decrease the optimal acceptance224

probability by a multiplicative constant. The performance of Algorithm 2 is stated in Theorem 2.225

Theorem 2. Let βp,q(γ) =
∑
x∈Ω min(p(x), q(x)

γ ) and γ∗ be the solution to the identity below.226

1− (1− βp,q(γ))k = γβp,q(γ). (6)

When γ ≥ γ∗, the coupling πK-SEQ
γ introduced by Algorithm 2 is a valid transport plan from p⊗k to q227

and228

α(πK-SEQ
γ ) ≥ pacc = 1− (1− βp,q(γ))k.

And when γ = γ∗, we have229

α(πK-SEQ
γ∗ ) ≥ (1− e−1)αk(p, q).

Moreover, γ∗ can be computed in time O(|Ω| log k).230

Due to space constraints, we provide the proof in the appendix. To see why γ∗ can be computed231

efficiently, we notice that the function f(γ) defined below has a root in [1, k]. Moreover it is232

continuous and monotonically increasing when γ ∈ [1, k]:233

f(γ) = 1− (1− βp,q(γ))k − γβp,q(γ).

Hence the solution to Eq. (6) can be efficiently computed using binary search over the set [1, k].234

In fact, although Theorem 2 only guarantees that Algorithm 2 can achieve an acceptance rate at235

least a (1− e−1) factor of the optimal acceptance rate, empirically we observe that the acceptance236

probabilities are much closer for certain distributions. For example, for all the examples listed in the237

previous section, the proposed algorithm is in fact optimal. We list few more comparisons in the238

appendix.239

7 SpecTr: Application of OTM in autoregressive sampling240

In this section, we describe how OTM can be used to speed up auto-regressive sampling, which we241

refer to as SpecTr sampling. Similar to speculative decoding, each step of SpecTr can be decomposed242

into three phases:243

1. Draft set construction. Given context xT , use the draft model sample a set of draft244

sequences with length L, denoted by S = {zL ∼ Ms(· | xt)}. We keep the conditional245

probabilitiesMs(y | xt, zi) for all y ∈ Ω, i ≤ L and zL ∈ S.246

2. Conditional probability computation. Compute the conditional probabilities on the next247

token for the large modelMb(y | xt, zi) for all y ∈ Ω, i ≤ L and zL ∈ S in parallel.248
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3. Draft selection. Select first L′ of the L tokens and set x(t+ i) = z(i) for i ≤ L′ and some249

z ∈ S given the set of draft sequences and the conditional probabilities from both models.250

Algorithm 3 Draft selection with multiple candidates (DraftSelection).
Input: Input sequence xt; candidate length: L; a set of candidates S = {zLi | i = 1, . . . , |S|} with

length L.
1: Compute a transport plan (using linear programming in Lemma 2 for an exact solution or

Algorithm 2 for an approximate solution) fromMs(· | xt)⊗|S| toMb(· | xt), denoted by πt.
2: Get the multi-set of next token-level drafts: Sz = {zi(1)}i∈[|S|] and compute Y = fπt

(Sz).
3: if L = 1 then
4: if Y ∈ Sz then
5: Sample Y ′ ∼Mb(· | (xt, Y ))
6: Return (xt, Y, Y ′).
7: else
8: Return (xt, Y )
9: end if

10: end if
11: Let Snext = {z2:L | z ∈ S and z(1) = Y } be the set that consists of sub-sequences of the

candidates that agree with the selected next token.
12: if Snext = ∅ then
13: Return (xt, Y )
14: else
15: Return DraftSelection((xt, Y ), L− 1, Snext)
16: end if

This paper will  

be liked by all

be read by four

be liked for its

not be liked by

not get good reviews

receive one good review

|Sz| = 6 |Sz| = 3 |Sz| = 2 |Sz| = 1

Figure 4: An example of draft selection in
SpecTr with L = 4 and K = 6. Draft selection
algorithm has input of all conditional probabilities
from both large and small models. In the first step,
we compute the transport plan with |Sz| = K = 6
and the sequential selection algorithm will select
‘be’, which appeared thrice in our samples. We
then compute the transport plan with |Sz| = 3
and the sequential selection algorithm will select
‘liked’. We then compute the transport plan with
|Sz| = 2 and the sequential selection algorithm
will select ‘by’. Finally, we compute the transport
plan with |Sz| = 1 and the sequential selection
algorithm will not select any of the drafts.

Draft set with i.i.d. draft sequences. Gvien251

context xt, a natural way to come up with a252

set of K drafts is to independently sample K253

draft sequences from the conditional distribution254

Ms(· | xt), i.e.,255

zL1 , z
L
2 , . . . , z

L
K ∼i.i.d.Ms(·, ·, . . . ·︸ ︷︷ ︸

L dots

| xt).

(7)
The draft set construction method in (7) can256

be generalized to a prefix-tree based algorithm.257

However, this generalized version did not per-258

form better in experiments. We include this259

construction in the appendix for completeness260

Draft selection with multiple candidates. We261

present the selection algorithm given a set of262

draft sequences in Algorithm 3. We assume263

the condition probabilities on the next token is264

available given any prefix in the candidate set265

since they are computed parallelly in the second266

phase, and won’t list them as inputs explicitly267

in Algorithm 3.268

A sample run of the algorithm is presented in269

Fig. 4. The algorithm proceeds in a recursive270

fashion. Given prompt xt and a candidate set S sampled from Ms(· | xt), the algorithm first271

computes the optimal transport plan fπ : Ω|S| → Ω fromMs(· | xt)⊗|S| toMb(· | xt). Then fπ272

is applied to the first token in each sequence in S to obtained a valid token Y fromMb(· | xt). If273

Y is not the last token (L ≥ 2), we filter out sequences in S whose first token is not Y and denote274

the remaining sequences as Snext and feed it to the algorithm with context (xt, Y ) and draft length275

L− 1. This goes on until we have L = 1 or Snext = ∅.276

In this case when Y is the last token (i.e., L = 1) and Y ∈ S, we have the choice to sample an277

additional tokenMb(· | (xt, Y )) since this conditional probability is already computed in the second278
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Table 1: Average latency with parallelization along the time axis and batch axis. We report average
latency with standard deviation over 1,000 runs using a 97M transformer relative to length = 4 and
batch = 1 on GPU.

Relative latency batch = 1 batch = 2 batch = 4 batch = 8
length = 4 1.00 ± 0.16 1.01 ± 0.15 1.06 ± 0.10 1.10 ± 0.16
length = 8 1.01 ± 0.18 1.09 ± 0.25 1.10 ± 0.09 1.42 ± 0.4

Table 2: Experimental results on the LM1B dataset. All results are over 1000 test prompts averaged
over three different random seeds.

Algorithm K L Number of decoded
tokens per serial call

Baseline - - 1.0
Speculative 1 4 2.2

SpecTr 2 4 2.4
SpecTr 4 4 2.7
SpecTr 8 4 3.0

Speculative 1 8 2.3
SpecTr 2 8 2.6
SpecTr 4 8 3.0
SpecTr 8 8 3.3

phase. Due to the property of the transport plan, we know that Y is always a valid sample from279

Mb(· | xt). The overall performance of the algorithm is stated in Theorem 3. We needed to take care280

in the statement and the proof to deal with the fact that the length τ of the output sequence Y τ is281

itself a random variable. We defer the proof to the appendix due to limited space.282

Theorem 3. Assume all drafts in set S are generated from the small model with input xt, or more283

precisely, ∀z ∈ S,284

∀i ∈ [1, L], z(i) ∼Mb(· | xt, zi−1). (8)

Let Y τ be the output of Algorithm 3 where τ is the length of the output, and Zτ+1:L = (Z(τ +285

1), . . . , Z(L)) ∼ Mb( ·, ·, . . . ·︸ ︷︷ ︸
(L−τ) dots

| xt, Y τ ), then it satisfies that (Y τ , Zτ+1:L) ∼prob Mb(·, ·, . . . ·︸ ︷︷ ︸
L dots

|286

xt). More precisely, For any length-L sequence oL = (o(1), . . . , o(L)) ∈ ΩL, we have287

Pr
(
(Y τ , Zτ+1:L) = oL

)
= ΠL

i=1Mb(o(i) | xt, oi−1).

8 Experiments288

We evaluate the performance of our algorithm and compare it to speculative decoding by following289

a recipe provided in [15]. We train decoder-only transformer models on the one-billion language290

benchmark (LM1B) [3] based on the example provided in the FLAX library [12]. For the draft291

model, we use a 6M parameter transformer model, and for the large model we use a 97M parameter292

transformer model.293

We first provide a verification of the computational model introduced in Section 1 by reporting the294

latencies of using the large model to compute the probabilistic distributions with parallelization over295

time and batch axes. As shown in Table 1, the latency stays roughly constant in these setting.296

The results of different decoding algorithms are shown in Table 2. The baseline method decodes one297

token from the large model per serial call, and speculative decoding improves this to ≈ 2.3. The298

proposed method SpecTr improves upon speculative decoding and increases the number of decoded299

tokens per serial call as we increase the number of drafts K. We further note that for both Speculative300

decoding and SpecTr, the number of decoded tokens increases as we increase the block length from 4301

to 8. We also note that based on our current implementation, generating the drafts using the small302

models adds about 10%-15% latency under settings in Table 2. Due to space constraints, we provide303

additional experiments and details in Appendix F.304
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A Speculative decoding359

Algorithm 4 Speculative Sampling SPECSAMPLE.
Input: Input sequence xt. Access to a small modelMs and a large modelMb, block length L, end

of sequence symbol eos.
1: Autoregressively sample Ms with context xt to get L − 1 subsequent samples denoted by
x̃t+1, . . . , x̃t+L−1.

2: Let x̃i = xi for i ≤ n.
3: In parallel compute pi =Ms(·|x̃t+i−1) and qi =Mb(·|x̃t+i−1) for 1 ≤ i ≤ L.
4: for i = 1, . . . , L− 1 do
5: Compute Yi, accept = Algorithm 1(pi, qi, x̃t+i)
6: xt+i = Yi.
7: if xt+i = eos then
8: Return xt+i
9: end if

10: if accept = True then
11: Continue.
12: else
13: Return SPECSAMPLE(xt+i,Ms,Mb, L).
14: end if
15: end for
16: Draw xt+L from qL.
17: Return SPECSAMPLE(xt+L,Ms,Mb, L).

B Missing proofs in Section 5360

B.1 Proof of Lemma 1361

We first prove monotonicity. By definition,362

αk(p, q) = 1− min
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y /∈ S(Xk)

)
= max
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y ∈ S(Xk)

)

Moreover, for any π ∈ Π(p⊗k, q), we can construct π′ ∈ Π(p⊗k+1, q) by setting363

∀xk+1 ∈ Ωk+1, y ∈ Ω, π′(xk+1, y) = π(xk, x(k + 1), y)p(x(k + 1)),

i.e., adding and independent sample from p to Xk.364

Hence we have365

αk(p, q) = max
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y ∈ S(Xk)

)
= max
π∈Π(p⊗k,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk)

)
≤ max
π∈Π(p⊗k,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk+1)

)
≤ max
π′∈Π(p⊗k+1,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk+1)

)
= αk+1(p, q).

Next we prove consistency. We start with the case when ∀x ∈ Ω, q(x)/p(x) <∞. To prove this, we366

will show that Algorithm 2 with γmax = maxx∈Ω q(x)/p(x) statisifies367

lim
k→∞

α(πK-SEQ
γmax

) = 1.
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Notice that by Lemma 3 and Theorem 2, πK-SEQ
γmax

is a valid coupling, and368

α(πK-SEQ
γmax

) = 1− (1− βp,q(γmax))k,

where βp,q(γ) =
∑
x∈Ω min(p(x), q(x)

γ ) ≥ 1/γmax > 0. Taking k →∞ concludes the proof.369

For the case when q(x)/p(x) is unbounded, there exists x ∈ Ω such that q(x) > 0 and p(x) = 0. Let370

poff =
∑
x∈Ω

1 {p(x) = 0} q(x).

Let x0 be such that p(x0) > 0. We define q′ such that371

q′ =


0, if p(x) = 0,

q(x), if p(x) > 0 and x 6= x0,

q(x) + poff if x = x0.

Then we have dTV(q, q′) = poff , and hence by subadditivity of transport cost,372

αk(p, q) ≥ αk(p, q′)− poff .

Moreover, we have ∀x ∈ Ω, q′(x)/p(x) <∞. Hence373

lim
k→∞

αk(p, q) ≥ lim
k→∞

αk(p, q′)− poff = 1− poff =
∑
x∈Ω

1 {p(x) > 0} q(x).

B.2 Optimal acceptance probability calculations374

In this section, we provide a sketch of optimal acceptance probability calculations for results in375

Figures 1, 2, and 3.376

Figure 1: p = U(d) and q = U(d/r). The optimal acceptance probability is377

αk(U(d), U(d/r)) = 1− (1− 1/r)k.

We first prove αk(U(d), U(d/r)) ≥ 1 − (1 − 1/r)k by a construction. Let S(Xk) be the set of378

unique symbols in Xk. Consider the following transport plan, where Y is drawn uniformly from379

S(Xk) ∩ [d/r] and draws a new uniform sample from [d/r] if S(Xk) ∩ [d/r] = ∅. Observe that380

since U(d) is uniform over [d], this is a valid transport plan and furthermore,381

αk(U(d), U(d/r)) ≥ Pr(S(X)k ∩ [d/r] 6= ∅) = 1− (1− 1/r)k.

The upper bound follows by setting Ω0 = [d] \ [d/r] in Theorem 1.382

αk(U(d), U(d/r)) ≤ Pr(S(Xk) ∩ [d/r] 6= ∅) = 1− (1− 1/r)k.

Figure 2 and 3: Ber(p) and Ber(q). The optimal acceptance probability is383

αk(Ber(p),Ber(q)) = min(q, 1− (1− p)k) + min(1− q, 1− pk).

Setting Ω0 = {0, 1} in Theorem 1 yields the upper bound. For the lower bound observe that since384

Ω = {0, 1}, 1
{
y /∈ S(xk)

}
< 1 if and only if xk is 0k or 1k. Hence,385

αk(Ber(p),Ber(q)) = π(Xk /∈ {0k, 1k}) + max
π
{π(Y = 0, Xk = 0k) + π(Y = 1, Xk = 1k)}.

Consider the transport plan π given by π(1k, 1) = min(pk, q), π(1k, 0) = pk − min(pk, q),386

π(0k, 0) = min((1 − p)k, 1 − q), and π(0k, 1) = (1 − p)k − min((1 − p)k, 1 − q). It can be387

checked that this is a valid transport plan and this matches the upper bound on the optimal cost from388

Theorem 1.389
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B.3 Proof of Theorem 1390

It would be enough to show that for any π ∈ Π(p⊗k, q), and any Ω0 ⊂ Ω, we have391

Pr
(
Y ∈ S(Xk)

)
≤
∑
y∈Ω0

min
{
q(y), 1− (1− p(y))k

}
+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈S(xk)∩Ωc
0

q(y)}.

392

Pr
(
Y ∈ S(Xk)

)
=
∑
y∈Ω

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
=
∑
y∈Ω0

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
+
∑
y∈Ωc

0

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
=
∑
y∈Ω0

Pr
(
y ∈ S(xk), Y = y

)
+
∑
xk∈Ωk

∑
y∈S(xk)∩Ωc

0

Pr
(
Xk = xk, Y = y

)
≤
∑
y∈Ω0

min{Pr
(
y ∈ S(xk)

)
, q(y)}+

∑
xk∈Ωk

min{Pr
(
Xk = xk

)
,

∑
y∈S(xk)∩Ωc

0

q(y)}

=
∑
y∈Ω0

min{1− (1− p(y))k, q(y)}+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈S(xk)∩Ωc
0

q(y)}.

C Proof of Theorem 2 and Theorem 3393

C.1 Proof of Theorem 2394

We start by proving the following lemma on γ∗.395

Lemma 3. Let396

f(γ) = 1− (1− βp,q(γ))k − γβp,q(γ).

Then we have Let γ∗ be the solution to Eq. (6). Then when dTV(p, q) ∈ (0, 1),397

• f(γ) is monotone in γ in [1,∞);398

• γ∗ ∈ [1,min{k,maxx
q(x)
p(x)}].399

Proof. It would enough to prove the followings: (1) f(γ) is monotone in γ in [1,∞); (2) f(1) ≥ 0;400

(3) f(k) ≤ 0; (4) f(maxx
q(x)
p(x) ) ≤ 0.401

To see (1), since βp,q(γ) is decreasing in γ, so is 1 − (1 − βp,q(γ))k. Moreover, γβp,q(γ) =402 ∑
x min{γp(x), q(x)}, which is non-decreasing in γ. Hence we have 1− (1− βp,q(γ))k − γβp,q(γ)403

is decreasing.404

To see (2), note that when γ = 1, βp,q(γ) = 1− dTV(p, q). Hence we have405

1− (1− βp,q(1))k = 1− dTV(p, q)k ≥ 1− dTV(p, q).

When γ = k, (3) holds since for x ∈ [0, 1], we have 1 − (1 − x)k ≤ kx. Moreover, when406

γ = maxx
q(x)
p(x) > 1, we have βp,q(γ) = 1/γ and (4) holds since407

1− (1− βp,q(γ))k = 1− (1− 1/γ)k < 1 = γ · 1/γ.
408

Next we prove Theorem 2, we will break the proof into four parts: (1) computation efficiency; (2)409

πK-SEQ
γ is a valid transport plan; (3) acceptance probability; (4) optimality guarantee of πK-SEQ

γ∗ .410
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Computation efficiency. Note that the lemma immediately implies that γ∗ can be computed up to411

arbitrary accuracy δ in time |Ω| log(k/δ) using binary search over [1, k].412

Valid transport plan. We next prove that πK-SEQ
γ is a valid transport plan when γ ≥ γ∗. By413

Lemma 3, when γ ≥ γ∗, we have 1−(1−βp,q(γ))k ≥ γβp,q(γ). Recall that pacc = 1−(1−βp,q(γ))k,414

and415

∀x ∈ Ω, pres(x) =
q(x)−min

{
p(x), q(x)

γ

}
pacc

βp,q(γ)

1− pacc
.

∀x ∈ Ω, we have416

min

{
p(x),

q(x)

γ

}
pacc

βp,q(γ)
≤ 1− (1− βp,q(γ))k

γβp,q(γ)
q(x) ≤ q(x),

this implies pres(x) ≥ 0 for all x ∈ Ω. Moreover,417

∑
x∈Ω

pres(x) =
∑
x∈Ω

q(x)−min
{
p(x), q(x)

γ

}
pacc

βp,q(γ)

1− pacc
= 1.

Hence pres is a valid distribution. It remains to show that the marginal of Y is q. We first compute the418

probability of the output Y = x. Note that probability that Y = X1 is419

p(X1) min

(
1,

q(X1)

γp(X1)

)
= min

(
p(X1),

q(X1)

γ

)
.

Hence420

Pr(Y = X1 = x) = min

(
p(x),

q(x)

γ

)
.

Therefore,421

Pr(Y = X1) =
∑
x

min

(
p(x),

q(x)

γ

)
= β(γ).

Similarly, probability that422

Pr(Y = X2 = x) = Pr(Y 6= X1) Pr(Y = X2|Y 6= X1) = (1− βp,q(γ)) min

(
p(x),

q(x)

γ

)
.

Hence,423

Pr
(
Y = x, one of Xk is accepted

)
=

k−1∑
i=0

Pr (X1, . . . , Xi are rejected, Xi+1 is accepted, and Xi+1 = x)

=

k−1∑
i=0

(1− βp,q(γ))i · p(x) ·min

{
1,

q(x)

p(x)γ

}

= min

{
p(x),

q(x)

γ

}
·
k−1∑
i=0

(1− βp,q(γ))i

= min

{
p(x),

q(x)

γ

}
1− (1− βp,q(γ))k

βp,q(γ)

Summing over all symbols x yields424

Pr(one of Xk is accepted) =
∑
x

min

{
p(x),

q(x)

γ

}
1− (1− βp,q(γ))k

βp,q(γ)
= 1− (1− βp,q(γ))k.
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Hence we have425

Pr (Y = x) = Pr
(
Y = x, one of Xk is accepted

)
+ (1− one of Xk is accepted)pres(x)

= min

{
p(x),

q(x)

γ

}
1− (1− βp,q(γ))k

βp,q(γ)

+
(
1− (1− βp,q(γ))k

)q(x)−min
{
p(x), q(x)

γ

}
1−(1−βp,q(γ))k

βp,q(γ)

1− (1− βp,q(γ))k

= q(x).

Acceptance probability. The acceptance probability holds since426

α(πK-SEQ
γ ) ≥ Pr(one of Xk is accepted) = 1− (1− βp,q(γ))k.

Optimality guarantee of πK-SEQ
γ∗ . It can be seen that β(γ) is decreasing in γ, and so is 1 − (1 −427

βp,q(γ))k. Hence we have428

α(πK-SEQ
γ∗ ) ≥ 1− (1− βp,q(γ∗))k ≥ 1− (1− βp,q(k))k = ck(p, q) ·min{kp(x), q(x)},

where429

ck(p, q) =
1− (1− βp,q(k))k

kβp,q(k)
∈ [1− (1− 1/k)k, 1).

The inclusion holds sincef(x) = 1−(1−x)k

kx in monotonically decreasing when x ∈ (0, 1/k] and430

f(1/k) = 1− (1− 1/k)k, limx→0+ f(x) = 1.431

Moreover, ∀x ≥ 0, kx ≥ 1− (1− x)k. Hence we have432

α(πK-SEQ
γ∗ ) ≥

(
1− (1− 1/k)k

)
·min{kp(x), q(x)}

≥
(
1− (1− 1/k)k

)
min{1− (1− p(x))k, q(x)}

≥
(
1− (1− 1/k)k

)
αk(p, q),

where the last inequality is due to the upper bound in Theorem 1 with Ω0 = Ω.433

C.2 Proof of Theorem 3434

We prove the theorem via induction. When L = 1, Pr (τ = 1) = 1, the theorem follows directly435

since fπ in Algorithm 3 is a valid transport plan. Suppose the theorem holds for L = ` ≥ 1, we next436

prove that it holds for L = `+ 1. Let Ȳ τ
′

be the output sequence when L = `+ 1 and Z̄τ
′+1:`+1 be437

the subsequent samples fromMb. Note that compared to the case when L = `, extending the block438

length of the tree by one only changes the probability of Y τ when τ = L, i.e., ∀j < ` and length-j439

sequence oj ∈ Ωj , we have440

Pr
(
Y j = oj , τ = j

)
= Pr

(
Ȳ j = oj , τ ′ = j

)
For any length-` sequence o`, let441

δ(o`):= Pr
(
Y ` = o`, τ = `

)
− Pr

(
Ȳ ` = o`, τ ′ = `

)
.

Then by definition, we have442

δ(o`) =
∑

o(`+1)∈Ω

Pr
(
Y `+1) = (o`, o(`+ 1)), τ = `+ 1

)
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For any length-(`+ 1) sequence o`+1 ∈ Ω`+1, we have443

Pr
(

(Ȳ j , Z̄τ
′+1:`+1) = o`+1

)
(9)

=

`−1∑
j=1

Pr
(
Ȳ j = oj , τ ′ = j

)
Mb(o

j+1:`+1 | xn, oj)

+ Pr
(
Ȳ ` = o`, τ ′ = `

)
Mb(o(`+ 1) | xn, o`) + Pr

(
Ȳ `+1 = o`+1, τ = `+ 1

)
(10)

=

`−1∑
j=1

Pr
(
Y j = oj , τ ′ = j

)
Mb(o

j+1:`+1 | xn, oj)

+
(
Pr
(
Y ` = o`, τ ′ = `

)
− δ(o`)

)
Mb(o(`+ 1) | xn, o`) + Pr

(
Ȳ `+1 = o`+1, τ = `+ 1

)
(11)

=Mb(o
`+1 | xn)− δ(o`)Mb(o(`+ 1) | xn, o`) + Pr

(
Ȳ `+1 = o`+1, τ = `+ 1

)
. (12)

Hence it would enough to show that444

δ(o`)Mb(o(`+ 1) | xn, o`) = Pr
(
Ȳ `+1 = o`+1, τ = `+ 1

)
(13)

Note that the event Ȳ `+1 = o`+1, τ ′ = `+ 1 only happens when o` are all accepted samples from445

Ms in the sampling process and when proceeding, the next obtained token is o(`+ 1).446

On the other hand, the δ(o`) is the probability of the event that the sampling process stops at o` when447

L = ` and proceeds when L = `+ 1, which, by definition of the algorithm, happens if and only if o`448

are all accepted samples fromMs. Moreover, when proceeding, since fπ is a valid transport plan,449

we have that the next sample is generated fromMb(· | xt, o`). And hence Eq. (13) holds.450

This concludes the proof.451

D Comparisons between OTM-k and K-SEQ452

D.1 Examples where the approximate algorithm is optimal453

In this section, we show that for the example in Figures 1, K-SEQ achieves the optimal acceptance454

accuracy. In this case, p = U(d) and q = U(d/r). Recall that the optimal acceptance probability is455

αk(U(d), U(d/r)) = 1− (1− 1/r)k.

For U(d) and U(d/r), we have456

β(γ) =
∑
x∈[d]

min{p(x), q(x)/γ} =
1

max{r, γ}
.

And hence solving 1− (1− β(γ))k = γβ(γ) gives γ∗ = r(1− (1− 1/r)k). And be Theorem 2, we457

have458

α(πK-SEQ
γ∗ ) ≥ 1− (1− β(γ∗))k = 1− (1− 1/r)k.

And the equality holds since this an upper bound for any coupling.459

D.2 Gap between OTM-k and K-SEQ460

To see how OTM-k and K-SEQ compare in general, we numerically compute the acceptance proba-461

bility for a pair of compressed conditional distributions. We feed the prompt462

“He said he also has asked prosecutors to”463

to both large and small models used in Section 8 and obtain the conditional distributions p, q. To464

make the computation feasible for OTM-k, we take the set of top 10 elements from p, q respectively465

and set the support S to be the union of the two sets. Then we set p′ and q′ to be the normalized466

distribution of p and q over the set S.467
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We then numerically compute the acceptance probability for the optimal transport solution in Section 5468

and the approximate solution in Section 6 with different k’s. The result in shown in Fig. 5. When469

k = 1, the acceptance probability is equal to 1 − dTV(p′, q′) for both solutions. The acceptance470

probability increases for both methods as k increases and there exists a gap between the optimal471

and approximate solution. We would expect the gap to exist for general conditional distributions472

from language models. We leave exploring computationally efficient ways to close this gap as an473

interesting future direction.

Figure 5: Acceptance probability comparison OTM-k and K-SEQ with compressed conditional
distributions.

474

E Construct a candidate set by sampling from a prefix-tree475

As discussed in Section 1, the size of the draft set S is constrained by the number of parallel476

computations that can be supported in the hardware. Hence it is important to design the draft set477

carefully to allow for a longer sequence of accepted candidate sets. In addition to the i.i.d. draft set478

selection approach listed in Section 7, we present an algorithm that samples a draft set that forms479

the leaves of a prefix tree. Given a draft set size K, the algorithm can be specified by a sequence of480

parameter (k1, k2, . . . , kL) satisfying
∏L
i=1 ki = K.481

At a high-level, the algorithm starts with a root node with sequence x1:t and forms a prefix tree of482

depth L. At depth i ∈ [1 : L− 1], each node is expanded by a factor of ki+1 and each of its children483

will contain a sequence that satisfies: (1) Its prefix agrees with the sequence in the parent node; (2)484

The next token is sampled from the conditional probability given the prefix in small model. These485

child nodes will be at depth i + 1 and the process goes until it hits depth L. We give a detailed486

description of the algorithm in Algorithm 5.487

Algorithm 5 Draft set selection via prefix-tree.
Input: Input sequence xt; expansion factors at each level: (k1, k2, . . . , kL).

1: S0 = {xt}.
2: for i = 0, 1, 2, . . . , L− 1 do
3: Si+1 = ∅.
4: for all seq ∈ Si do
5: Sample ki+1 i.i.d. tokens X1, X2, . . . , Xki+1

fromMb(· | seq).
6: Si+1 = Si+1 ∪ {(seq, Xi), i = 1, 2, . . . ki+1}.
7: end for
8: end for
9: Return SL.

F Additional experiments488

Similar to Table 1, we report relative latency when parallelizing across the time and batch axes489

using the small 6M draft model in Table 3. In Table 3, the reported relative latencies are relative to490
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Table 3: Average latency with parallelization along the time axis and batch axis. We report aver-
age latency with standard deviation over 1,000 runs using a 6M transformer relative to the 97M
transformer with length = 4 and batch = 1 on GPU.

Relative latency batch = 1 batch = 2 batch = 4 batch = 8
length = 4 0.18 ± 0.02 0.19 ± 0.04 0.18 ± 0.09 0.20 ± 0.13
length = 8 0.17 ± 0.04 0.19 ± 0.05 0.16 ± 0.02 0.18 ± 0.04

Table 4: Experimental results on the LM1B dataset with varying draft model sizes and the 97M
transformer as the large model. All results are over 1000 test prompts averaged over three different
random seeds and sampling temperature of 1.0 for both the draft and large models.

Draft model Algorithm K L Number of decoded
tokens per serial call

2M Transformer Baseline - - 1.00
Speculative 1 4 1.86± 0.02

SpecTr 2 4 2.07± 0.01
SpecTr 4 4 2.32± 0.00
SpecTr 8 4 2.56± 0.01

Speculative 1 8 1.91± 0.01
SpecTr 2 8 2.15± 0.01
SpecTr 4 8 2.41± 0.00
SpecTr 8 8 2.68± 0.01

6M Transformer Baseline - - 1.00
Speculative 1 4 2.21± 0.01

SpecTr 2 4 2.43± 0.01
SpecTr 4 4 2.74± 0.01
SpecTr 8 4 2.99± 0.02

Speculative 1 8 2.33± 0.01
SpecTr 2 8 2.61± 0.02
SpecTr 4 8 2.96± 0.03
SpecTr 8 8 3.27± 0.02

20M Transformer Baseline - - 1.00
Speculative 1 4 2.71± 0.01

SpecTr 2 4 2.96± 0.00
SpecTr 4 4 3.28± 0.02
SpecTr 8 4 3.49± 0.03

Speculative 1 8 3.12± 0.02
SpecTr 2 8 3.48± 0.04
SpecTr 4 8 3.85± 0.05
SpecTr 8 8 4.15± 0.04

the large 97M model to get a sense of the relative cost of sampling multiple drafts with the small491

model compared to the large model. We also include results for varying draft model sizes with492

the same 97M large model for LM1B in Table 4. These additional draft models were produced by493

either halving (2M ) or doubling (20M ) the original 6M draft model’s number of layers, embedding494

dimension, MLP dimension, and number of attention heads. As expected, the larger draft models495

improve all speculative methods’ number of decoded tokens per large model serial call with SpecTr496

maintaining the best performance across all draft model sizes.497
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