
SpecTr: Fast Speculative Decoding via Optimal
Transport

Ziteng Sun∗
Google Research, New York
zitengsun@google.com

Ananda Theertha Suresh∗
Google Research, New York
theertha@google.com

Jae Hun Ro
Google Research, New York

jaero@google.com

Ahmad Beirami
Google Research, New York
beirami@google.com

Himanshu Jain
Google Research, New York

himj@google.com

Felix Yu
Google Research, New York
felixyu@google.com

Abstract

Autoregressive sampling from large language models has led to state-of-the-art
results in several natural language tasks. However, autoregressive sampling gener-
ates tokens one at a time making it slow, and even prohibitive in certain tasks. One
way to speed up sampling is speculative decoding: use a small model to sample a
draft (block or sequence of tokens), and then score all tokens in the draft by the
large language model in parallel. A subset of the tokens in the draft are accepted
(and the rest rejected) based on a statistical method to guarantee that the final
output follows the distribution of the large model. In this work, we provide a prin-
cipled understanding of speculative decoding through the lens of optimal transport
(OT) with membership cost. This framework can be viewed as an extension of
the well-known maximal-coupling problem. This new formulation enables us to
generalize the speculative decoding method to allow for a set of k candidates at the
token-level, which leads to an improved optimal membership cost. We show that
the optimal draft selection algorithm (transport plan) can be computed via linear
programming, whose best-known runtime is exponential in k. We then propose a
valid draft selection algorithm whose acceptance probability is (1− 1/e)-optimal
multiplicatively. Moreover, it can be computed in time almost linear with size of
domain of a single token. Using this new draft selection algorithm, we develop a
new autoregressive sampling algorithm called SpecTr, which provides speedup in
decoding while ensuring that there is no quality degradation in the decoded output.
We experimentally demonstrate that for state-of-the-art large language models,
the proposed approach achieves a wall clock speedup of 2.13X, a further 1.37X
speedup over speculative decoding on standard benchmarks.

1 Introduction

Autoregressive language models have shown to achieve state-of-the-art results in several natural
language tasks [2, 5, 25, 26]. During inference, given a context xt:=x(1), x(2) . . . , x(t), an autore-
gressive modelMb generates successive tokens x(t+1), x(t+2), . . . via temperature sampling [1, 10],
where the next token x(t + 1) is drawn from the temperature-scaled distributionMb(·|xt). If the
temperature is zero, i.e., greedy decoding, the next token is determined by the maximum likelihood
method i.e., x(t+1) = arg maxx∈ΩMb(x|xt), where Ω is the domain of a single token also referred
to as the vocabulary. The sampling approach can be further combined with other sampling primitives
such as nucleus sampling [16] and top-k sampling [9, 22].
∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

All these approaches are autoregressive decoding2 methods, where tokens are generated serially one
after another, which can be slow or even prohibitive in several applications [23]. Hence, several
techniques have been proposed to improve the speed of decoding. Before we proceed further, we first
present some notations and a simplified computational model.

Notations. We use xi:j to denote the sequence x(i), x(i+ 1), . . . , x(j) and when i = 1, we simply
use xj = x1:j . x(i) denotes the i-th entry of x. Subscripts are used to distinguish between different
sequences, e.g., xt1 and xt2 denote two sequences of length t. We use [n] to denote the set {1, . . . , n}.
A simplified computational model.

• Standard inference. Given a context xt, with O(t2) computation and O(1) time, an
autoregressive modelMb can computeMb(y|xt), the (temperature-scaled) probability of
all possible next tokens y ∈ Ω.

• Parallelization along the time axis. Given a context xt, with O(t2) computation and
O(1) time, an autoregressive modelMb can computeMb(y|xi), for all y ∈ Ω and i ∈
{1, 2, . . . , t}.
• Parallelization along time and batch axis. Let K be the maximum batch size that

can be used during the inference of the autoregressive model. Given several contexts,
xt1, x

t
2, . . . x

t
K , with O(Kt2) computation and O(1) time, an autoregressive modelMb can

computeMb(y|xij), for all y ∈ Ω, i ∈ [t], and j ∈ [K].3

The above computation model shows that parallelizing along time and batch axes does not increase the
computation time. It is a simplified characterization of the typical hardware, such as TPUs and GPUs,
used in neural network inference. Previous approaches also assume similar computational model to
devise faster decoding algorithms [19, 4]. In practice, there will be some overhead depending on
hardware, implementation and resource utilization. In Appendix E, we experimentally verify that
the theoretical gains are largely preserved for a large transformer model in practice. We also note
that there are efficient transformer architectures, which reduces the computation cost from O(t2) to
O(t log t) (see [24] for a detailed survey). Such approaches are orthogonal to the focus of this paper,
and they can be easily combined with our approach.

Broadly speaking, multiple previous approaches proposed to guess a few possible future tokens using
an efficient model. They then compute several conditional probability distributions from the large
model based on the guesses. Computing the distributions takes O(1) time due to parallelization along
the time axis. The guessed tokens are then accepted or rejected based on a statistical method such
that the accepted tokens are effectively samples from the large model. This guarantees that there is
provably no degradation in the quality of the decoded output compared to that of the large model.
When the guesses are plausible under the large model, multiple tokens will be accepted, leading to
a larger gain in latency improvement. We will further characterize the acceptance probability as a
function of the closeness of the distributions of large model and the small model. While this approach
incurs the same computation cost as vanilla decoding (under the simplified computational model
assumed in this paper), it can significantly improve decoding latency due to parallelization.

The goal of this work is to provide a principled understanding of the above approaches and discuss
optimality conditions and algorithmic improvements. We start by providing a more formal overview
of speculative decoding and related works.

2 Previous works and speculative decoding

Previous approaches make use of parallelization along the time axis to provide speedups. They first
predict multiple tokens and validate if these multiple tokens can be generated by the model with the
corresponding sampling or decoding scheme. For greedy decoding, multiple tokens can be predicted
by a separate model [23], aggressive decoding [11], or retrieval augmented text [28]. For sampling,
recently [19, 4] proposed an algorithm called speculative decoding, and we provide an overview of
this algorithm in the rest of the section. Suppose we have access to a computationally-inexpensive
draft modelMs, which predicts the next token given the context, and the predictions ofMs are

2In this work, we use the words sampling and decoding interchangably to refer to the process of sequentially
generating tokens from a language model.

3When the assumption holds, one could naively batch multiple decoding contexts, which improves decoding
throughput, but not the latency of each context.

2

This paper will be liked for its

Context Sample one draft
from the small model

Compute conditional
probabilities by the
large model

Draft selection via
maximal couplingAdd to the context

This paper will be liked by

Next iteration
(if not E.O.S.)

be liked for by

Figure 1: One iteration of speculative decoding [19, 4]. Tokens in blue are decoded tokens from
previous iterations, which are used as context for the current iteration. Tokens in red are drafts from
the small model based on the context. The underlined tokens are the newly decoded tokens in the
current iteration, where underlined red tokens represent tokens selected from the draft and underlined
green token is selected from the residual distribution.

close to that ofMb for most contexts. Suppose we have obtained prefix xt. The next iteration of the
speculative algorithm can be broken down into three steps (see Fig. 1 for an illustration).

1. Draft construction. The draft model is used to efficiently and “speculatively” sample L
tokens, x̃(t + 1), . . . , x̃(t + L). We keep the conditional probabilities on the next token
Ms(y | xt, x̃t+1:t+i) for each i < L and ∀y ∈ Ω.

2. Conditional probability computation. After observing the samples, we compute the
conditional distributionsMb(y | xt, x̃t+1:t+i) for each i ≤ L and ∀y ∈ Ω in parallel (along
time axis) in O(1) time.

3. Draft selection. Validate and select first L′ of the L tokens and set x(t+ i) = x̃(t+ i) for
i ≤ L′ given the draft sequence and the conditional probabilities from both models. Sample
a token x̃(t+ L′ + 1) from a residual distribution as a correction to the rejected token.4

After this step, we use xt+L
′+1

1 as the next context and sample the next few tokens using speculative
decoding iteratively. For a complete statement of the algorithm, we refer the readers to [19, 4].
The crux of the above steps is draft selection, which given a draft sequence and the conditional
probabilities from both models, selects a valid sequence such that the output has the same distribution
as that of the large model. In speculative decoding, this is achieved via recursively applying a
token-level maximal coupling algorithm, which is provided in Algorithm 1. Note that for the draft
selection, Algorithm 1 is applied where p is the conditional distribution of the draft modelMs(· | xt)
and q is the conditional distribution of the large modelMb(· | xt) (which may be further conditioned
on the newly decoded tokens).

Algorithm 1 Token-level maximal coupling
Input: Distributions p, q, Draft sample X ∼ p.

1: Compute the residual distribution pres where ∀x ∈ Ω, pres(x) = q(x)−min{p(x),q(x)}
1−

∑
x′ min{p(x′),q(x′)} .

2: Sample η ∼ U(0, 1).
3: if η ≤ min

(
1, q(X)

p(X)

)
then

4: Return Y = X . {Accept the draft token.}
5: end if
6: Return Y ∼ pres. {Sample a corrected token from the residual distribution.}

Algorithm 1 returns a random variable Y which either is the accepted input X or a sample from the
residual distribution pres, which is defined in Step 1 of Algorithm 1. The algorithm is recursively
applied as long as the draft tokens are accepted to select the first L′ ≤ L tokens from the draft
model. For the first rejected token, the sample Y from the residual distribution is used as a correction.
Previous works showed that if X ∼ p, then Y ∼ q [19, 4]. In the case of the draft selection, this
means that the output of the algorithm is distributed according toMb(· | xt), which is exactly the

4See Algorithm 1 for definition of the residual distribution. When L′ = L, no token is rejected. The residual
will just be the conditional probabilityMb(· | xt+L), which gives an extra decoded token.

3

This paper will

Context Sample multiple drafts
from the small model

Compute all conditional
probabilities by the
large model

Draft selection via an
OTM transport plan Add to the context

This paper will be liked by three

Next iteration
(if not E.O.S.)

be liked by all three

be liked for its
be liked by all
not get good reviews
be read by four

Figure 2: One iteration of SpecTr. Tokens in blue are decoded tokens from previous iterations, which
are used as context for the current iteration. Tokens in red are drafts from the small model based
on the context. The underlined tokens are the newly decoded tokens in the current iteration, where
underlined red tokens represent tokens selected from the draft and underlined green token is selected
from the residual distribution. See Fig. 3 for a more detailed run of the draft selection step.

desired outcome. Furthermore

Pr(Y = X) =
∑
x∈Ω

min(p(x), q(x)) = 1− dTV(p, q),

where dTV is the total variation distance between p and q. The closer p and q are in dTV, the higher
the chance of Pr(Y = X), and fewer the number of serial calls to the larger model. In the ideal
case, if p = q, then Pr(Y = X) = 1, i.e., the draft token is always accepted, and when used for
speculative decoding we have L′ = L. Together with the extra sampled token5 fromMb, L + 1
tokens are obtained in one iteration. In such a case, based on our computational model (Section 1),
assuming the decoding time of draft model is negligible, the speedup is (L+ 1) times.

3 Our contributions

From a theoretical viewpoint, the speculative decoding algorithm raises multiple questions.

• What is the relationship between speculative decoding and the broader literature of sampling in
statistics?

• Is speculative decoding optimal in an information-theoretic sense?
• Speculative decoding uses parallelization along time to speed up decoding; would it be possible

to use parallelization along batch (number of drafts) to further improve decoding speed?

We provide answers to all the above questions in this work. We first relate the problem of speculative
decoding to the broader and well-studied discrete optimal transport theory through a token-level
coupling problem (Section 4). With this connection, it becomes clear that the token-level draft
selection is the optimal solution for optimal transport with indicator cost function and also related to
the problem of maximal coupling [8]. Based on the connection to optimal transport, we show that
one can further speed up the decoding by parallelizing along the batch axis by using multiple drafts
from the draft model (Section 5).

More precisely, we formulate the token-level draft selection problem as a discrete optimal transport
problem with membership cost, which is referred to as OTM. Discrete optimal transport can be
solved with a linear program, but the number of variables is exponential in batch size, which can
be prohibitive. To address this, we propose a valid transport plan that can be efficiently computed.
Moreover, it achieves a (1− 1/e)-approximation of the optimal acceptance probability (Section 6).

With the theoretically motivated algorithms and guarantees, we circle back to speeding up decoding
and propose a new algorithm called SpecTr and theoretically show that it can be used to derive valid
sequences from the large model with better speedups (Section 7). See Fig. 2 for an illustration
of SpecTr. Compared to speculative decoding (Fig. 1), the main difference lies in the number of
sampled drafts sampled from the small model and the selection algorithm that selects a valid sequence
from multiple draft sequences. We remark here that the latter requires completely new statistical

5When L′ = L, x(t+ L+ 1) is sampled fromMb(· | xt+L).

4

This paper will

be liked for its

be liked by all three

not get good reviews

be read by four

Figure 3: An example run of the sequence-level draft selection in SpecTr with L = 4 and 4 draft
sequences. In the first step, there are 4 drafts tokens, and the token-level draft selection algorithm
selects the word ‘be’ which appeared thrice. Note that all tokens following ‘be’ are valid draft tokens
from the small model. In the second step, there are 3 drafts and the selection algorithm selects ‘liked’.
The next token-level selection algorithm will have two drafts (‘by’ and ‘for’) and it selects ‘by’.
Finally, there is only one draft following ‘by’, and the selection algorithm doesn’t select it and outputs
‘three’ as a correction. The process ends and a total of 4 tokens are generated.

tools, and the connection between the token-level draft selection and OTM is critical for obtaining
valid transport plans with good guarantees. We view this as one of the main contributions of the work.
Similar to speculative decoding, there is provably no degradation in the quality of the decoded output
compared that of the large model.

We then experimentally demonstrate the benefit of our approach on standard datasets (Section 8).
More precisely, we show that for state-of-the-art large language models, SpecTr achieves a wall clock
speedup of 2.13X, a further 1.37X speedup over speculative decoding on standard benchmarks.

4 Token-level draft selection and optimal transport

In this section, we focus on the draft selection step of SpecTr. We start by considering the case when
L = 1, which is a token-level draft selection problem. In particular, given context xt, let X1, . . . Xk

be a collection of draft tokens sampled from the small model, e.g.,sampled i.i.d. fromMs(· | xt).
Note that by our assumption of the computation model, we could compute the following conditional
probabilities from the large model in parallel (along time and batch axes):

Mb(· | xt) and ∀i ∈ [k], Mb(· | xt, Xi).

The goal of the draft selection algorithm f : Ωk → Ω is to output Y = f(Xk), whose distribution
follows Mb(· | xt), and hence is a valid sample from the large model. Moreover, when Y ∈
{X1, . . . , Xk}, we could sample an extra token fromMb(· | xt, Y) without callingMb since we
have already computed the conditional probabilities Mb(· | xt, Y). Hence we would like to
maximize the probability that we accept one token from the set of drafts.

When L > 1, the drafts are sequences sampled fromMs, a sequence of token-level draft selection
algorithms could be used along the time axis to select a valid sequence from theMb. See an example
in Fig. 3. The full details about the sequence-level selection algorithm is provided in Section 7.

The reminder of the section will be focused on the token-level draft selection problem. From the
above discussion, there are the two main goals of the draft selection problem.

• Validity. The output token is always a valid token from the large model i.e., its distribution
follows the conditional probability of the large model. This guarantees that there is no quality
degradation compared to the large model.

• Maximizing acceptance. The higher the probability that we accept a draft token, the more serial
computation we can save through parallelization, and hence better speedup.

Before proposing our framework to achieve the above goals, we would like to first discuss the
technical challenge of draft selection with multiple draft tokens. One attempt is to sequentially apply
the acceptance phase of Algorithm 1 (line 3 - 5) to each draft token Xi with p = Ms(· | xt) and
q =Mb(· | xt). However, this approach would not guarantee that the final accepted token is from
the desired distribution. To see this, consider the example of p = Ber(1) and q = Ber(1/2).6 Then
we have ∀i = 1, . . . , k, Xi = 1 and each of them will be accepted with probability 1/2. After

6Ber(b) denotes a Bernoulli distribution with the probability of seeing a head b.

5

applying Algorithm 1 to all Xi’s, the probability of getting a 1 will be at least 1− 1/2k and hence
the output distribution would not be Ber(1/2) for k > 1. Therefore the algorithm does not produce
valid samples, which is a requirement of the draft selection problem.

In this work, we conduct a principled investigation of the draft selection problem, and show that these
two main goals could be captured by the framework of optimal transport with a properly defined cost
function. Next we define optimal transport formally and then connect it to draft selection with one
draft. The generalization to multiple drafts is provided in Section 5.

Coupling and optimal transport. To simplify notations, we assume Ω is a discrete domain.
Definition 1 (Coupling). For two probability distributions P over X and Q over Y , we say a joint
distribution π supported over X × Y is a coupling between P and Q if ∀x, y, π(x, y) ≥ 0,

∀y ∈ Y,
∑
x∈X

π(x, y) = Q(y), and ∀x ∈ X ,
∑
y∈Y

π(x, y) = P (x).

We use Π(P,Q) to denote the set of all possible couplings between P and Q.

When it is clear from context, we will overload notation and refer to the probabilistic mapping
fπ : X → Y introduced by the conditional probability π(y | x):=π(x, y)/P (x) as a coupling,
which is also referred to as a transport plan from P to Q [27]. In this paper, we will set P to be the
distribution of the draft tokens and Q to be the target distribution of the output token. In this case, the
fπ is a valid draft selection algorithm. Formally, this is stated in the claim below.
Claim 1. For all π ∈ Π(P,Q), let fπ be the probabilistic mapping defined above . If X ∼ P , then
fπ(X) ∼ Q.

In this paper, we will design selection algorithms by finding valid couplings between the draft
distribution and target distribution to guarantee validity of the output tokens.
Definition 2 (Optimal Transport (OT) [27]). For a cost function c : X ×Y → R+, the transportation
cost of a coupling is defined as:

C(π) = EX,Y∼π [c(X,Y)] .

The optimal transport plan is the coupling π ∈ Π(P,Q) that minimizes the transportation cost.

Speculative decoding with one draft token. With these definitions in place, we can see that with
X = Y = Ω, the domain of the tokens and P = p,Q = q, we recover the speculative decoding
objective with one draft token using the cost function of indicator cost, which captures the resampling
cost, defined below:

∀x ∈ Ω, y ∈ Ω, c(x, y) = 1 {y 6= x} .
The transportation cost of the coupling will be C(π) = EX,Y∼π [1 {Y 6= X}] = PX,Y∼π(Y 6= X).
This optimal transport cost is known to be

min
π∈Π(p,q)

PX,Y∼π(Y 6= X) =
∑
x∈Ω

min(p(x), q(x)), (1)

which is achieved by the maximal coupling between p and q stated in Algorithm 1 [8]. And hence
speculative sampling achieves the optimal cost with one draft token.

5 Optimal transport with multiple draft tokens

In this section, we generalize token-level selection to allow for multiple drafts. More formally, let
X = Ωk for some k ∈ N+, which is the space of k draft tokens from Ω and Y = Ω, which is the
space of the final sampled token from the desired distribution. To characterize the resampling cost
with multiple draft tokens, we use the cost function of membership cost, defined below:

∀x ∈ Ωk, y ∈ Ω, c(x, y) = 1 {y /∈ S(x)} ,
where S(x) = {o ∈ Ω | o appears in x} denotes the set of distinct elements in x. When k = 1, it
recovers the indicator cost mentioned before. The transportation cost of the coupling is

C(π) = EX,Y∼π [1 {Y /∈ S(X)}] = PX,Y∼π(Y /∈ S(X)). (2)

6

We will also refer to the above cost C(π) as the rejection probability due to its probabilistic interpre-
tation. And similarly, α(π):=1− C(π) = PX,Y∼π(Y ∈ S(X)) will be the acceptance probability.

From now on we will use membership cost as the default cost function and refer to the optimal
transport solution as optimal transport with membership cost (OTM). We use π∗ to denote the
coupling that minimizes this cost π∗ = arg minπ∈Π(P,Q) C(π);7 and the cost C(π∗) is referred
to as the optimal transport cost between P and Q. We use α(P,Q) = 1 − C(π∗) to denote the
corresponding optimal acceptance probability.

Draft selection with i.i.d. draft tokens. In this paper, we will mainly focus on the case when the
draft tokens are i.i.d. samples from a base distribution.8 Let p, q be supported over Ω and the goal is
to obtain one valid token from q given k i.i.d. samples from p. For SpecTr with context xt, we have
p =Ms(· | xt) and q =Mb(· | xt). We set P = p⊗k, a product distribution whose marginals are
all p, and Q = q. The OT problem we want to solve is the following:

minC(π) s.t. π ∈ Π(p⊗k, q). (3)

We overload notation and denote the optimal acceptance probability as αk(p, q):=α(p⊗k, q) =
1− C(π∗). To better understand the quantity, we state a few properties about αk.
Lemma 1. (Appendix A.2) The optimal acceptance probability statisfies the following properties.

• Monotonicity. For any p, q and k ≥ 1, αk(p, q) ≤ αk+1(p, q).

• Consistency. If ∀x ∈ Ω, q(x)/p(x) is bounded, we have limk→∞ αk(p, q) = 1. Else,
limk→∞ αk(p, q) =

∑
x∈Ω 1 {p(x) > 0} q(x).

The above properties demonstrate that for a large k, the value of αk can become large. Hence
increasing k could increase the acceptance probability, leading to further speedups. We now focus on
computing the optimal transport plan and the optimal acceptance probability.

OTM via Linear programming. Optimal transport in discrete domain has been studied extensively
[17, 21, 14], and it is shown that the optimal transport problem is equivalent to the following linear
programming problem:

min
∑
x∈Ωk

∑
y∈Ω

π(x, y)1 {y /∈ S(x)} s.t. π ∈ Π(P,Q). (4)

The linear program in (4) has |Ω|k+1 variables and |Ω|k + |Ω| equality constraints (see Definition 1).
Linear programming can be solved in time polynomial in the number of variables and constraints
[7, 21, 18],9 implying the following lemma.

Lemma 2. Given p, q over Ω, the solution to Eq. (3) can be computed in time O(|Ω|O(k)).

We refer to the optimal coupling obtained above as OTM-k and denote it as πOTM−k. When k = 1,
there is a closed form expression for the optimal acceptance cost (see Eq. (1)), whereas for larger
values of k, we are unaware of a general closed form expression. In Appendix A.1, we provide
an information-theoretic upper (and lower) bound, which is tight up to a multiplicative constant of
1− (1− 1/k)k ≥ 1− 1/e.

While solving OTM in Eq. (4) gives the plan with optimal acceptance probability, to the best of
our knowledge, the best-known runtime will be exponential in k, which can be prohibitive when
either the vocabulary size |Ω| or the number of draft tokens k is large.10 In the next section, we will
present a selection algorithm that can be efficiently computed and show that it achieves an acceptance
probability of at least (1− (1− 1/k)k)αk ≥ (1− 1/e)αk.

7The existence of optimal coupling in discrete domain is well-known, e.g., see [27]. When the optimal
coupling is not unique, we use π∗ to denote one of the optimal couplings.

8The above generic formulation immediately allows generalization to more complex draft selection strategies,
such as sampling k tokens without replacement, or using a different drafting distribution for each draft.

9To our best knowledge, the best practical computation bound (through interior-point method) is O(|Ω|3k)
[21] and the best theoretical computation bound is O(|Ω|2.5k) [18].

10For discrete OT, Sinkhorn algorithm could be used to solve an entropy-regularized version of OT, which
has a better computation complexity [6]. However, the computation cost of the algorithm will still have a linear
dependence on |Ω|k, which can be prohibitive.

7

6 Draft selection via k-sequential selection

In this section, we present a sequential selection algorithm (K-SEQ), an approximate solution11 to the
optimal transport problem in Eq. (3), which can be efficiently computed in time almost linear in |Ω|
and logarithmic in k. The algorithm is presented in Algorithm 2.

Algorithm 2 k-sequential selection algorithm (K-SEQ).
Input: Distributions p, q, samples X1, . . . , Xk ∼i.i.d. p. ρ ∈ [1, k] : division factor.

1: Let βp,q(ρ) =
∑
x∈Ω min(p(x), q(x)/ρ) and pacc = 1− (1− βp,q(ρ))k. Compute pres where

∀x ∈ Ω, pres(x) =
q(x)−min

{
p(x), q(x)

ρ

}
pacc

βp,q(ρ)

1− pacc
. (5)

2: for i = 1, 2, . . . , k do
3: Sample ηi ∼ U(0, 1).
4: if ηi ≤ min

(
1, q(Xi)

ρ·p(Xi)

)
then

5: Return Y = Xi. {Return the ith draft token.}
6: end if
7: end for
8: Return Y ∼ pres. {Sample a corrected token from the residual distribution.}

At a high-level, the algorithm goes over all k draft samples generated from p sequentially, and decides
on whether to accept eachXi based on the ratio q(Xi)/p(Xi). The algorithm output the first accepted
sample or result from a residual distribution pres if none of the samples is accepted. To guarantee that
the the final returned token is a valid sample from q, we choose an appropriate ρ ∈ [1, k] and accept
Xi with probability min(1, q(Xi)/(ρ · p(Xi))) instead of min(1, q(Xi)/(p(Xi))) as in Algorithm 1.
In Theorem 1, we show that with appropriately chosen ρ’s, Algorithm 2 is indeed valid transportation
plans from p⊗k to q. Moreover, to find the best transportation plan within the family, we only need to
search over a single parameter ρ, which reduces the computation cost significantly. We also show
that searching over this sub-family of couplings won’t decrease the optimal acceptance probability by
a multiplicative constant. The performance of Algorithm 2 is stated in Theorem 1.

Theorem 1. Let βp,q(ρ) =
∑
x∈Ω min

(
p(x), q(x)

ρ

)
and ρ∗ be the solution to the identity below.

1− (1− βp,q(ρ))k = ρβp,q(ρ). (6)
When ρ ≥ ρ∗, the coupling πK-SEQ

ρ in Algorithm 2 is a valid transport plan from p⊗k to q. When
ρ = ρ∗, we have

α(πK-SEQ
ρ∗) ≥ (1− e−1)αk(p, q).

Moreover, ρ∗ can be computed up to accuracy δ in time O(|Ω| log((k − 1)/δ)).

We provide the proof in Appendix C.1. In Appendix B, using a few canonical examples of distri-
butions, we plot the acceptance probability of K-SEQ and compare it with the optimal acceptance
probability αk. It can be shown that K-SEQ could have a strictly worse acceptance probability
compared to the OTM solution for certain cases while there also exist non-trivial cases where
K-SEQ achieves the optimal acceptance probability.

Concurrent and recent work of [20, 29] has proposed another efficient algorithm for the draft selection
phase. To the best of our knowledge, there is no optimality guarantee proved for their proposed
algorithm. In Appendix B.3, we present its acceptance probability empirically for the canonical case
of Bernoulli distributions, and show that both our proposed algorithms (OTM and K-SEQ) have a
higher acceptance probability.

7 SpecTr: Application of OTM in autoregressive sampling

In this section, we describe how OTM can be used to speed up auto-regressive sampling, which
we refer to as SpecTr sampling. Similar to speculative decoding, each iteration of SpecTr can be
decomposed into three phases (Fig. 2):

11Note here that the solution still satisfies the constrains in Eq. (3), and hence is a valid transport plan. The
term approximate here means that the solution is not the exact minimizer of the cost in Eq. (3).

8

1. Draft set construction. Given current context xt, use the draft model sample a set of
K draft sequences with length L, denoted by S = {zL ∼ Ms(· | xt)}. We keep the
conditional probabilitiesMs(y | xt, zi) for all y ∈ Ω, i ≤ L and zL ∈ S.

2. Conditional probability computation. Compute the conditional probabilities on the next
token for the large modelMb(y | xt, zi) for all y ∈ Ω, i ≤ L and zL ∈ S in parallel.

3. Draft selection. Select first L′ of the L tokens and set x(t+ i) = z(i) for i ≤ L′ and some
z ∈ S given the set of draft sequences and the conditional probabilities from both models.
Sample a token from a residual distribution as a correction to the rejected tokens.

The conditional probability computation step takesO(1) when |S| is not large based on our simplified
computations model. We mainly focus on the draft set construction phase and draft selection phase.

Algorithm 3 Draft selection with multiple candidates (DraftSelection).
Input: Input sequence xt; draft sequence length: L; draft sequences S = {zLi | i ≤ |S|}.

1: Compute a transport plan (using linear programming in Lemma 2 for an optimal solution or
Algorithm 2 for a suboptimal solution) fromMs(· | xt)⊗|S| toMb(· | xt), denoted by πt.

2: Get the multi-set of next token-level drafts: Sz = {zi(1)}i∈[|S|] and compute Y = fπt
(Sz).

3: if L = 1 then
4: if Y ∈ Sz then
5: Sample Y ′ ∼Mb(· | (xt, Y)).
6: Return (xt, Y, Y ′). {Sample an extra token if the last token is accepted.}
7: else
8: Return (xt, Y). {Stop and return the corrected token and previous accepted tokens.}
9: end if

10: end if
11: Let Snext = {z2:L | z ∈ S and z(1) = Y } be the set that consists of sub-sequences of the

candidates that agree with the selected next token.
12: if Snext = ∅ then
13: Return (xt, Y). {Stop and return the corrected token and previous accepted tokens.}
14: else
15: Return DraftSelection((xt, Y), L− 1, Snext). {Keep the draft token and proceed to the next

time step.}
16: end if

Draft set with i.i.d. draft sequences. Given context xt, a natural way to come up with a set of K
drafts is to independently sample K draft sequences fromMs(· | xt), i.e.,

zL1 , z
L
2 , . . . , z

L
K ∼i.i.d.Ms(·, ·, . . . ·︸ ︷︷ ︸

L dots

| xt). (7)

The draft set construction method in (7) can be generalized to a prefix-tree based algorithm. However,
this generalized version did not perform better in our experiments. We include this construction in
Appendix D for completeness.

Draft selection with multiple candidates. We present the sequence-level selection algorithm given
a set of draft sequences in Algorithm 3. We assume the conditional probabilities on the next token
are available given any prefix in the candidate set since they are computed in parallel in the second
phase, and won’t list them as inputs explicitly in Algorithm 3.

A sample run of the algorithm is presented in Fig. 3. The algorithm proceeds in a recursive fashion.
Given prompt xt and a candidate set S sampled fromMs(· | xt), the algorithm first computes a
token-level draft selection algorithm fπ : Ω|S| → Ω which is a transport plan fromMs(· | xt)⊗|S|
toMb(· | xt). Then fπ is applied to the set of first tokens of the draft sequences in S to obtained a
valid token Y fromMb(· | xt). If Y is not the last token (L ≥ 2), we filter out sequences in S whose
first token is not Y and denote the remaining sequences as Snext and feed it to the algorithm with
context (xt, Y) and draft length L− 1. This goes on until we have L = 1 or Snext = ∅.
In this case when Y is the last token (i.e., L = 1) and Y ∈ S, we have the choice to sample an
additional tokenMb(· | (xt, Y)) since this conditional probability is already computed in the second
phase. Due to the property of the token-level selection algorithms and the autoregressive structure of
language models, it can be shown that Y is always a valid sample fromMb(· | xt). Let L′ be the
number of decoded tokens in one iteration. Note that this is a random variable in the range [1, L+ 1].

9

The formal quality guarantee is stated in Theorem 2. We present the proof in Appendix C.2.

Theorem 2. Assume all drafts in the set S are generated from the small model with input xt, or more
precisely, ∀z ∈ S,

∀i ∈ [1, L], z(i) ∼Ms(· | xt, zi−1). (8)

Let (xt, Y τ) be the output of Algorithm 3 where τ is the length of the newly decoded tokens,
then it satisfies that Y 1:τ is distributed according toMb(·, ·, . . . ·︸ ︷︷ ︸

τ dots

| xt). More precisely, For any

τ0 ∈ [1, L+ 1], and any τ0-length, sequence oτ0 = (o(1), . . . , o(τ0)) ∈ Ωτ0 , we have

Pr (Y τ0 = oτ0 |τ = τ0) = Πτ0
i=1Mb(o(i) | xt, oi−1).

8 Experiments

We empirically evaluate SpecTr and compare it with two methods: (1) the baseline auto-regressive
decoding; and (2) speculative decoding with K = 1. Note that all three methods effectively generate
samples from the same baseline large model, and hence the quality of the two speculative decoding
methods is provably neutral to that of the large model. Thus, we will only focus on measuring
the speedup in our experiments. In the simplified computation model, we made the following
assumptions: (1) Decoding time from small models is negligible compared to decoding from the
small model; (2) Parallelization along the batch and time axis doesn’t increase the time for a serial
call to the large model. With these, the theoretical speedup compared to baseline decoding will be the
average number of decoded tokens per serial call, which is called block efficiency [19], defined below

Block efficiency :=
Total number of decoded tokens

Number of serial calls toMb
.

However, in real deployment of the SpecTr algorithm, the actual end-to-end (wall clock) speedup is
further impacted by the following aspects. (1) The decoding time forMs might not be negligible;
(2) Parallelization along the batch and time axis might increase the time for a single call toMb;
(3) Overhead due to the implementation of additional functionalities in SpecTr such as the draft
selection algorithm and switching between models. These factors will depend on how the algorithm
is implemented and optimized. In our experiment, we consider both the block efficiency, and average
wall clock speedup with our implementation of SpecTr.

We first present the performance of our algorithm and compare it to speculative decoding using
state-of-the-art PALM-2 models with prompts from the one-billion language benchmark (LM1B) [3] .
In Appendix E, we use a pair of smaller transformer models to break down different affecting factors
mentioned above. In Table 1, we use PALM-2-Gecko and PALM-2-Bison as the small model and

Table 1: Experimental results on the LM1B dataset with PALM-2-Gecko as the small model and
PALM-2-Bison as the large model. Results are averaged over 1000 test prompts and 3 random seeds.

Algorithm K L Block efficiency Relative wall clock speedup
(normalized by baseline)

Baseline - - 1.0 1.0
Speculative 1 4 2.4 1.67

SpecTr 8 4 3.1 2.08
Speculative 1 8 2.9 1.56

SpecTr 8 8 4.0 2.13

large model, respectively [13, 12]. The wall clock speedup is normalized by the wall clock latency
of baseline autoregressive decoding. The time we log include all above mentioned aspects. In the
considered parameter configurations, the wall clock speedup increases as K and L increases. As
seen from the table, the actual wall clock speedup is smaller than the theoretical speedup of block
efficiency, which is consistent with what we expected. Importantly, the benefit from SpecTr outweighs
these overheads. In particular, when L = 8 and K = 8, our proposed SpecTr algorithm has a speedup
of 2.13x, a further 1.37x increase compared to speculative decoding (K = 1).

10

9 Acknowledgements

Authors thank Asaf Aharoni, Kwangjun Ahn, Badih Ghazi, Sanjiv Kumar, Teodor Marinov, Michael
Riley, and NeurIPS reviewers for helpful comments and discussions.

References
[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for

boltzmann machines. Cognitive science, 9(1):147–169, 1985.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[3] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and
Tony Robinson. One billion word benchmark for measuring progress in statistical language
modeling. arXiv preprint arXiv:1312.3005, 2013.

[4] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318, 2023.

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[6] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[7] George B Dantzig. Linear programming. Operations research, 50(1):42–47, 2002.

[8] Frank Den Hollander. Probability theory: The coupling method. Lecture notes available online
(http://websites. math. leidenuniv. nl/probability/lecturenotes/CouplingLectures. pdf), 2012.

[9] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833, 2018.

[10] Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural language
generation. arXiv preprint arXiv:1707.02633, 2017.

[11] Tao Ge, Heming Xia, Xin Sun, Si-Qing Chen, and Furu Wei. Lossless acceleration for seq2seq
generation with aggressive decoding. arXiv preprint arXiv:2205.10350, 2022.

[12] Google AI. Introducing PaLM 2, 2023. https://blog.google/technology/ai/
google-palm-2-ai-large-language-model/.

[13] Google PaLM-2 Team. PaLM 2 technical report, 2023.

[14] Wenshuo Guo, Nhat Ho, and Michael Jordan. Fast algorithms for computational optimal trans-
port and wasserstein barycenter. In Silvia Chiappa and Roberto Calandra, editors, Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research, pages 2088–2097. PMLR, 26–28 Aug 2020.

[15] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023.

[16] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[17] Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS),
volume 37, pages 199–201, 1942.

11

https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
https://blog.google/technology/ai/google-palm-2-ai-large-language-model/

[18] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in o (vrank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 424–433. IEEE, 2014.

[19] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023.

[20] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. Specinfer: Accelerating generative large language model serving
with speculative inference and token tree verification, 2023.

[21] Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th
international conference on computer vision, pages 460–467. IEEE, 2009.

[22] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[23] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep
autoregressive models. Advances in Neural Information Processing Systems, 31, 2018.

[24] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Computing Surveys, 55(6):1–28, 2022.

[25] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for
dialog applications. arXiv preprint arXiv:2201.08239, 2022.

[26] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[27] Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

[28] Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder,
and Furu Wei. Inference with reference: Lossless acceleration of large language models. arXiv
preprint arXiv:2304.04487, 2023.

[29] Chao Zhang Yuhui Li and Hongyang Zhang. Eagle: Lossless acceleration of llm decoding by
feature extrapolation, 2023. https://sites.google.com/corp/view/eagle-llm.

12

https://sites.google.com/corp/view/eagle-llm

A Properties of optimal transport cost

A.1 Information-theoretic upper (and lower) bound of αk.

Below we provide an information-theoretic upper (and lower) bound in Lemma 3, which is tight up
to a multiplicative constant of 1− (1− 1/k)k ≥ 1− 1/e. The proof is presented in Appendix A.3.
For the case of k = 1, the upper bound matches the optimal acceptance probability.
Lemma 3. For any two distributions p, q and ∀k ≥ 1, we have

(1− (1− 1/k)k) · ᾱk(p, q) ≤ αk(p, q) ≤ ᾱk(p, q),

where

ᾱk(p, q) = min
Ω0⊂Ω

∑
y∈Ω0

min
{
q(y), 1− (1− p(y))k

}
+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈xk∩Ωc
0

q(y)}

 .

(9)

In Appendix B, we plot αk as a function of k for a few simple pairs of (p, q)’s as illustrative examples.
We note that the upper bound in Lemma 3 is tight for examples considered in Appendix B.

A.2 Proof of Lemma 1

We first prove monotonicity. By definition,

αk(p, q) = 1− min
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y /∈ S(Xk)

)
= max
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y ∈ S(Xk)

)

Moreover, for any π ∈ Π(p⊗k, q), we can construct π′ ∈ Π(p⊗k+1, q) by setting

∀xk+1 ∈ Ωk+1, y ∈ Ω, π′(xk+1, y) = π(xk, y)p(x(k + 1)),

i.e., adding and independent sample from p to Xk.

Hence we have

αk(p, q) = max
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y ∈ S(Xk)

)
= max
π∈Π(p⊗k,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk)

)
≤ max
π∈Π(p⊗k,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk+1)

)
≤ max
π′∈Π(p⊗k+1,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk+1)

)
= αk+1(p, q).

Next we prove consistency. We start with the case when ∀x ∈ Ω, q(x)/p(x) <∞. To prove this, we
will show that Algorithm 2 with ρmax = maxx∈Ω q(x)/p(x) statisifies

lim
k→∞

α(πK-SEQ
ρmax

) = 1.

Since α(πK-SEQ
ρmax

) ≤ αk(p, q), the above equation implies limk→∞ αk(p, q) = 1. Notice that by
Lemma 4 and Theorem 1, πK-SEQ

ρmax
is a valid coupling, and

α(πK-SEQ
ρmax

) = 1− (1− βp,q(ρmax))k,

where βp,q(ρ) =
∑
x∈Ω min(p(x), q(x)

ρ) ≥ 1/ρmax > 0. Taking k →∞ concludes the proof.

For the case when q(x)/p(x) is unbounded, there exists x ∈ Ω such that q(x) > 0 and p(x) = 0. Let

poff =
∑
x∈Ω

1 {p(x) = 0} q(x).

13

Let x0 be such that p(x0) > 0. We define q′ such that

q′ =

0, if p(x) = 0,

q(x), if p(x) > 0 and x 6= x0,

q(x) + poff if x = x0.

Then we have dTV(q, q′) = poff , and hence by subadditivity of transport cost,

αk(p, q) ≥ αk(p, q′)− poff .

Moreover, we have ∀x ∈ Ω, q′(x)/p(x) <∞. Hence

lim
k→∞

αk(p, q) ≥ lim
k→∞

αk(p, q′)− poff = 1− poff =
∑
x∈Ω

1 {p(x) > 0} q(x).

A.3 Proof of Lemma 3

For the upper bound, it would be enough to show that for any π ∈ Π(p⊗k, q), and any Ω0 ⊂ Ω, we
have

Pr
(
Y ∈ S(Xk)

)
≤
∑
y∈Ω0

min
{
q(y), 1− (1− p(y))k

}
+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈S(xk)∩Ωc
0

q(y)}.

Pr
(
Y ∈ S(Xk)

)
=
∑
y∈Ω

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
=
∑
y∈Ω0

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
+
∑
y∈Ωc

0

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
=
∑
y∈Ω0

Pr
(
y ∈ S(xk), Y = y

)
+
∑
xk∈Ωk

∑
y∈S(xk)∩Ωc

0

Pr
(
Xk = xk, Y = y

)
≤
∑
y∈Ω0

min{Pr
(
y ∈ S(xk)

)
, q(y)}+

∑
xk∈Ωk

min{Pr
(
Xk = xk

)
,

∑
y∈S(xk)∩Ωc

0

q(y)}

=
∑
y∈Ω0

min{1− (1− p(y))k, q(y)}+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈S(xk)∩Ωc
0

q(y)}.

For the lower bound, we show that K-SEQ achieves an acceptance probability of at least (1− (1−
1/k)k)ᾱk(p, q), see Eq. (11), implying the lower bound guarantee.

B Comparison between α(πK-SEQ
ρ∗) and αk for simple examples.

We illustrate the acceptance probabilities for our proposed token-level selection algorithms using a
few simple examples and plot them in Figures 4 and 5. The analysis for these simple distributions is
presented in Appendix B.1 and Appendix B.2.

Pairs of Bernoulli distributions. Let Ber(b) be a Bernoulli distribution with probability b of
getting a head. In Figure 4, we plot the acceptance probability comparison between OTM-k and
K-SEQ for different Bernoulli distributions q = Ber(b) as a function of k when p = Ber(0.25). Note
that when p = q (b = 0.25), the acceptance probability is always one for both methods. When
p 6= q, the acceptance probabilities for both methods increase as k increases before they reach one.
When b = 0.1 or 0.75, K-SEQ has a worse acceptance probability compared to the OTM-k algorithm.
When b = 1, the two algorithms have the same performance.

14

2.5 5.0 7.5 10.0 12.5 15.0
k

0.5

0.6

0.7

0.8

0.9

1.0

Ac
ce

pt
an

ce
 p

ro
ba

bi
lit

y

b = 0.1, k-seq
b = 0.1, OTM
b = 0.25, k-seq
b = 0.25, OTM
b = 0.5, k-seq
b = 0.5, OTM
b = 0.75, k-seq
b = 0.75, OTM

Figure 4: Acceptance probability compari-
son between OTM-k and K-SEQ when p =
Ber(0.25) and q = Ber(b).

2 4 6 8 10
k

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
ce

pt
an

ce
 p

ro
ba

bi
lit

y

dq = d/2
dq = d/3
dq = d/4
dq = d/5

Figure 5: Optimal acceptance probability
(αk) as a function of k when p = U(d) for
d = 120 and q = U(dq).

Pairs of uniform distributions. Let U(d) denote a uniform distribution over [d]. In Figure 5, we
plot the optimal acceptance probability for different uniform functions q as a function of k. For these
distributions, it can be shown that K-SEQ achieves the optimal acceptance probability αk. Hence
only αk is plotted. Observe that all acceptance probabilities are monotonically increasing and tend to
one when k →∞, as stated in Lemma 1.

B.1 Calculations for αk.

In this section, we provide a sketch of optimal acceptance probability calculations for results in
Figures 4 and 5.

Figure 4: Ber(p) and Ber(q). The optimal acceptance probability is

αk(Ber(p),Ber(q)) = min(q, 1− (1− p)k) + min(1− q, 1− pk). (10)
Setting Ω0 = {0, 1} in Lemma 3 yields the upper bound. For the lower bound observe that since
Ω = {0, 1}, 1

{
y /∈ S(xk)

}
< 1 if and only if xk is 0k or 1k. Hence,

αk(Ber(p),Ber(q)) = π(Xk /∈ {0k, 1k}) + max
π
{π(Y = 0, Xk = 0k) + π(Y = 1, Xk = 1k)}

= 1− pk − (1− p)k + max
π
{π(Y = 0, Xk = 0k) + π(Y = 1, Xk = 1k)}.

Consider the transport plan π given by π(1k, 1) = min(pk, q), π(1k, 0) = pk − min(pk, q),
π(0k, 0) = min((1 − p)k, 1 − q), and π(0k, 1) = (1 − p)k − min((1 − p)k, 1 − q). It can be
checked that this is a valid transport plan. To see this matches the upper bound on the optimal cost
from Lemma 3, notice that

1− pk − (1− p)k + max
π
{π(Y = 0, Xk = 0k) + π(Y = 1, Xk = 1k)}

= 1− pk − (1− p)k + min(pk, q) + min((1− p)k, 1− q).
If pk ≤ q and (1− p)k ≤ 1− q, then the above equation simplifies to 1 and (10) also simplifies to
1. If pk > q and (1− p)k ≤ 1− q, then the above equation simplifies to 1 + q − pk and (10) also
simplifies to the same quantity. Similarly, the proof applies for pk ≤ q and (1− p)k > 1− q.

Figure 5: p = U(d) and q = U(d/r). The optimal acceptance probability is

αk(U(d), U(d/r)) = 1− (1− 1/r)k.

We first prove αk(U(d), U(d/r)) ≥ 1 − (1 − 1/r)k by a construction. Let S(Xk) be the set of
unique symbols in Xk. Consider the following transport plan, where Y is drawn uniformly from
S(Xk) ∩ [d/r] and draws a new uniform sample from [d/r] if S(Xk) ∩ [d/r] = ∅. Observe that
since U(d) is uniform over [d], this is a valid transport plan and furthermore,

αk(U(d), U(d/r)) ≥ Pr(S(X)k ∩ [d/r] 6= ∅) = 1− (1− 1/r)k.

The upper bound follows by setting Ω0 = [d] \ [d/r] in Lemma 3.

αk(U(d), U(d/r)) ≤ Pr(S(Xk) ∩ [d/r] 6= ∅) = 1− (1− 1/r)k.

15

B.2 Acceptance probability of K-SEQ for the example in Figure 5

In this section, we show that for the example in Figure 5, K-SEQ achieves the optimal acceptance
accuracy. In this case, p = U(d) and q = U(d/r). Recall that the optimal acceptance probability is

αk(U(d), U(d/r)) = 1− (1− 1/r)k.

For U(d) and U(d/r), we have

β(ρ) =
∑
x∈[d]

min{p(x), q(x)/ρ} =
1

max{r, ρ}
.

And hence solving 1− (1− β(ρ))k = ρβ(ρ) gives ρ∗ = r(1− (1− 1/r)k). And be Theorem 1, we
have

α(πK-SEQ
ρ∗) ≥ 1− (1− β(ρ∗))k = 1− (1− 1/r)k.

And the equality holds since this is an upper bound for any coupling.

B.3 Comparison to multi-round rejection sampling in [20, 29]

In this section, we compare our proposed draft selection algorithms (OTM and K-SEQ) to the multi-
round rejection sampling algorithm (MULTI-ROUND) in concurrent and recent work of [20, 29] (see
Algorithm 1 in [29]) using the example of Bernoulli distributions. As Figure 6 demonstrates, both
our proposed algorithms outperform their algorithm. The advantage of OTM is demonstrated by the
fact it is the optimal algorithm under the validity guarantee of the final accepted token. Our proposed
efficient algorithm K-SEQ also outperforms MULTI-ROUND for the considered examples. We leave a
systematic comparison of the algorithms as future work.

2.5 5.0 7.5 10.0 12.5 15.0
k

0.5

0.6

0.7

0.8

0.9

1.0

Ac
ce

pt
an

ce
 p

ro
ba

bi
lit

y

b = 0.1, k-seq
b = 0.1, OTM
b = 0.1, multi-round
b = 0.5, k-seq
b = 0.5, OTM
b = 0.5, multi-round
b = 0.75, k-seq
b = 0.75, OTM
b = 0.75, multi-round

Figure 6: Acceptance probability comparison among OTM-k, K-SEQ and MULTI-ROUND when
p = Ber(0.25) and q = Ber(b). When b = 0.25, all three algorithms achieve an acceptance
probability of 1, and hence omitted in the plot.

C Analysis of SpecTr

C.1 Proof of Theorem 1

We start by proving the following lemma on ρ∗.
Lemma 4. Let

f(ρ) = 1− (1− βp,q(ρ))k − ρβp,q(ρ).

Then we have Let ρ∗ be the solution to Eq. (6). Then when dTV(p, q) ∈ (0, 1),

• f(ρ) is monotone in ρ in [1,∞);

16

• ρ∗ ∈
[
1,min{k,maxx

q(x)
p(x)}

]
.

Proof. It would enough to prove the followings: (1) f(ρ) is monotone in ρ in [1,∞); (2) f(1) ≥ 0;
(3) f(k) ≤ 0; (4) f

(
maxx

q(x)
p(x)

)
≤ 0.

To see (1), since βp,q(ρ) is decreasing in ρ, so is 1 − (1 − βp,q(ρ))k. Moreover, ρβp,q(ρ) =∑
x min{ρp(x), q(x)}, which is non-decreasing in ρ. Hence we have 1− (1− βp,q(ρ))k − ρβp,q(ρ)

is decreasing.

To see (2), note that when ρ = 1, βp,q(ρ) = 1− dTV(p, q). Hence we have

1− (1− βp,q(1))k = 1− dTV(p, q)k ≥ 1− dTV(p, q).

When ρ = k, (3) holds since for x ∈ [0, 1], we have 1 − (1 − x)k ≤ kx. Moreover, when
ρ = maxx

q(x)
p(x) > 1, we have βp,q(ρ) = 1/ρ and (4) holds since

1− (1− βp,q(ρ))k = 1− (1− 1/ρ)k < 1 = ρ · 1/ρ.

Next we prove Theorem 1, we will break the proof into four parts: (1) computation efficiency; (2)
πK-SEQ
ρ is a valid transport plan; (3) acceptance probability; (4) optimality guarantee of πK-SEQ

ρ∗ .

Computation efficiency. Note that Lemma 4 immediately implies that ρ∗ can be computed up to
arbitrary accuracy δ in time O(|Ω| log((k − 1)/δ) using binary search over [1, k].

Valid transport plan. We next prove that πK-SEQ
ρ is a valid transport plan when ρ ≥ ρ∗. By

Lemma 4, when ρ ≥ ρ∗, we have 1−(1−βp,q(ρ))k ≥ ρβp,q(ρ). Recall that pacc = 1−(1−βp,q(ρ))k,
and

∀x ∈ Ω, pres(x) =
q(x)−min

{
p(x), q(x)

ρ

}
pacc

βp,q(ρ)

1− pacc
.

∀x ∈ Ω, we have

min

{
p(x),

q(x)

ρ

}
pacc

βp,q(ρ)
≤ 1− (1− βp,q(ρ))k

ρβp,q(ρ)
q(x) ≤ q(x),

this implies pres(x) ≥ 0 for all x ∈ Ω. Moreover,

∑
x∈Ω

pres(x) =
∑
x∈Ω

q(x)−min
{
p(x), q(x)

ρ

}
pacc

βp,q(ρ)

1− pacc
= 1.

Hence pres is a valid distribution. It remains to show that the marginal of Y is q. We first compute the
probability of the output Y = x. Note that probability that Y = X1 is

p(X1) min

(
1,

q(X1)

ρp(X1)

)
= min

(
p(X1),

q(X1)

ρ

)
.

Hence

Pr(Y = X1 = x) = min

(
p(x),

q(x)

ρ

)
.

Therefore,

Pr(Y = X1) =
∑
x

min

(
p(x),

q(x)

ρ

)
= β(ρ).

Similarly, probability that

Pr(Y = X2 = x) = Pr(Y 6= X1) Pr(Y = X2|Y 6= X1) = (1− βp,q(ρ)) min

(
p(x),

q(x)

ρ

)
.

Hence,

17

Pr
(
Y = x, one of Xk is accepted

)
=

k−1∑
i=0

Pr (X1, . . . , Xi are rejected, Xi+1 is accepted, and Xi+1 = x)

=

k−1∑
i=0

(1− βp,q(ρ))i · p(x) ·min

{
1,

q(x)

p(x)ρ

}

= min

{
p(x),

q(x)

ρ

}
·
k−1∑
i=0

(1− βp,q(ρ))i

= min

{
p(x),

q(x)

ρ

}
1− (1− βp,q(ρ))k

βp,q(ρ)

Summing over all symbols x yields

Pr(one of Xk is accepted) =
∑
x

min

{
p(x),

q(x)

ρ

}
1− (1− βp,q(ρ))k

βp,q(ρ)
= 1− (1− βp,q(ρ))k.

Hence we have

Pr (Y = x) = Pr
(
Y = x, one of Xk is accepted

)
+
(
1− Pr

(
one of Xk is accepted

))
pres(x)

= min

{
p(x),

q(x)

ρ

}
1− (1− βp,q(ρ))k

βp,q(ρ)

+
(
1− (1− βp,q(ρ))k

)q(x)−min
{
p(x), q(x)

ρ

}
1−(1−βp,q(ρ))k

βp,q(ρ)

1− (1− βp,q(ρ))k

= q(x).

Acceptance probability. The acceptance probability holds since

α(πK-SEQ
ρ) ≥ Pr(one of Xk is accepted) = 1− (1− βp,q(ρ))k.

Optimality guarantee of πK-SEQ
ρ∗ . It can be seen that β(ρ) is decreasing in ρ, and so is 1 − (1 −

βp,q(ρ))k. Hence we have

α(πK-SEQ
ρ∗) ≥ 1− (1− βp,q(ρ∗))k ≥ 1− (1− βp,q(k))k = ck(p, q) ·

∑
x

min{kp(x), q(x)},

where

ck(p, q) =
1− (1− βp,q(k))k

kβp,q(k)
∈ [1− (1− 1/k)k, 1).

The statement holds since f(x) = 1−(1−x)k

kx in monotonically decreasing when x ∈ (0, 1/k] and
f(1/k) = 1− (1− 1/k)k, limx→0+ f(x) = 1.

Moreover, ∀x ≥ 0, kx ≥ 1− (1− x)k. Hence we have

α(πK-SEQ
ρ∗) ≥

(
1− (1− 1/k)k

)
·
∑
x

min{kp(x), q(x)}

≥
(
1− (1− 1/k)k

)∑
x

min{1− (1− p(x))k, q(x)} (11)

≥
(
1− (1− 1/k)k

)
αk(p, q), nonumber (12)

where the last inequality is due to the upper bound in Lemma 3 with Ω0 = Ω.

18

C.2 Proof of Theorem 2

We prove the theorem via induction. When L = 1, τ ∈ {1, 2}. Let k = |S|. Since for the first step, fπ
in Algorithm 3 is a valid transport plan fromMs(· | xt)⊗k toMb(· | xt). We have Y1 ∼Mb(· | xt),
which completes the proof when τ = 1. When τ = 2, we have Y2 ∼ Mb(· | xt, Y1) as stated in
Step 5 of Algorithm 3. Hence the statement holds.

Suppose the theorem holds for L = ` ≥ 1, we next prove that it holds for L = `+ 1. Let Y τxt be the
output sequence given context xt. When τ = 1, since for the first step, fπ in Algorithm 3 is a valid
transport plan fromMs(· | xt)⊗k toMb(· | xt), we have Y1 ∼Mb(· | xt). When τ > 1, Snext 6= ∅
and by the assumption in Eq. (8), Snext contains k′ = |Snext| drafts fromMs(· | (xt, Y1)) with
length `. Let Y τ

′

xt,Y1
be the output sequence given context (xt, Y1), by the induction assumption, we

have for any τ0 ∈ [1, `+ 1], and any τ0-length, sequence oτ0 = (o(1), . . . , o(τ0)) ∈ Ωτ0 , we have

Pr
(
Y τ
′

xt,Y1
= oτ0 |τ ′ = τ0

)
= Πτ0

i=1Mb(o(i) | xt, Y1, o
i−1).

Note that in this case τ = τ ′ + 1, and for any (τ0 + 1)-length sequence oτ0+1 =
(o(1), . . . , o(τ0), o(τ0 + 1)) ∈ Ωτ0+1, we have

Pr
(
Y τxt = oτ0+1|τ = τ0 + 1

)
= Pr (Y1 = o1) · Pr

(
Y τ
′

xt,o1
= oτ0 |τ ′ = τ0

)
=Mb(o(1) | xt) ·Πτ0

i=1Mb(o(i+ 1) | xt, oi)
= Πτ0+1

i=1 Mb(o(i) | xt, oi−1).

Combining the two cases, we complete the proof.

D Candidate set construction via a prefix-tree

As discussed in Section 1, the size of the draft set S is constrained by the number of parallel
computations that can be supported in the hardware. Hence it is important to design the draft set
carefully to allow for a longer sequence of accepted candidate sets. In addition to the i.i.d. draft set
selection approach listed in Section 7, we present an algorithm that samples a draft set that forms
the leaves of a prefix tree. Given a draft set size K, the algorithm can be specified by a sequence of
parameter (k1, k2, . . . , kL) satisfying

∏L
i=1 ki = K.

The algorithm starts with a root node with sequence x1:t and forms a prefix tree of depth L. At depth
i ∈ [1 : L − 1], each node is expanded by a factor of ki+1 and each of its children will contain a
sequence that satisfies: (1) Its prefix agrees with the sequence in the parent node; (2) The next token
is sampled from the conditional probability given the prefix in small model. These child nodes will
be at depth i + 1 and the process goes until it hits depth L. We give a detailed description of the
algorithm in Algorithm 4.

Algorithm 4 Draft set selection via prefix-tree.
Input: Input sequence xt; expansion factors at each level: (k1, k2, . . . , kL).

1: S0 = {xt}.
2: for i = 0, 1, 2, . . . , L− 1 do
3: Si+1 = ∅.
4: for all seq ∈ Si do
5: Sample ki+1 i.i.d. tokens X1, X2, . . . , Xki+1

fromMb(· | seq).
6: Si+1 = Si+1 ∪ {(seq, Xi), i = 1, 2, . . . ki+1}.
7: end for
8: end for
9: Return SL.

E Additional experiments

In this section, we perform a detailed investigation of different factors that affect the speed of
SpecTr with smaller transformer models. We train decoder-only transformer models on the LM1B

19

Table 2: Average latency with parallelization along the time axis and batch axis. We report average
latency with standard deviation over 1,000 runs using a 97M transformer relative to length = 4 and
batch = 1 on GPU.

Relative latency batch = 1 batch = 2 batch = 4 batch = 8
length = 4 1.00 ± 0.16 1.01 ± 0.15 1.06 ± 0.10 1.10 ± 0.16
length = 8 1.01 ± 0.18 1.09 ± 0.25 1.10 ± 0.09 1.42 ± 0.4

Table 3: Average latency with parallelization along the time axis and batch axis. We report aver-
age latency with standard deviation over 1,000 runs using a 6M transformer relative to the 97M
transformer with length = 4 and batch = 1 on GPU.

Relative latency batch = 1 batch = 2 batch = 4 batch = 8
length = 4 0.18 ± 0.02 0.19 ± 0.04 0.18 ± 0.09 0.20 ± 0.13
length = 8 0.17 ± 0.04 0.19 ± 0.05 0.16 ± 0.02 0.18 ± 0.04

dataset based on the example provided in the FLAX library [15]. For the draft model, we use
transformer models with 2M , 6M and 20M parameters, and for the large model we use a 97M
parameter transformer model.

We first provide a verification of the computational model introduced in Section 1 by reporting the
latencies of using the large model to compute the probabilistic distributions with parallelization over
time and batch axes. As shown in Table 2, the latency stays roughly constant in these setting.

Similar to Table 2, we report relative latency when parallelizing across the time and batch axes using
the small 6M draft model in Table 3. In Table 3, the reported relative latencies are relative to the
large 97M model to get a sense of the relative cost of sampling multiple drafts with the small model
compared to the large model.

To see how the size of size of the draft model will affect the block efficiency, we also include results
for varying draft model sizes with the same 97M large model for LM1B in Table 4. These draft
models were produced by either halving (2M) or doubling (20M) the original 6M draft model’s
number of layers, embedding dimension, MLP dimension, and number of attention heads. As
expected, the larger draft models improve all speculative methods’ block efficiency with SpecTr
maintaining the best performance across all draft model sizes.

20

Table 4: Experimental results on the LM1B dataset with varying draft model sizes and the 97M
transformer as the large model. All results are over 1000 test prompts averaged over three different
random seeds and sampling temperature of 1.0 for both the draft and large models.

Draft model Algorithm K L Block efficiency
2M Transformer Baseline - - 1.00

Speculative 1 4 1.86± 0.02
SpecTr 2 4 2.07± 0.01
SpecTr 4 4 2.32± 0.00
SpecTr 8 4 2.56± 0.01

Speculative 1 8 1.91± 0.01
SpecTr 2 8 2.15± 0.01
SpecTr 4 8 2.41± 0.00
SpecTr 8 8 2.68± 0.01

6M Transformer Baseline - - 1.00
Speculative 1 4 2.21± 0.01

SpecTr 2 4 2.43± 0.01
SpecTr 4 4 2.74± 0.01
SpecTr 8 4 2.99± 0.02

Speculative 1 8 2.33± 0.01
SpecTr 2 8 2.61± 0.02
SpecTr 4 8 2.96± 0.03
SpecTr 8 8 3.27± 0.02

20M Transformer Baseline - - 1.00
Speculative 1 4 2.71± 0.01

SpecTr 2 4 2.96± 0.00
SpecTr 4 4 3.28± 0.02
SpecTr 8 4 3.49± 0.03

Speculative 1 8 3.12± 0.02
SpecTr 2 8 3.48± 0.04
SpecTr 4 8 3.85± 0.05
SpecTr 8 8 4.15± 0.04

21

	Introduction
	Previous works and speculative decoding
	Our contributions
	Token-level draft selection and optimal transport
	Optimal transport with multiple draft tokens
	Draft selection via k-sequential selection
	SpecTr: Application of OTM in autoregressive sampling
	Experiments
	Acknowledgements
	Properties of optimal transport cost
	Information-theoretic upper (and lower) bound of k.
	Proof of Lemma 1
	Proof of thm:bound

	Comparison between (k-Seq*) and k for simple examples.
	Calculations for k.
	Acceptance probability of k-Seq for the example in Figure 5
	Comparison to multi-round rejection sampling in miao2023specinfer, eagle2023

	 Analysis of SpecTr
	Proof of thm:krej
	Proof of thm:spekplus

	Candidate set construction via a prefix-tree
	Additional experiments

