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A Supporting Proofs

A.1 Proof of Lemma 5

Lemma 5. The classes, Mmax
K and M

tr
⌧ , are closed under negations and are convex.

Proof of Lemma 5. Suppose M is a matrix then we can write M = UV > such that,

• If M 2M
max
K , kUk2,1 · kV k2,1  K.

• If M 2M
tr
⌧ , kUkfr · kV kfr  ⌧ .

Note that �M = �UV >, negating the sign of U doesn’t affect its norm, so clearly the classes are
closed under negation.
The convexity of the class follows directly from that k · kmax and k · ktr are well-defined norms.

A.2 Computational Hardness of the Coverage Problem

In this section we show that the optimization problem MP 4 is NP-hard in full generality. The first
fact we use is the polynomial time equivalence between linear optimization and separation that was
established in the work of Grötschel et al. [1981]. It thus remains to prove NP-hardness of the
separation problem, which is given in equation 5, and can be restated as the following mathematical
program when our version space is restricted with a trace norm constraint:

max
X

X

ij

CijX
2
ij (7)

|Xij |  1, kXktr  k.

We give evidence of NP-hardness for this program by considering the same mathematical program
added a symmetric positive-definite constraint, as follows.
Lemma 12. Mathematical program (8) is NP-hard to compute, or approximate with factor k1�"

for

any " > 0.

max
X

X

ij

CijX
2
ij (8)

0  Xij  1, X ⌫ 0 , X 2 Sym(n), tr(X)  k.

Proof. The proof relies on strong hardness of approximation results for the MAX-CLIQUE problem
that were proven in Hastad [1996] and subsequent work.
We prove by reduction from k-CLIQUE. Let G(V,E) be an instance of the k-CLIQUE problem.
The reduction. Given a graph G, let

RV⇥V
3 Cij =

⇢
1 (i, j) 2 E or i = j

0 otherwise
.

We now claim the following:
Lemma 13. The value of mathematical program (7) is at least k2 if G contains clique of size k.

Conversely, if the value of (7) is at least k2, then G contains a clique of size at least k.

Proof. Completeness If G has a k clique, then consider the following solution X . Let

vi =

⇢
1 i 2 clique
0 o/w
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and let X = vv>. Then we have that trX = k, Xij 2 {0, 1}. In addition, by definition of X , we
have that X

ij

CijX
2
ij =

X

ij

Cijv
2
i v

2
j = k2.

Soundness Suppose program (8) has a solution X with value k2 and trace exactly k. The trace
equality is w.l.o.g since we can always increase the diagonal entries while preserving constraints and
only increasing the objective. Therefore, without loss of generality, we may assume that tr(X) = k.
Next, we claim that w.l.o.g. we have that rank(X) = 1. To see this, notice that we can define a
vector ui =

p
Xii, and X̃ = uu>. Now, we have that tr(X̃) = k, and it satisfies the bounded-ness

constraints by definition. In addition, we have that the objective is only increased, since
X

ij

Cij(vivj)
2 =

X

ij

CijXiiXjj �

X

ij

CijX
2
ij ,

where the last inequality is by positive semi-definiteness.
Thus, we can restrict our attention to the set of solutions given by Kk =
{uu> , 0  ui  1 , kuk1 = k}. We claim that Kk can be alternatively characterized
as the convex hull of all rank-one matrices of the following form:

Kk = conv
�
vv>|v 2 {0, 1}V , kvk1 = k

 
.

This fact is shown in page 279 of Warmuth [2010].
We can now continue with the soundness proof. Since the objective

P
ij CijX2

ij is a convex function,
given a distribution over points in Kk, the maximum is obtained in a vertex. Thus, there exists a
binary vector v such that its trace is k, and for which

P
ij Cijvivj = k2.

Define a subgraph according to v in the natural way: i 2 S if and only if vi = 1. Notice that the
subset of vertices S is of size k due to the trace.
In terms of number of edges in this subgraph, notice that

|E(S)| = 1
2

P
ij2S 1(i,j)2E = 1

2

P
ij Cijvivj =

k2

2 .

Thus, we have found a clique of size k.

We note that, although we have shown NP-hardness for the trace-norm with symmetric PSD con-
straints, it is possible that the optimization problem is efficiently solvable for the max-norm or
rank.

A.3 Proof of Theorem 10

Recall our main theorem for the inefficient algorithm, which we prove in this appendix.
Theorem 10. Let M be either M

max
K or M

tr
⌧ . Let D be distribution over X ⇥ [�1, 1], µ the

marginal of D over X . Suppose that M?, defined as M?
ij = ED[Y |X = (i, j)] satisfies that

M?
2M. Furthermore, suppose that S ⇠ D

N and that FullComp is a full completion algorithm as
in Defn. 8. Then, provided N � max{scFC("/4, �/3,M), sc("/8, �/3,M)}, for (M̂, C) output by
Alg. 1, with probability at least 1� �, it holds that:

1. kCk1 � 1/µmax and

2.
1

kCk1

X

x2X
Cx(M̂x �M?

x)
2
 ".

The proof relies on the following proposition.

Proposition 14. Suppose S ⇠ µN
for some distribution µ over X ; let µmax

def

= maxx2X µx. Suppose

M is one of M
max
K or M

tr
⌧ , let N � sc(�/2, �,M) (cf. Defn. 6) and suppose C is the maximizer of

MP 4 with � = �/2, then with probability at least 1� �, we have kCk1 � 1/µmax.
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Proof. Based on the condition on N and using M̂ = 0X in Defn. 6, with probability at least 1� �,
the following holds for all M 2M:

��kMk2µ � kMk2S
��  �/2 (9)

We need to show that some Cµ, with kCµ
k1 � 1/µmax is feasible. Let Cµ

x = µ(x)/µmax. Then,
clearly Cx 2 [0, 1], kCµ

k1 = 1/µmax and ⌫Cµ = µ. Using Eq. (9), we have that, kMk2µ 
kMk2S + �/2, and as a result for every M 2 V(0X ,�, S;M), it holds that kMk2µ  � + �/2 = �.
Thus, Cµ is a feasible solution to the optimization problem with objective value at least 1/µmax.

Proof of Theorem 10. There are three bad events, for each of which we bound their probability by at
most �/3. First, FullComp succeeds with probability at least 1� �/3.

Second, provided N � sc("/8, �/3,M), for M̂ output by FullComp, using Defn. 6 it must hold for
each M 2M that with probability at least 1� �/3,

���kM � M̂k2µ � kM � M̂k2S

���  "/8 (10)

In particular, when � = "/8, this means that (assuming FullComp has not failed),

k(M?
� M̂)/2k2S 

1

4
kM?

�Mk2µ +
✏

32


"

16
+

"

32
 �.

As a result, and also using the convexity of M (cf. Lemma 5), (M?
� M̂)/2 2 V(0X ,�, S;M).

Finally, for N � sc("/8 = �/2, �/3,M), Proposition 14 guarantees with probability at least 1��/3,
that the output of MP 4 satisfies kCk1 � 1/µmax.

The constraint of MP 4 together with the fact that (M?
� M̂)/2 2 V(0X ,�, S;M) guarantees that,

kM?
� M̂k2⌫C

 4� which completes the required proof.

A.4 Proof of Theorem 11

Proposition 15. Suppose S ⇠ µN
for some distribution µ over X ; let µmax

def

= maxx2X µx. Let

N � sc(�2/2, �,Mmax
K ) (cf. Defn. 6) and suppose C is the maximizer of MP 6 with � = �2/2, then

with probability at least 1� �, we have kCk1 � 1/µmax.

Proof of Proposition 15. Based on the condition on N and using M̂ = 0X in Defn. 6 with probability
at least 1� � it holds for every M 2M

max
K :

��kMk2µ � kMk2S
��  �2/2. (11)

As in the proof of Proposition 14, let Cµ
x = µx/µmax and notice that Cµ

x 2 [0, 1], kCµ
k1 = 1/µmax

and ⌫Cµ = µ. Using Eq. (11), for any M 2 V(0X ,�, S;Mmax
K ), we have that kMk2µ  �+�2/2 

�2. Finally, using the fact that Ex⇠µ[Mx] 
q
kMk2µ, we get that Cµ is feasible and the result

follows.

The key to proving Theorem 11 is the following proposition, whose proof contains the main technical
innovation. The derivation of the main theorem given the proposition is in the Appendix.
Proposition 16. For the class M

max
K , for any distribution ⌫ over X , � > 0 and S 2 X

N
, the

following holds: for V = V(0X ,�, S;Mmax
K ),

sup
M2V

`(⌫,M,0X ) 
⇡K

2
sup
M2V

Ex⇠⌫ [Mx].

Proof of Proposition 16. For succinctness let V0 = V(0X ,�;S,Mmax
K ). Let ⌫ be a an arbitrary

distribution over X and since we know that V0 is closed and bounded, we know that a matrix M 2 V0

exists which achieves the value of supM2V0
`(⌫,M,0X ). We will use the probabilistic method to

show that there exists M̃ 2 V0 such that Ex⇠⌫ [M̃x] �
2

⇡K `(⌫,M,0X ).
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Since M 2M
max
K , there exist U, V such that M = UV > and that kUk2,1 · kV k2,1  K. Denote

by ui, vj respectively the i-th and j-th rows of U and V . Suppose ui, vj 2 RD for some finite D, we
know that we can always choose D  min{m,n}. Let w be a random vector drawn uniformly from
the unit sphere in RD. For any vector v 2 RD, let ṽ def

= sign(v>w)v and obtain the matrices Ũ , Ṽ
from U and V by applying this transformation to all the rows of U and V .

We define M̃ = Ũ Ṽ >. Note that as the only difference between U and Ũ (resp. V and Ṽ ) is sign
changes for some subset of the rows, we have kŨk2,1 = kUk2,1 (resp. kṼ k2,1 = kV k2,1).
Also for any i, j, |u>

i vj | = |ũ>
i ṽj |, thus the entries of M and M̃ may only differ in sign. Thus,

M̃ 2M
max
K irrespective of the random choice of the vector w. In order to complete the proof by the

probabilistic method, it suffices to show that,

Ew

h
Ex⇠⌫ [M̃x]

i
�

2

⇡K
`(⌫,M,0X ). (12)

Let ✓(u, v) denote the angle between any two vectors u, v 2 RD. For a vector w drawn at random
from the unit sphere it can be verified that P[ sign(ũ>ṽ) 6= sign(u>v)] = ✓(u,v)

⇡ . We will show:

Ew[ũ
>ṽ] �

2(u>v)2

⇡kukkvk
. (13)

It suffices to show the above for the case when u>v � 0 as flipping the sign of v affects neither ṽ nor
(u>v)2. Note that in this case ✓(u, v) 2 [�⇡/2,⇡/2]. To prove Eq. (13), we use:

Lemma 17. For any ✓ 2 [�⇡/2,⇡/2], we have that, 1� 2✓/⇡ � 2 cos(✓)/⇡.

Proof of Lemma 17. Let f : [�⇡/2,⇡/2] ! R, where f(✓) = 1 � 2✓/⇡ � 2 cos ✓/⇡. Note that
since | sin ✓|  1 for all ✓, f 0(✓)  0, so f is decreasing and f(⇡/2) = 0.

Now, using the fact that cos(✓(u, v)) = u>v/(kukkvk), we get,

Ew[ũ
>ṽ] = u>v ·

�
1� 2P[ sign(ũ>ṽ) 6= sign(u>v)]

�

= u>v ·

✓
1�

2✓(u, v)

⇡

◆
� u>v ·

2 cos(✓(u, v))

⇡
=

2(u>v)2

⇡kukkvk
.

In the last step, we used Lemma 17. For any fixed x = (i, j) 2 X , we have that,

Ew[M̃x] = Ew[ũi
>ṽi] �

2(u>
i v)

2

⇡kuikkvjk
�

2M2
x

⇡K
.

The last inequality follows from the fact that kMkmax = kUk2,1 · kV k2,1  K and that Mx =
u>
i vj . Taking expectation with respect to ⌫ and applying Fubini’s theorem establishes (12).

Proof of Theorem 11. Apart from the use of Proposition 16, the proof is essentially the same as
that of Theorem 10. We bound the probability of the three undesirable events by �/3 each. First,
FullComp succeeds with probability at least 1� �/3.

Second, provided N � sc("2/(8⇡2K2), �/3,Mmax
K ), for M̂ output by FullComp, using Defn. 6 it

must hold for each M 2M
max
K that with probability at least 1� �/3,
���`(µ,M, M̂)� `(S,M, M̂)

��� 
"2

8⇡2K2
(14)

In particular, when � = "2/(8⇡2K2), this means that (assuming FullComp has not failed),

k(M?
� M̂)/2k2S 

1

4
kM?

�Mk2µ +
✏2

32⇡2K2


"2

16⇡2K2
+

"2

32⇡2K2
 �.

As a result, and using the convexity of Mmax
K (cf. Lemma 5), (M?

� M̂)/2 2 V(0X ,�, S;Mmax
K ).

For N � sc("2/(8⇡2K2) = �2/2, �/3,Mmax
K ), Proposition 15 guarantees with probability at least

1� �/3, that the output of MP 6 satisfies kCk1 � 1/µmax.
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Finally, since (M?
� M̂)/2 2 V(0X ,�, S;Mmax

K ), we have:

`(⌫C ,M
?, M̂)  sup

M2V(0X ,�,S;Mmax
K )

`(⌫C ,M,0X ) 
⇡K

2
· sup
M2V(0X ,�,S;Mmax

K )
Ex⇠⌫C [Mx] 

⇡K

2
· �.

In the penultimate step we used Proposition 16 and in the last step we used the fact that C is feasible
for MP 6. Substituting the value of � completes the proof.
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B Online Partial Matrix Completion

This section uses tools from online convex optimization, in particular its application to games, to
design an efficient gradient-based online algorithm with provable regret guarantee to find a near
optimal confidence matrix to the partial matrix completion problem.

Organization. The organization of this section is as follows: we begin with a short background
description on online convex optimization, its application to matrix completion problems and games
in Section B.1, explain the main motivations and intuitions of our online algorithm in Section B.2,
introduce the general protocol of online partial matrix completion in Section B.3 and the design
of objective functions in Section B.4. We formally give the algorithm specification and the regret
guarantee in Section B.5. Finally, we show the implication on statistical guarantee in Section B.6.

B.1 Preliminaries

Online convex optimization. In online convex optimization, a player iteratively chooses a point
xt 2 K ✓ Rd at time step t, and receives a convex loss function ht, to which the player incurs loss
ht(xt). The performance of the player is measured by regret, the total excess loss incurred by the
player’s decisions than the best single decision x⇤

2 K. Formally, regret is given by the following
definition

RegretT
def
=

TX

t=1

ht(xt)�min
x2K

TX

t=1

ht(x).

The goal is to design algorithms that achieve sublinear regret, which means that with time the
algorithm’s decisions converge in performance to the best single decision in hindsight. For a survey
of methods and techniques, see [Hazan et al., 2016].

Online matrix prediction. Online convex optimization has been proved useful in solving matrix
prediction problems. In particular, Hazan et al. [2012b] give an efficient first-order online algorithm
that iteratively produces matrices Mt of low complexity that for any sequence of adversarially chosen
convex, Lipschitz loss functions and indices (it, jt)’s, the online matrix prediction algorithm gives a
regret bound of Õ(

p
(m+ n)T ). The linear dependence on the matrix dimension m,n translates to

the convergence in performance to the best complexity-constrained matrix in hindsight after seeing
only square root of the total number of entries.

Games and regret. One important branch of theory developed in online convex optimization is
its connection to finding the equilibrium point in two-player games, first discovered by Freund and
Schapire [1999]. In this framework, two players iteratively pick decisions xt 2 X , yt 2 Y at time
step t, after which a (possibly adversarially) chosen loss function ht(x, y) is revealed, where ht is
convex in x and concave in y. Player 1 incurs loss ht(xt, yt) and player 2 gains reward ht(xt, yt).
The objective for the players is to produce a sequence of decisions {xt}

T
t=1, {yt}

T
t=1 that converges

in performance to the best single x⇤, y⇤ 2 K in hindsight. The regret for the two players are given by

RegretT (player1) =
TX

t=1

ht(xt, yt)�min
x2X

TX

t=1

ht(x, yt),

RegretT (player2) = max
y2Y

TX

t=1

ht(xt, y)�
TX

t=1

ht(xt, yt).

Under distributional assumption of the function ht’s, namely if ht’s are bilinear, i.i.d. stochastically
chosen according to some distribution, then the following holds:

�����E
"

TX

t=1

ht(xt, yt)

#
�min

x2X
max
y2Y

E
"

TX

t=1

ht(x, y)

#�����

 max{RegretT (player1),RegretT (player2)}.

For such reasons, we define a notion of game regret, denoted Game-RegretT , to be the maximum
of the regret incurred by the two players. Sublinear game regret can be used to compute the game
equilibrium [Freund and Schapire, 1999].
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B.2 Motivations

Two important aspects lie at heart of the general motivation for considering partial matrix completion
in an online setting. First, in many applications, the observation pattern is more general than a fixed
distribution. It can be a changing distribution or be comprised of adversarial observations. Second,
our online algorithm incrementally updates the solution via iterative gradient methods, which is more
efficient than the offline methods.

B.2.1 Game theoretic nature of partial matrix completion

With the preliminary introduction on saddle-point problems, we will describe their connection to our
problem of interest - finding the optimal confidence matrix C in partial matrix completion problems.
Recall that we want to find C that (1) has maximal coverage under the constraint that (2) the deviation
between any two possible completions M1 and M2 with respect to C is small.
With this objective in mind, we can think of the following two-player game. Player 1 plays a
confidence matrix C, player 2 plays a pair of possible matrix completions (M1,M2). The goal of
player 1 is to (a) maximize the coverage of C and (b) minimize the deviation between M1 and M2

with respect to C. The goal of player 2 is to maximize the deviation between M1 and M2 with
respect to C. The equilibrium point in this problem is exactly given by a confidence matrix that
simultaneously has high coverage and with respect to which the deviation between any two possible
completions M1 and M2 is small. The game theoretic nature of the partial matrix completion
problem leads us to consider designing a provably low-game-regret online two-player algorithm.

B.2.2 Soft constraints

It is worth noting that this formulation differs from the MP4 and MP6 in the absence of hard
constraints. In particular, instead of imposing an "-margin on the deviation between any two possible
completions with respect to the confidence matrix, we formulate this objective in the objective
functions for player 1 and 2. This allows us to perform fast gradient-based algorithm, which will be
detailed soon in the Algorithm 3. The set of possible matrix completions is formally given by the
version space, i.e. the set of matrices of low complexity, with bounded norms, and deviate little from
the observed data. To avoid computationally expensive projections, Algorithm 3 further removed
the constraint on deviation from observations and replaced with a soft constraint that penalizes the
completion’s deviation from observations. Similar techniques have been seen in [Mahdavi et al.,
2012].

B.3 Online PMC General Protocol

With the motivations explained, we are ready to introduce the general protocol of online matrix
completion and then give the details of our objective functions. In the online partial matrix completion
problem, the algorithm acts for two players and follows the following protocol. At time step t,

1. Player 1 picks a confidence matrix from a constraint set Ct 2 C, where C is defined below.
Player 2 picks two matrices M1

t ,M
2
t 2M

max
K .

2. An adversary reveals a tuple (xt, ot) 2 X ⇥ [�1, 1]. Based on this tuple, a function is
constructed, denoted ht(C,M1,M2), which is concave in C and convex in M1,M2.

3. Player 1 receives reward ht(Ct,M1
t ,M

2
t ). Player 2 incurs loss ht(Ct,M1

t ,M
2
t ).

The convex-concave function ht, detailed in Section B.4, measures the coverage of C, the deviation
between M1 and M2 with respect to C, and the deviation of M1,M2 from the observations.
Note that in previous sections, we took C = [0, 1]X . In this section we consider a more general case,
and consider two choices for C. The first choice is the unit simplex �X ⇢ RX . This is natural as
it induces a probability distribution of completion confidence over the entries. The second choice

is the scaled hypercube C =
h
0, 1

(m+n)3/2

iX
. The scaling is for the mere purpose for analysis and

representation of theorems. In B.6, we will show a reduction from the online result to the offline
guarantee.
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B.4 Designing Convex-Concave Objectives

The previous sections motivate the design of the convex-concave function ht, where ↵, ✓ > 0 are
positive parameters:

ht(C,M
1,M2) = H(C)� ↵G(C,M1,M2) + ↵✓ft(M

1,M2),

where the three components of ht are:

1. H(·) is a measure of the effective support size of C, which can be taken to be either:
(a) entropy, i.e. H(C) = �

P
x2X Cx log(Cx) defined over the simplex C = �X , or

(b) H(C) = kCk1, defined over the scaled hypercube C =
h
0, 1

(m+n)3/2

iX
.

2. G(C,M1,M2)
def
=
P

x2X Cx(M1
x �M2

x), a linear relaxation of
P

x2X Cx(M1
x �M2

x)
2

(see Theorem 24 and Corollary 25 in Appendix C), which measures the deviation of two
completions M1,M2 with respect to C.

3. ft(M1,M2)
def
=
⇥
(M1

xt
� ot)2 + (M2

xt
� ot)2

⇤
, which measures the deviation of the two

completions from observation made at time t. This serves as a soft constraint where M1,M2

minimizing ht will have values close to ot at entry xt.

With slight abuse of notation, we denote Mt
def
= (M1

t ,M
2
t ) in the following sections for convenience

and presentation clarity. Note that ht is concave in C and convex in M1,M2. Similar to the previous
section, remark that we can, albeit suffering a constant in all performance metrics, consider that all
observations ot are zero and maintain a single matrix in place of M1

t ,M
2
t that measures the radius of

the version space.

B.5 Online Dual Descent (ODD): online gradient-based algorithm for partial matrix
completion

Formally, we propose Online Dual Descent (ODD, Algorithm 3):

Algorithm 3 Online Dual Descent for Partial Matrix Completion (ODD)
1: Input: Gradient-based online coverage and matrix update functions AC ,AM , parameters ⌘ > 0,

↵, ✓ > 0.
2: Initialize C1,M1  AC(;),AM (;).
3: for t = 1, 2, ..., T do
4: Player 1 plays Ct; player 2 plays Mt.
5: Adversary draws tuple (xt, ot) and constructs function ht with parameters ↵, ✓.
6: Player 1 receives reward ht(Ct,Mt), player 2 incurs loss ht(Ct,Mt).
7: Player 1 updates Ct+1  AC(Ct,Mt). Player 2 updates Mt+1  AM (Ct,Mt, (xt, ot)).
8: end for
9: output:s C̄ = 1

T

PT
t=1 Ct.

Here, AC : C ⇥ (Mmax
K )2 ! C and AM : C ⇥ (Mmax

K )2 ⇥ (X , [�1, 1])! (Mmax
K )2. The detailed

analysis of the algorithm will be deferred to the following section and Appendix C, but we will first
state its regret guarantee:
Corollary 18. For any sequence of {(xt, ot)}Tt=1, Algorithm 3 gives the following regret guarantee

on the obtained set {(Ct,Mt)}Tt=1, such that for settings 1a, 1b,

Game-RegretT
def

= max
n

Regret
AC
T ,↵ · Regret

AM
T

o
 Õ(K↵✓

p
(m+ n)T ).

We henceforth denote the upper bound on the regret by

Game-RegretT  BT .

The main theorem regarding the game regret of Algorithm 3 is implied by the existence of low regret
guarantee for gradient-based subroutines AC ,AM , outlined in the following theorems. The details of
the subroutines and analysis are deferred to Appendix C.
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Theorem 19. Denote at every time step t, consider the concave reward function rt(C)
def

= H(C)�
↵G(C,Mt). There exists a sub-routine gradient-based update AC (see Alg. 4 for an example) with

the following regret guarantee w.r.t. rt:

1. For setting 1a,

Regret
AC
T

def

= max
C2C

TX

t=1

rt(C)�
TX

t=1

rt(Ct)  O(↵
p

log(mn)T ) = Õ(↵
p

T ).

2. For setting 1b,

Regret
AC
T

def

= max
C2C

TX

t=1

rt(C)�
TX

t=1

rt(Ct)  O(↵
p

(m+ n)T ).

Theorem 20 (adapted from Hazan et al. [2012b]). Denote at every time step t, consider the concave

reward function �t(M)
def

= G(Ct,M)� ✓ft(M). There exists a sub-routine gradient-based update

AM (see Alg. 5 for an example) such that, under either setting 1a or 1b, the following regret guarantee

w.r.t. �t holds:

Regret
AM
T

def

= max
M2Mmax

K ⇥Mmax
K

TX

t=1

�t(M)�
TX

t=1

�t(Mt)  O(K✓
p
(m+ n)T ).

B.6 Offline implications

In this section we show that how the regret guarantee we obtained in the online setting translates to an
offline performance guarantee on C. The offline implications hold under the following assumptions
of the revealed entries:
Assumption 1. At each time step t, the index xt = (it, jt) is sampled according to some unknown

sampling distribution µ, and the observation ot = M?(it, jt), where M?
2M

max
K is the ground

truth matrix.

Consider the following empirical and general version spaces:

VT,�
def
=

(
M 2M

max
K |

1

T

TX

t=1

(Mxt � ot)
2
 �

)
,

V�
def
=

⇢
M 2M

max
K | E

(x,o)⇠D
[(Mx � o)2]  �

�
.

Lemma 21. After T iterations, and assume that for some � > 0,

1

✓

 
2D +

Regret
AM
T

T

!


�2/3

2
,

with D = 1 in setting 1a, and D =
p
m+ n in setting 1b. The following properties hold on the

obtained C̄
def

= 1
T

PT
t=1 Ct returned by Algorithm 3: with probability � 1� exp

⇣
�

�4/3T
512

⌘
,

H(C̄)� max
M2V2

T,�

↵ ·G(C̄,M) � max
C2C

min
M2V2

�2/3

{H(C)� ↵ ·G(C,M)}� 2↵✓� �
BT

T
.

Lemma 21 implies the following guarantee.
Theorem 22. Suppose the underlying sampling distribution is µ. Let Cµ 2 C be its corresponding

confidence matrix. In particular, for setting 1a, Cµ = µ, i.e. (Cµ)ij = Pµ((i, j) is sampled);
for setting 1b, Cµ satisfies that Cµ/kCµk1 = µ. Then, for any � > 0, Algorithm 3 run with

↵ = O(��1/6) returns a C̄ that guarantees the following bounds: with probability at least 1 �
c1 exp(�c2�2T ) for some universal constants c1, c2 > 0,

1. For setting 1a, take ✓ = O(��2/3), after T = Õ(��2K2(m+ n)) iterations,
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(a) H(C̄) � H(Cµ)�O(�1/6).

(b) max
M1,M22V�

G(C̄,M1,M2)  O(�1/6 log(mn)).

2. For setting 1b, take ✓ = O(��2/3
p
m+ n), after T = Õ(��2K2(m+ n)) iterations,

(a) kC̄k1 � kCµk1 �O(�1/6
p
m+ n).

(b) max
M1,M22V�

G(C̄,M1,M2)  O(�1/4
p
m+ n).

Remark 23. We explain the implication of the above theorem. Suppose the sampling distribution
is supported uniformly across a constant fraction 0 < c  1 of the entire matrix. This implies that
(1) the obtained confidence matrix C̄ has a coverage lower bounded by 1� �1/6 fraction of the true
distribution, and (2) C̄ induces a weighted maximal distance on the version space V�:

max
M1,M22V�

8
<

:
1

kC̄k1

X

i2[m],j2[n]

C̄ij(M
1
ij �M2

ij)
2

9
=

;  O(�1/6).

Also see Corollary 4 for this example.
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C Supporting Proofs for Appendix B

C.1 Linear Relaxation

This section follows similarly to that of Proposition 16.
Theorem 24. Consider the following two functions defined on C:

g̃(C)
def

= sup
M2V0

X

x2X
CxM

2
x , g(C)

def

= sup
M2V0

X

x2X
CxMx.

Assume that V0 = M
max
K \ S, where S is a constraint set that contains 0 that is closed under the

operation of negating any subset of entries. Then g(·) is non-negative and 8C 2 C, there holds

g̃(C) 
⇡K

2
g(C).

Proof. That g(·) is non-negative follows from the assumption that 0 2 V0. It suffices to show the

inequality for C = �X , since 8C 2
h
0, 1

(m+n)3/2

iX
, we can consider C 0 = C

kCk1
2 �X , and

g̃(C 0)  ⇡K
2 g(C 0) implies g̃(C)  ⇡K

2 g(C).
By compactness of V0, 9M 2 V0 such that the value of g̃(C) is achieved. Moreover, since C = �X ,
C defines a probability distribution on X . Then, it suffices to show that 9M̃ 2 V0 such that

X

x2X
CxM

2
x = EC [M

2
x ] 

⇡K

2
EC [M̃x] 

⇡K

2

X

x2X
CxM̃x.

We start the construction of M̃ . By assumption that V ✓ M
max
K , 9U 2 Rm⇥d, V 2 Rn⇥d,

d = rank(M) such that M = UV T and kUk2,1kV k2,1  K. Denote as ui, vj the i-th and j-th row
of U, V , respectively. Let Sd denote the unit sphere in Rd. Draw a random vector w ⇠ Sd uniformly
at random and consider its inner product with each of the ui, vj’s. Define Ũ 2 Rm⇥d, Ṽ 2 Rn⇥d in
the following way: with ũi, ṽj being the i-th and j-th row of Ũ , Ṽ ,

ũi
def
= sign(wTui)ui, ṽj

def
= sign(wT vj)vj .

Note that kŨk2,1 = kUk2,1, kṼ k2,1 = kV k2,1. Therefore, together with the assumption that S
is closed under negation over any subset of entries, M̃ def

= Ũ Ṽ T
2 V0.

Consider the hyperplane parametrized by w, Pw
def
= {x 2 Rd

| wTx = 0}, then

P(sign(uT
i vj) 6= sign(ũT

i ṽj)) = P(sign(wTui) 6= sign(wT vj))

= P(ui, vj are separated by Pw) =
arccos

⇣
uT
i vj

kuik2kvjk2

⌘

⇡
.

Taking expectation over the distribution of the random vector w,

Ew[ũi
T ṽj ] = uT

i vj

0

@1�
2 arccos

⇣
uT
i vj

kuik2kvjk2

⌘

⇡

1

A � 2(uT
i vj)

2

⇡kuik2kvjk2
�

2(uT
i vj)

2

⇡k
() Ew[M̃ij ] �

2M2
ij

⇡k
.

Taking expectation over distribution C and applying Fubini’s Theorem,

EC [M
2
x ] 

⇡K

2
EwEC [M̃x],

which implies that there exists an instance of M̃ 2 V0 such that
X

x2X
CxM

2
x 

⇡K

2

X

x2X
CxM̃x.
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Corollary 25. The following inequality holds:

sup
M1,M22V

X

x2X
Cx(M

1
x �M2

x)
2
 ⇡K sup

M1,M22V

X

x2X
Cx(M

1
x �M2

x),

for max-norm constrained, symmetric version space V around a given matrix.

Proof. By transformation to a version space V0 centered around the zero matrix, if M1,M2
2 V ,

then M
def
= M1�M2

2 2 V0, where V0 = M
max
K \ S and S is a constraint set that is closed under

negation under any subset of entries. The result is subsumed by Theorem 24.

C.2 Proof of regret guarantees

C.2.1 Proof of Theorem 19

Theorem 19. Denote at every time step t, consider the concave reward function rt(C)
def
= H(C)�

↵G(C,Mt). There exists sub-routine gradient-based update AC (see Alg. 4 for an example) with the
following regret guarantee w.r.t. rt:

1. For setting 1a,

RegretAC
T

def
= max

C2C

TX

t=1

rt(C)�
TX

t=1

rt(Ct)  O(↵
p
log(mn)T ) = Õ(↵

p

T ).

2. For setting 1b,

RegretAC
T

def
= max

C2C

TX

t=1

rt(C)�
TX

t=1

rt(Ct)  O(↵
p
(m+ n)T ).

Proof of Theorem 19. We divide the proof into two parts, corresponding to two different choices of
H(·) and the corresponding C. Both use online mirror descent (OMD) step as updates. The analysis
for the entropy case is slightly more involved due to the gradient behavior at the boundary. We will
begin with outlining the algorithm:

Definition 26 (Bregman divergence). Let R : ⌦ ! R be a continuously-differentiable, strictly
convex function defined on a convex set ⌦. The Bregman divergence associated with R for p, q 2 ⌦
is defined by

BR(p, q) = R(p)�R(q)� hrR(q), p� qi.

In particular, Bregman divergence measures the difference between R(p) and the first-order Taylor
expansion of R(p) around q.

Algorithm 4 AC

1: Input: previous Ct, completions Mt = (M1
t ,M

2
t ).

2: Require: step-size ⌘, regularization function R.
3: if input is empty then
4: Set (Ĉt+1)x = e�1, 8x 2 X in setting 1a; set Ĉt+1 = 0X in setting 1b.
5: else
6: Update Ĉt+1 via rR(vec(Ĉt+1)) = rR(vec(Ct)) + ⌘rrt(vec(Ct)).
7: end if
8: Obtain Ct+1 via Bregman projection: Ct+1 = argmin

C2C0
BR(vec(C),vec(Ĉt+1)).

9: Output Ct+1.

C
0 is taken to be

1. For setting 1a, C0 = ��
X

def
= {C 2 �X : minx2X Cx � e1��

}.
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2. For setting 1b, C0 = C =
h
0, 1

(m+n)3/2

iX
, and

The square root diameter DR of R(·) over vec(C0) is given by

DR
def
=
r

max
X,Y 2C0

{R(vec(X))�R(vec(Y ))}.

`1-norm and cube. In setting 1b, take R : vec(C0) ⇢ Rmn
! R given by R(x) = 1

2kxk
2
2. Then

DR 
1

2
p
m+n

. The regret guarantee for online mirror descent also depends on the bound on local
norms of the gradients. In particular, the local norm at time t is a function mapping from Rmn to
R++ given by

kxk⇤t =
q

x>r2R(C̃)x,

where C̃ is some convex combination of Ct and Ct+1 satisfying

R(vec(Ct)) = R(vec(Ct+1)) +rR(vec(Ct+1))
>vec(Ct � Ct+1)

+
1

2
vec(Ct � Ct+1)

>
r
2R(vec(C̃))vec(Ct � Ct+1).

Note that 8x 2 vec(C0), r2R(x) = Imn, and thus

G2
R

def
= kvec(rrt(Ct))k

⇤
t
2 = kvec(rrt(Ct))k

2
2  (1 + 2↵)2mn,

where inequality follows from that (rrt(C))x = 1� ↵(M1
x �M2

x)  1 + 2↵.
By standard Online Mirror Descent (OMD) analysis using the diameter and gradient bounds, by
taking ⌘ = DR

GR

p
T

, we have the regret bound of rt’s over the cube:

max
C2C0

TX

t=1

rt(C)�
TX

t=1

rt(Ct)  DRGR

p

T = O(↵
p

(m+ n)T ).

Entropy and simplex. In this setting, take R(vec(X)) = �H(X), the negative entropy function,
D2

R = log(mn). The proof will be divided into two parts: (1) we first show low regret of AC w.r.t.
��

X , then (2) we show that the best C in ��
X exhibits approximately the same performance as the

best C in �X .

Let � def
= � + 2↵. For any C 2 ��

X , the gradient of the reward function is bounded by:
kvec(rrt(C))k1  krH(C)k1 + ↵krCG(C,Mt)k1 �-inequality

= max
x2X

|� 1� logCx|+ ↵ ·max
x2X

|(M1
t �M2

t )x| definition of k · k1, H , G

 1 + log(e��1) + 2↵ C 2 ��
X , M1

t ,M
2
t 2M

max
K

 �.

Thus, for some convex combination C̃ of Ct and Ct+1,

G2
R = kvec(rrt(Ct))k

⇤
t
2 =

X

x2X
C̃x(rrt(Ct))

2
x  kvec(rrt(Ct))k

2
1kC̃k1  �2,

where the last last inequality follows from kvec(rrt(C))k1  � and kC̃k1 = 1.
By standard Online Mirror Descent (OMD) analysis using the diameter and gradient bounds, we have
the regret bound of rt’s over the constrained unit simplex ��

X as the following:

max
C2��

X

TX

t=1

rt(C)�
TX

t=1

rt(Ct)  DRGR

p

T = O(↵
p

log(mn)T ) = Õ(↵
p

T ),

when taking ⌘ = DR

GR

p
T

.

With the regret bound established w.r.t. ��
X , it is left to show the following inequality, which justifies

constraining the feasible set to ��
X :
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Lemma 27. The following inequality holds for � = 2 log(mn) assuming T = Õ(m+ n):

max
C2�X

TX

t=1

rt(C)� max
C2��

X

TX

t=1

rt(C)  Õ

✓
↵

min{m,n}

◆
.

Proof of Lemma 27. Recall � fixes an upper-bound on the gradient of the entropy of C. This is
equivalent to fixing a lower-bound � on the entries of C, where �

def
= e1�� = e(mn)�2. We define

C⇤ as follows:

C⇤ def
= argmax

C2�X

TX

t=1

rt(C).

Denote the set of indices where C⇤ is less than � as follows: S�
def
= {x 2 X | C⇤

x < �}. Enumerate
S� as {(ik, jk)}

|S�|
k=1.

Note that 8(ik, jk) 2 S�, 9(i0k, j
0
k) 2 X such that C⇤

i0k,j
0
k
� � � � � C⇤

ik,jk . Otherwise, we have by
choice of �,

kC⇤
k1 < mn(2� � C⇤

ik,jk)  2�mn < 1.

We construct the matrix C initialized as C = C⇤. Next, for each k 2 [1, |S�|] we iteratively change
two entries in C as follows for all k:

1. Cik,jk = �,

2. Ci0k,j
0
k
= C⇤

i0k,j
0
k
� (� � C⇤

ik,jk).

For each such operation,

H(C)�H(C⇤) =

 
Cik,jk log

✓
1

Cik,jk

◆
+ Ci0k,j

0
k
log

 
1

Ci0k,j
0
k

!!

�

 
C⇤

ik,jk log

 
1

C⇤
ik,jk

!
+ C⇤

i0k,j
0
k
log

 
1

C⇤
i0k,j

0
k

!!
.

Note that Cik,jk +Ci0k,j
0
k
= C⇤

ik,jk +C⇤
i0k,j

0
k
� 2�, and C⇤

ik,jk < �. Thus, H(C)�H(C⇤) � 0 holds
for each operation. C constructed by this enumeration satisfies H(C) � H(C⇤). On the other hand,
G is Lipschitz. In particular, let M̄1 = 1

T

PT
t=1 M

1
t , M̄2 = 1

T

PT
t=1 M

2
t , then

TX

t=1

G(C,M1
t ,M

2
t )�

TX

t=1

G(C⇤,M1
t ,M

2
t ) = ↵T

X

i,j

(Cij � C⇤
ij)(M̄

1
ij � M̄2

ij) linearity of G

 2↵TkC � C⇤
k1 M̄1, M̄2

2 [�1, 1]X

 4mn�↵T kC � C⇤
k1  �

=
4e↵T

mn
. � =

e

(mn)2

Under the assumption that T � Õ(m+ n), we conclude that

max
C2�X

TX

t=1

rt(C)� max
C2��

X

TX

t=1

rt(C)  Õ

✓
↵

min{m,n}

◆
.

By taking � = O(log(mn)) and assuming T = Õ(m+ n), we can conclude that

RegretAC
T

def
= max

C2�X

TX

t=1

rt(C)�
TX

t=1

rt(Ct)  O(↵
p

log(mn)T ) = Õ(↵
p

T ).
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C.2.2 Proof of Theorem 20

Theorem 20. Denote at every time step t, consider the concave reward function �t(M)
def
=

G(Ct,M)�✓ft(M). There exists sub-routine gradient-based update AM (see Alg. 5 for an example)
such that, under either setting 1a or 1b, the following regret guarantee w.r.t. �t holds:

RegretAM
T

def
= max

M2Mmax
K ⇥Mmax

K

TX

t=1

�t(M)�
TX

t=1

�t(Mt)  O(K✓
p

(m+ n)T ).

Proof of Theorem 20. We will begin by outlining the update algorithm AM , then introduce the key
definitions used in AM , and proceed to prove Theorem 20. We note that this algorithm is modified
from the matrix multiplicative weights for online matrix prediction (Algorithm 2) in Hazan et al.
[2012b].

Algorithm 5 AM

1: Input: Ct,Mt = (M1
t ,M

2
t ) 2M

max
K , (it, jt, ot).

2: if input is empty then
3: Output: ��1

�
K
2 I
�
.

4: end if
5: Compute Xt = �(M1

t ,M
2
t ) with �(;) = K

2 I .
6: Create matrix Lt(�t) according to Definition 29.

7: Update: with step size ⌘ = 1
2(1+8✓)

q
(m+n) log(2p)

T , project w.r.t. matrix relative entropy:

Xt+1 = argmin
X2KX

�(X, exp(log(Xt) + ⌘Lt(�t))).

8: Output: Mt+1 = (M1
t+1,M

2
t+1) = ��1(Xt+1).

KX is given by

KX
def
= {X 2 Sym(2p) : X ⌫ 0, Tr(X)  2K(m+ n), Xii  K, X[: p, : p]�X[p :, p :] 2 [�1, 1]p⇥p

}.

The operator � is given as the following:

Lemma 28. 8M1,M2
2M

max
K , M =


M1 0
0 M2

�
is (K, 2K(m+ n))-decomposable.

Denote p
def
= 2(m+ n). (�, ⌧)-decomposability allows for two matrices in M

max
K to be embedded in

Sym(2p):
�(·, ·) : Mmax

K ⇥M
max
K ! Sym(2p) is the embedding operator given by

�(M)
def
= �(M1,M2)

def
=


P 0
0 N

�
,

where P,N are the PSD matrices given by the (�, ⌧)-decomposition.
The descent matrix Lt(�t), which we shorthand denote as Lt, is constructed as the following:

Definition 29 (Descent matrix). At time t, we define the matrix Lt 2 Sym(2p) as Lt
def
= LG

t + LF
t ,

where LG
t is symmetric and

8
>>>>><

>>>>>:

LG
t [1 : m, 2m+ 1 : 2m+ n] = Ct

LG
t [p+m+ 1 : p+ 2m, p+ 2m+ n+ 1 : 2p] = Ct

LG
t [m+ 1 : 2m, 2m+ n+ 1 : p] = �Ct

LG
t [p+ 1 : p+m, p+ 2m+ 1 : p+ 2m+ n] = �Ct

LG
t [i, j] = 0 if otherwise and j � i
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LF
t is symmetric and
8
<

:

LF
t [it, 2m+ jt] = �2✓((M1

t )it,jt � ot), LF
t [m+ it, 2m+ n+ jt] = �2✓((M2

t )it,jt � ot)
LF
t [p+ it, p+ 2m+ jt] = 2✓((M1

t )it,jt � ot), LF
t [p+m+ it, p+ 2m+ n+ jt] = 2✓((M2

t )it,jt � ot)
LF
t [i, j] = 0 if otherwise and j � i

Note that by construction (LG
t )

2, (LF
t )

2 are diagonal matrices, and Tr(L2
t )  O(✓2).

The rest of the proof follows from Section 3.2 in [Hazan et al., 2012b].

C.3 Proof of offline implications

C.3.1 Proof of Lemma 21

Lemma 21. After T iterations, and assume that for some � > 0,

1

✓

 
2D +

RegretAM
T

T

!


�2/3

2
,

with D = 1 in setting 1a, and D =
p
m+ n in setting 1b. The following properties hold on the

obtained C̄
def
= 1

T

PT
t=1 Ct returned by Algorithm 3: with probability � 1� exp

⇣
�

�4/3T
512

⌘
,

H(C̄)� max
M2V2

T,�

↵ ·G(C̄,M) � max
C2C

min
M2V2

�2/3

{H(C)� ↵ ·G(C,M)}� 2↵✓� �
BT

T
.

Proof of Lemma 21. For notation convenience, denote

C?,M1
? ,M

2
? = argmax

C2C
argmin

(M1,M2)2V2

�2/3

H(C)� ↵G(C,M1,M2).

Consider the subroutine AM . Under the assumption, AM is a low-regret OCO algorithm for
�t’s. In particular, under the realizable assumption, since there exist M = (M1,M2) such that
ft(M) = �t(M) = 0, 8t, we have that for the sequence of Mt’s output by the algorithm,

1

T

TX

t=1

ft(Mt) =
1

T✓

TX

t=1

(G(Ct,Mt)� �t(Mt)) 
1

✓

 
2D +

RegretAM
T

T

!


�2/3

2
.

Note that 8M 2M
max
K , M can be seen as a function mapping from X to [�1, 1]. Denote f(M)

def
=

E(x,o)⇠D[(M
1
x � o)2 + (M2

x � o)2]. Define Zt = f(Mt)� ft(Mt), Xt =
Pt

i=1 Zi, then we have
with Ft denoting the filtration generated by the algorithm’s randomness up to iteration t, and since
Mt 2 Ft�1,

E[Zt | Ft�1] = 0, E[Xt | Ft�1] = Xt�1,

and |Xt �Xt�1| = |Zt|  8. By Azuma’s inequality, we have 8" > 0,

P

0

@ 1

T

TX

t=1

f(Mt)� ft(Mt) >

s
128 log

�
1
"

�

T

1

A = P

0

@ 1

T

TX

t=1

Xt >

s
128 log

�
1
"

�

T

1

A  ".

We can conclude that with probability at least 1� exp
⇣
�

�4/3T
512

⌘
,

f(M̄) 
1

T

TX

t=1

f(Mt) 
1

T

TX

t=1

ft(Mt) +
�2/3

2


�2/3

2
+

�2/3

2
= �

2
3 ,
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in which case M̄1, M̄2
2 V�2/3 . We have thus with probability at least 1� exp

⇣
�

�4/3T
512

⌘
,

H(C?)� ↵G(C?,M1
? ,M

2
? )

 H(C?)� ↵G(C?, M̄1, M̄2) (M1
? ,M

2
? ) are optimal w.r.t. C? in V�

=
1

T

TX

t=1

rt(C
?) linearity of G, definition of rt


1

T

TX

t=1

rt(Ct) +
RegretAC

T

T
AC regret guarantee

 H(C̄)�
↵

T

TX

t=1

G(Ct,M
1
t ,M

2
t ) +

RegretAC
T

T
concavity of H(·) on C

 H(C̄)�
↵

T

TX

t=1

�t(M
1
t ,M

2
t ) +

RegretAC
T

T
ft � 0

 H(C̄)�
↵

T

TX

t=1

�t(M̂
1, M̂2) +

BT

T
8(M̂1, M̂2) 2M

max
K

2 by AM regret guarantee

 H(C̄)� max
(M1,M2)2V2

T,�

↵ ·G(C̄,M1,M2) + 2↵✓� +
BT

T
definition of VT,�

C.3.2 Proof of Theorem 22

Theorem 22. Suppose the underlying sampling distribution is µ. Let Cµ 2 C be its corresponding
confidence matrix. In particular, for setting 1a, Cµ = µ, i.e. (Cµ)ij = Pµ((i, j) is sampled);
for setting 1b, Cµ satisfies that Cµ/kCµk1 = µ. Then, for any � > 0, Algorithm 3 run with
↵ = ��1/6 returns a C̄ that guarantees the following bounds: with probability � 1� exp

⇣
�

�2T
128

⌘
�

exp
⇣
�

�4/3T
512

⌘
,

1. For setting 1a, take ✓ = 4��2/3, after T = Õ(��2K2(m+ n)) iterations,

(a) H(C̄) � H(Cµ)�O(�1/6).
(b) max

M1,M22V �
2

G(C̄,M1,M2)  O(�1/6 log(mn)).

2. For setting 1b, take ✓ = 4��2/3
p
m+ n, after T = Õ(��2K2(m+ n)) iterations,

(a) kC̄k1 � kCµk1 �O(�1/6
p
m+ n).

(b) max
M1,M22V �

2

G(C̄,M1,M2)  O(�1/6
p
m+ n).

Proof of Theorem 22. First, note that 8i, j, o, we have by assumption (Mij � o)2 2 [0, 4], 8M 2

M
max
K . Therefore, by subgaussian concentration, 8c � 1,

P
 

1

T

TX

t=1

(Mit,jt � ot)
2
� Ei,j [(Mij � o)2] �

�

2

!
 exp

✓
�
�2T

128

◆
.

Therefore, with probability at least 1� exp
⇣
�

�2T
128

⌘
, we have

V �
2
✓ VT,�.
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Therefore, it suffices to show the inequality in (b) for the maximum over VT,� . Let

C?,M1
? ,M

2
? = argmax

C2C
argmin

(M1,M2)2V2

�2/3

H(C)� ↵G(C,M1,M2)

= argmax
C2C

argmin
(M1,M2)2V2

�2/3

H(C)� ��1/6G(C,M1,M2).

Choose T such that BT
T  ↵✓�. Note that in both settings, the choice of ✓ and T satisfies the

assumption in Theorem 21.

Simplex and entropy. We can bound G(Cµ,M1
? ,M

2
? ) by

G(Cµ,M
1
? ,M

2
? ) = Ex⇠µ[(M

1
? )x � (M2

? )x]

=
q
(E(x,o)⇠D[(M1

? )x � ox]� E(x,o)⇠D[(M2
? )x � ox])2



q
2(E(x,o)⇠D[(M1

? )x � ox]2 + E(x,o)⇠D[(M2
? )x � ox]2) (a� b)2  2(a2 + b2)



q
2(E(x,o)⇠D[((M1

? )x � ox)2] + E(x,o)⇠D[((M2
? )x � ox)2]) Jensen’s

 2�1/3 M1
? ,M

2
? 2 V�2/3

Theorem 21 implies that with probability � 1� exp
⇣
�

�4/3T
512

⌘
,

H(C̄)� max
M1,M22VT,�

��1/6G(C̄,M1,M2) � H(Cµ)� ↵G(Cµ,M
1
? ,M

2
? )� 2↵✓� �

BT

T

� H(Cµ)� 12�1/6,

Note that by definition max
M1,M22VT,�

G(C̄,M1,M2) � 0, and thus

H(C̄) � H(Cµ)� 12�1/6.

Since H(·) is bounded by [0, log(mn)] over C, then

max
M1,M22VT,�

G(C̄,M1,M2)  �1/6
�
H(C̄)�H(Cµ)

�
+ 12�1/3

 �1/6 log(mn) + 12�1/3

 O(�1/6 log(mn)).

Cube and `1 norm. We can bound G(Cµ,M1
? ,M

2
? ) by

G(Cµ,M
1
? ,M

2
? ) 

p
m+ nEx⇠µ

⇥
(M1

? )x � (M2
? )x
⇤
 2�1/3

p
m+ n.

Theorem 21 implies that

H(C̄)� max
M1,M22VT,�

��1/6G(C̄,M1,M2) � H(Cµ)� 12�1/6
p
m+ n.

Thus, similar as before, we get

H(C̄) � H(Cµ)� 12�1/6
p
m+ n,

and

max
M1,M22VT,�

G(C̄,M1,M2)  �1/6
�
H(C̄)�H(Cµ)

�
+ 12�1/3

p
m+ n

 O(�1/6
p
m+ n).
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D Implementation Details

With the theoretical guarantee established above, we implemented a simple version of ODD in
Section 6 and experimented with both simulated toy datasets and real-world datasets including the
well-known MovieLens dataset. In particular, the simplification of ODD we implemented is given by
the following algorithm:

Algorithm 6 Simplified ODD
1: Input: initial (uniform) distribution C1, matrix M 2 K, parameters ⌘ > 0, ↵ > 0, matrix

prediction update function matrix-predict(·). R(·) = �H(·).
2: for t = 1, 2, ..., T do
3: Adversary draws tuple xt = (it, jt), reveals Mxt .
4: Update Mt+1 = matrix-predict(Ct,Mt).
5: Consider reward r̃t(C)

def
= ↵H(C)� hC,Mti.

6: Update rR(Ĉt+1) rR(Ct) + ⌘rr̃t(Ct).
7: Project Ct+1 = argmin

C2�X

kC � Ĉt+1kfr.

8: end for
9: return: C̄ def

= 1
T

PT
t=1 Ct.

This algorithm is an instantiation of our online algorithm ODD (Algorithm 3), using mirror
descent for updating the confidence matrix, and an arbitrary matrix completion method called
matrix-predict.
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E Definitions

Matrix logarithm. Given the matrix X 2 Sym(n), X ⌫ 0, X admits a diagonalization X =
V ⌃V T , where ⌃ can be written as follows:

⌃
def
=

2

64

⌃11 0 ... 0
0 ⌃22 ... 0
... ... ... ...
0 0 ... ⌃nn

3

75 .

The logarithm of X is given by:

log(X)
def
= V

2

64

log(⌃11) 0 ... 0
0 log(⌃22) ... 0
... ... ... ...
0 0 ... log(⌃nn)

3

75V T .

Matrix logarithm satisfies the following properties for X,Y 2 Sym(n), X, Y � 0:

1. Tr(log(XY )) = Tr(log(X)) + Tr(log(Y )).
2. If XY = Y X , then log(XY ) = log(X) + log(Y ).
3. log(cI) = (log c)I , 8c > 0.

Matrix relative entropy. Given matrices X,Y 2 Sym(n), X, Y ⌫ 0, their relative entropy is
given by

�(X,Y )
def
= Tr(X log(X)�X log(Y )�X + Y ).

(�, ⌧ )-decomposability. M 2 Rm⇥n is (�, ⌧)-decomposable if 9P,N 2 Sym(m+ n), P,N ⌫ 0:

P �N =


0 M

MT 0

�
, Tr(P ) + Tr(N)  ⌧, max

i
Pii,max

i
Nii  �.

34


