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Abstract

We introduce beta diffusion, a novel generative modeling method that integrates
demasking and denoising to generate data within bounded ranges. Using scaled
and shifted beta distributions, beta diffusion utilizes multiplicative transitions over
time to create both forward and reverse diffusion processes, maintaining beta
distributions in both the forward marginals and the reverse conditionals, given the
data at any point in time. Unlike traditional diffusion-based generative models
relying on additive Gaussian noise and reweighted evidence lower bounds (ELBOs),
beta diffusion is multiplicative and optimized with KL-divergence upper bounds
(KLUBs) derived from the convexity of the KL divergence. We demonstrate that
the proposed KLUBs are more effective for optimizing beta diffusion compared
to negative ELBOs, which can also be derived as the KLUBs of the same KL
divergence with its two arguments swapped. The loss function of beta diffusion,
expressed in terms of Bregman divergence, further supports the efficacy of KLUBs
for optimization. Experimental results on both synthetic data and natural images
demonstrate the unique capabilities of beta diffusion in generative modeling of
range-bounded data and validate the effectiveness of KLUBs in optimizing diffusion
models, thereby making them valuable additions to the family of diffusion-based
generative models and the optimization techniques used to train them.

1 Introduction

Diffusion-based deep generative models have been gaining traction recently. One representative
example is Gaussian diffusion [57, 59, 23, 60, 35] that uses a Gaussian Markov chain to gradually
diffuse images into Gaussian noise for training. The learned reverse diffusion process, defined
by a Gaussian Markov chain in reverse order, iteratively refines noisy inputs towards clean photo-
realistic images. Gaussian diffusion can also be viewed from the lens of denoising score matching
[28, 64, 59, 60] and stochastic differential equations [61]. They have shown remarkable success
across a wide range of tasks, including but not limited to generating, restoring, and editing images [14,
24, 50, 53, 54, 70, 67], transforming 2D to 3D [49, 1], synthesizing audio [9, 37, 73], reinforcement
learning [31, 66, 48], quantifying uncertainty [19], and designing drugs and proteins [56, 44, 32].

Constructing a diffusion-based generative model often follows a general recipe [57, 23, 35, 34]. The
recipe involves three basic steps: First, defining a forward diffusion process that introduces noise into
the data and corrupts it with decreasing signal-to-noise ratio (SNR) as time progresses from 0 to 1.
Second, defining a reverse diffusion process that denoises the corrupted data as time reverses from 1
to 0. Third, discretizing the time interval from 0 to 1 into a finite number of intervals, and viewing
the discretized forward and reverse processes as a fixed inference network and a learnable generator,
respectively. Auto-encoding variational inference [36, 51] is then applied to optimize the parameters
of the generator by minimizing a weighted negative ELBO that includes a Kullback–Leibler (KL)
divergence-based loss term for each discretized reverse step.
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Figure 1: Illustration of the beta forward diffusion process for two example images. The first column displays
the original images, while the other 21 columns display the images noised and masked by beta diffusion at time
t = 0, 0.05, . . . , 1, using η = 10000 and the sigmoid diffusion schedule with c0 = 10 and c1 = −13.

Figure 2: Illustration of reverse beta diffusion for two example generations. The time t decreases from 1 to 0
when moving from left to right. In each image generation, the top row shows the trajectory of zt (rescaled for
visualization), which has been demasked and denoised using reverse diffusion, whereas the bottom row shows
x̂0 = fθ(zt, t), whose theoretical optimal solution is equal to E[x0 | zt]. See Appendix D for more details.

Although the general diffusion-modeling recipe is simple in concept, it requires access to the corrupted
data at any time during the forward diffusion process given a data observation, as well as the analytic
form of the conditional posterior for any earlier time given both a data observation and its corrupted
version at the present time. The latter requirement, according to Bayes’ rule, implies access to the
analytical form of the distribution of a corrupted data observation at the present time given its value at
any previous time. Linear operations of the Gaussian distributions naturally satisfy these requirements
since they are conjugate to themselves with respect to their mean parameters. This means that the
marginal form and the conditional distribution of the mean remain Gaussian when two Gaussian
distributions are mixed. Similarly, the requirements can be met under the categorical distribution
[26, 2, 18, 27] and Poisson distribution [10]. However, few additional distributions are known to meet
these requirements and it remains uncertain whether negative ELBO would be the preferred loss.

While previous works have primarily used Gaussian, categorical, or Poisson distribution-based diffu-
sion processes, this paper introduces beta diffusion as a novel addition to the family of diffusion-based
generative models. Beta diffusion is specifically designed to generate data within bounded ranges.
Its forward diffusion process is defined by the application of beta distributions in a multiplicative
manner, whereas its reverse diffusion process is characterized by the use of scaled and shifted beta
distributions. Notably, the distribution at any point in time of the forward diffusion given a data
observation remains a beta distribution. We illustrate the forward beta diffusion process in Figure 1,
which simultaneously adds noise to and masks the data, and the reverse one in Figure 2, which
iteratively performs demasking and denoising for data generation. We provide the details on how
these images are obtained in Appendix D.

Since the KL divergence between two beta distributions is analytic, one can follow the general
recipe to define a negative ELBO to optimize beta diffusion. However, our experiments show that
minimizing the negative ELBO of beta diffusion can fail to optimally estimate the parameters of the
reverse diffusion process. For each individual time-dependent KL loss term of the negative ELBO,
examining it in terms of Bregman divergence [4] reveals that the model parameters and corrupted data
are placed in its first and second arguments, respectively. However, to ensure that the optimal solution
under the Bregman divergence agrees with the expectation of the clean data given the corrupted data,
the order of the two arguments must be swapped.

By swapping the Bregman divergence’s two arguments, we obtain an upper bound on the KL
divergence from the joint distribution of corrupted observations in the reverse chain to that in the
forward chain. This bound arises from the convexity of the KL divergence. In addition, there exists
another Bregman divergence that upper bounds the KL divergence from the univariate marginal
of a corrupted observation in the reverse chain to that in the forward chain. These two Bregman
divergences, which can be derived either through KL divergence upper bounds (KLUBs) or the
logarithmically convex beta function, share the same optimal solution but have distinct roles in
targeting reverse accuracy at each step or counteracting accumulation errors over the course of reverse
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diffusion. We further demonstrate that combining these two KLUBs presents a computationally
viable substitution for a KLUB derived at the chain level, which upper bounds the KL divergence
from the joint distribution of all latent variables in a forward diffusion chain to that of its reverse.
Either KLUB works on its own, which is not unexpected as they both share the same optimal solutions
in theory, but combining them could lead to the best overall performance. In beta diffusion, the KL
divergence is asymmetric, which enables us to derive an alternative set of KLUBs by swapping its
two arguments. We will demonstrate that these augment-swapped KLUBs, which will be referred to
as AS-KLUBs, essentially reduce to negative ELBOs. In Gaussian diffusion, the KL divergence is
often made symmetric, resulting in KLUBs that are equivalent to (weighted) negative ELBOs.

Our main contributions are the introduction of beta diffusion as a novel diffusion-based multiplicative
generative model for range-bounded data, as well as the proposal of KLUBs as effective loss objectives
for optimizing diffusion models, in place of (weighted) negative ELBOs. Additionally, we introduce
the log-beta divergence, a Bregman divergence corresponding to the differentiable and strictly convex
log-beta function, as a useful tool for analyzing KLUBs. These contributions enhance the existing
family of diffusion-based generative models and provide a new perspective on optimizing them.

2 Beta Diffusion and Optimization via KLUBs

We begin by specifying the general requirements for constructing a diffusion-based generative model
and establish the notation accordingly [57, 23, 35]. Let x0 denote the observed data, and let zs and
zt represent their corrupted versions at time s and time t, respectively, where 0 < s < t < 1. In
the forward diffusion process, we require access to random samples from the marginal distribution
q(zt |x0) at any time t, as well as an analytical expression of the probability density function (PDF)
of the conditional distribution q(zs | zt, x0) for any s < t.

The forward beta diffusion chain uses diffusion scheduling parameters αt to control the decay of
its expected value over the course of forward diffusion, given by E[zt |x0] = αtx0, and a positive
concentration parameter η to control the tightness of the diffusion process around its expected value.
We typically set αt to approach 1 and 0 as t approaches 0 and 1, respectively, and satisfy the condition

1 ≥ α0 > αs > αt > α1 ≥ 0 for all s ∈ (0, t), t ∈ (0, 1).

Let Γ(·) denote the gamma function and B(·, ·) denote the beta function. The beta distribution
Beta(x; a, b) = B(a, b)−1xa−1(1− x)b−1 is a member of the exponential family [6, 65, 7]. Its log
partition function is a log-beta function as lnB(a, b) = lnΓ(a) + lnΓ(b) − ln Γ(a + b), which is
differentiable, and strictly convex on (0,∞)2 as a function of two variables [15]. As a result, the KL
divergence between two beta distributions can be expressed as the Bregman divergence associated
with the log-beta function. Specifically, as in Appendix A, one can show by their definitions that

KL(Beta(αp, βp)||Beta(αq, βq)) = ln
B(αq, βq)

B(αp, βp)
− (αq − αp, βq − βp)

(
∇α lnB(αp, βp)
∇β lnB(αp, βp)

)
= DlnB(a,b)((αq, βq), (αp, βp)). (1)

We refer to the above Bregman divergence as the log-beta divergence. Moreover, if (αq, βq) are
random variables, applying Proposition 1 of Banerjee et al. [4], we can conclude that the optimal
value of (αp, βp) that minimizes this log-beta divergence is (α∗p, β

∗
p) = E[(αq, βq)].

Next, we introduce a conditional bivariate beta distribution, which given a data observation has
(scaled and shifted) beta distributions for not only its two marginals but also two conditionals. These
properties are important for developing the proposed diffusion model with multiplicative transitions.

2.1 Conditional Bivariate Beta Distribution

We first present the conditional bivariate beta distribution in the following Lemma, which generalizes
previous results on the distribution of the product of independent beta random variables [30, 38, 33].
Lemma 1 (Conditional Beta Bivariate Distribution). Denote (zs, zt) as variables over a pair of time
points (s, t), with 0 < s < t < 1. Given a random sample x0 ∈ (0, 1) from a probability-valued data
distribution pdata(x0), we define a conditional bivariate beta distribution over (zs, zt) with PDF:

q(zs, zt |x0) =
Γ(η)

Γ(ηαtx0)Γ(η(1− αsx0))Γ(η(αs − αt)x0)

zηαtx0−1
t (1− zs)

η(1−αsx0)−1

(zs − zt)1−η(αs−αt)x0
. (2)
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Marginals: Given x0, the two univariate marginals of this distribution are both beta distributed as

q(zs |x0) = Beta(ηαsx0, η(1− αsx0)), (3)
q(zt |x0) = Beta(ηαtx0, η(1− αtx0)). (4)

Conditionals: Given x0, a random sample (zt, zs) from this distribution can be either generated in
forward order, by multiplying a beta variable from (3) with beta variable πs→t, as

zt = zsπs→t, πs→t ∼ Beta(ηαtx0, η(αs − αt)x0), zs ∼ q(zs |x0), (5)

or generated in reverse order, by combining a beta variable from (4) with beta variable ps←t, as

zs = zt + (1− zt)ps←t, ps←t ∼ Beta(η(αs − αt)x0, η(1− αsx0)), zt ∼ q(zt |x0). (6)

The proof starts with applying change of variables to obtain two scaled and shifted beta distributions

q(zt | zs, x0) = 1
zs

Beta
(

zt
zs
; ηαtx0, η(αs − αt)x0

)
, (7)

q(zs | zt, x0) = 1
1−zt Beta

(
zs−zt
1−zt ; η(αs − αt)x0, η(1− αsx0)

)
, (8)

and then takes the products of them with their corresponding marginals, given by (3) and (4),
respectively, to show that the PDF of the joint distribution defined in (5) and that defined in (6) are
both equal to the PDF of q(zs, zt |x0) defined in (2). The detailed proof is provided in Appendix B.
To ensure numerical accuracy, we will calculate zs = zt + (1− zt)ps←t in (6) in the logit space as

logit(zs) = ln
(
elogit(zt) + elogit(ps←t) + elogit(zt)+logit(ps←t)

)
. (9)

2.2 Continuous Beta Diffusion

Forward Beta Diffusion. We can use the conditional bivariate beta distribution to construct a
forward beta diffusion chain, beginning with the beta distribution from (3) and proceeding with the
scaled beta distribution from (7). The marginal at any time t for a given data observation x0, as shown
in (4), stays as beta-distributed in the forward chain. For the beta distribution given by (4), we have

E[zt |x0] = αtx0, var[zt |x0] = (αtx0)(1−αtx0)
η+1 , SNRt =

(
E[zt | x0]

std[zt | x0]

)2
= αtx0(η+1)

1−αtx0
.

Thus when αt approaches 0 (i.e., t→ 1), both zt and SNRt are shrunk towards 0, and if α1 = 0, we
have z1 ∼ Beta(0, η), a degenerate beta distribution that becomes a unit point mass at 0.

Infinite Divisibility. We consider beta diffusion as a form of continuous diffusion, as its forward
chain is infinitely divisible given x0. This means that for any time k ∈ (s, t), we can perform forward
diffusion from zs to zt by first setting zk = zsπs→k, where πs→k ∼ Beta(ηαkx0, η(αk − αs)x0),
and then setting zt = zkπk→t, where πk→t ∼ Beta(ηαtx0, η(αt − αk)x0). The same approach can
be used to show the infinite divisibility of reverse beta diffusion given x0.

Reverse Beta Diffusion. We follow Gaussian diffusion to use q(zs | zt, x0) to help define pθ(zs | zt)
[58, 35, 72]. To construct a reverse beta diffusion chain, we will first need to learn how to reverse
from zt to zs, where s < t. If we know the x0 used to sample zt as in (3), then we can readily apply
the conditional in (8) to sample zs. Since this information is unavailable during inference, we make a
weaker assumption that we can exactly sample from zt ∼ q(zt) = Ex0∼pdata

[q(zt |x0)], which is
the “x0-free” univariate marginal at time t. It is straightforward to sample during training but must be
approximated during inference. Under this weaker assumption on q(zt), utilizing (8) but replacing its
true x0 with an approximation x̂0 = fθ(zt, t), where fθ denotes the learned generator parameterized
by θ, we introduce our “x0-free” and hence “causal” time-reversal distribution as

pθ(zs | zt) = q(zs | zt, x̂0 = fθ(zt, t)). (10)

2.3 Optimization via KLUBs and Log-Beta Divergence

KLUB for Time Reversal. The time-reversal distribution pθ(zs | zt) reaches its optimal when
its product with q(zt) becomes equivalent to q(zs, zt) = Ex0∼pdata

[q(zs, zt |x0)], which is a
marginal bivariate distribution that is “x0-free.” Thus we propose to optimize θ by minimizing
KL(pθ(zs | zt)q(zt)||q(zs, zt)) in theory but introduce a surrogate loss in practice:
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Lemma 2 (KLUB (conditional)). The KL divergence from q(zs, zt) to pθ(zs | zt)q(zt), two “x0-free”
joint distributions defined by forward and reverse diffusions, respectively, can be upper bounded:

KL(pθ(zs | zt)q(zt)||q(zs, zt)) ≤ KLUBs,t = E(zt,x0)∼q(zt | x0)pdata(x0)[KLUB(s, zt, x0)], (11)

KLUB(s, zt, x0) = KL(q(zs | zt, x̂0 = fθ(zt, t))||q(zs | zt, x0))]. (12)

The proof in Appendix B utilizes the equation pθ(zs | zt)q(zt) = Ex0∼pdata
[pθ(zs | zt)q(zt |x0)] and

then applies the convexity of the KL divergence [11, 74] and the definition in (10).

Log-Beta Divergence. To find out the optimal solution under KLUB, following (1), we can express
KLUB(s, zt, x0) given by (12) as a log-beta divergence as

DlnB(a,b)

{
[η(αs − αt)x0, η(1− αsx0)] , [η(αs − αt)fθ(zt, t), η(1− αsfθ(zt, t))]

}
. (13)

We note KLUBs,t defined in (11) can also be written as Ezt∼q(zt)Ex0∼q(x0 | zt)[KLUB(s, zt, x0)],
where the log-beta divergence for KLUB(s, zt, x0), defined as in (13), includes x0 ∼ q(x0 | zt) in its
first argument and the generator fθ(zt, t) in its second argument. Therefore, applying Proposition 1
of Banerjee et al. [4], we have the following Lemma.
Lemma 3. The objective KLUBs,t defined in (11) for any s < t is minimized when

fθ∗(zt, t) = E[x0 | zt] = Ex0∼q(x0 | zt)[x0] for all zt ∼ q(zt). (14)

Thus under the KLUBs,t-optimized θ∗, we have pθ∗(zs | zt) = q(zs | zt,E[x0 | zt]), which is different
from the optimal solution of the original KL loss in (11), which is p∗θ(zs | zt) = q(zs, zt)/q(zt) =
q(zs | zt) = Ex0∼q(x0 | zt)[q(zs | zt, x0)]. It is interesting to note that they only differ on whether the
expectation is carried out inside or outside the conditional posterior.

In practice, we need to control the gap between pθ∗(zs | zt) and q(zs | zt) and hence s needs to be
close to t. Furthermore, the assumption of having access to unbiased samples from the true marginal
q(zt) is also rarely met. Thus we need to discretize the time from 1 to t into sufficiently fine intervals
and perform time-reversal sampling over these intervals. Specifically, we can start with z1 = 0 and
iterate (10) over these intervals to obtain an approximate sample from zt ∼ q(zt). However, the error
could accumulate along the way from z1 to zt, to which we present a solution below.

KLUB for Error Accumulation Control. To counteract error accumulation during time reversal,
we propose to approximate the true marginal q(z′t) using a “distribution-cycle-consistency” approach.
This involves feeding a random sample zt from q(zt) into the generator fθ, followed by the forward
marginal q(z′t | x̂0 = fθ(zt, t)), with the aim of recovering the distribution q(z′t) itself. Specifically,
we propose to approximate q(z′t) with pθ(z′t) := Ezt∼q(zt)[q(z

′
t | x̂0 = fθ(zt, t))] by minimizing

KL(pθ(z′t)||q(z′t)) in theory, but introducing a surrogate loss in practice:
Lemma 4 (KLUB (marginal)). The KL divergence KL(pθ(z′t)||q(z′t)) can be upper bounded:

KL(pθ(z′t)||q(z′t)) ≤ KLUBt = E(zt,x0)∼q(zt | x0)pdata(x0)[KLUB(zt, x0)], (15)

KLUB(zt, x0) = KL(q(z′t | fθ(zt, t))||q(z′t |x0)). (16)

The proof in Appendix B utilizes the fact that q(z′t) = E(zt,x0)∼q(zt | x0)pdata(x0)[q(z
′
t |x0)].

Note that the mathematical definition of KLUB is reused throughout the paper and can refer to any of
the equations (11), (12), (15), or (16) depending on the context. Similar to previous analysis, we have

KLUB(zt, x0) = DlnB(a,b)

{
[ηαtx0, η(1− αtx0)] , [ηαtfθ(zt, t), η(1− αtfθ(zt, t))]

}
, (17)

and can conclude with the following Lemma.
Lemma 5. KLUBt in (15) is optimized when the same optimal solution given by (14) is met.

Optimization via KLUBs. With the two KLUBs for both time reversal and error accumulation
control, whose optimal solutions are the same as in (14), we are ready to optimize the generator fθ
via stochastic gradient descent (SGD). Specifically, denoting ω, π ∈ [0, 1] as two weight coefficients,
the loss term for the ith data observation x(i)0 in a mini-batch can be computed as

Li = ωKLUB(si, zti , x
(i)
0 ) + (1− ω)KLUB(zti , x

(i)
0 ), (18)

zti ∼ q(zti |x
(i)
0 ) = Beta(ηαtix

(i)
0 , η(1− αtix

(i)
0 )), si = πti, ti ∼ Unif(0, 1).
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2.4 Discretized Beta Diffusion for Generation of Range-Bounded Data

For generating range-bounded data, we discretize the beta diffusion chain. Denote zt0 = 1 and let tj
increase with j. Repeating (5) for T times, we define a discretized forward beta diffusion chain:

q(zt1:T |x0) =
∏T

j=1 q(ztj | ztj−1 , x0) =
∏T

j=1
1

ztj−1
Beta

(
ztj

ztj−1
; ηαtjx0, η(αtj−1 − αtj )x0

)
. (19)

A notable feature of (19) is that the marginal at any discrete time step tj follows a beta distribution,
similarly defined as in (4). We also note while q(zt1:T |x0) defines a Markov chain, the marginal

q(zt1:T ) = Ex0∼pdata(x0)[q(zt1:T |x0)] (20)

in general does not. Unlike in beta diffusion, where the transitions between zt and zt−1 are applied
multiplicatively, in Gaussian diffusion, the transitions between zt and zt−1 are related to each other
additively and zt1:T forms a Markov chain regardless of whether x0 is marginalized out.

The discretized forward beta diffusion chain given by (19) is reversible assuming knowing x0.
This means given x0, it can be equivalently sampled in reverse order by first sampling ztT ∼
q(ztT |x0) = Beta(ηαtT x0, η(1 − αtT x0)) and then repeating (8) for tT , . . . , t2, with PDF
q(zt1:T |x0) = q(ztT |x0)

∏T
j=2

1
1−ztj

Beta
(

ztj−1
−ztj

1−ztj
; η(αtj−1

− αtj )x0, η(1− αtj−1
x0)
)
. This

non-causal chain, while not useful by itself, serves as a blueprint for approximate generation.

Specifically, we approximate the marginal given by (20) with a Markov chain in reverse order as

pθ(zt1:T ) = pprior(ztT )
∏T

j=2 pθ(ztj−1 | ztj ) = pprior(ztT )
∏T

j=2 q(ztj−1
| ztj , fθ(ztj , αtj )). (21)

To start the reverse process, we choose to approximate q(ztT ) = Ex0∼pdata(x0)[q(ztT |x0)] with
pprior(ztT ) = q(ztT |E[x0]), which means we let ztT ∼ Beta(ηαtTE[x0], η(1 − αtTE[x0])). To
sample zt1:T−1

, we use the remaining terms in (21), which are scaled and shifted beta distributions
that are specified as in (8) and can be sampled as in (6) and (9).

KLUB for Discretized Beta Diffusion. An optimized generator is expected to make the “x0-free”
joint distribution over all T steps of the discretized reverse beta diffusion chain, expressed as pθ(zt1:T ),
to approach that of the discretized forward chain, expressed as q(zt1:T ). Thus an optimized θ is
desired to minimize the KL divergence KL(pθ(zt1:T )||q(zt1:T )). While this KL loss is in general
intractable to compute, it can also be bounded using the KLUB shown as follows.
Lemma 6 (KLUB for discretized diffusion chain). KL(pθ(zt1:T )||q(zt1:T )) is upper bounded by

KLUB = Ex0∼pdata(x0) [KL(pprior(ztT )||q(ztT |x0))] +
∑T

j=2 K̃LUBtj−1,tj where (22)

K̃LUBs,t = E(zt,x0)∼pθ(zt | x0)pdata(x0)[KLUB(s, zt, x0)], KLUB(s, zt, x0) = KL(pθ(zs | zt)||q(zs | zt, x0))].

We provide the proof in Appendix B. We note Lemma 6 is a general statement applicable for any
diffusion models with a discrete forward chain q(zt1:T |x0) =

∏T
j=1 q(ztj | ztj−1 , x0) and a discrete

reverse chain pθ(zt1:T ) = pprior(ztT )
∏T

j=2 pθ(ztj−1
| ztj ). To estimate the KLUB in (22), however,

during training, one would need to sample ztj ∼ pθ(ztj |x0) ∝ p(x0 | ztj )pθ(ztj ), which is often

infeasible. If we replace ztj ∼ pθ(ztj |x0) with ztj ∼ q(ztj |x0), then K̃LUBs,t becomes the same
as KLUBs,t given by (11), and KLUBt given by (15) can be considered to remedy the impact of
approximating pθ(ztj ) with q(ztj ). Therefore, we can consider the combination of KLUBs,t given

by (11) and KLUBt given by (15) as a computationally viable solution to compute K̃LUBs,t, which
hence justifies the use of the loss in (18) to optimize the discretized reverse beta diffusion chain. We
summarize the training and sampling algorithms of beta diffusion in Algorithms 1 and 2, respectively.

2.5 Argument-swapped KLUBs and Negative ELBOs

We note that in theory, instead of the KL divergences in (11) and (15), fθ can also be optimized using
two argument-swapped KL divergences: KL(q(zt, zs)||pθ(zs|zt)q(zt)) and KL(q(z′t)||pθ(z′t)). By
the same analysis, these KL divergences can also be bounded by KLUBs and log-beta divergences
that are equivalent to the previous ones, but with swapped arguments. The argument-swapped KLUBs
and log-beta divergences will be shown to be closely related to optimizing a discretized beta reverse
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diffusion chain via −ELBO, but they do not guarantee an optimal solution that satisfies (14) in beta
diffusion and are found to provide clearly inferior empirical performance.

Negative ELBO for Discretized Beta Diffusion. As an alternative to KLUB, one can also consider
following the convention in diffusion modeling to minimize the negative ELBO, expressed as

− Ex0∼pdata(x0) ln pθ(x0) ≤ −ELBO = Ex0∼pdata(x0)Eq(zt1:T | x0)

[
− ln

p(x0 | zt1:T )pθ(zt1:T )

q(zt1:T | x0)

]
= −Ex0

Eq(zt1 | x0) ln p(x0 | zt1) + Ex0
KL[q(ztT |x0)||pprior(ztT )] +

∑T
j=2 Ex0

Eq(ztj | x0)[L(tj−1, ztj , x0)],

where the first two terms are often ignored and the focus is placed on the remaining T − 2 terms as

L(tj−1, ztj , x0) = KL(q(ztj−1 | ztj , x0)||q(ztj−1 | ztj , x̂0 = fθ(ztj , tj)))

= DlnB(a,b)

{[
η(αtj−1

− αtj )fθ(ztj , tj), η(1− αtj−1
fθ(ztj , tj))

]
,
[
η(αtj−1

− αtj )x0, η(1− αtj−1
x0)
]}
. (23)

Lemma 7 (−ELBO and argument-swapped KLUB). Optimizing the generator fθ with −ELBO is
equivalent to using an upper-bound for the augment-swapped KL divergence KL(q(zt1:T )||pθ(zt1:T )).

The proof in Appendix B relies on the convex nature of both the KL divergence and the negative
logarithmic function. We find for beta diffusion, optimizing KL(pθ(zt1:T )||q(zt1:T )) via the proposed
KLUBs is clearly preferred to optimizing KL(q(zt1:T )||pθ(zt1:T )) via −ELBOs (i.e., augment-
swapped KLUBs) and leads to stable and satisfactory performance.

KLUBs and (Weighted) Negative ELBOs for Gaussian Diffusion. We note KLUBs are directly
applicable to Gaussian diffusion, but they may not result in new optimization algorithms for Gaussian
diffusion that drastically differ from the weighted ELBO, which weighs the KL terms using the
corresponding SNRs. Moreover, whether the default or argument-swapped KLUBs are used typically
does not make any difference in Gaussian diffusion and would result in the same squared error-based
Bregman divergence. We provide the derivation of the (weighted) ELBOs from the lens of KLUBs in
Appendix C, providing theoretical support for Gaussian diffusion to use the SNR weighted ELBO
[23, 35, 20], which was often considered as a heuristic but crucial modification of ELBO.

3 Related Work, Limitations, and Future Directions

Various diffusion processes, including Gaussian, categorical, Poisson, and beta diffusions, employ
specific distributions in both forward and reverse sampling. Gaussian diffusion starts at N (0, 1) in its
reverse process, while both Poisson and beta diffusion start at 0. Beta diffusion’s reverse sampling is
a monotonically non-decreasing process, similar to Poisson diffusion, but while Poisson diffusion
takes count-valued discrete jumps, beta diffusion takes probability-valued continuous jumps. A future
direction involves extending beta diffusion to encompass the exponential family [6, 65, 45, 7].

Several recent works have explored alternative diffusion processes closely related to Gaussian
diffusion. Cold diffusion by Bansal et al. [5] builds models around arbitrary image transformations
instead of Gaussian corruption, but it still relies on L1 loss, resembling Gaussian diffusion’s squared
Euclidean distance. Rissanen et al. [52] propose an inverse heat dispersion-based diffusion process
that reverses the heat equation using inductive biases in Gaussian diffusion-like models. Soft diffusion
by Daras et al. [12] uses linear corruption processes like Gaussian blur and masking. Blurring diffusion
by Hoogeboom and Salimans [25] shows that blurring (or heat dissipation) can be equivalently defined
using a Gaussian diffusion process with non-isotropic noise and proposes to incorporate blurring into
Gaussian diffusion. These alternative diffusion processes share similarities with Gaussian diffusion
in loss definition and the use of Gaussian-based reverse diffusion for generation. By contrast, beta
diffusion is distinct from all of them in forward diffusion, training loss, and reverse diffusion.

A concurrent work by Avdeyev et al. [3] utilizes the Jacobi diffusion process for discrete data diffusion
models. Unlike Gaussian diffusion’s SDE definition, the Jacobi diffusion process in Avdeyev et al. [3]
is defined by the SDE dx = s

2 [a(1− x)− bx]dt+
√
sx(1− x)dw, with x ∈ [0, 1] and s, a, b > 0.

The stationary distribution is a univariate beta distribution Beta(a, b). Beta diffusion and the Jacobi
process are related to the beta distribution, but they differ in several aspects: Beta diffusion ends its
forward process at Beta(0, η), a unit point mass at 0, not a Beta(a, b) random variable. The marginal
distribution of beta diffusion at time t is expressed as q(zt |x0) ∼ Beta(ηαtx0, η(1− αtx0)), while
the Jacobi diffusion process involves an infinite sum. Potential connections between beta diffusion
and the Jacobi process under specific parameterizations are worth further investigation.
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Several recent studies have been actively exploring the adaptation of diffusion models to constrained
scenarios [13, 40, 41, 17], where data is bounded within specific ranges or constrained to partic-
ular manifolds. These approaches are all rooted in the framework of Gaussian diffusion, which
involves the incorporation of additive Gaussian noise. In sharp contrast, beta diffusion introduces a
distinct perspective by incorporating multiplicative noise, leading to the emergence of an inherently
hypercubic-constrained diffusion model that offers new development and exploration opportunities.

Classifier-free guidance (CFG), often used in conjunction with heuristic clipping, is a widely used
technique to perform conditional generation with Gaussian diffusion [22, 41]. Beta diffusion offers
the potential for a seamless integration of CFG by directly applying it to the logit space, the operating
space of its fθ network, thereby eliminating the necessity for heuristic clipping.

To adapt Gaussian diffusion for high-resolution images, a common approach is to perform diffusion
within the latent space of an auto-encoder [53, 62]. A promising avenue to explore is the incorporation
of sigmoid or tanh activation functions in the encoder’s final layer. This modification would establish
a bounded latent space conducive to applying beta diffusion, ultimately leading to the development
of latent beta diffusion tailored for high-resolution image generation.

One limitation of beta diffusion is that its training is computationally expensive and data-intensive,
akin to Gaussian diffusion. Specifically, with four Nvidia RTX A5000 GPUs, beta diffusion and
Gaussian diffusion (VP-EDM) both take approximately 1.46 seconds to process 1000 images of size
32× 32× 3. Processing 200 million CIFAR-10 images, the default number required to reproduce the
results of VP-EDM, would thus take over 80 hours. Several recent works have explored different
techniques to make Gaussian diffusion faster and/or more data efficient in training [68, 20, 76, 71]. It
is worth exploring how to adapt these methods to enhance the training efficiency of beta diffusion.

Beta diffusion has comparable sampling costs to Gaussian diffusion with the same NFE. However,
various methods have been developed to accelerate the generation of Gaussian diffusion, including
combining it with VAEs, GANs, or conditional transport [77] for faster generation [72, 47, 78,
69], distilling the reverse diffusion chains [43, 55, 76], utilizing reinforcement learning [16], and
transforming the SDE associated with Gaussian diffusion into an ODE, followed by fast ODE solvers
[58, 39, 42, 75, 34]. Given these existing acceleration techniques for Gaussian diffusion, it is worth
exploring their generalization to enhance the sampling efficiency of beta diffusion.

Beta diffusion raises concerns regarding potential negative societal impact when trained on image
datasets curated with ill intentions. This issue is not exclusive to beta diffusion but applies to
diffusion-based generative models as a whole. It is crucial to address how we can leverage these
models for the betterment of society while mitigating any potential negative consequences.

4 Experiments

The training and sampling algorithms for beta diffusion are described in detail in Algorithms 1 and 2,
respectively, in the Appendix. Our experiments, conducted on two synthetic data and the CIFAR10 im-
ages, primarily aim to showcase beta diffusion’s effectiveness in generating range-bounded data. We
also underscore the superiority of KLUBs over negative ELBOs as effective optimization objectives
for optimizing beta diffusion. Additionally, we highlight the differences between beta and Gaussian
diffusion, specifically in whether the data are generated through additive or multiplicative transforms
and their ability to model the mixture of range-bounded distributions with disjoint supports.

We compare the performance of “Gauss ELBO,” “Beta ELBO,” and “Beta KLUB,” which respectively
correspond to a Gaussian diffusion model optimized with the SNR weighted negative ELBO [23, 35],
a beta diffusion model optimized with the proposed KLUB loss defined in (18) but with the two
arguments inside each KL term swapped, and a beta diffusion model optimized with the proposed
KLUB loss defined in (18). On CIFAR-10, we also evaluate beta diffusion alongside a range of
non-Gaussian or Gaussian-like diffusion models for comparison.

4.1 Synthetic Data

We consider a discrete distribution that consists of an equal mixture of five unit point masses located
at x0 ∈ D = {1/7, 2/7, 3/7, 4/7, 5/7}. We would like to highlight that a unit point mass can also
be seen as an extreme case of range-bounded data, where the range is zero. Despite being simple,
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Figure 3: Comparison of the true PMF, marked in red square , and the empirical PMFs of three different
methods—Gauss ELBO, Beta ELBO, and Beta KLUB— calculated over 100 equal-sized bins between 0 and 1.
Each empirical PMF is marked in solid dot •.

this data could be challenging to model by a continuous distribution, as it would require the generator
to concentrate its continuous-valued generations on these five discrete points.

We follow previous works to choose the beta linear diffusion schedule as αt = e−
1
2βdt

2−βmint, where
βd = 19.9 and βmin = 0.1. This schedule, widely used by Gaussian diffusion [23, 61, 34], is applied
consistently across all experiments conducted on synthetic data. We set η = 10000, π = 0.95, and
ω = 0.5. As the data already falls within the range of 0 to 1, necessitating neither scaling nor shifting,
we set Scale = 1 and Shift = 0. We use the same structured generator fθ for both Gaussian and beta
diffusion. We choose 20-dimensional sinusoidal position embeddings [63], with the positions set as
1000t. The network is an MLP structured as (21-256)-ReLU-(256-256)-ReLU-(256-1). We utilize
the Adam optimizer with a learning rate of 5e-4 and a mini-batch size of 1000.

For data generation, we set NFE = 200. We provide the generation results in Figure 3, which shows
the true probability mass function (PMF) of the discrete distribution and the empirical PMFs over 100
equal-sized bins between 0 and 1. Each empirical PMF is computed based on 100k random data points
generated by the model trained after 400k iterations. It is clear from Figure 3 that “Gauss ELBO” is
the worst in terms of mis-aligning the data supports and placing its data into zero-density regions;
“Beta ELBO” is the worst in terms of systematically overestimating the density at smaller-valued
supports; whereas “Beta KLUB” reaches the best compromise between accurately identifying the
data supports and maintaining correct density ratios between different supports.

In Appendix E, we further provide quantitative performance comparisons between different diffusion
models and conduct an ablation study between KLUB and its two variants for beta diffusion: “KLUB
Conditional” and “KLUB Marginal,” corresponding to ω = 1 and ω = 0, respectively, in the loss
given by (18). Additionally, we evaluate beta diffusion on another synthetic data, which comes from
a mixture of range-bounded continuous distributions and point masses supported on disjoint regions.

4.2 Experiments on Image Generation

We employ the CIFAR-10 dataset and build upon VP-EDM [34] as the foundation of our codebase.
Our initial foray into applying beta diffusion to generative modeling of natural images closely mirrors
the settings of Gaussian diffusion, including the choice of the generator’s network architecture. We
introduce a sigmoid diffusion schedule defined as αt = 1/(1 + e−c0−(c1−c0)t), which has been
observed to offer greater flexibility than the beta linear schedule for image generation. This schedule
bears resemblance to the sigmoid-based one introduced for Gaussian diffusion [35, 29]. We configure
the parameters for beta diffusion as follows: c0 = 10, c1 = −13, Shift = 0.6, Scale = 0.39,
η = 10000, ω = 0.99, and π = 0.95. We utilize the Adam optimizer with a learning rate of 2e-4. We
use EDM’s data augmentation approach, but restrict augmented images to a 0-1 range before scaling
and shifting. We use the beta diffusion model trained on 200M images to calculate the FID [21].
Explanations regarding the intuition behind these parameter selections can be located in Appendix G.

Below we provide numerical comparison of beta diffusion with not only Gaussian diffusion models
but also alternative non-Gaussian or Gaussian-like ones. We also conduct an ablation study to
compare KLUB and negative ELBO across different NFE, η, and B. A broad spectrum of diffusion
models is encompassed in Table 1, which shows that beta diffusion outperforms all non-Gaussian
diffusion models on CIFAR10, including Cold Diffusion [5] and Inverse Heat Dispersion [52], as well
as categorical and count-based diffusion models [2, 8, 10]. In comparison to Gaussian diffusion and
Gaussian+blurring diffusion, beta diffusion surpasses VDM [35], Soft Diffusion [12], and Blurring
Diffusion [25]. While it may fall slightly short of DDPM [23], improved DDPM [46], TPDM+ [78],
VP-EDM [34], it remains a competitive alternative that uses non-Gaussian based diffusion.
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Table 1: Comparison of the FID scores of various diffusion models trained on CIFAR-10.
Diffusion Space Model FID (↓)

Gaussian

DDPM [23] 3.17
VDM [35] 4.00
Improved DDPM [46] 2.90
TDPM+ [78] 2.83
VP-EDM [34] 1.97

Gaussian+Blurring Soft Diffusion [12] 3.86
Blurring Diffusion [25] 3.17

Deterministic Cold Diffusion (image reconstruction) [5] 80.08 (deblurring)
8.92 (inpainting)

Inverse Heat Dispersion [52] 18.96

Categorical D3PM Gauss+Logistic [2] 7.34
τLDR-10 [8] 3.74

Count JUMP (Poisson Diffusion) [10] 4.80

Range-bounded Beta Diffusion 3.06

Table 2: Comparing FID scores for
KLUB and negative ELBO-optimized
Beta Diffusion on CIFAR-10 with vary-
ing NFE under η = 10000 and two
different mini-batch sizes B.

Loss −ELBO −ELBO KLUB KLUB
B 512 288 512 288

20 16.04 16.10 17.06 16.09
50 6.82 6.82 6.48 5.96
200 4.55 4.84 3.69 3.31
500 4.39 4.65 3.45 3.10

1000 4.41 4.61 3.38 3.08
2000 4.50 4.66 3.37 3.06

(a) −ELBO (b) KLUB
Figure 4: Uncurated randomly-generated images by beta diffusion
optimized with −ELBO or KLUB with η = 10000 and B = 288.
The generation with NFE = 1000 starts from the same random seed.

Table 2 presents a comparison between KLUB and negative ELBO-optimized beta diffusion across
different NFE under two different mini-batch sizes B. Table 3 in the Appendix includes the results
under several different combinations of η and B. We also include Figure 4 to visually compare
generated images under KLUB and negative ELBO. The findings presented in Tables 2 and 3 and
Figure 4 provide further validation of KLUB’s efficacy in optimizing beta diffusion.

As each training run takes a long time and FID evaluation is also time-consuming, we have not
yet optimized the combination of these hyperparameters given the limit of our current computation
resources. Thus the results reported in this paper, while demonstrating that beta diffusion can provide
competitive image generation performance, do not yet reflect the full potential of beta diffusion.
These results are likely to be further improved given an optimized hyperparameter setting or a network
architecture that is tailored to beta diffusion. We leave these further investigations to our future work.

5 Conclusion

We introduce beta diffusion characterized by the following properties: 1) Analytic Marginal: Given
a probability-valued data observation x0 ∈ (0, 1), the distribution at any time point t ∈ [0, 1] of the
forward beta diffusion chain, expressed as q(zt |x0), is a beta distribution. 2) Analytical Conditional:
Conditioning on a data x0 and a forward-sampled latent variable zt ∼ q(zt |x0), the forward beta
diffusion chain can be reversed from time t to the latent variable at any previous time s ∈ [0, t) by
sampling from an analytic conditional posterior zs ∼ q(zs | zt, x0) that follows a scaled and shifted
beta distribution. 3) KLUBs: We introduce the combination of two different Kullback–Leibler
Upper Bounds (KLUBs) for optimization and represent them under the log-beta Bregman divergence,
showing that their optimal solutions of the generator are both achieved at fθ∗(zt, t) = E[x0 | zt]. We
also establish the connection between augment-swapped KLUBs and (weighted) negative ELBOs
for diffusion models. Our experimental results confirm the distinctive qualities of beta diffusion
when applied to generative modeling of range-bounded data spanning disjoint regions or residing in
high-dimensional spaces, as well as the effectiveness of KLUBs for optimizing beta diffusion.
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Beta Diffusion: Appendix

Algorithm 1 Training of Beta Diffusion

Require: Dataset D whose values are bounded from 0 to 1, Mini-batch size B, concentration
parameter η = 10000, data shifting parameter Shift = 0.6, data scaling parameter Scale = 0.39,
generator fθ, loss balance coefficient ω = 0.99, time reversal coefficient π = 0.95, and a
decreasing function that returns scheduling parameter αt ∈ (0, 1) given t ∈ [0, 1], such as a beta
linear schedule defined by αt = e−0.5(βmax−βmin)t

2−βmint, where βmax = 20 and βmin = 0.1,
and a sigmoid schedule defined by αt = 1/(1 + e−c0−(c1−c0)t), where c0 = 10 and c1 = −13.

1: repeat
2: Draw a mini-batch X0 = {x(i)0 }Bi=1 from D
3: for i = 1 to B do ▷ can be run in parallel
4: ti ∼ Unif(1e-5, 1)
5: si = πti
6: Compute αsi and αti

7: x
(i)
0 = x

(i)
0 ∗ Scale + Shift

8: zti ∼ Beta(ηαtix
(i)
0 , η(1− αtix

(i)
0 ))

9: x̂
(i)
0 = fθ(zti , ti) ∗ Scale + Shift

10: Using (18) to compute the loss as

Li = ωKLUB(si, zti , x
(i)
0 ) + (1− ω)KLUB(zti , x

(i)
0 )

= ωDlnB(a,b)

{ [
η(αsi − αti)x

(i)
0 , η(1− αsix

(i)
0 )
]
,
[
η(αsi − αti)x̂

(i)
0 , η(1− αsi x̂

(i)
0 )
] }

+ (1− ω)DlnB(a,b)

{ [
ηαtix

(i)
0 , η(1− αtix

(i)
0 )
]
,
[
ηαti x̂

(i)
0 , η(1− αti x̂

(i)
0 )
] }

(24)

or swap the two arguments of both log-beta Bregman divergences in (24) if the loss is (weighted)
−ELBO.

11: end for
12: Perform SGD with 1

B∇θ

∑B
i=1 Li

13: until converge

Table 3: Comparing FID scores for KLUB and negative ELBO-optimized Beta Diffusion on the
CIFAR-10 image dataset with varying NFE under several different combinations of concentration
parameter η and mini-batch size B. We train the model with 200M images and use it to calculate FID.
We compute FID one time in each experiment. The other model parameters are set as Scale = 0.39,
Shift = 0.60, π = 0.95, ω = 0.99, lr = 2e-4, c0 = 10, and c1 = −13.

Loss η × 10−4 B NFE = 10 20 50 200 500 1000 2000

−ELBO 1 512 37.64 16.04 6.82 4.55 4.39 4.41 4.50
−ELBO 1 288 37.54 16.10 6.82 4.84 4.65 4.61 4.66
KLUB 1 512 39.05 17.06 6.48 3.69 3.45 3.38 3.37
KLUB 0.1 512 41.28 20.38 9.72 5.85 4.98 4.90 4.88
KLUB 0.3 512 36.70 16.47 7.03 4.10 3.65 3.67 3.66
KLUB 1 288 37.67 16.09 5.96 3.31 3.10 3.08 3.06
KLUB 0.8 288 36.46 15.58 5.98 3.49 3.22 3.21 3.23
KLUB 1.2 288 38.49 16.59 6.31 3.68 3.36 3.37 3.24
KLUB 1 128 38.16 16.47 6.29 3.74 3.44 3.40 3.47
KLUB 2 128 39.80 17.09 6.58 3.93 3.76 3.75 3.65
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Algorithm 2 Sampling of Beta Diffusion

Require: Number of function evaluations (NFE) J = 200, generator fθ, and timesteps {tj}Jj=0:
tj = 1− (1− 1e-5) ∗ (J − j)/(J − 1) for j = 1, . . . , J and t0 = 0

1: if NFE > 350 then
2: αtj = 1/(1 + e−c0−(c1−c0)tj )
3: else
4: αtj = (1/(1 + e−c1))tj

5: end if
6: Initialize x̂0 = E[x0] ∗ Scale + Shift

7: ztJ ∼ Beta(ηαtJ x̂0, η(1− αtJ x̂0))
8: for j = J to 1 do
9: x̂0 = fθ(ztj , αtj ) ∗ Scale + Shift

10: p(tj−1←tj) ∼ Beta
(
η(αtj−1 − αtj )x̂0, η(1− αtj−1 x̂0)

)
,

▷ which is implemented in the logit space as

logit(p(tj−1←tj)) = lnu− ln v,

u ∼ Gamma(η(αtj−1
− αtj )x̂0, 1),

v ∼ Gamma(η(1− αtj−1 x̂0), 1)

11: ztj−1
= ztj + (1− ztj )p(tj−1←tj),

▷ which is implemented in the logit space as

logit(ztj−1
) = ln

(
elogit(ztj ) + elogit(p(tj−1←tj)

) + elogit(ztj )+logit(p(tj−1←tj)
)
)

12: end for
13: return (x̂0 − Shift)/Scale or (zt0/αt0 − Shift)/Scale

A Log-beta Divergence and KL Divergence between Beta Distributions

By the definition of Bregman divergence, the log-beta divergence corresponding to the log-beta
function lnB(a, b) = lnΓ(a) + lnΓ(b)− ln Γ(a+ b), which is differentiable, and strictly convex on
(0,∞)2 as a function of a and b, can be expressed as

DlnB(a,b)((αq, βq), (αp, βp))

= ln
B(αq, βq)

B(αp, βp)
− (αq − αp, βq − βp)

(
∇αp

lnB(αp, βp)
∇βp

lnB(αp, βp)

)
= ln

B(αq, βq)

B(αp, βp)
− (αq − αp, βq − βp)

(
ψ(αp)− ψ(αp + βp)
ψ(βp)− ψ(αp + βp)

)
= ln

B(αq, βq)

B(αp, βp)
− (αq − αp)ψ(αp)− (βq − βp)ψ(βp) + (αq − αp + βq − βp)ψ(αp + βp),

which is equivalent to the analytic expression of

KL(Beta(αp, βp)||Beta(αq, βq)).
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B Proof

Proof of Lemma 1. The joint distribution of zt and zs in (5) can be expressed as

q(zt, zs |x0) = q(zt | zs)q(zs |x0)

=
1

zs
Beta

(
zt
zs

; ηαtx0, η(αs − αt)x0

)
Beta(zs; ηαsx0, η(1− αsx0))

=
1

zs

Γ(ηαsx0)

Γ(ηαtx0)Γ(η(αs − αt)x0)

(
zt
zs

)ηαtx0−1(
1− zt

zs

)η(αs−αt)x0−1

× Γ(η)

Γ(ηαsx0)Γ(η(1− αsx0))
zηαsx0−1
s (1− zs)

η(1−αsx0)−1

=
Γ(η)

Γ(ηαtx0)Γ(η(αs − αt)x0)Γ(η(1− αsx0))

× zηαtx0−1
t (zs − zt)

η(αs−αt)x0−1(1− zs)
η(1−αsx0)−1. (25)

The joint distribution of zt and zs in (6) can be expressed as

q(zt, zs |x0) = q(zs | zt, x0)q(zt |x0)

=
1

1− zt
Beta

(
zs − zt
1− zt

; η(αs − αt)x0, η(1− αsx0)

)
Beta(zt; ηαtx0, η(1− αtx0))

=
1

1− zt

Γ(η(1− αtx0))

Γ(η(1− αsx0))Γ(η(αs − αt)x0)

×
(
zs − zt
1− zt

)η(αs−αt)x0−1(
1− zs − zt

1− zt

)η(1−αsx0)−1

× Γ(η)

Γ(ηαtx0)Γ(η(1− αt)x0)
zηαtx0−1
t (1− zt)

η(1−αtx0)−1

=
Γ(η)

Γ(ηαtx0)Γ(η(αs − αt)x0)Γ(η(1− αsx0))

× (zs − zt)
η(αs−αt)x0−1(1− zs)

η(1−αsx0)−1zηαtx0−1
t . (26)

The joint distribution shown in (25) is the same as that in (26).

Proof of Lemma 2. Since we can re-express q(zt) and q(zs, zt) as

q(zt) = Ex0∼pdata(x0)[q(zt |x0)],

q(zs, zt) = Ex0∼pdata(x0)[q(zs, zt |x0)],

and q(zs, zt |x0) = q(zs | zt, x0)q(zt |x0), using the convexity of the KL divergence, we have

KL(pθ(zs | zt)q(zt)||q(zs, zt))
= KL(Ex0∼pdata(x0)[pθ(zs | zt)q(zt |x0)]||Ex0∼pdata(x0)[q(zs, zt |x0)])
≤ Ex0∼pdata(x0)[KL(pθ(zs | zt)q(zt |x0)||q(zs, zt |x0))]

= Ex0∼pdata(x0)E(zs,zt)∼pθ(zs | zt)q(zt | x0) ln
pθ(zs | zt)q(zt |x0)
q(zs | zt, x0)q(zt |x0)

= Ex0∼pdata(x0)Ezt∼q(zt | x0)Ezs∼pθ(zs | zt) ln
pθ(zs | zt)
q(zs | zt, x0)

= E(zt,x0)∼q(zt | x0)pdata(x0)[KL(pθ(zs | zt)||q(zs | zt, x0))]
= E(zt,x0)∼q(zt | x0)pdata(x0)[KL(q(zs | zt, x̂0 = fθ(zt, t)||q(zs | zt, x0))].

18



Proof of Lemma 4. Since we can re-express pθ(z′t) and q(z′t) as

pθ(z
′
t) := Ezt∼q(zt)[q(z

′
t | x̂0 = fθ(zt, t))] = E(zt,x0)∼q(zt | x0)pdata(x0)[q(z

′
t | x̂0 = fθ(zt, t))],

q(z′t) = E(zt,x0)∼q(zt | x0)pdata(x0)[q(z
′
t |x0)],

using the convexity of the KL divergence, we have

KL(pθ(z′t)||q(z′t))
= KL(E(zt,x0)∼q(zt | x0)pdata(x0)[q(z

′
t | x̂0 = fθ(zt, t))]||E(zt,x0)∼q(zt | x0)pdata(x0)[q(z

′
t |x0)])

≤ E(zt,x0)∼q(zt | x0)pdata(x0)[KL(q(z′t | fθ(zt, t))||q(z′t |x0))].

Proof of Lemma 6. The proof utilizes the convexity of the KL divergence to show that

KL(pθ(zt1:T )||q(zt1:T )) = KL(Ex0∼pdata(x0)[pθ(z1:T |x0)]||Ex0∼pdata(x0)[q(z1:T | z0)])
≤ Ex0∼pdata(x0)KL(pθ(zt1:T |x0)||q(zt1:T |x0))

= Ex0∼pdata(x0)Ezt1:T∼pθ(zt1:T | x0) ln
pθ(zt1:T |x0)
q(zt1:T |x0)

= Ex0∼pdata(x0)

[
KL(pprior(ztT |x0)||q(ztT |x0))

+

T∑
j=2

Eztj∼pθ(ztj | x0)Eztj−1
∼pθ(ztj−1

| ztj ) ln
pθ(ztj−1

| ztj )
q(ztj−1 | ztj , x0)

]
.

We note pθ(ztj |x0) ∝ p(x0 | ztj )pθ(ztj ), which in general is intractable to sample from, motivating
us to replace pθ(ztj |x0) with q(ztj |x0) for tractable computation.

Proof of Lemma 7. Utilizing the convexity of the KL divergence, we present an upper-bound of the
augmented-swapped KL divergence KL(q(zt1:T )||pθ(zt1:T )), referred to as AS-KLUB, as

KL(q(zt1:T )||pθ(zt1:T )) = KL(Ex0∼pdata(x0)[q(zt1:T |x0)]||Ex0∼pdata(x0)[pθ(zt1:T |x0)])
≤ AS-KLUB = Ex0∼pdata(x0)KL(q(zt1:T |x0)||pθ(zt1:T |x0))

= Ex0∼pdata(x0)Ezt1:T∼q(zt1:T | x0) ln
q(zt1:T |x0)
pθ(zt1:T |x0)

= Ex0∼pdata(x0)

[
KL(q(ztT |x0)||pprior(ztT |x0))

+

T∑
j=2

Eztj∼q(ztj | x0)Eztj−1
∼q(ztj−1

| ztj ,x0) ln
q(ztj−1

| ztj , x0)
pθ(ztj−1 | ztj )

]
.

Utilizing the convexity of the negative logarithmic function, we have

− Ex0∼pdata(x0) ln pθ(x0) = −Ex0∼pdata(x0) lnEpθ(zt1:T )[p(x0 | zt1:T )]

= −Ex0∼pdata(x0) lnEq(zt1:T | x0)

[
p(x0 | zt1:T )pθ(zt1:T )

q(zt1:T |x0)

]
≤ −ELBO = −Ex0∼pdata(x0)Eq(zt1:T | x0)

[
ln

p(x0 | zt1:T )pθ(zt1:T )

q(zt1:T | x0)

]
= Ex0∼pdata(x0)

[
− Eq(zt1 | x0) ln p(x0 | zt1) + KL[q(ztT |x0)||pprior(ztT )]

+

T∑
j=2

Eztj∼q(ztj | x0)Eztj−1
∼q(ztj−1

| ztj ,x0) ln
q(ztj−1

| ztj , x0)
pθ(ztj−1

| ztj )

]
.

Thus, when we disregard its first term, AS-KLUB is equivalent to −ELBO without its first two
terms. Since these three terms typically do not affect optimization, optimizing the generator fθ with
AS-KLUB is equivalent to using −ELBO.
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C Derivation of (Weighted) ELBOs of Gaussian Diffusion from KLUB

Let us denote α0 = 1 and z0 = x0. Following the definition in Ho et al. [23] and Song et al. [58], we
define a Gaussian diffusion-based generative model as

z1 ∼ N (
√
α1x0, 1− α1),

z2 ∼ N
(√

α2

α1
z1, 1−

α2

α1

)
,

. . .

zt ∼ N
(√

αt

αt−1
zt−1, 1−

αt

αt−1

)
,

. . .

zT ∼ N
(√

αT

αT−1
zT−1, 1−

αT

αT−1

)
,

where the diffusion scheduling parameters αt in this paper is related to βt in Ho et al. [23] as

βt := 1− αt

αt−1
.

The same as the derivations in Ho et al. [23], we can express the forward marginal distribution at
time t as

zt ∼ N (
√
αtx0, 1− αt).

Assuming E[x0] = 0 and var[x0] = 1, the signal-to-noise ratio at time t is defined as

SNRt = Ex0

[(
E[zt |x0]

std[zt |x0]

)2
]
=

αt

1− αt
E[x20] =

αt

1− αt
.

Since
√

αt−1

αt
xt ∼ N (zt−1,

αt−1

αt
− 1) and zt−1 ∼ N (

√
αt−1z0, 1− αt−1), using the conjugacy of

the Gaussian distributions with respect to their mean, we can express the conditional posterior as
q(zt−1 |x0, zt)

= N

((
1

1− αt−1
+

αt

αt−1 − αt

)−1(√
αt−1x0

1− αt−1
+

√
αt−1αtxt

αt−1 − αt

)
,

(
1

1− αt−1
+

αt

αt−1 − αt

)−1)

= N
(√

αt−1

1− αt
(1− αt

αt−1
)x0 +

1− αt−1

1− αt

√
αt

αt−1
zt,

1− αt−1

1− αt
(1− αt

αt−1
)

)
.

The forward Gaussian diffusion chain

q(z1:T |x0) =
T∏

t=1

p(zt | zt−1))

can be equivalently sampled in reverse order as

q(z1:T |x0) = q(zT |x0)
T∏

t=2

q(zt−1 | zt, x0).

As this reverse chain is non-causal and non-Markovian, we need to approximate it with a Markov
chain during inference, which is expressed as

p(z1:T ) = pprior(zT )

T∏
t=2

pθ(zt−1 | zt).

The usual strategy [58, 35, 72] is to utilize the conditional posterior to define
pθ(zt−1 | zt) = q(zt−1 | zt, x̂0 = fθ(zt, t)).

In what follows, we redefine the time t as a continuous variable between 0 and 1. We let t1:T be a set
of T discrete time points within that interval, with 0 ≤ t1 < t2 < . . . < tT ≤ 1. The corrupted data
observations over these T time points are defined as zt1:T .
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C.1 Optimization of Gaussian Diffusion via Negative ELBO

Viewing pθ(x0 | z1:T ) as the decoder, pθ(z1:T ) as the prior, and q(z1:T |x0) as the inference network,
we can optimize the generator parameter via the negative ELBO as

− Ex0
ln pθ(x0) ≤ −ELBO = Ex0

Eq(zt1:T | x0)

[
− ln

p(x0 | zt1:T )p(zt1:T )

q(zt1:T | x0)

]
= Ex0

Eq(zt1 | x0) ln p(x0 | zt1) + Ex0
KL[q(ztT |x0)||pprior(ztT )] +

∑T
j=2 Ex0

Eq(ztj | x0)[L(tj−1, ztj , x0)],

where the first two terms are often ignored and the focus is placed on the remaining T − 2 terms,
defined as

L(s, zt, x0) = KL(q(zs | zt, x0)||q(zs | zt, x̂0 = fθ(zt, t)))

=
1

2 1−αs

1−αt
(1− αt

αs
)

( √
αs

1− αt

(
1− αt

αs

))2

∥x0 − fθ(zt, t)∥22

=
1

2

(
αs

1− αs
− αt

1− αt

)
∥x0 − fθ(zt, t)∥22, (27)

where 0 < s < t < 1. We choose s = max(t− 1/T, 0) during training.

Since zt =
√
αtx0 +

√
1− αtϵt, ϵt ∼ N (0, 1), it is true that

x0 =
zt −

√
1− αtϵt√
αt

.

Instead of directly predicting x0 given xt, we can equivalently predict ϵ̂t = ϵθ(zt, t) given zt and let

x̂0 = fθ(zt, t) =
zt −

√
1− αtϵθ(zt, t)√

αt
.

Thus (27) can also be written as

L(s, zt, x0) =
1

2

(
αs

1− αs
− αt

1− αt

)
∥x0 − fθ(zt, t)∥22

=
1

2
(SNRs − SNRt)∥x0 − fθ(zt, t)∥22

=
1

2

(
αs

1− αs
− αt

1− αt

)
1− αt

αt
∥ϵt − ϵθ(zt, t)∥22

=
1

2

(
SNRs

SNRt
− 1

)
∥ϵt − ϵθ(zt, t)∥22, (28)

which agrees with Equations 13 and 14 in Kingma et al. [35].

C.2 Optimization of Gaussian Diffusion via KLUB Conditional

Following the definition of KLUB (Conditional), for Gaussian diffusion we have

KLUB(s, zt, x0) = KL(q(zs | x̂0 = fθ(zt, t), zt)||q(zs |x0, zt))

For two Gaussian distributions q1 and q2 that have the same variance, we have KL(q1||q2) =
KL(q2||q1) and hence

KLUB(s, zt, x0) = KL(q(zs | x̂0 = fθ(zt, t), zt)||q(zs |x0, zt))
= KL(q(zs |x0, zt)||q(zs | x̂0 = fθ(zt, t), zt))

= L(s, zt, x0).

Therefore, over the same set of time points t1:T , optimizing via KLUB conditional is identical to
optimizing via −ELBO. As analyzed before, optimizing via KLUB conditional (i.e., −ELBO) may
not be able to directly counteract the error accumulated over the course of diffusion, and hence could
lead to slow convergence.

21



C.3 Optimization of Gaussian Diffusion via KLUB Marginal and SNR-weighted Negative
ELBO

Following the definition of KLUB (Marginal), for Gaussian diffusion we have

KLUB(zt, x0) = KL(N (
√
αtx0, 1− αt)||N (

√
αtf(zt, t), 1− αt)

=
αt

1− αt
∥x0 − f(zt, t)∥22

= SNRt∥x0 − f(zt, t)∥22
= ∥ϵ0 − ϵθ(zt, t)∥22.

It is surprising to find out that the KLUB Marginal is identical to the SNR weighted −ELBO first
introduced in Ho et al. [23] and further discussed in Hang et al. [20].

C.4 Optimization of Gaussian Diffusion via KLUB

Following beta diffusion, we can also combine two KLUBs as

ωKLUB(s, zt, x0) + (1− ω)KLUB(zt, x0)

=

[
ω

2

(
αs

1− αs

1− αt

αt
− 1

)
+ (1− ω)

]
∥ϵ0 − ϵθ(zt, t)∥22.

Since αs

1−αs

1−αt

αt
is in general close to 1 when s is not too far from t, when ω is not too close to 1, a

combination of these two KLUBs does not result in an algorithm that clearly differs from the use of
an SNR-weighted negative ELBO.

D Illustration of Forward and Reverse Beta Diffusion

Illustration of Forward Beta Diffusion. We first visualize the beta forward diffusion process
by displaying a true image x0 and its noise-corrupted versions over the course of the forward
diffusion process. Specifically, we display the noise corrupted and masked image at time t =
0, 0.05, 0.1 . . . , 1 as

z̃t = max
(
min

(
1

Scale

(
zt
αt

− Shift

)
, 1
)
, 0
)
, zt ∼ Beta(ηαtx0, η(1− αtx0)).

It is clear from Figure 1 that with multiplicative beta-distributed noises, the image becomes both
noisier and sparser as time increases, and eventually becomes almost completely dark. Thus the
forward process of beta diffusion can be considered as simultaneously noising and masking the pixels.
This clearly differs beta diffusion from Gaussian diffusion, whose forward diffusion gradually applies
additive random noise and eventually ends at a Gaussian random noise. In addition, the reverse
diffusion process of Gaussian diffusion can be considered a denoising process, whereas that of beta
diffusion is simultaneously demasking and denoising the data, as illustrated below.

Illustration of Reverse Beta Diffusion. We further illustrate the reverse process of beta diffusion
by displaying

z̃tj−1
= max

(
min

(
1

Scale

(
ztj−1

αtj−1
− Shift

)
, 1
)
, 0
)
,

where ztj−1
= ztj + (1− ztj )p(tj−1←tj) is iteratively computed as in Algorithm 2. We also display

x̂0 = fθ(ztj , tj) ≈ E[x0 | ztj ],

where the approximation would become more and more accurate when θ approaches its theoretical
optimal θ∗, under which we have fθ∗(ztj , tj) = E[x0 | ztj ].
As shown in Figure 2, starting from a random image drawn from

ztJ ∼ Beta(ηαtJ x̂0, η(1− αtJ x̂0)), x̂0 = E[x0],

most of whose pixels would be completely dark, beta diffusion gradually demasks and denoises the
image towards a clean image through multiplicative transforms, as shown in Algorithm 2.
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Figure 5: Comparison of the statistical distances between the true and generated data distributions over the
course of training. The blue, green, and orange curves are for “Gauss ELBO,” “Beta ELBO,” and “Beta KLUB,”
respectively. From the left to right are the plots for Wasserstein-1 distance, Jensen–Shannon divergence, and
Hellinger distance, respectively.

Figure 6: Analogy to Figure 5 for comparing “KLUB Conditional,” “KLUB Marginal,” and “KLUB.”

E Additional Results for Synthetic Data

Quantitative Evaluation Metrics. We consider Wasserstein-1, Jensen–Shannon divergence (JSD),
and Hellinger distance as three complimentary evaluation metrics. Wasserstein-1 has a high tolerance
of misalignment between the supports of the true data density and these of the generated data. In
other words, it is not sensitive to both misaligning the modes of the true density and these of the
generated density and placing density in the regions where there are no data. By contrast, both JSD
and Hellinger can well reflect the misalignments between the supports of high data density regions.

Wasserstein-1: We monitor the performance of different algorithms during training by generating
100k data points using the trained model and drawing 100k data points from the data distribution, and
computing the Wasserstein-1 distance between their empirical distributions, which can be done by
sorting them and taking the mean of their element-wise absolute differences. If the true distribution
is discrete in that it takes values uniformly at random from a discrete set D, then we compute the
Wasserstein-1 distance by sorting a set of 10k generated samples from small to large and calculating
the mean of their absolute element-wise differences with a non-decreasing vector of the same size,
which consists of an equal number of copies for each unique value in D.

JSD and Hellinger distance: We discretize the 100k generated data into 100 equal-sized bins between
0 and 1 and compute the frequency of the data in each bin, which provides an empirical probability
mass function (PMF). We then compute both the JSD and Hellinger distance between the empirical
PMF of the generated data and the empirical (true) PMF of the true (discrete) data.

Additional Results. The observations in Figure 3 are further confirmed by Figure 5, which shows
that while Gaussian diffusion has good performance measured by the Wasserstein-1 distance, it is
considerably worse than beta diffusion in aligning the supports between the true and generated data
distributions. Within beta diffusion, either KLUB or its argument-swapped version leads to good
performance measured by both the JSD and Hellinger distance, suggesting their excellent ability to
concentrate their generations around the true data supports. However, the proposed KLUB has a
much better recovery of the true underlying density in comparison to its argument-swapped version,
as confirmed by examining the first subplot in Figure 5 and comparing the second and third subplots
in Figure 3.
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Figure 7: Analogy to Figure 3 for the mixture of continuous range-bounded data and point masses.

Figure 8: Analogy to Figure 5 for the mixture of continuous range-bounded data and point masses.

Figure 9: Analogy to Figure 8 for comparing “KLUB Conditional,” “KLUB Marginal,” and “KLUB.”

We further conduct an ablation study between KLUB and its two variants: “KLUB Conditional” and
“KLUB Marginal,” corresponding to ω = 1 and ω = 0, respectively, in the loss given by (18). The
results suggest “KLUB Conditional” and “KLUB Marginal” have comparable performance, which is
not that surprising considering that in theory, they both share the same optimal solution given by (14).
More closely examining the plots suggests that “KLUB Marginal” converges faster than “KLUB
Conditional” in aligning the generation with the data supports, but eventually delivers comparable
performance, and combining them leads to the “KLUB” that has a good overall performance.

We note we have conducted additional experiments by varying model parameters and adopting
different diffusion schedules. Our observation is that while each algorithm could do well by carefully
tuning these parameters, “Beta KLUB” is the least sensitive to parameter variations and is consistently
better than or comparable to the other methods across various combinations of model parameters.
While the toy data is valuable for showcasing the unique properties of beta diffusion, the performance
of “Beta KLUB” is not that sensitive to model parameters, and the observed patterns may be disrupted
by image-specific settings. Hence, their utility in tuning beta diffusion for image generation, where
data dimension and model size/architecture are much larger and more complex, is limited.

E.1 Mixture of Continuous Range-bounded Distributions and Point Masses

We consider an equal mixture of three range-bounded distributions and two unit point masses,
including a Uniform distribution between 0.1 and 0.2, a Beta(1,5) distribution first scaled by 0.1 and
then shifted by 0.3, a unit point mass at x0 = 0.5, a Beta(0.5,0.5) distribution first scaled by 0.1 and
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then shifted by 0.6, and a unit point mass at x0 = 0.8. A random sample is generated as

x0 = yk, k ∼ Discrete({1, 2, 3, 4, 5}), y1 ∼ Unif(0.1, 0.2), y2 ∼ 1
0.1Beta(y2−0.3

0.1 ; 1, 5),

y3 = 0.5, y4 ∼ 1
0.1Beta(y4−0.6

0.1 ; 0.5, 0.5), y5 = 0.9. (29)

We follow the same experimental protocol in Section 4.1. The results are shown in Figures 7 and 8,
from which we again observe that “Gauss ELBO” does a poor job in aligning its generation with
the true data supports and places a proportion of its generation to form smooth transitions between
the boundaries of high-density regions; “Beta ELBO” well captures the data supports and density
shapes, but has a tendency to overestimate the density of smaller-valued data; whereas “Beta KLUB”
very well aligns its generated data with the true data supports and captures the overall density shapes
and the sharp transitions between these five range-bounded density regions, largely avoiding placing
generated data into zero-density regions.

F Preconditioning of Beta Diffusion for Image Generation

It is often a good practice to precondition the input of a neural network. For beta diffusion, most
of our computation is operated in the logit space and hence we will consider how to precondition
logit(zt) before feeding it as the input to the generator fθ. Specifically, since we have

zt ∼ Beta(ηαtx0, η(1− αtx0)),

we can draw the logit of zt as

logit(zt) = lnut − ln vt, ut ∼ Gamma(ηαtx0, 1), vt ∼ Gamma(η(1− αtx0), 1).

Assume x0 ∼ Unif[xmin, xmax], where xmin = Shift and xmax = Scale + Shift, we have

E[logit(zt)] = E[lnut]− E[ln vt]
= Ex0

[ψ(ηαtx0)]− Ex0
[ψ(η(1− αtx0))],

where

Ex0
[ψ(ηαtx0)] =

1

ηαt(xmax − xmin)

∫ ηαtxmax

ηαtxmin

d ln Γ(z)

=
1

ηαt(xmax − xmin)
[ln Γ(ηαtxmax)− ln Γ(ηαtxmin)],

Ex0 [ψ(η(1− αtx0))] =
1

ηαt(xmax − xmin)

∫ η(1−αtxmin)

η(1−αtxmax)

d ln Γ(z)

=
1

ηαt(xmax − xmin)
[ln Γ(η(1− αtxmin))− ln Γ(η(1− αtxmax))].

We further estimate the variance of logit(zt) as

var[logit(zt)] = var[lnut] + var[ln vt]

= Ex0 [ψ
(1)(ηαtx0)] + Ex0 [ψ

(1)(η(1− αtx0))] + varx0 [ψ(ηαtx0)] + varx0 [ψ(η(1− αtx0))]

where

Ex0
[ψ(1)(ηαtx0)] =

1

ηαt(xmax − xmin)
[ψ(ηαtxmax)− ψ(ηαtxmin)],

Ex0
[ψ(1)(η(1− αtx0))] =

1

ηαt(xmax − xmin)
[ψ(η(1− αtxmin))− ψ(η(1− αtxmax))],

varx0 [ψ(ηαtx0)] = Ex0 [ψ
2(ηαtx0)]− (Ex0 [ψ(ηαtx0)])

2

≈ max

(
1

100

100∑
i=0

ψ2
(
ηαt

(
xmin + i

100 (xmax − xmin)
))

21(i=0)+1(i=100)
− (Ex0

[ψ(ηαtx0)])
2, 0

)
,
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varx0 [ψ(η(1− αtx0))] = Ex0 [ψ
2(η(1− αtx0))]− (Ex0 [ψ(η(1− αtx0))])

2

≈ max

(
1

100

100∑
i=0

ψ2
(
η
(
1− αt

(
xmin + i

100 (xmax − xmin)
)))

21(i=0)+1(i=100)
− (Ex0

[ψ(η(1− αtx0))])
2, 0

)
.

Now we are ready to precondition logit(zt) as

g(zt) =
logit(zt)− E[logit(zt)]√

var[logit(zt)]
.

We use g(zt) as the input to the generator fθ and add a skip connection layer to add g(zt) into the
output of the generator. Specifically, following the notation of EDM, we define the network as

fθ(zt, t) = cskip(t)g(zt) + cout(t)Fθ(cin(t)g(zt), cnoise(t)),

where for simplicity, we set cskip(t) = cout(t) = cin(t) = 1 and cnoise(t) = −logit(αt)/8. A more
sophisticated selection of these parameters has the potential to enhance the performance of beta
diffusion. However, due to our current limitations in computing resources, we defer this investigation
to future studies.

G Parameter Settings of Beta Diffusion on CIFAR10

We present the intuition on how we set the model parameters, including Shift, Scale, η, ω, π, c0, and
c1. Given the limitation of our computation resources, we leave the careful tuning of these model
parameters to future work.

We set ω = 0.99 and π = 0.95 across all experiments conducted on CIFAR10 with beta diffusion.

We pre-process the range-bounded data by linearly scaling and shifting them to lie between
[Shift, Shift + Scale], where 0 < Shift < Shift + Scale < 1. This linear transformation serves two
purposes: firstly, it enables us to use beta diffusion to model any range-bounded data, and secondly,
it helps avoid numerical challenges in computing the log-beta divergence when its arguments are
small. When evaluating the performance, we linearly transform the generated data back to their
original scale by reversing the scaling and shifting operations applied during the pre-processing
step. For CIFAR10 images, as beta diffusion is diffusing pixels towards Beta(0, η), our intuition is
to set both Scale and Shift large enough to differentiate the diffusion trajectories of different pixel
values. However, Scale + Shift needs to be smaller than 1, motivating us to choose Scale = 0.39 and
Shift = 0.60.

For the diffusion concentration parameter η, our intuition is that a larger η provides a higher ability to
differentiate different pixel values and allows a finer discretization of the reverse diffusion process,
but leads to slower training and demands more discretized steps during sampling. We set η = 10000
and the mini-batch size as B = 288 by default, but also perform an ablation study on CIFAR10 with
several different values, as shown in Table 3.

We use a sigmoid-based diffusion schedule as

αt = 1/(1 + e−c0−(c1−c0)t),

where we set c0 = 10 and c1 = −13 by default. We note a similar schedule had been introduced in
Kingma et al. [35] and Jabri et al. [29] for Gaussian diffusion.

For the CIFAR-10 dataset2, we utilize the parameterization of EDM3 [34] as the code base. We replace
the variance preserving (VP) loss and the corresponding network parameterization implemented in
EDM, which is the weighted negative ELBO of Gaussian diffusion, with the KLUB loss of beta
diffusion that is given by (24). We keep the generator network the same as that of VP-EDM, except
that we set cnoise = −logit(αt)/8 and simplify the other parameters as cskip = 1, cout = 1, and
cin = 1. The image pixel values between 0 and 255 are divided by 255 and then scaled by Scale and
shifted by Shift, and hence we have x0 ∈ [Shift, Shift + Scale]. The two inputs to the generator
network fθ(·, ·), originally designed for VP-EDM and adopted directly for beta diffusion, are
g(logit(zt)) and logit(αt), where g(·) is a preconditioning function described in detail in Appendix F.
The output of the generator network is first transformed by a sigmoid function and then scaled by
Scale and shifted by Shift, and hence x̂0 = fθ(zt, t) ∈ [Shift, Shift + Scale].

2https://www.cs.toronto.edu/~kriz/cifar.html
3https://github.com/NVlabs/edm
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