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Abstract

Controllable scene synthesis aims to create interactive environments for numerous
industrial use cases. Scene graphs provide a highly suitable interface to facilitate
these applications by abstracting the scene context in a compact manner. Existing
methods, reliant on retrieval from extensive databases or pre-trained shape
embeddings, often overlook scene-object and object-object relationships, leading
to inconsistent results due to their limited generation capacity. To address this issue,
we present CommonScenes, a fully generative model that converts scene graphs into
corresponding controllable 3D scenes, which are semantically realistic and conform
to commonsense. Our pipeline consists of two branches, one predicting the overall
scene layout via a variational auto-encoder and the other generating compatible
shapes via latent diffusion, capturing global scene-object and local inter-object
relationships in the scene graph while preserving shape diversity. The generated
scenes can be manipulated by editing the input scene graph and sampling the noise
in the diffusion model. Due to the lack of a scene graph dataset offering high-
quality object-level meshes with relations, we also construct SG-FRONT, enriching
the off-the-shelf indoor dataset 3D-FRONT with additional scene graph labels.
Extensive experiments are conducted on SG-FRONT, where CommonScenes shows
clear advantages over other methods regarding generation consistency, quality, and
diversity. Codes and the dataset are available on the website.

1 Introduction

Controllable Scene Synthesis (CSS) refers to the process of generating or synthesizing scenes in a
way that allows for specific entities of the scene to be controlled or manipulated. Existing methods
operate on images [62] or 3D scenes [34] varying by controlling mechanisms from input scene
graphs [24] or text prompts [5]. Along with the development of deep learning techniques, CSS
demonstrates great potential in applications like the film and video game industry [7], augmented and
virtual reality [65], and robotics [72, 68]. For these applications, scene graphs provide a powerful
tool to abstract scene content, including scene context and object relationships.

This paper investigates scene graph-based CSS for generating coherent 3D scenes characterized
by layouts and object shapes consistent with the input scene graph. To achieve this goal, recent
methods propose two lines of solutions. The first line of works optimizes scene layouts [35] and
retrieves objects [16] from a given database (see Figure 1 (a)). Such retrieval-based approaches are
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Figure 1: Architecture Comparison (Upper Row): Compared with previous methods, our fully generative
model requires neither databases nor multiple category-level decoders. Performance Comparison (Bottom
Row): We demonstrate the effectiveness of encapsulating scene-object and object-object relationships. The
semantic information from the scene graph is ‘a table is surrounded by three chairs’. As highlighted in the
rounded rectangles, through the scene-object relationship, our network outperforms other methods by generating
a round table and three evenly distributed chairs. Through the object-object relationship, the three chairs are
consistent in style. Moreover, our method still preserves the object diversity (blue dashed rectangle).

inherently sub-optimal [57] in generation quality due to performance limitations through the size
of the database. The second solution, e.g., Graph-to-3D [12], regresses both the layout and shape
of the objects for synthesis. However, the shape generation relies on pre-trained shape codes from
category-wise auto-decoders, e.g., DeepSDF [42]. This semi-generative design (Figure 1 (b)) results
in reduced shape diversity in the generated outputs. To enhance generation diversity without relying
on vast databases, one possible solution is to concurrently predict scene layouts and generate object
shapes with text-driven 3D diffusion models[8, 32], where the textual information is obtained from
input scene graphs. Yet, in our experiments, we observe that such an intuitive algorithm works poorly
since it does not exploit global and local relationship cues among objects encompassed by the graph.

In this work, our approach CommonScenes exploits global and local scene-object relationships and
demonstrates that a fully generative approach can effectively encapsulate and generate plausible 3D
scenes without prior databases. Given a scene graph, during training, we first enhance it with pre-
trained visual-language model features, e.g., CLIP [46], and bounding box embeddings, incorporating
coarse local inter-object relationships into the feature of each node. Then, we leverage a triplet-
GCN [35] based framework to propagate information among objects, learning layouts through global
cues and fine local inter-object relationships, which condition the diffusion process [47] to model
the shape distribution as well. During inference, each node in the scene graph is enriched with
the learned local-to-global context and sequentially fed into the latent diffusion model for each
shape generation. Figure 1 (c) illustrates that our method effectively leverages relationship encoding
to generate commonsense scenes, i.e., arranged plausibly and realistically, exhibiting scene-level
consistency while preserving object shape diversity. Furthermore, to facilitate the benchmarking
of CSS, we curate a novel indoor scene graph dataset, SG-FRONT, upon a synthetic dataset 3D-
FRONT [18], since no existing indoor scene graph datasets provide high-quality meshes. SG-FRONT
comprises around 45K 3D samples with annotated semantic and instance segmentation labels and a
corresponding scene graph describing each scene.

Our contributions can be summarized into three points. First, we present CommonScenes, a fully
generative model that converts scene graphs into corresponding 3D scenes using a diffusion model. It
can be intuitively manipulated through graph editing. Second, CommonScenes concurrently models
scene layout and shape distribution. It thereby encapsulates both global inter-object relationships and
local shape cues. Third, we contribute SG-FRONT, a synthetic indoor dataset extending 3D-FRONT
by scene graphs, thereby contributing graph-conditional scene generation benchmarks.

2 Related Work

Scene Graph Scene graphs provide a rich symbolic and semantic representation of the scene
using nodes and relationships [25]. They are useful in many 2D-related topics such as image
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generation [24, 67], image manipulation [12], caption generation [31], visual question answering [55],
and camera localization [27]. Quickly after this progress, they are used in following areas: 3D scene
understanding [59, 1, 64, 29], dynamic modeling [49], robotic grounding [22, 50, 68], spatio-temporal
4D [75, 30, 74], and controllable scene synthesis [33, 73, 60, 41, 13].

Indoor 3D Scene Synthesis Controllable scene synthesis is extensively explored in the computer
graphics community, varying from text-based scene generation [19] to segmentation map [43] or
spatial layout-based image-to-image translation tasks [71]. Likewise in 3D, several methods generated
scenes from images [56, 39, 2, 69, 14, 40, 38], text [36], probabilistic grammars [4, 23, 11, 45],
layouts [26, 54], in an autoregressive manner [44, 63], or through learning deep priors [61]. Another
line of work closer to ours is based on graph conditioning [33, 73, 60, 41]. Luo et al. [35] proposed
a generative scene synthesis through variational modeling coupled with differentiable rendering.
However, their method relies on shape retrieval, which depends on an existing database. Graph-
to-3D [13] proposes a joint approach to learn both scene layout and shapes with a scene graph
condition. Nevertheless, their object generation relies on a pre-trained shape decoder, limiting the
generalizability. Unlike previous work, our method generates 3D scenes with the condition over a
scene graph, which is trained end-to-end along with content awareness, resulting in higher variety
and coherency.

Denoising Diffusion Models A diffusion probabilistic model is a trained Markov chain that
generates samples matching data by reversing a process that gradually adds noise until the signal
vanishes [52]. Diffusion models have quickly gained popularity due to their unbounded, realistic,
and flexible generation capacity [21, 53, 37, 28, 47, 15]. However, studies have identified that the
diffusion models lack compositional understanding of the input text [51]. Several advancements have
been introduced to address these limitations. Techniques such as the introduction of generalizable
conditioning and instruction mechanisms have emerged [5, 70]. Moreover, optimizing attention
channels during testing has also been explored [6, 17]. Recently, a latent diffusion model using a
Signed Distance Field (SDF) to represent 3D shapes was proposed contemporaneously at multiple
works [8, 32], which can be conditioned on a text or a single view image. For the contextual
generation conditioned on scene graphs, methods have converted triplets into the text to condition
the model [17, 67], where Yang et al. [67] proposed a graph conditional image generation based on
masked contrastive graph training. To the best of our knowledge, we are the first to leverage both
areas of scene graph and latent diffusion for end-to-end 3D scene generation.

3 Preliminaries

Scene Graph A scene graph, represented as G = (V, E), is a structured representation of a
visual scene where V = {vi | i ∈ {1, . . . , N}} denotes the set of vertices (object nodes) and
E = {ei→j | i, j ∈ {1, . . . , N}, i ̸= j} represents the set of directed edge from node vi to vj .
Each vertex vi is categorized through an object class cnodei ∈ Cnode, where Cnode denotes the set of
object classes. The directed edges in E capture the relationships between objects in terms of both
semantic and geometric information. Each edge ei→j has a predicate class cedgei→j ∈ Cedge, where
Cedge denotes the set of edge predicates. These relationships can incorporate various aspects, such as
spatial locations (e.g., left/right, close by) or object properties (bigger/smaller). To
facilitate subsequent processing and analysis, each node vi and edge ei→j are typically transformed
into learnable vectors oi and τi→j , respectively, through embedding layers, as shown in Figure 2.A.

Conditional Latent Diffusion Model Diffusion models learn a target distribution by reversing
a progressive noise diffusion process modeled by a fixed Markov Chain of length T [21, 53].
Fundamentally, given a sample xt from the latent space, gradual Gaussian Noise is added with
a predefined scheduler xt, t ∈ {1, . . . , T} [21]. Then, the denoiser εθ, typically a UNet[48], is
trained to recover denoising from those samples. The recently introduced Latent Diffusion Models
(LDMs) [47] reduce the computational requirements by learning this distribution in a latent space
established by a pre-trained VQ-VAE [58] instead of directly processing the full-size input. The
popular usage of LDM is conditional LDM, which allows the generation to obey the input cue ci [47].
The training objective can be simplified to

LLDM = Ex,ε∼N (0,1),t

[
||ε− εθ(xt, t, ci)||22

]
, (1)
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feature, respectively. We enhance the node and edge features with CLIP feature pi, pi→j to obtain B. Contextual
Graph. Then, we parameterize the ground truth bounding box bi to the node to further build C. Box-Enhanced
Contextual Graph with node and edge feature represented as f (b)i

vc = {pi, oi, bi}, f i→j
ec = {pi→j , τi→j}.

where ci denotes a conditioning vector corresponding to the input sample i fed into εθ.

4 Method

Overview Given a semantic scene graph, our approach endeavors to generate corresponding 3D
scenes conforming to commonsense. We employ a dual-branch network starting with a contextual
encoder Ec, as shown in Figure 3. The two branches, referred to as the Layout Branch and the Shape
Branch, function simultaneously for layout regression and shape generation. In Sec. 4.1, we first
illustrate how a scene graph evolves to a Box-enhanced Contextual Graph (BCG) with features from
pre-trained visual-language model CLIP [46] and bounding box parameters (Figure 2). Then, we
show how BCG is encoded by Ec and manipulated by the graph manipulator (Figure 3.A, B and C).
In Sec. 4.2, we introduce the layout branch for layout decoding, and in Sec. 4.3, we introduce the
shape branch for shape generation. Finally, we explain the joint optimization in Sec. 4.4.

4.1 Scene Graph Evolution

Contextual Graph As shown in Figure 2.A and B, we incorporate readily available prompt features
from CLIP [46] as semantic anchors, capturing coarse inter-object information, into each node and
edge of the input graph to conceptualize it as Contextual Graph Gc with pi = ECLIP(c

node
i ) for

objects and pi→j = ECLIP(c
node
i ⊞ cedgei→j ⊞ cnodej ) for edges. Here ECLIP is the pre-trained and frozen

text encoder in [46], ⊞ denotes the aggregation operation on prompts including subject class cnodei ,
predicate cedgei→j , and object class cnodej . Thereby, the embeddings of Gc = (Vc, Ec) is formalized as,

FVc = {f i
vc = (pi, oi) | i ∈ {1, . . . , N}}, FEc = {f i→j

ec = (pi→j , τi→j) | i, j ∈ {1, . . . , N}}, (2)

where FVc represents the set of object features and FEc the edge features.

Box-Enhanced Contextual Graph In training, we enrich each node in the contextual graph by
using ground truth bounding boxes parameterized by box sizes s, locations t, and the angular rotations
along the vertical axis α, yielding a BCG, as shown in Figure 2.C. Thereby, the node embeddings
of BCG are represented by F (b)

Vc
= {f (b)ivc = (pi, oi, bi) | i ∈ {1, . . . , N}}, where bi is obtained by

encoding (si, ti, αi) with MLPs. Note that BCG is only used during training, i.e., bounding box
information is not needed during inference.

Graph Encoding BCG is encoded by the subsequent triplet-GCN-based contextual encoder Ec,
which together with the layout decoderDl in Sec. 4.2 construct a Conditional Variational Autoencoder
(CVAE) [35]. The encoding procedure is shown in Figure 3.A, B and C. Given a BCG, during training,
we input the embeddings F (b)

Vc
and FEc into Ec to obtain an Updated Contextual Graph with node

and edge features represented as (F (z)
Vc
,FEc), which is also the beginning point of the inference route.

Each layer of Ec consists of two sequential MLPs {g1, g2}, where g1 performs message passing
between connected nodes and updates the edge features, g2 aggregates features from all connected
neighbors of each node and update its features, as shown in the follows:

(ψlg
vi
, ϕlg+1

ei→j
, ψlg

vj ) = g1(ϕ
lg
vi , ϕ

lg
ei→j

, ϕlgvj ), lg = 0, . . . , L− 1,

ϕlg+1
vi = ψlg

vi + g2

(
AVG

(
ψlg
vj | vj ∈ NG(vi)

))
,

(3)
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Figure 3: Overview of CommonScenes. Our pipeline consists of shared modules and two collaborative
branches Layout Branch and Shape Branch. Given a BCG (Figure 2.C), we first feed it into Ec, yielding a joint
layout-shape distribution Z. We sample zi from Z for each node, obtaining concatenated feature {zi, pi, oi} with
CLIP feature pi and self-updated feature oi. A graph manipulator is then optionally adopted to manipulate the
graph for data augmentation. Next, the updated contextual graph is fed into the layout branch and shape branch
for layout regression and shape generation respectively. In the shape branch, we leverage Er to encapsulate
global scene-object and local object-object relationships into graph nodes, which are then conditioned to εθ in
LDM via cross-attention mechanism to generate x0 back in T steps. Finally, a frozen shape decoder (VQ-VAE)
reconstructs S′ using x0. The final scene is generated by fitting S′ to layouts.

where lg denotes a single layer in Ec and NG(vi) includes all the connected neighbors of vi. AVG
refers to average pooling. We initialize the input embeddings of layer 0 as the features from the
Updated Contextual Graph, (ϕ0vi

, ϕ0ei→j
, ϕ0vj ) = (f

(b)i
vc , f i→j

ec , f
(b)j
vc ). The final embedding ϕLvi is

used to model a joint layout-shape distribution Z, parameterized with the Nc-dimensional Gaussian
distribution Z ∼ N(µ, σ), where µ, σ ∈ RNc , predicted by two separated MLP heads. Thereby, Z is
modeled through minimizing:

LKL = DKL

(
Eθ

c (z|x,F
(b)
Vc
,FEc) || p(z|x)

)
, (4)

where DKL is the Kullback-Liebler divergence measuring the discrepancy between Z and the
posterior distribution p(z|x) chosen to be standardN(z | 0, 1). We sample a random vector zi from Z

for each node, update node feature F (z)
Vc

by concatenating {zi, pi, oi}, keep edge features unchanged.

4.2 Layout Branch

As shown in Figure 3.D, a decoder Dl, which is another triplet-GCN, generates 3D layout predictions
upon updated embeddings. In this branch, Ec and Dl are jointly optimized by Eq. (4) and a bounding
box reconstruction loss:

Llayout =
1

N

N∑
i=1

(|si − ŝi|1 + |ti − t̂i|1 −
Λ∑

λ=1

αλ
i log α̂

λ
i ), (5)

where ŝi, t̂i, α̂i denote the predictions of bounding box size s, locations t and angular rotations
α, respectively. λ is the rotation classification label. We partition the rotation space into Λ bins,
transforming the rotation regression problem into a classification problem.

4.3 Shape Branch

As shown in Figure 3.E, in parallel to the Layout Branch, we introduce Shape Branch to generate
shapes for each node in the given graph, and represent them by SDF.

Relation Encoding The core idea of our method is to exploit global scene-object and local object-
object relationships to guide the generation process. Hence, besides incorporating CLIP features for
coarse local object-object relationships, as introduced in Section 4.1, we further design a relation
encoder Er, based on triplet-GCN as well, to encapsulate global semantic cues of the graph into
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each node and propagate local shape cues between connected nodes. Specifically, Er operates on
the learned embeddings (F (z)

Vc
,FEc

) of the Updated Contextual Graph, and updates the feature of
each node with local-to-global semantic cues, yielding node-relation embeddings for subsequent
diffusion-based shape generation.

Shape Decoding We use an LDM conditioned on node-relation embedding to model the shape-
generation process. In terms of shape representation, we opt for truncated SDF (TSDF) [10] around
the surface of the target object within a voxelized space S ∈ RD×D×D. Following the LDM, the
dimensionD of TSDF can be reduced by training a VQ-VAE [58] as a shape compressor to encode the
3D shape into latent dimensions x ∈ Rd×d×d, where d << D is built upon a discretized codebook.
Then a forward diffusion process adds random noise to the input shape x0 transferring to xT , upon
which we deploy a 3D-UNet [9] εθ (Figure 3.E) to denoise the latent code back to x0 according
to DDPM model by Ho et al. [21]. The denoiser is conditioned on node-relation embeddings to
intermediate features of 3D UNet via the cross-attention mechanism. Finally, the decoder of VQ-VAE
generates the shape S′ from the reconstructed x0. For the denoising process at the timestep t, the
training objective is to minimize:

Lshape = Ex,ε∼N (0,1),t

[
||ε− εθ(xt, t, Er(F (z)

Vc
,FEc

)||22
]
, (6)

where the evidence lower bound between the sampled noise ε and the prediction conditioned on
the contextual relation embedding extracted from Er is optimized. At test time, a latent vector is
randomly sampled from N (0, 1) and progressively denoised by 3D-Unet to generate the final shape.
Each shape within the layout is populated based on per-node conditioning, ultimately producing a
plausible scene. Compared to prior work, our design can bring more diverse shape generation by
taking advantage of the diffusion model architecture, as shown in experiments.

4.4 Layout-Shape Training

Our pipeline is trained jointly in an end-to-end fashion, allowing the Layout Branch and Shape
Branch to optimize each other by sharing latent embeddings (F (z)

Vc
,FEc), coming out of Ec. The final

optimization loss is the combination of scene distribution modeling, layout generation, and shape
generation:

L = λ1LKL + λ2Llayout + λ3Lshape, (7)

where λ1, λ2 and λ3 are weighting factors. Further insights on accomplishing the batched training
are provided in Supplementary Material.

5 Experiments

SG-FRONT Dataset Due to the lack of scene graph datasets also providing high-quality object
meshes, we construct SG-FRONT, a set of well-annotated scene graph labels, based on a 3D synthetic
dataset 3D-FRONT [18] that offers professionally decorated household scenarios. The annotation
labels can be grouped into three categories spatial/proximity, support, and style. The spatial
relationships are based on a series of relationship checks between the objects, which control the object
bounding box location, e.g., left/right, the comparative volumes, e.g., bigger/smaller,
and heights, e.g., taller/shorter. The support relationships include directed structural support,
e.g., close by, above, and standing on. Thresholds for these labels are iterated and set by
the annotators. Finally, style relationships include the object attributes to assign labels, namely same
material as, same shape as, and same super-category as. SG-FRONT contains
around 45K samples from three different indoor scene types, covering 15 relationship types densely
annotating scenes. More details are provided in the Supplementary Material.

Implementation Details We conduct the training, evaluation, and visualization of CommonScenes
on a single NVIDIA A100 GPU with 40GB memory. We adopt the AdamW optimizer with an
initial learning rate of 1e-4 to train the network in an end-to-end manner. We set {λ1, λ2, λ3} =
{1.0, 1.0, 1.0} in all our experiments. Nc in distribution Z is set to 128 and TSDF size D is set as 64.
We provide more details in the Supplementary Material.
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Figure 4: Qualitative comparison The orientations of Left/Right and Front/Behind in the scene
graph align with the top-down view. Both scene-object and object-object inconsistencies are highlighted in red
rectangles. Green rectangles emphasize the commonsense consistency our method produces.

Evaluation Metrics To measure the fidelity and diversity of generated scenes, we employ
the commonly adopted Fréchet Inception Distance (FID) [20] & Kernel Inception Distance
(KID) [3] metrics [44]. We project scenes onto a bird’s-eye view, excluding lamps to prevent
occlusion and using object colors as semantic indicators. To measure the scene graph
consistency, we follow the scene graph constraints [13], which measure the accuracy of a set
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Method Shape Bedroom Living room Dining room All
Representation FID KID FID KID FID KID FID KID

3D-SLN [35]

Retrieval

57.90 3.85 77.82 3.65 69.13 6.23 44.77 3.32
Progressive [13] 58.01 7.36 79.84 4.24 71.35 6.21 46.36 4.57
Graph-to-Box [13] 54.61 2.93 78.53 3.32 67.80 6.30 43.51 3.07
Ours w/o SB 52.69 2.82 76.52 2.08 65.10 6.11 42.07 2.23
Graph-to-3D [13] DeepSDF [42] 63.72 17.02 82.96 11.07 72.51 12.74 50.29 7.96
Layout+txt2shape SDFusion [8] 68.08 18.64 85.38 10.04 64.02 5.08 50.58 8.33
Ours rel2shape 57.68 6.59 80.99 6.39 65.71 5.47 45.70 3.84

Table 1: Scene generation realism as measured by FID and KID (×0.001) scores at 2562 pixels between the
top-down rendering of generated and real scenes (lower is better). Two main rows are separated with respect to
the reliance on an external shape database for retrieval. “Ours w/o SB” refers to ours without the shape branch.

Diverse

Consistent Consistent

Seed 1 Seed 2

Figure 5: Consistency co-exists with diversity
in different rounds. Our generated objects show
diversity when activated twice while preserving the
shape consistency within the scene (chairs in a suit).

Method Consistency ↓ Diversity ↑
Chair Table Chair Table

Graph-to-Box [13] 10.42 50.66 0.53 0.89
Graph-to-3D [13] 2.49 11.74 1.43 0.93
Ours 1.96 9.04 30.04 10.53

Table 2: Consistency and diversity in the dining
rooms. The object shapes related with same as within
a scene are consistent as indicated by low CD values
(×0.001), whereas the shapes across different runs
have high diversity, per high KL divergence.

of relations on a generated layout. We calculate the spatial left/right, front/behind,
smaller/larger, taller/shorter metrics, as well as more difficult proximity constraints
close by and symmetrical. To measure the shape consistency, we test dining rooms, a typical
scenario in which tables and chairs should be in suits according to the commonsense decoration. We
identify matching dining chairs and tables in 3D-FRONT using the same CAD models and note their
instance IDs. This helps us determine which entities belong to the same sets. We calculate Chamfer
Distance (CD) of each of the two objects in each set after generation. To measure the shape diversity,
we follow [13] to generate each scene 10 times and evaluate the change of corresponding shapes
using CD. We illustrate the concepts of diversity and consistency in Figure 5. We also report MMD,
COV, and 1-NNA following [66] for the object-level evaluation in the Supplementary Materials.

Compared Baselines We include three types of baseline methods. First, three retrieval-based
methods, i.e., a layout generation network 3D-SLN [35], a progressive method to add objects one-
by-one designed in [13], and Graph-to-Box from [13]. Second, a semi-generative SOTA method
Graph-to-3D. Third, an intuitive method called layout+txt2shape that we design according to the
instruction in Sec. 1, stacking a layout network and a text-to-shape generation model in series, and it
is a fully generative approach with text only. All baseline methods are trained on the SG-FRONT
dataset following the public implementation and training details.

5.1 Graph Conditioned Scene Generation

Qualitative results The generated scenes from different baselines are shown in Figure 4: (a) Graph-
to-Box retrieval, (b) Graph-to-3D, (c) layout+txt2shape, and (d) ours. It can be seen that our method
has better shape consistency and diversity. Specifically, in terms of object shape quality, retrieval
baseline scenes look optimal since they are based on real CAD models. Yet, the layout configuration
is poor, and the retrieved object styles are not plausible, e.g., dining chairs and nightstands are not
in a suit, respectively, in the same rooms. Graph-to-3D improves this by learning coherent scenes.
However, the object styles are not conserved within scene styles, providing unrealistic scene-object
inconsistency, e.g., in the bedroom, the height of the chair does not match the style and the height
of the table. Subsequently, (c) improves the layout, which can be seen in the living room area, but
again falls back on the generated shape quality and shares the same problem with Graph-to-Box on
the poor object-object consistency. In contrast, CommonScenes can capture diverse environments
considering both generation consistency and stylistic differences with respect to each scene. In the
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Method Shape
Representation

Easy Hard∗
left / right front / behind smaller / larger taller / shorter close by∗ symmetrical∗

3D-SLN [35]

Retrieval

0.97 0.99 0.95 0.91 0.72 0.47
Progressive [13] 0.97 0.99 0.95 0.82 0.69 0.46
Graph-to-Box [13] 0.98 0.99 0.96 0.95 0.72 0.45
Ours w/o SB 0.98 0.99 0.97 0.95 0.74 0.63
Graph-to-3D [13] DeepSDF [42] 0.98 0.99 0.97 0.95 0.74 0.57
Ours rel2shape 0.98 1.00 0.97 0.95 0.77 0.60

Table 3: Scene graph constrains on the generation task (higher is better). The total accuracy is computed as the
mean over the individual edge class accuracy to minimize class imbalance bias.

Method Shape
Representation Mode Easy Hard∗

left /right front / behind smaller / larger taller / shorter close by∗ symmetrical∗
3D-SLN [35]

Retrieval

change

0.89 0.90 0.55 0.58 0.10 0.09
Progressive [13] 0.89 0.89 0.52 0.55 0.08 0.09
Graph-to-Box [13] 0.91 0.91 0.86 0.91 0.66 0.53
Ours w/o SB 0.91 0.92 0.86 0.92 0.70 0.53

Graph-to-3D [13] DeepSDF [42] 0.91 0.92 0.86 0.89 0.69 0.46
Ours rel2shape 0.91 0.92 0.86 0.91 0.69 0.59

3D-SLN [35]

Retrieval

addition

0.92 0.92 0.56 0.58 0.05 0.05
Progressive 0.92 0.91 0.53 0.54 0.02 0.06
Graph-to-Box [13] 0.94 0.93 0.90 0.94 0.67 0.58
Ours w/o SB 0.95 0.95 0.90 0.94 0.73 0.63
Graph-to-3D [13] DeepSDF [42] 0.94 0.95 0.91 0.93 0.63 0.47
Ours rel2shape 0.95 0.95 0.91 0.95 0.70 0.61

Table 4: Scene graph constraints on the manipulation task (higher is better). The total accuracy is computed as
the mean over the individual edge class accuracy to minimize class imbalance bias. Top: Relationship change
mode. Bottom: Node addition mode.

living room, the scene graph input requires that Table No.3 and Table No.4 should stand close to each
other. Graph-to-Box and Graph-to-3D fail to achieve the goal, which is also reflected in Table 3 and
Table 4 that these kinds of methods cannot handle close by relation. We show more results in
Supplementary Material.

Quantitative results We provide the FID/KID scores in Table 1 separated as average over three
room types. Our method establishes the best results among the free-shape representation methods
by improving the Graph-to-3D by approximately 10% on FID and 40% on KID on average. On the
other hand, most of the layout+txt2shape results are worse than the previous state-of-the-art methods,
proving the requirement of learning layout and shape jointly. Notably, the retrieval-based methods
overall have better scores than those of free shapes since the retrieved objects align well with the
test database. Further on, among the retrieval baselines, ours without the diffusion shape branch
(Ours w/o SB) surpasses the prior works, indicating the benefit of contextual graph representation.
Additionally, on the generation consistency, we can observe in Table 2 that our method can reflect
the edge relationship in the generated shapes directly, indicated by significant improvement in the
consistency score. By leveraging the latent diffusion model, our diversity is significantly improved
compared with other methods. We provide more results on diversity and also show perceptual study
on the evaluation of consistency and diversity in the Supplementary Material.

In terms of scene graph constraints, we present the results as easy and hard metrics in Table 3. On
easy metrics, our methods (Ours, Ours w/o SB) are either better than or on par with other methods.
While on hard metrics, they are superior to others. It shows that the spatial relationships could be
learned easier than the proximity (close by) and commonsense (symmetrical) based ones.
The improvement over the symmetrical constraint is particularly evident, as our method surpasses
the state-of-the-art (SOTA) by 10%. This demonstrates that the integrated layout and shape cues are
crucial for learning these contextual configurations.

5.2 Scene Manipulation

We demonstrate the downstream application of scene manipulation on our method and compare
it with the aforementioned methods on scene graph constraints in Table 4. Our methods have the
highest total score in both relation change and object addition modes. In both modes, the results are
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on par with Graph-to-3D on easy relations, whereas there is a major improvement in the hard ones.
Further, within the retrieval methods, Ours w/o SB improves over the baselines in the addition mode
and is on par in the change mode. It could be argued that changing could be more difficult since it
could alter multiple objects, whereas object insertion has less effect on the overall scene. We show
some qualitative manipulation examples in the Supplementary Material.

5.3 Ablations

We ablate the primary components of CommonScenes in Table 5, including (1) scene generation
from the original scene graph without contextual information brought by CLIP features, (2) scene
generation from the contextual graph without the participation of the relational encoder Er, (3)
conditioning with concatenation on diffusion latent code instead of cross-attention, and (4) our final
proposed method. We provide the mean FID scores over the scenes, as well as the mean over the
hard scene graph constraints (mSG). We observe the benefit of both the context and Er indicated by
FID/KID scores, as well as the choice of our conditioning mechanism.

Scene Graph Input Failure Case

Figure 6: An interpenetrating phenomenon.

Condition FID KID mSG

Ours w/o context 50.24 5.63 0.59
Ours w/o Er 51.62 5.41 0.73
Ours with concat 48.57 4.25 0.71
Ours 45.70 3.84 0.74

Table 5: Ablations under three circumstances.

6 Limitations

We address the main aspects of the dataset and the limitations of our method and discuss more
in the Supplementary Materials. First, the 3D-FRONT dataset used in our research contains
significant noise, which we have mitigated through a post-processing step. Despite this effort,
a small proportion of noisy data, specifically interpenetrating furniture instances, remains in the
training dataset. Consequently, our proposed method and the baseline approaches reflect this during
inference, rarely resulting in occurrences of scenes with collided objects. We show some cases
in Figure 6. While our method outperforms others by effectively combining shape and layout
information, it is essential to note that minor collision issues may still arise.

7 Conclusion

Scene graph-based CSS designs interactive environments suitable for a wide range of usages.
Current methods heavily depend on object retrieval or pre-trained shape models, neglecting
inter-object relationships and resulting in inconsistent synthesis. To tackle this problem, we
introduce CommonScenes, a fully generative model that transforms scene graphs into corresponding
commonsense 3D scenes. Our model regresses scene layouts via a variational auto-encoder, while
generating satisfying shapes through latent diffusion, gaining higher shape diversity and capturing
the global scene-object relationships and local object-object relationships. Additionally, we annotate
a scene graph dataset, SG-FRONT, providing object relationships compatible with high-quality
object-level meshes. Extensive experiments on SG-FRONT show that our method outperforms other
methods in terms of generation consistency, quality, and diversity.
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