Supplementary Materials: SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling

Anonymous Author(s) Affiliation Address email

1 A Implementation Details

2 All the experiments are repeated five times, implemented in PyTorch [12] and conducted on NVIDIA

³ A100 SXM4 40GB GPU. We implement the baselines based on their official implementation and

4 follow the configuration from their original papers. For the metrics, we adopt the mean square error

5 (MSE) and mean absolute error (MAE) for the time series forecasting. As for the classification,

⁶ accuracy, precision, recall, F1 score, and their average value are recorded.

7 A.1 Dataset Description

We conduct experiments to evaluate the effect of our method under in-domain and cross-domain 8 settings on twelve real-world datasets for two typical time series analysis tasks: forecasting and 9 classification, covering diverse application scenarios (electricity system, neurological healthcare, 10 human activity recognition, mechanical fault detection, and physical status monitoring), different 11 types of signals (ECG, EMG, acceleration, vibration, power load, weather, and transoirtation), 12 multivariate channel dimensions (from 1 to 862), varying times series lengths (from 96 to 5120) and 13 large span sampling ratio (from 100 Hz to 4000 Hz). The detailed descriptions of these datasets are 14 summarized in Table 1. 15

(1) ETT (4 subsets) [26] contains the time series of oil temperature and power load collected by
 electricity transformers from July 2016 to July 2018. ETT is a group of four subsets with different
 recorded frequencies: ETTh1/ETTh2 are recorded every hour, and ETTm1/ETTm2 are recorded
 every 15 minutes.

(2) WEATHER [18] includes meteorological time series with 21 weather indicators collected every
 10 minutes from the Weather Station of the Max Planck Biogeochemistry Institute in 2020.

(3) ELECTRICITY [15] records the hourly electricity consumption of 321 clients from 2012 to
2014. Values are in kW of each 15 min. All time labels report to Portuguese hour. However, all days
present 96 measures (24×4). For every year in March, time change day (which has only 23 hours),
values between 1:00 am and 2:00 am are zero for all points. For every year in October, time change
day (which has 25 hours), the values between 1:00 am and 2:00 am aggregated consumption of two
hours.

(4) TRAFFIC [13] encompasses the hourly measures of road occupancy rates obtained from 862
 sensors situated in the San Francisco Bay area freeways. These measurements were carried out
 between January 2015 and December 2016.

(5) SLEEPEEG [6] contains 153 whole-night sleeping electroencephalography (EEG) recordings
 from 82 healthy subjects. We follow the same data preprocessing approach as [25] to segment the
 EEG signals without overlapping and get 371,055 univariate brainwaves. Each brainwave is sampled

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Tasks	Datasets	Channels	Length	Samples	Classes	Information	Frequency
	ETTh1,ETTh2	7	{96,192,336,720}	8545/2881/2881	-	Electricity	1 Hour
Forecasting	ETTm1,ETTm2	7	{96,192,336,720}	34465/11521/11521	-	Electricity	15 Mins
	Weather	21	{96,192,336,720}	36792/5271/10540	-	Weather	10 Mins
	Electricity	321	{96,192,336,720}	18317/2633/5261	-	Electricity	1 Hour
	Traffic	862	{96,192,336,720}	12185/1757/3509	-	Transportation	1 Hour
	SleepEEG	1	200	371005/-/-	5	EEG	100 Hz
tion	Epilepsy	1	178	60/20/11420	2	EEG	174 Hz
ssifica	FD-B	1	5120	60/21/135599	3	Faulty Detection	64K Hz
Cla	Gesture	3	315	320/120/120	8	Hand Movement	100 Hz
	EMG	1	1500	122/41/41	3	Muscle responses	4K Hz

Table 1: Dataset descriptions. Samples are organized in (Train/Validation/Test).

at a frequency of 100 Hz and associated with one of five sleeping stages: Wake, Non-rapid eye 34 movement (3 sub-states), and Rapid Eye Movement. 35

(6) **EPILEPSY** [1] monitors the brain activities of 500 subjects with a single-channel EEG sensor. 36 Every subject is recorded for 23.6 seconds of brain activities. The dataset is sampled at 178 Hz and 37 contains 11,500 samples in total. We follow the procedure described by [25]. The first four classes 38 (eyes open, eyes closed, EEG measured in the healthy brain region, and EEG measured in the tumor 39 region) of the original five categories of each sample are classified as positive, and the remaining 40

classes (whether the subject has a seizure episode) are used as negative. 41

(7) FD-B [7] is generated by electromechanical drive systems. It monitors the condition of rolling 42 43 bearings and detects their failures based on the monitoring conditions, which include speed, load torque, and radial force. Concretely, FD-B has 13,640 samples in total. Each recording is sampled at 44 64k Hz with 3-class labels: undamaged, inner damaged, and outer damaged. 45

(8) GESTURE [9] are collected from 8 hand gestures based on the paths of hand movement recorded 46 by an accelerometer. The eight gestures are hand swiping left, right, up, and down, hand waving in a 47 counterclockwise or clockwise circle, hand waving in a square, and waving a right arrow, respectively. 48 This dataset contains 440 examples of balanced classification labels that can be used, and each sample 49 includes eight different kinds of gesture categories. 50

(9) EMG [14] is sampled with 4K Hz and consists of 163 single-channel EMG recordings from the 51 anterior tibialis muscle of three healthy volunteers suffering from neuropathy and myopathy. Each 52

patient is a classification category, so each sample is associated with one of three classes. 53

A.2 Baselines Implementation 54

We compare our proposed SimMTM against six state-of-the-art baselines. To make a fair and 55 comprehensive comparison, we tried two baseline implementation approaches for forecasting and 56 classification tasks: the unified encoder and reproduced with their official implementation encoder. 57 Notably, the designs of LaST [17] and TF-C [25] are closely related to model structures. We directly 58 report results from their papers or reproduce codes with official implementation. 59

(1) **Unified encoder**. We attempt to unify the encoder for these pre-training methods. Specifically, 60 we adopt the vanilla Transformer [16] with channel independent [11] for forecasting to accomplish 61 cross-domain transfer between datasets with different variate numbers. As for the classification, we 62 use 1D-ResNet [5] as the encoder following [25]. Besides, we do a comprehensive hyperparameter 63

Baselines	Task	Encoder	Performance Comparison	Report
	Forecasting	Channel-independent Transformer	better	Main text
Ti-MAE [8]		Official implementation		Section E
	Classification	1D-ResNet	better	Main text
		Official implementation		Section E
	Forecasting	Channel-independent Transformer	better	Main text
TST [24]		Official implementation		Section E
	Classification	1D-ResNet	better	Main text
		Official implementation		Section E
LaST [17]	Forecasting	Official implementation	/	Main text
	Classification	Official implementation	/	Main text
TF-C [25]	Forecasting	Official implementation	/	Main text
- [-]	Classification	Official implementation	/	Main text
	Forecasting	Channel-independent Transformer	better	Main text
CoST [20]		Official implementation		Section E
	Classification	1D-ResNet	better	Main text
		Official implementation		Section E
	Forecasting	Channel-independent Transformer	better	Main text
TS2Vec [23]		Official implementation		Section E
102.00[20]	Classification	1D-ResNet	better	Main text
		Official implementation		Section E

search for all baselines. For the Transformer encoder, we vary the number of Transformer layers in $\{1, 2, 3, 4\}$, select the model dimension from $\{16, 32, 64, 128, 256\}$, and the attention head from $\{4, 8, 16, 32\}$. For the 1D-ResNet, we search the number of 1D-ResNet layers from $\{1, 2, 3, 4\}$, the kernel size from $\{3, 5, 8\}$ respectively. Additionally, for the masked modeling methods TST [24], Ti-MAE [8], we also searched the masked ratio $r = \{0.125, 0.25, 0.5, 0.75\}$ for better performance.

(2) Official implementation. We also implement the baselines following the corresponding official
 codes, including encoder, hyperparameters, etc. The comparisons are included in Section E of this
 supplementary material. We directly report the results from their original papers for the same set. For
 mismatched settings, the results are from our implementation.

Finally, for baselines Ti-MAE [8], TST [24], CoST [20], and TS2Vec [23], we report the results based on the unified encoder in the main text. But for baselines LaST [17] and TF-C [25], we report the results of the official code implementation or their original paper, which are limited by their model structures. As a result, the performances of all baselines with unified encoder (that we reported in the main text) generally surpass their official implementation and results reported in their own paper. Table 2 shows more details. Full experimental results are in Section E.

79 A.3 Pre-training and Fine-tuning Configuration

We built two types of pre-training and fine-tuning scenarios, in-domain and cross-domain, based on
 the benchmarks of forecasting and classification tasks to compare the effectiveness of our method
 and other time series pre-training methods.

⁸³ We pre-train a model on one subset for forecasting tasks and fine-tune it to the same dataset to ⁸⁴ build seven in-domain transfer evaluation scenarios. In cross-domain evaluation, we pre-train a

⁸⁵ model on one specific dataset and then use the other datasets for fine-tuning. Based on the above

set settings, we constructed fifteen in-domain and cross-domain pre-training and fine-tuning experiments,

87 covering the same dataset with the same sampled frequency, different datasets with the same sampled

⁸⁸ frequency, and different datasets with different sampled frequencies.

Tasks	Evaluation	Scenarios	Characteristic
Fore.	In-domain	ETTh1 \rightarrow ETTh1 ETTh2 \rightarrow ETTh2 ETTm1 \rightarrow ETTm1 ETTm2 \rightarrow ETTm2 Weather \rightarrow Weather Electricity \rightarrow Electricity Traffic \rightarrow Traffic	The same dataset with the same frequency
	Cross-domain	ETTh2 \rightarrow ETTh1 ETTm2 \rightarrow ETTm1 {ETTm1, ETTm2, Weather} \rightarrow ETTh1 {ETTh1, ETTh2, Weather} \rightarrow ETTm1	Different datasets with the same frequency.
Class	In-domain	Epilepsy \rightarrow Epilepsy	The same dataset with the same frequency.
2-4001	Cross-domain	SleepEEG \rightarrow {Epilepsy, FD-B, Gesture, EMG}	Different datasets with different frequencies.

Table 3: Pre-training and fine-tuning scenarios for time series forecasting (Fore.) and classification (Class.) tasks, including the same and different datasets and in- and cross-domain settings.

We use the same dataset, Epilepsy, to construct the in-domain setting for classification tasks. For the
cross-domain setting, we pre-train a model for classification tasks on a univariate time series dataset
SleepEEG with the most complex temporal dynamics and the most samples. And then fine-tune
the model separately on Epilepsy, FD-B, Gesture, and EMG. Furthermore, we constructed four
cross-domain evaluation scenarios by pre-training from SleepEEG and fine-tuning to Epilepsy, FD-B,
Gesture, and EMG because of fewer commonalities and the enormous gap among these datasets.
Table 3 shows detailed pre-training and fine-tuning settings.

96 A.4 Model and Training Configuration

Following the previous convention, we choose the encoder part of Transformer [16] with channel independent as the feature extractor for forecasting tasks. For the classification tasks, we adopt 1D-ResNet [5] as the encoder following [25]. In the pre-training stages, we pre-train the model with different learning rates and batch sizes according to the pre-train datasets. Then we fine-tune it to downstream forecasting and classification tasks supervised by L2 and Cross-Entropy losses, respectively. The configuration details are in Table 4.

Table 4: Model and training configuration in Forecasting (Fore.) and Classification (Class.) tasks.

Tasks	Enc	oder	Pre	-training		Fine-tuning					
	e_{layers}	$d_{\rm model}$	learning rate	batch size	epochs	learning rate	loss function	batch size	epochs		
Fore.	2	16	1e-3	32	50	1e-4	L2	{16,32}	10		
Class.	3	128	1e-4	128	10	1e-4	Cross-Entropy	32	300		

103 B Hyperparameter Sensitivity

We verify the hyperparameter sensitivity of the proposed time series pre-training method SimMTM on ETTh1 in Table 5, including masked ratio (r), the number of masked series (M), temperature (τ) , masked function (Mask), encoder depth (e_{layers}), and the hidden dimension (d_{model}). Lower MSE and MAE represent better performance.

As shown in Table 5 (a) and 5 (b), we can observe the effect of the method is closely related to 108 the trade-off of the masked ratio and the number of masked series. Hence, a reasonable balance 109 between the two kinds of parameters is critical. For the temperature hyperparameter of softmax 110 normalization (τ), we use an appropriately small τ that leads to higher differences and diversity of 111 masked sequences. For the masked methods, we chose two masked methods for verification: masking 112 following random distribution and masking following geometric distribution [24]. The results show 113 that the method based on geometric masking is better than random masking modeling. Besides, 114 we can find that 2 encoder layers are enough for reconstruction tasks. Note our method SimMTM 115 consistently performs better than training from scratch under various hyperparameter changes. 116

Table 5: Hyperparameter sensitivity experiments on ETTh1 for the in-domain setting. The entries marked in bold are the same which specify the default settings. This table format follows [4].

(a) M	lasked ratio	1	(b) Ma	asked numb	ers	(c) Temperature				
Ratio	MSE	MAE	Numbers	MSE	MAE	Value	MSE	MAE		
12.5%	0.429	0.440	1	0.429	0.437	0.02	<mark>0.409</mark>	<mark>0.428</mark>		
25%	0.427	0.434	2	0.416	0.429	0.2	0.409	0.429		
50%	<mark>0.409</mark>	<mark>0.428</mark>	3	<mark>0.409</mark>	<mark>0.428</mark>	2	0.416	0.428		
75%	0.422	0.434	4	0.419	0.431					
(d) Ma	sked function	on	(e) E	ncoder dept	th	(f) Hide	len layer di	nension		
Туре	MSE	MAE	Layers	MSE	MAE	Dim	MSE	MAE		
Random	0.409	0.431	1	0.420	0.426	16	<mark>0.409</mark>	<mark>0.428</mark>		
Geometric	<mark>0.409</mark>	<mark>0.428</mark>	2	<mark>0.409</mark>	<mark>0.428</mark>	32	0.420	0.432		
			3	0.421	0.430	64	0.422	0.434		
		4	0.426	0.436	128	0.428	0.444			

117 C Ablations on Aggregation Setting

SimMTM proposes to recover masked time points by the weighted aggregation of multiple neighbors outside the manifold. We explored two types of aggregation settings.

(1) Positive Samples Aggregation (PSA): only aggregate multiple positive neighbors (the masked
 series of the same sample) to reconstruct masked time points.

(2) Positive and Negative Samples Aggregation (PNSA): aggregate both positive and negative
 neighbors (the masked series of all samples) to reconstruct masked time points.

As shown in Table 6, although PSA made good progress compared to training from scratch (Random 124 Init.), PNSA is consistently better than SimMTM PSA in all ablation settings. In masked time-series 125 modeling, masking can be viewed as adding noise to the original data, and masked modeling is 126 to project masked data from the neighborhood back to the original manifold. We use positive and 127 negative masked time series as the reconstruction candidates to drive the model to select the positive 128 samples adaptively, which can make the model learn the structure of the manifold better. Therefore, 129 as stated in the Method Section of the main text, we choose positive and negative sample aggregation 130 (PNSA) as the standard aggregation setting of SimMTM. 131

Table 6: Ablatio and cross-domai	ons or in set	aggrega tings. A	ation set smaller	ting in fo MSE or	orecastin a highe	ng (<i>MSE</i> r Accura	E) and c acy indi	classifica icates a b	tion (Ac	c) tasks f sult (†).	or in-
	1						1				

Tasks	sks Evaluation Scenarios		Aggregation	Metric
Forecasting	In-domain	$ETTh1 \rightarrow ETTh1$	Random init. SimMTM (PSA) SimMTM (PNSA)	0.431 0.420 ↑ <mark>0.409 ↑</mark>
	Cross-domain	$ETTh2 \rightarrow ETTh1$	Random init. SimMTM (PSA) SimMTM (PNSA)	0.431 0.426 ↑ 0.415 ↑
Classification	In-domain	Epilepsy \rightarrow Epilepsy	Random init. SimMTM (PSA) SimMTM (PNSA)	89.83 92.56 ↑ <mark>94.75 ↑</mark>
	Cross-domain	$SleepEEG \rightarrow EMG$	Random init. SimMTM (PSA) SimMTM (PNSA)	77.80 87.80 ↑ 97.56 ↑

132 D Comparison of Masked Modeling

To investigate the reconstruction process of different masked modeling methods, we plot both 133 original and reconstructed time series from TST and SimMTM in Figure 1, where TST [24] follows 134 the canonical masked modeling paradigm and learns to predict removed time points based on the 135 remaining time points. In Figure 1, we can find that direct reconstruction is too difficult in time 136 series, even for the 12.5% masking ratio. As for the 75% masking ratio, TST degenerates more 137 seriously. Because of this poor reconstruction effect, direct reconstruction is difficult to provide 138 reliable guidance to model pre-training. In contrast, our proposed SimMTM can precisely reconstruct 139 the original time series, benefiting the representation learning. These results also support our design 140 in neighborhood reconstruction. 141

Figure 1: Comparison of the canonical masked modeling paradigm TST and neighborhood aggregation masked modeling SimMTM in reconstructing time series. All the cases are shown from ETTh1.

142 E Full Results

Due to the limited length of the text, we summarize all the experiments in the main text into two parts: the main experiment and the analytical experiment. We categorize and index them in Tabel 7, 8.

Tasks	Evaluation	Evaluation Encoder					
	In-domain	The model utilized in the original papers	Table 9				
Forecasting		Transformer with channel independent	Table 10				
	Cross-domain	The model utilized in the original papers	Table 11				
		Transformer with channel independent	Table 12				
	In-domain	The model utilized in the original papers	Table 17				
Classification		1D-ResNet	Table 18				
	Cross-domain	The model utilized in the original papers	Table 17				
		1D-ResNet	Table 18				

Table 7: The main results of pre-training and fine-tuning scenarios for time series forecasting and classification tasks, including the same and different encoder for in- and cross-domain settings.

Table 8: The model analysis results of pre-training and fine-tuning scenarios for time series forecasting and classification tasks with the unified encoder for in- and cross-domain settings.

Tasks	Evaluation	Analysis	Tabels Name		
	In-domain	Ablation study	Table 13		
Forecasting		Model generality	Table 15		
	Cross-domain	Ablation study	Table 14		
		Limited data	Table 16		
Classification	In-domain	Ablation study	Table 19		
Chassinearion	Cross-domain	Ablation study	Table 19		

145 F Limitations

SimMTM is inspired by the manifold perspective of masked modeling. Although we have provided
relatively comprehensive results to verify the model's effectiveness, the model performance still
needs theoretical guarantees. In fact, the most high-impact works in the self-supervised pre-training
community are without theoretical analysis, such as BERT [2], GPT-3 [3], MAE [4] and SimMIM
[22]. Thus, we would like to leave this problem as a future work.

The masking ratio of masked modeling methods is an essential hyper-parameter. Although we have provided a chosen principle to masking ratio r and the number of masked time series M as $M \propto r$ in the main text, we still need to tune these two hyperparameters for different datasets to achieve the best performance. Notably, previous methods also chose the masking ratio solely based on the empirical results [2, 4]. Thus, despite there exist limitations of SimMTM in choosing hyperparameters, the principle of $M \propto r$ can somewhat ease this problem. And the chosen strategy of the masking ratio can also be a potential topic in masked modeling [19].

158 G Social Impacts

This paper presents SimMTM as a new masked modeling method for time series. SimMTM achieves state-of-the-art in two mainstream time series analysis tasks, which can be a good supplement for the self-supervised pre-training community. We will also publish the codebase of time-series pre-training

162 to facilitate future research.

¹⁶³ This paper only focuses on the algorithm design. Using all the codes and datasets strictly follows the ¹⁶⁴ corresponding licenses (Appendix A.1). There is no potential ethical risk or negative social impact.

Table 9: Complete results of long-term forecasting tasks for the in-domain setting of forecasting the future $O \in \{96, 192, 336, 720\}$ time points based on the past 336 time points. All the results of baselines are based on the encoder utilized in their original papers. The standard deviations of SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Mo	odels	SimN	ИТМ	Rando	om init.	Ti-MA	AE [8]	TST	[24]	LaST	[17]	TF-C	[25]	CoST	[20]	TS2Ve	c [23]
Μ	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.379	0.407	0.380	0.412	0.708	0.570	0.503	0.527	0.399	0.412	0.463	0.406	0.514	0.512	0.709	0.650
'nl	192	0.412	0.424	0.416	0.434	0.725	0.587	0.601	0.552	0.484	0.468	0.531	0.540	0.655	0.590	0.927	0.757
E	336	0.421	0.431	0.448	0.458	0.713	0.589	0.625	0.541	0.580	0.533	0.535	0.545	0.790	0.666	0.986	0.811
щ	720	0.424	0.449	0.481	0.487	0.736	0.618	0.768	0.628	0.432	0.432	0.577	0.562	0.880	0.739	0.967	0.790
	Avg	0.409	0.428	0.431	0.448	0.721	0.591	0.624	0.562	0.474	0.461	0.527	0.513	0.710	0.627	0.897	0.752
	96	0.293	0.347	0.325	0.374	0.443	0.465	0.335	0.392	0.331	0.390	0.463	0.521	0.465	0.482	0.506	0.477
h2	192	0.355	0.386	0.400	0.424	0.533	0.516	0.444	0.441	0.451	0.452	0.525	0.561	0.671	0.599	0.567	0.547
E	336	0.370	0.401	0.405	0.433	0.445	0.472	0.455	0.494	0.460	0.478	0.850	0.883	0.848	0.776	0.694	0.628
щ	720	0.395	0.427	0.451	0.475	0.507	0.498	0.481	0.504	0.552	0.509	0.930	0.932	0.871	0.811	0.728	0.838
	Avg	0.353	0.390	0.395	0.427	0.482	0.488	0.429	0.458	0.449	0.457	0.692	0.724	0.714	0.667	0.624	0.623
	96	0.288	0.348	0.295	0.346	0.647	0.497	0.454	0.456	0.316	0.355	0.419	0.401	0.376	0.420	0.563	0.551
nl	192	0.327	0.373	0.333	0.374	0.597	0.508	0.471	0.490	0.349	0.366	0.471	0.438	0.420	0.451	0.599	0.558
Ē	336	0.363	0.395	0.370	0.398	0.699	0.525	0.457	0.451	0.429	0.407	0.540	0.509	0.482	0.494	0.685	0.594
Ы	720	0.412	0.424	0.427	0.431	0.786	0.596	0.594	0.488	0.496	0.464	0.552	0.548	0.628	0.578	0.831	0.698
	Avg	0.348	0.385	0.356	0.387	0.682	0.532	0.494	0.471	0.398	0.398	0.496	0.474	0.477	0.486	0.670	0.600
	96	0.172	0.261	0.175	0.268	0.304	0.357	0.363	0.301	0.163	0.255	0.401	0.477	0.276	0.384	0.448	0.482
n2	192	0.223	0.300	0.240	0.312	0.334	0.387	0.342	0.364	0.239	0.303	0.422	0.490	0.500	0.532	0.545	0.536
Ë	336	0.282	0.331	0.298	0.351	0.420	0.441	0.414	0.361	0.259	0.366	0.513	0.508	0.680	0.695	0.681	0.744
Ы	720	0.374	0.388	0.403	0.413	0.508	0.481	0.580	0.456	0.397	0.382	0.523	0.772	0.925	0.914	0.691	0.837
	Avg	0.263	0.320	0.279	0.336	0.392	0.417	0.425	0.371	0.265	0.327	0.465	0.562	0.595	0.631	0.591	0.650
	96	0.158	0.211	0.166	0.216	0.216	0.280	0.292	0.370	0.153	0.211	0.215	0.296	0.327	0.359	0.433	0.462
ner	192	0.199	0.249	0.208	0.254	0.303	0.335	0.410	0.473	0.207	0.250	0.267	0.345	0.390	0.422	0.508	0.518
eatl	336	0.246	0.286	0.257	0.290	0.351	0.358	0.434	0.427	0.249	0.264	0.299	0.360	0.477	0.446	0.545	0.549
Š	720	0.317	0.337	0.326	0.338	0.425	0.399	0.539	0.523	0.319	0.320	0.361	0.395	0.551	0.586	0.576	0.572
	Avg	0.230	0.271	0.239	0.275	0.324	0.343	0.419	0.448	0.232	0.261	0.286	0.349	0.436	0.453	0.516	0.525
~	96	0.133	0.223	0.190	0.279	0.399	0.412	0.292	0.370	0.166	0.254	0.366	0.436	0.230	0.353	0.322	0.401
cit.	192	0.147	0.237	0.195	0.285	0.400	0.460	0.270	0.373	0.178	0.278	0.366	0.433	0.253	0.371	0.343	0.416
ctri	336	0.166	0.265	0.211	0.301	0.564	0.573	0.334	0.323	0.186	0.275	0.358	0.428	0.197	0.287	0.362	0.435
Ele	720	0.203	0.297	0.253	0.333	0.880	0.770	0.344	0.346	0.213	0.288	0.363	0.431	0.230	0.328	0.388	0.456
	Avg	0.162	0.256	0.212	0.300	0.561	0.554	0.310	0.353	0.186	0.274	0.363	0.432	0.228	0.335	0.354	0.427
	96	0.368	0.262	0.471	0.309	0.431	0.482	0.559	0.454	0.706	0.385	0.613	0.340	0.751	0.431	0.321	0.367
ĴĊ,	192	0.373	0.251	0.475	0.308	0.491	0.346	0.583	0.493	0.709	0.388	0.619	0.516	0.751	0.424	0.476	0.367
raffi	336	0.395	0.254	0.490	0.315	0.502	0.384	0.637	0.469	0.714	0.394	0.785	0.497	0.761	0.425	0.499	0.376
Г	720	0.432	0.290	0.524	0.332	0.533	0.543	0.663	0.594	0.723	0.421	0.850	0.472	0.780	0.433	0.563	0.390
	Avg	0.392	0.264	0.490	0.316	0.489	0.399	0.611	0.503	0.713	0.397	0.717	0.456	0.761	0.428	0.501	0.375

Table 10: Complete results of long-term forecasting tasks for the in-domain setting of forecasting the future $O \in \{96, 192, 336, 720\}$ time points based on the past 336 time points. All the results of baseline are based on the unified channel-independent Transformer encoder. The standard deviations of SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Mo	odels	SimN	ИТМ	Rando	om init.	Ti-MA	AE [8]	TST	[24]	LaST	[17]	TF-C	[25]	CoST	[20]	TS2Ve	ec [23]
М	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.379	0.407	0.380	0.412	0.356	0.420	0.401	0.425	-	-	-	-	0.422	0.436	0.392	0.420
11	192	0.412	0.424	0.416	0.434	0.421	0.434	0.427	0.432	-	-	-	-	0.520	0.487	0.445	0.452
Ē	336	0.421	0.431	0.448	0.458	0.447	0.446	0.519	0.487	-	-	-	-	0.472	0.462	0.453	0.455
Щ	720	0.424	0.449	0.481	0.487	0.469	0.482	0.515	0.504	-	-	-	-	0.525	0.501	0.495	0.496
	Avg	0.409	0.428	0.431	0.448	0.423	0.446	0.466	0.462	-	-	-	-	0.485	0.472	0.446	0.456
	96	0.293	0.347	0.325	0.374	0.339	0.378	0.322	0.358	-	-	-	-	0.321	0.374	0.365	0.509
5	192	0.355	0.386	0.400	0.424	0.380	0.402	0.448	0.435	-	-	-	-	0.380	0.403	0.396	0.422
L	336	0.370	0.401	0.405	0.433	0.388	0.323	0.420	0.440	-	-	-	-	0.430	0.451	0.399	0.436
Щ	720	0.395	0.427	0.451	0.475	0.414	0.442	0.424	0.452	-	-	-	-	0.466	0.480	0.508	0.503
	Avg	0.353	0.390	0.395	0.427	0.380	0.386	0.404	0.421	-	-	-	-	0.399	0.427	0.417	0.468
	96	0.288	0.348	0.295	0.346	0.305	0.351	0.310	0.348	-	-	-	-	0.291	0.343	0.681	0.689
Ic	192	0.327	0.373	0.333	0.374	0.343	0.374	0.362	0.380	_	-	-	-	0.330	0.370	0.689	0.551
Ĺ'n	336	0.363	0.395	0.370	0.398	0.387	0.407	0.389	0.402	-	-	-	-	0.382	0.401	0.704	0.559
E	720	0.412	0.424	0.427	0.431	0.428	0.432	0.433	0.427	-	-	-	-	0.422	0.425	0.721	0.571
	Avg	0.348	0.385	0.356	0.387	0.366	0.391	0.373	0.389	-	-	-	-	0.356	0.385	0.699	0.557
	96	0.172	0.261	0.175	0.268	0.174	0.258	0.215	0.296	-	-	-	-	0.242	0.333	0.224	0.303
5	192	0.223	0.300	0.240	0.312	0.257	0.303	0.259	0.323	-	-	-	-	0.283	0.345	0.273	0.331
Ę	336	0.282	0.331	0.298	0.351	0.277	0.333	0.319	0.364	-	-	-	-	0.303	0.349	0.399	0.402
Ξ	720	0.374	0.388	0.403	0.413	0.360	0.404	0.395	0.405	-	-	-	-	0.431	0.431	0.406	0.408
	Avg	0.263	0.320	0.279	0.336	0.267	0.325	0.297	0.347	-	-	-	-	0.314	0.365	0.326	0.361
	96	0.158	0.211	0.166	0.216	0.153	0.196	0.162	0.214	-	-	-	-	0.216	0.280	0.154	0.205
ler	192	0.199	0.249	0.208	0.254	0.214	0.253	0.203	0.252	-	-	-	-	0.303	0.335	0.200	0.243
eatl	336	0.246	0.286	0.257	0.290	0.243	0.272	0.260	0.297	-	-	-	-	0.351	0.358	0.252	0.286
Ň	720	0.317	0.337	0.326	0.338	0.324	0.349	0.330	0.342	-	-	-	-	0.425	0.343	0.324	0.335
	Avg	0.230	0.271	0.239	0.275	0.234	0.265	0.239	0.276	-	-	-	-	0.324	0.329	0.233	0.267
~	96	0.133	0.223	0.190	0.279	0.163	0.255	0.186	0.268	-	-	-	-	0.197	0.277	0.195	0.275
city	192	0.147	0.237	0.195	0.285	0.194	0.288	0.193	0.276	-	-	-	-	0.197	0.279	0.195	0.277
Ë	336	0.166	0.265	0.211	0.301	0.201	0.298	0.206	0.289	-	-	-	-	0.211	0.295	0.210	0.294
Elec	720	0.203	0.297	0.253	0.333	0.263	0.343	0.250	0.324	-	-	-	-	0.255	0.330	0.252	0.327
	Avg	0.162	0.256	0.212	0.300	0.205	0.296	0.209	0.289	-	-	-	-	0.215	0.295	0.213	0.293
	96	0.368	0.262	0.471	0.309	0.448	0.298	0.595	0.360	-	-	-	-	0.378	0.365	0.480	0.357
jç	192	0.373	0.251	0.475	0.308	0.445	0.301	0.576	0.353	-	-	-	-	0.371	0.352	0.439	0.336
aff	336	0.395	0.254	0.490	0.315	0.492	0.320	0.569	0.362	-	-	-	-	0.467	0.354	0.460	0.344
Tr	720	0.432	0.290	0.524	0.332	0.514	0.321	0.603	0.372	-	-	-	-	0.525	0.378	0.499	0.364
	Avg	0.392	0.264	0.490	0.316	0.475	0.310	0.586	0.362	-	-	-	-	0.435	0.362	0.470	0.350

Table 11: Complete results of long-term forecasting tasks for the cross-domain setting of forecasting the future $O \in \{96, 192, 336, 720\}$ time points based on the past 336 time points. All the results of baselines are based on the encoder utilized in their original papers. The standard deviations of SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Models		SimMTM		Rando	m init.	Ti-MA	ь [8]	TST	[24]	LaST	[17]	TF-C	[25]	CoST	[20]	TS2Ve	c [23]
Metr	ic	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.372	0.401	0.380	0.412	0.703	0.562	0.653	0.468	0.362	0.420	0.596	0.569	0.378	0.421	0.849	0.694
ETTh2	192	0.414	0.425	0.416	0.434	0.715	0.567	0.658	0.502	0.426	0.478	0.614	0.621	0.424	0.451	0.909	0.738
↓ ETTh1	336	0.429	0.436	0.448	0.458	0.733	0.579	0.631	0.561	0.522	0.509	0.694	0.664	0.651	0.582	1.082	0.775
LIIII	720	0.446	0.458	0.481	0.487	0.762	0.622	0.638	0.608	0.460	0.478	0.635	0.683	0.883	0.701	0.934	0.769
	Avg	0.415	0.430	0.431	0.448	0.728	0.583	0.645	0.535	0.443	0.471	0.635	0.634	0.584	0.539	0.944	0.744
	96	0.367	0.398	0.380	0.412	0.715	0.581	0.627	0.477	0.360	0.374	0.666	0.647	0.423	0.450	0.991	0.765
ETTm1	192	0.396	0.421	0.416	0.434	0.729	0.587	0.628	0.500	0.381	0.371	0.672	0.653	0.641	0.578	0.829	0.699
↓ ETTh1	336	0.471	0.437	0.448	0.458	0.712	0.583	0.683	0.554	0.472	0.531	0.626	0.711	0.863	0.694	0.971	0.787
LIIII	720	0.454	0.463	0.481	0.487	0.747	0.627	0.642	0.600	0.490	0.488	0.835	0.797	1.071	0.805	1.037	0.820
	Avg	0.422	0.430	0.431	0.448	0.726	0.595	0.645	0.533	0.426	0.441	0.700	0.702	0.750	0.632	0.957	0.768
	96	0.388	0.421	0.380	0.412	0.699	0.566	0.559	0.489	0.428	0.454	0.968	0.738	0.377	0.419	0.783	0.669
ETTm2	192	0.419	0.423	0.416	0.434	0.722	0.573	0.600	0.579	0.427	0.497	1.080	0.801	0.422	0.450	0.828	0.691
↓ ETTh1	336	0.435	0.444	0.448	0.458	0.714	0.569	0.677	0.572	0.528	0.540	1.091	0.824	0.648	0.580	0.990	0.762
EIIII	720	0.468	0.474	0.481	0.487	0.760	0.611	0.694	0.664	0.527	0.537	1.226	0.893	0.880	0.699	0.985	0.783
	Avg	0.428	0.441	0.431	0.448	0.724	0.580	0.632	0.576	0.503	0.507	1.091	0.814	0.582	0.537	0.896	0.726
	96	0.477	0.444	0.380	0.412	-	-	-	-	-	-	-	-	-	-	-	-
Weather	192	0.454	0.522	0.416	0.434	-	-	-	-	-	-	-	-	-	-	-	-
↓ ETTh1	336	0.424	0.434	0.448	0.458	-	-	-	-	-	-	-	-	-	-	-	-
EIIII	720	0.468	0.469	0.481	0.487	-	-	-	-	-	-	-	-	-	-	-	-
	Avg	0.456	0.467	0.431	0.448	-	-	-	-	-	-	-	-	-	-	-	-
	96	0.290	0.348	0.295	0.346	0.667	0.521	0.425	0.381	0.295	0.387	0.672	0.600	0.248	0.332	0.605	0.561
ETTh1	192	0.327	0.372	0.333	0.374	0.561	0.479	0.495	0.478	0.335	0.379	0.721	0.639	0.336	0.391	0.615	0.561
↓ ETTm1	336	0.357	0.392	0.370	0.398	0.690	0.533	0.456	0.441	0.379	0.363	0.755	0.664	0.381	0.421	0.763	0.677
	720	0.409	0.423	0.427	0.431	0.744	0.583	0.554	0.477	0.403	0.431	0.837	0.705	0.469	0.482	0.805	0.664
	Avg	0.346	0.384	0.356	0.387	0.666	0.529	0.482	0.444	0.353	0.390	0.746	0.652	0.359	0.407	0.697	0.616
	96	0.322	0.347	0.295	0.346	0.658	0.505	0.449	0.343	0.314	0.396	0.677	0.603	0.253	0.342	0.466	0.480
ETTh2	192	0.332	0.372	0.333	0.374	0.594	0.511	0.477	0.407	0.587	0.545	0.718	0.638	0.367	0.392	0.557	0.532
↓ ETTm1	336	0.394	0.391	0.370	0.398	0.732	0.532	0.407	0.519	0.631	0.584	0.755	0.663	0.388	0.431	0.646	0.576
	720	0.411	0.424	0.427	0.431	0.768	0.592	0.557	0.523	0.368	0.429	0.848	0.712	0.498	0.488	0.752	0.638
	Avg	0.365	0.384	0.356	0.387	0.688	0.535	0.472	0.448	0.475	0.489	0.750	0.654	0.377	0.413	0.606	0.556
	96	0.297	0.348	0.295	0.346	0.647	0.497	0.471	0.422	0.304	0.388	0.610	0.577	0.239	0.331	0.586	0.515
ETTm2	192	0.332	0.370	0.333	0.374	0.597	0.508	0.495	0.442	0.429	0.494	0.725	0.657	0.339	0.371	0.624	0.562
↓ FTTm1	336	0.364	0.393	0.370	0.398	0.700	0.525	0.455	0.424	0.499	0.523	0.768	0.684	0.371	0.421	1.035	0.806
211111	720	0.410	0.421	0.427	0.431	0.786	0.596	0.498	0.532	0.422	0.450	0.927	0.759	0.467	0.481	0.780	0.669
	Avg	0.351	0.383	0.356	0.387	0.682	0.531	0.480	0.455	0.414	0.464	0.758	0.669	0.354	0.401	0.756	0.638
	96	0.304	0.354	0.295	0.346	-	-	-	-	-	-	-	-	-	-	-	-
Weather	192	0.338	0.375	0.333	0.374	-	-	-	-	-	-	-	-	-	-	-	-
↓ ETTm1	336	0.371	0.397	0.370	0.398	-	-	-	-	-	-	-	-	-	-	-	-
	/20	0.417	0.426	0.427	0.431	-	-	-	-	-	-	-	-	-	-	-	-
	Avg	0.358	0.388	0.356	0.387	-	-	-	-	-	-	-	-	-	-	-	-

Table 12: Complete results of long-term forecasting tasks for the in-domain setting. **All the results of baseline are based on the unified channel-independent Transformer encoder.** The past sequence length is set as 336. The unified channel-independent transformer model can perform the transfer experiment between datasets with different variables. The standard deviations of SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Mode	els	SimN	МТМ	Rando	m init.	Ti-MA	AE [8]	TST	[24]	LaST	[17]	TF-C	[25]	CoST	[20]	TS2Ve	ec [23]
Metr	ic	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.372	0.401	0.380	0.412	0.399	0.424	0.401	0.425	-	_	-	-	0.376	0.362	0.436	0.430
ETTh2	192	0.414	0.425	0.416	0.434	0.454	0.440	0.531	0.484	-	-	-	-	0.376	0.362	0.455	0.440
\downarrow	336	0.429	0.436	0.448	0.458	0.497	0.469	0.474	0.459	-	-	-	-	0.444	0.444	0.689	0.584
ETTh1	720	0.446	0.458	0.481	0.487	0.515	0.492	0.471	0.469	-	-	-	-	0.517	0.510	0.489	0.490
		0 415	0.430	0.431	0.448	0.466	0.456	0 /60	0.450	_	_	_	_	0.428	0.433	0.517	0.486
	Invg	0.415	0.450	0.451	0.770	0.400	0.450	0.407	0.+57	_	_	_	_	0.420	0.455	0.517	0.400
	96	0.367	0.398	0.380	0.412	0.400	0.418	0.443	0.440	-	-	-	-	0.465	0.456	0.413	0.443
EIImi	192	0.390	0.421	0.410	0.434	0.434	0.445	0.4/1	0.455	-	-	-	-	0.722	0.588	0.459	0.465
ETTh1	220	0.471	0.457	0.440	0.438	0.510	0.407	0.402	0.433	-	-	-	-	0.712	0.500	0.014	0.334
211	120	0.454	0.403	0.461	0.467	0.050	0.344	0.525	0.505	-	-	-	-	0.381	0.555	0.430	0.404
	Avg	0.422	0.430	0.431	0.448	0.495	0.469	0.475	0.463	-	-	-	-	0.620	0.541	0.484	0.482
	96	0.388	0.421	0.380	0.412	0.433	0.431	0.389	0.413	-	-	-	-	0.403	0.426	0.483	0.480
ETTm2	192	0.419	0.423	0.416	0.434	0.474	0.458	0.463	0.452	-	-	-	-	0.457	0.468	0.579	0.537
\downarrow	336	0.435	0.444	0.448	0.458	0.515	0.448	0.492	0.465	-	-	-	-	0.794	0.682	0.673	0.563
ETTh1	720	0.468	0.474	0.481	0.487	0.496	0.488	0.468	0.468	-	-	-	-	0.739	0.617	0.729	0.620
	Avg	0.428	0.441	0.431	0.448	0.464	0.456	0.453	0.450	-	-	-	-	0.598	0.548	0.616	0.550
	96	0.477	0.444	0.380	0.412	0.397	0.440	0.428	0.429	-	-	-	-	0.421	0.410	0.393	0.410
Weather	192	0.454	0.522	0.416	0.434	0.458	0.466	0.461	0.451	-	-	-	-	0.539	0.503	0.440	0.437
\downarrow	336	0.424	0.434	0.448	0.458	0.479	0.458	0.463	0.456	-	-	-	-	0.568	0.514	0.450	0.451
ETTh1	720	0.468	0.469	0.481	0.487	0.515	0.492	0.507	0.489	-	-	-	-	0.544	0.522	0.567	0.541
	Avg	0.456	0.467	0.431	0.448	0.462	0.464	0.465	0.456	-	-	-	-	0.518	0.487	0.463	0.460
	96	0 290	0 348	0 295	0 346	0.311	0 355	0.315	0 354	_	_	_	-	0.308	0 355	0.681	0 545
ETTh1	192	0 327	0.372	0.333	0.374	0.337	0.372	0.365	0.391	-	-	-	-	0.357	0.390	0.689	0.545
↓	336	0.357	0.392	0.370	0.398	0.372	0.398	0.384	0.400	-	-	-	-	0.396	0.402	0.705	0.560
ETTm1	720	0.409	0.423	0.427	0.431	0.422	0.433	0.428	0.426	-	-	-	-	0.419	0.423	0.722	0.571
	Avø	0.346	0.384	0.356	0.387	0.360	0.390	0.373	0.393	-	-	-	-	0.370	0.393	0.699	0.557
	06	0 222	0.247	0.205	0.246	0.222	0.262	0.229	0.292					0.222	0.251	0.670	0.546
ETTh2	102	0.322	0.347	0.295	0.340	0.323	0.302	0.336	0.363	-	-	-	-	0.322	0.351	0.673	0.540
	336	0.332	0.372	0.333	0.374	0.370	0.393	0.394	0.408	-	-	-	-	0.382	0.373	0.703	0.557
ETTm1	720	0.411	0.424	0.427	0.431	0.442	0.439	0.434	0.432	_	-	_	-	0.417	0.428	0.722	0.573
		0.265	0.204	0.256	0.207	0.202	0.402	0.201	0.400					0.262	0.207	0.004	0.557
	Avg	0.365	0.384	0.356	0.387	0.383	0.402	0.391	0.409	-	-	-	-	0.363	0.387	0.694	0.557
	96	0.297	0.348	0.295	0.346	0.333	0.378	0.327	0.364	-	-	-	-	0.320	0.364	0.422	0.434
ETTm2	192	0.332	0.370	0.333	0.374	0.381	0.398	0.362	0.389	-	-	-	-	0.367	0.386	0.387	0.371
↓ ETTm1	336	0.364	0.393	0.370	0.398	0.394	0.413	0.401	0.418	-	-	-	-	0.374	0.394	0.402	0.444
EIIIII	720	0.410	0.421	0.427	0.431	0.455	0.453	0.437	0.437	-	-	-	-	0.479	0.503	0.481	0.432
	Avg	0.351	0.383	0.356	0.387	0.390	0.410	0.382	0.402	-	-	-	-	0.385	0.412	0.423	0.420
	96	0.294	0.354	0.295	0.346	0.338	0.380	0.324	0.366	-	-	-	-	0.324	0.360	0.329	0.359
Weather	192	0.318	0.355	0.333	0.374	0.473	0.457	0.349	0.377	-	-	-	-	0.359	0.387	0.392	0.392
↓	336	0.361	0.397	0.370	0.398	0.402	0.415	0.378	0.398	-	-	-	-	0.395	0.399	0.372	0.400
ETTm1	720	0.427	0.426	0.427	0.431	0.432	0.438	0.422	0.427	-	-	-	-	0.450	0.467	0.434	0.429
	Avg	0.350	0.383	0.356	0.387	0.411	0.423	0.368	0.392	-	-	-	-	0.382	0.403	0.382	0.395

Input-33	Input-336		rvised	W/o \mathcal{L}_{re}	construction	W/o L	constraint	Sim	ИТМ
Metric	:	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96 192 336 720	$\begin{array}{c} 0.380 \\ 0.416 \\ 0.448 \\ 0.481 \end{array}$	$\begin{array}{c} 0.412 \\ 0.434 \\ 0.458 \\ 0.487 \end{array}$	0.377 0.419 0.423 0.437	$\begin{array}{c} 0.408 \\ 0.443 \\ 0.434 \\ 0.454 \end{array}$	0.381 0.409 0.432 0.447	$\begin{array}{c} 0.409 \\ 0.443 \\ 0.444 \\ 0.454 \end{array}$	0.379 0.412 0.421 0.424	0.407 0.424 0.431 0.449
	Avg	0.431	0.448	0.414	0.435	0.417	0.438	0.409	0.428
ETTh2	96 192 336 720	$\begin{array}{c} 0.325 \\ 0.400 \\ 0.405 \\ 0.451 \end{array}$	$\begin{array}{c} 0.374 \\ 0.424 \\ 0.433 \\ 0.475 \end{array}$	0.288 0.356 0.368 0.409	0.344 0.391 0.406 0.432	$\begin{array}{c} 0.312 \\ 0.389 \\ 0.396 \\ 0.448 \end{array}$	$\begin{array}{c} 0.365 \\ 0.418 \\ 0.432 \\ 0.479 \end{array}$	0.293 0.355 0.370 0.395	0.347 0.386 0.401 0.427
	Avg	0.395	0.427	0.355	0.393	0.386	0.424	0.353	0.390
ETTm1	96 192 336 720	$\begin{array}{c} 0.295 \\ 0.333 \\ 0.370 \\ 0.427 \end{array}$	$\begin{array}{c} 0.346 \\ 0.374 \\ 0.398 \\ 0.431 \end{array}$	$\begin{array}{c} 0.291 \\ 0.330 \\ 0.369 \\ 0.417 \end{array}$	$\begin{array}{c} 0.343 \\ 0.390 \\ 0.399 \\ 0.429 \end{array}$	0.282 0.324 0.366 0.424	0.337 0.388 0.397 0.435	0.288 0.327 0.363 0.412	0.348 0.373 0.395 0.424
	Avg	0.356	0.387	0.352	0.390	0.349	0.389	0.348	0.385
ETTm2	96 192 336 720	$\begin{array}{c} 0.175 \\ 0.240 \\ 0.298 \\ 0.403 \end{array}$	$\begin{array}{c} 0.268 \\ 0.312 \\ 0.351 \\ 0.413 \end{array}$	$\begin{array}{c} 0.174 \\ 0.232 \\ 0.313 \\ 0.376 \end{array}$	$\begin{array}{c} 0.265 \\ 0.303 \\ 0.365 \\ 0.451 \end{array}$	0.170 0.244 0.279 0.376	0.261 0.320 0.334 0.378	0.172 0.223 0.282 0.374	0.261 0.300 0.331 0.388
	Avg	0.279	0.336	0.274	0.346	0.267	0.323	0.263	0.320
Weather	96 192 336 720	$\begin{array}{c} 0.166 \\ 0.208 \\ 0.257 \\ 0.326 \end{array}$	$\begin{array}{c} 0.216 \\ 0.254 \\ 0.290 \\ 0.338 \end{array}$	$\begin{array}{c} 0.164 \\ 0.203 \\ 0.244 \\ 0.322 \end{array}$	0.209 0.258 0.289 0.343	$\begin{array}{c} 0.160 \\ 0.203 \\ 0.253 \\ 0.325 \end{array}$	$\begin{array}{c} 0.212 \\ 0.251 \\ 0.290 \\ 0.340 \end{array}$	0.158 0.199 0.246 0.317	0.211 0.249 0.286 0.337
	Avg	0.239	0.275	0.233	0.275	0.235	0.273	0.230	0.271
Electricity	96 192 336 720	$\begin{array}{c} 0.190 \\ 0.195 \\ 0.211 \\ 0.253 \end{array}$	$\begin{array}{c} 0.279 \\ 0.285 \\ 0.301 \\ 0.333 \end{array}$	$\begin{array}{c} 0.177 \\ 0.184 \\ 0.202 \\ 0.250 \end{array}$	$\begin{array}{c} 0.270 \\ 0.279 \\ 0.300 \\ 0.337 \end{array}$	$\begin{array}{c} 0.134 \\ 0.163 \\ 0.223 \\ 0.241 \end{array}$	0.220 0.274 0.311 0.321	0.133 0.147 0.166 0.203	0.223 0.237 0.265 0.297
	Avg	0.212	0.300	0.203	0.397	0.190	0.282	0.162	0.256
Traffic	96 192 336 720	$\begin{array}{c} 0.471 \\ 0.475 \\ 0.490 \\ 0.524 \end{array}$	$\begin{array}{c} 0.309 \\ 0.308 \\ 0.315 \\ 0.332 \end{array}$	0.366 0.373 0.401 0.472	0.257 0.266 0.249 0.312	$0.457 \\ 0.468 \\ 0.487 \\ 0.485$	$\begin{array}{c} 0.301 \\ 0.325 \\ 0.302 \\ 0.315 \end{array}$	0.368 0.373 0.395 0.432	0.262 0.251 0.254 0.290
	Avg	0.490	0.316	0.403	0.271	0.474	0.311	0.392	0.264

Table 13: Full ablation studies for the in-domain setting of forecasting. The standard deviations of SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Input-3	Input-336		vised	W/o \mathcal{L}_{re}	construction	W/o $\mathcal{L}_{constraint}$		SimMTM		
Metri	ic	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
	96	0.380	0.412	0.377	0.400	0.402	0.411	0.372	0.401	
ETTh2	192	0.416	0.434	0.417	0.424	0.417	0.420	0.414	0.425	
\downarrow	336	0.448	0.458	0.437	0.439	0.437	0.435	0.429	0.436	
ETTh1	720	0.481	0.487	0.448	0.463	0.456	0.467	0.446	0.458	
	Avg	0.431	0.448	0.420	0.432	0.423	0.430	0.415	0.430	
	96	0.380	0.412	0.382	0.397	0.375	0.399	0.367	0.398	
ETTm1	192	0.416	0.434	0.418	0.418	0.413	0.422	0.396	0.421	
\downarrow	336	0.448	0.458	0.437	0.434	0.434	0.438	0.471	0.437	
ETTh1	720	0.481	0.487	0.459	0.469	0.467	0.475	0.454	0.463	
	Avg	0.431	0.448	0.424	0.430	0.422	0.434	0.422	0.430	
	96	0.380	0.412	0.388	0.418	0.384	0.415	0.388	0.421	
ETTm2	192	0.416	0.434	0.429	0.444	0.423	0.439	0.419	0.423	
\downarrow	336	0.448	0.458	0.467	0.472	0.458	0.465	0.435	0.444	
ETTh1	720	0.481	0.487	0.521	0.507	0.501	0.497	0.468	0.474	
	Avg	0.431	0.448	0.451	0.460	0.441	0.454	0.428	0.441	
	96	0.380	0.412	0.385	0.400	0.394	0.406	0.477	0.444	
Weather	192	0.416	0.434	0.417	0.429	0.425	0.424	0.454	0.522	
\downarrow	336	0.448	0.458	0.434	0.434	0.441	0.439	0.424	0.434	
ETTh1	720	0.481	0.487	0.444	0.464	0.446	0.468	0.468	0.469	
	Avg	0.431	0.448	0.420	0.432	0.427	0.434	0.456	0.467	
	96	0.295	0.346	0.286	0.341	0.290	0.346	0.290	0.348	
ETTh1	192	0.333	0.374	0.322	0.362	0.353	0.388	0.327	0.372	
\downarrow	336	0.370	0.398	0.362	0.418	0.362	0.412	0.357	0.392	
ETTm1	720	0.427	0.431	0.417	0.431	0.422	0.432	0.409	0.423	
	Avg	0.356	0.387	0.347	0.388	0.357	0.395	0.346	0.384	
	96	0.295	0.346	0.299	0.348	0.301	0.352	0.322	0.347	
ETTh2	192	0.333	0.374	0.324	0.366	0.332	0.359	0.332	0.372	
\downarrow	336	0.370	0.398	0.374	0.401	0.389	0.382	0.394	0.391	
ETTm1	720	0.427	0.431	0.415	0.419	0.421	0.442	0.411	0.424	
	Avg	0.356	0.387	0.353	0.386	0.361	0.384	0.365	0.384	
	96	0.295	0.346	0.299	0.351	0.285	0.336	0.297	0.348	
ETTm2	192	0.333	0.374	0.334	0.372	0.343	0.366	0.332	0.370	
\downarrow	336	0.370	0.398	0.362	0.388	0.360	0.399	0.364	0.393	
ETTm1	720	0.427	0.431	0.417	0.431	0.422	0.432	0.410	0.421	
	Avg	0.356	0.387	0.353	0.386	0.353	0.383	0.351	0.383	
	96	0.295	0.346	0.322	0.361	0.309	0.354	0.294	0.354	
Weather	192	0.333	0.374	0.344	0.378	0.343	0.365	0.318	0.355	
\downarrow	336	0.370	0.398	0.371	0.399	0.401	0.411	0.361	0.397	
ETTm1	720	0.427	0.431	0.426	0.422	0.425	0.427	0.427	0.426	
	Avg	0.356	0.387	0.366	0.390	0.370	0.389	0.350	0.383	

Table 14: Full ablation studies on transfer to ETTh1 and ETTm1 for the cross-domain setting of forecasting. The standard deviations of SimMTM are within 0.005 for MSE and within 0.004 for MAE.

м	odels	Т	ransfor	mer [10	6]	Autoformer [21]			Ns	Transf	ormer [10]	PatchTST [11]						
		Rando	m init.	+Sim	мтм	Rando	om init.	+Sim	мтм	Rando	m init.	+Sim	мтм	Rando	m init.	+Sub-ser	ie Masking	+Siml	мтм
М	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.847	0.731	0.775	0.691	0.536	0.548	0.526	0.536	0.513	0.491	0.490	0.489	0.375	0.399	0.366	0.398	0.373	0.399
hl	192	1.084	0.841	0.918	0.763	0.543	0.551	0.523	0.548	0.534	0.504	0.517	0.499	0.414	0.421	0.431	0.443	0.406	0.428
ETT	336	1.350	0.956	1.079	0.845	0.615	0.592	0.595	0.591	0.588	0.535	0.552	0.520	0.431	0.436	0.450↓	0.456↓	0.422	0.431
	720	1.069	0.817	0.935	0.761	0.599	0.600	0.600	0.597	0.643	0.616	0.614	0.598	0.449	0.466	0.472↓	0.484↓	0.436	0.452
	Avg	1.088	0.836	0.927	0.761	0.573	0.573	0.561	0.568	0.570	0.537	0.543	0.527	0.417	0.431	0.430↓	0.445↓	0.409	0.428
	96	2.029	1.150	1.879	1.104	0.492	0.517	0.488	0.514	0.476	0.458	0.445	0.448	0.274	0.336	0.284↓	0.343↓	0.274	0.337
2	192	6.785	2.099	5.054	1.771	0.556	0.551	0.547	0.549	0.512	0.493	0.482	0.502	0.339	0.379	0.355↓	0.387↓	0.339	0.377
Ê	336	4.568	1.711	4.242	1.658	0.572	0.578	0.563	0.570	0.552	0.551	0.512	0.537	0.331	0.380	0.379↓	0.411↓	0.327	0.381
Щ	720	3.030	1.486	2.815	1.413	0.580	0.588	0.575	0.588	0.562	0.560	0.531	0.568	0.379	0.422	0.400↓	0.435↓	0.375	0.423
	Avg	4.103	1.612	3.498	1.487	0.550	0.559	0.543	0.555	0.526	0.516	0.493	0.514	0.331	0.379	0.355↓	0.394↓	0.329	0.379
	96	0.562	0.520	0.513	0.497	0.523	0.488	0.482	0.465	0.386	0.398	0.340	0.376	0.290	0.342	0.289↓	0.344↓	0.288	0.343
F	192	0.810	0.668	0.686	0.606	0.543	0.498	0.499	0.476	0.459	0.444	0.423	0.445	0.332	0.369	0.323	0.368	0.329	0.367
Ë	336	1.096	0.814	1.003	0.760	0.675	0.551	0.601	0.524	0.495	0.464	0.423	0.459	0.366	0.392	0.353	0.387	0.361	0.387
Ð	720	1.136	0.813	1.032	0.790	0.720	0.528	0.629	0.555	0.585	0.516	0.539	0.499	0.420	0.424	0.398	0.416	0.413	0.417
	Avg	0.901	0.704	0.809	0.663	0.615	0.528	0.553	0.505	0.481	0.456	0.431	0.445	0.352	0.382	0.341	0.379	0.348	0.378
	96	0.508	0.539	0.336	0.425	0.255	0.339	0.255	0.340	0.192	0.274	0.188	0.277	0.165	0.255	0.166↓	0.256↓	0.163	0.253
2	192	0.972	0.721	0.713	0.610	0.281	0.340	0.276	0.332	0.280	0.339	0.277	0.336	0.220	0.292	0.221↓	0.295↓	0.219	0.292
Ē	336	1.419	0.897	1.517	0.942	0.339	0.372	0.309	0.359	0.334	0.361	0.325	0.355	0.278	0.329	0.278	0.333↓	0.275	0.328
ETJ	720	3.598	1.445	2.720	1.254	0.422	0.419	0.420	0.410	0.417	0.413	0.414	0.412	0.367	0.385	0.365	0.388↓	0.359	0.381
	Avg	1.624	0.901	1.322	0.808	0.324	0.368	0.315	0.360	0.306	0.347	0.301	0.345	0.258	0.317	0.258	0.318↓	0.254	0.313

Table 15: Full results for applying SimMTM to four advanced time series forecasting models under the in-domain setting. The gray mark represents negative transfer (\downarrow).

Table 16: Full results for fine-tuning to limited data scenarios. We fine-tune the model pre-trained from ETTh2 to ETTh1 with different data proportions $\{10\%, 25\%, 50\%, 75\%, 100\%\}$.

Models		Sim	МТМ	Rando	om init.	Ti-M.	AE[8]	TST	[24]	LaST	r[17]	TF-C	C[25]	CoST	[20]	TS2Ve	ec[23]
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MAE	MSE
	10%	0.591	0.523	0.653	0.558	0.660	0.517	0.783	0.588	0.645	0.507	0.799	0.783	0.784	0.604	0.655	0.550
ETTh2	25%	0.535	0.490	0.632	0.502	0.594	0.518	0.641	0.578	0.610	0.611	0.736	0.725	0.624	0.539	0.632	0.543
↓	50%	0.491	0.473	0.512	0.479	0.550	0.504	0.525	0.509	0.540	0.513	0.731	0.704	0.540	0.499	0.599	0.526
ETTh1	75%	0.466	0.458	0.499	0.488	0.475	0.465	0.516	0.488	0.479	0.470	0.697	0.689	0.494	0.475	0.577	0.534
	100%	0.415	0.430	0.431	0.448	0.466	0.456	0.469	0.459	0.443	0.471	0.635	0.634	0.428	0.433	0.517	0.486

Table 17: In- and cross-domain settings of classification, where **all the baselines are based on the encoder utilized in their original papers**. For in-domain setting, we pre-train and fine-tune on the same dataset: Epilepsy. For cross-domain setting, we pre-train the model on SleepEEG and then fine-tune it on different datasets: Epilepsy, FD-B, Gesture, and EMG.

Scenarios		Models	Accuracy (%)	Precision (%)	Recall (%)	F1 (%)	Avg (%)
		Random init.	89.83	92.13	74.47	79.59	84.00
Ч		TS2vec [23]	92.17	93.84	81.19	85.71	88.23
iai	Epilepsy	CoST[20]	88.07	91.58	66.05	69.11	78.70
uo	\downarrow	LaST [17]	92.11	93.12	81.47	85.74	88.11
Ą	Epilepsy	TST [24]	80.21	40.11	50.00	44.51	53.71
Ц	F .1.2	Ti-MAE [8]	90.09	93.90	77.24	78.21	84.86
		TF-C [25]	93.96	94.87	85.82	89.46	91.03
		SimMTM	94.75	95.60	89.93	91.41	92.92
		Random init.	89.83	92.13	74.47	79.59	84.00
		TS2vec [23]	93.95	90.59	90.39	90.45	91.35
	SleepEEG	CoST[20]	88.40	88.20	72.34	76.88	81.45
	\downarrow	LaST [17]	86.46	90.77	66.35	70.67	78.56
	Epilepsy	TST [24]	80.21	40.11	50.00	44.51	53.71
		Ti-MAE [8]	89.71	72.36	67.47	68.55	74.52
		TF-C [25]	94.95	94.56	89.08	91.49	92.52
		SimMTM	95.49	93.36	92.28	92.81	93.49
		Random init.	47.36	48.29	52.35	49.11	49.28
		TS2vec [23]	47.90	43.39	48.42	43.89	45.90
	SleepEEG	CoST[20]	47.06	38.79	38.42	34.79	39.76
	↓	LaST [17]	46.67	43.90	47.71	45.17	45.86
	FD-B	TST [24]	46.40	41.58	45.50	41.34	43.71
		Ti-MAE [8]	60.88	66.98	68.94	66.56	65.84
in		TF-C [25]	69.38	75.59	72.02	74.87	72.97
Joma		SimMTM	69.40	74.18	76.41	75.11	73.78
ss-L		Random init.	42.19	47.51	49.63	48.86	47.05
Cro		TS2vec [23]	69.17	65.45	68.54	65.70	67.22
-	SleepEEG	CoST[20]	68.33	65.30	68.33	66.42	67.09
	\downarrow	LaST [17]	64.17	70.36	64.17	58.76	64.37
	Gesture	TST [24]	69.17	66.60	69.17	66.01	67.74
		Ti-MAE [8]	71.88	70.35	76.75	68.37	71.84
		TF-C [25]	76.42	77.31	74.29	75.72	75.94
		SimMTM	80.00	79.03	80.00	78.67	79.43
		Random init.	77.80	59.09	66.67	62.38	66.49
		TS2vec [23]	78.54	80.40	67.85	67.66	73.61
	SleepEEG	CoST[20]	53.65	49.07	42.10	35.27	45.02
	↓	LaST [17]	66.34	79.34	63.33	72.55	70.39
	EMG	TST [24]	78.34	77.11	80.30	68.89	76.16
		Ti-MAE [8]	69.99	70.25	63.44	70.89	68.64
		TF-C [25]	81.71	72.65	81.59	76.83	78.20
		SimMTM	97.56	98.33	98.04	98.14	98.02

5	Scenarios	Models	Accuracy (%)	Precision (%)	Recall (%)	F1 (%)	Avg (%)
		Random init.	89.83	92.13	74.47	79.59	84.00
-		TS2vec [23]	92.33	94.53	81.11	86.33	88.58
iai	Epilepsy	CoST[20]	92.35	94.73	81.16	85.92	88.54
no	\downarrow	LaST [17]	-	-	-	-	-
Ģ	Epilepsy	TST [24]	80.89	90.38	51.73	48.01	67.75
Ir	1 1 5	Ti-MAE [8]	80.34	90.16	50.33	45.20	66.51
		TF-C [25]	93.96	94.87	85.82	89.46	91.03
		SimMTM	94.75	95.60	89.93	91.41	92.92
		Random init.	89.83	92.13	74.47	79.59	84.00
		TS2vec [23]	94.46	91.99	90.28	91.10	91.95
	SleepEEG	CoST[20]	93.66	91.39	88.08	89.60	90.68
	\downarrow	LaST [17]	-	-	-	-	-
	Epilepsy	TST [24]	82.89	86.15	79.02	80.44	82.13
	1 1 2	Ti-MAE [8]	73.45	72.56	65.34	77.20	72.14
		TF-C [25]	94.95	94.56	89.08	91.49	92.52
		SimMTM	95.49	93.36	92.28	92.81	93.49
		Random init.	47.36	48.29	52.35	49.11	49.28
		TS2vec [23]	60.74	59.60	64.27	61.07	61.42
	SleepEEG	CoST[20]	54.82	51.92	63.30	54.34	56.09
	\downarrow	LaST [17]	-	-	-	-	-
	FD-B	TST [24]	65.57	70.05	67.57	64.41	66.90
		Ti-MAE [8]	67.98	62.83	64.45	63.36	64.66
.u		TF-C [25]	69.38	75.59	72.02	74.87	72.97
oma		SimMTM	69.40	74.18	76.41	75.11	73.78
C-SS		Random Init.	42.19	47.51	49.63	48.86	47.05
Cro		TS2vec [23]	73.33	70.88	73.33	71.56	72.27
0	SleepEEG	CoST[20]	73.33	74.37	73.33	71.16	73.04
	, i	LaST [17]	-	-	-	-	-
	Gesture	TST [24]	75.12	76.05	67.74	73.24	73.04
		Ti-MAE [8]	75.54	69.32	72.42	69.32	71.65
		TF-C [25]	76.42	77.31	74.29	75.72	75.94
		SimMTM	80.00	79.03	80.00	78.67	79.43
		Random init.	77.80	59.09	66.67	62.38	66.49
		TS2vec [23]	80.92	69.63	67.65	67.90	71.52
	SleepEEG	CoST[20]	73.17	70.47	69.84	70.00	70.87
	\downarrow	LaST [17]	_	_	-	_	-
	EMG	TST [24]	75.89	74.67	80.66	78.48	77.43
	_	Ti-MAE [8]	63.52	67.77	70.55	58.32	65.04
		TF-C [25]	81.71	72.65	81.59	76.83	78.20
			97.56	98.33	98.04	98.14	98.02

Table 18: In- and cross-domain settings of classification **based on the unified 1-D ResNet encoder**. For in-domain setting, we pre-train and fine-tune on the same dataset: Epilepsy. For cross-domain setting, we pre-train on SleepEEG and fine-tune on different domain datasets: Epilepsy, FD-B, Gesture, and EMG.

Se	cenarios	Accuracy (%)	Precision (%)	Recall (%)	F1 (%)	Avg (%)
D =:1	Random init.	89.83	92.13	74.47	79.59	84.00
Ephepsy	W/o $\mathcal{L}_{reconstruction}$	93.80	96.11	86.11	89.45	91.37
Epilepsy	W/o $\mathcal{L}_{constraint}$	90.99	92.81	79.86	84.13	86.95
1 1 2	SimMTM	94.75	95.60	89.93	91.41	92.92
Share FEC	Random init.	89.83	92.13	74.47	79.59	84.00
SleepEEG	W/o $\mathcal{L}_{reconstruction}$	94.54	93.87	88.46	90.84	91.93
Epilepsy	W/o $\mathcal{L}_{constraint}$	91.73	90.57	82.21	85.53	87.51
1 1 2	SimMTM	95.49	93.36	92.28	92.81	93.49
QL EEC	Random init.	47.36	48.29	52.35	49.11	49.28
SleepEEG	W/o $\mathcal{L}_{reconstruction}$	66.11	67.97	74.70	70.01	69.70
↓ FD-B	W/o $\mathcal{L}_{constraint}$	53.71	69.48	62.67	50.86	59.18
	SimMTM	69.40	74.18	76.41	75.11	73.78
	Random init.	42.19	47.51	49.63	48.86	47.05
SleepEEG	W/o $\mathcal{L}_{reconstruction}$	78.50	79.01	78.50	77.17	78.30
Gesture	W/o $\mathcal{L}_{constraint}$	76.67	74.91	76.67	74.80	75.76
	SimMTM	80.00	79.03	80.00	78.67	79.43
Class EEC	Random init.	77.80	59.09	66.67	62.38	66.49
SleepEEG	W/o $\mathcal{L}_{reconstruction}$	90.24	94.20	78.04	81.53	86.00
ĕMG	W/o $\mathcal{L}_{constraint}$	85.37	89.97	69.62	70.74	78.93
	SimMTM	97.56	98.33	98.04	98.14	98.02

Table 19: Full ablation studies for in-domain and cross-domain settings of classification. Under the *Avg* metric, the standard deviations of SimMTM are within 0.2% for Epilepsy, within 0.5% for FD-B, within 0.6% for Gesture, and within 0.1% for EMG.

165 **References**

- [1] Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Christian E
 Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain
 electrical activity: Dependence on recording region and brain state. *Physical Review E*, 2001.
- [2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
 Bidirectional Transformers for Language Understanding. In *NAACL*, 2018.
- [3] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners.
 In *IJCNLP*, 2020.
- [4] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *CVPR*, 2022.
- [5] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, 2016.
- [6] Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and Josefien JL Oberye. Analysis
 of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg. *TBME*, 2000.
- [7] Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition monitoring of
 bearing damage in electromechanical drive systems by using motor current signals of electric motors: A
 benchmark data set for data-driven classification. In *PHM*, 2016.
- [8] Zhe Li, Zhongwen Rao, Lujia Pan, Pengyun Wang, and Zenglin Xu. Ti-mae: Self-supervised masked time
 series autoencoders. *arXiv preprint arXiv:2301.08871*, 2023.

- [9] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave: Accelerometer-based
 personalized gesture recognition and its applications. In *PMC*, 2009.
- [10] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the
 stationarity in time series forecasting. In *NeurIPS*, 2022.
- [11] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
 Long-term forecasting with transformers. In *ICLR*, 2023.
- [12] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
 Z. Lin, N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin
 Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
- 193 Pytorch: An imperative style, high-performance deep learning library. In *NeurIPS*, 2019.
- 194 [13] PeMS. Traffic Dataset. http://pems.dot.ca.gov/.
- [14] PhysioToolkit PhysioBank. Physionet: components of a new research resource for complex physiologicsignals. *Circulation*, 2000.
- [15] UCI. UCI Electricity Load Time Series Dataset. https://archive.ics.uci.edu/ml/datasets/
 ElectricityLoadDiagrams20112014.
- [16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.
- [17] Zhiyuan Wang, Xovee Xu, Weifeng Zhang, Goce Trajcevski, Ting Zhong, and Fan Zhou. Learning latent seasonal-trend representations for time series forecasting. In *NeurIPS*, 2022.
- 203 [18] Wetterstation. Weather Dataset. https://www.bgc-jena.mpg.de/wetter/.
- [19] Alexander Wettig, Tianyu Gao, Zexuan Zhong, and Danqi Chen. Should you mask 15% in masked
 language modeling? In *EACL*, 2023.
- [20] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive learning of
 disentangled seasonal-trend representations for time series forecasting. In *ICLR*, 2022.
- [21] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
 with auto-correlation for long-term series forecasting. In *NeurIPS*, 2021.
- [22] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
 Simmim: A simple framework for masked image modeling. In *CVPR*, 2022.
- [23] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong
 Xu. TS2Vec: Towards Universal Representation of Time Series. In *AAAI*, 2022.
- [24] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff. A
 transformer-based framework for multivariate time series representation learning. In *SIGKDD*, 2021.
- [25] Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised contrastive
 pre-training for time series via time-frequency consistency. In *NeurIPS*, 2022.
- [26] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *AAAI*, 2021.