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Abstract

Sparse linear regression is a central problem in high-dimensional statistics. We1

study the correlated random design setting, where the covariates are drawn from a2

multivariate Gaussian N(0,Σ), and we seek an estimator with small excess risk.3

If the true signal is t-sparse, information-theoretically, it is possible to achieve4

strong recovery guarantees with only O(t log n) samples. However, computa-5

tionally efficient algorithms have sample complexity linear in (some variant of)6

the condition number of Σ. Classical algorithms such as the Lasso can require7

significantly more samples than necessary even if there is only a single sparse8

approximate dependency among the covariates.9

We provide a polynomial-time algorithm that, given Σ, automatically adapts the10

Lasso to tolerate a small number of approximate dependencies. In particular, we11

achieve near-optimal sample complexity for constant sparsity and if Σ has few12

“outlier” eigenvalues. Our algorithm fits into a broader framework of feature13

adaptation for sparse linear regression with ill-conditioned covariates. With this14

framework, we additionally provide the first polynomial-factor improvement over15

brute-force search for constant sparsity t and arbitrary covariance Σ.16

1 Introduction17

Sparse linear regression is a fundamental problem in high-dimensional statistics. In a natural random18

design formulation of this problem, we are given m independent and identically distributed samples19

(Xi, yi)
m
i=1 where each sample’s covariates are drawn from an n-dimensional Gaussian random20

vector Xi ∼ N(0,Σ), and each response is yi = ⟨Xi, v
∗⟩+ ξi for independent noise ξi ∼ N(0, σ2)21

and a t-sparse ground truth regressor v∗ ∈ Rn, where t is much smaller than n. The goal1 is to22

output a vector v̂ ∈ Rn for which the excess risk23

E(⟨X0, v̂⟩ − y0)
2 − σ2 = (v̂ − v∗)⊤Σ(v̂ − v∗) =: ∥v̂ − v∗∥2Σ

is as small as possible, where (X0, y0) is an independent sample from the same model.24

Without the sparsity assumption, the number of samples needed to achieve small excess risk (say,25

O(σ2)) is linear in the dimension; with O(n) samples, simple and computationally efficient algo-26

rithms such as ordinary least squares achieve the statistically optimal excess risk O
(

σ2n
m

)
. Sparsity27

allows for a significant statistical improvement: ignoring computational efficiency, it is well known28

that there is an estimator v̂ with excess risk O(σ
2t logn
m ) as long as m = Ω(t log n) (see e.g. [13, 33];29

Theorem 4.1 in [23]).30

1More generally, from a learning theory perspective, we could consider an arbitrary improper learner out-
putting a function f̂(X0), rather than specifically learning a linear function ⟨X0, v̂⟩. At least when Σ is known,
there is no advantage as we can always project f̂ onto the space of linear functions.
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The catch is that computing this estimator involves a brute-force search over
(
n
t

)
possibilities (i.e.,31

the possible supports for v∗). At first glance, this combinatorial search may seem unavoidable if32

we wish to take advantage of sparsity. Indeed, similar problems are notoriously difficult: the only33

non-trivial algorithms for e.g., learning t-sparse parities with noise still require nΩ(t) time [29, 37].34

However, it is a celebrated fact that for sparse linear regression, computationally efficient methods35

such as Lasso and Orthogonal Matching Pursuit can avoid this combinatorial search and still achieve36

very strong theoretical guarantees under conditions such as the Restricted Isometry Property (see e.g.37

[7, 10, 5, 4, 3, 1]). In the random design setting we consider, the Lasso is known to achieve optimal38

statistical rates (up to constants) when the covariance matrix Σ is well-conditioned [32, 46].39

What about when Σ is ill-conditioned? In contrast with the statistically optimal estimator, Lasso and40

its cousins provably require sample complexity scaling with (some variant of) the condition number41

of Σ (see e.g. Theorem 14 in [38] or Theorem 6.5 in [23]). And with a few exceptions (e.g., in some42

settings with special graphical structure [23]) there has been little progress on designing new efficient43

algorithms for sparse linear regression with ill-conditioned Σ (see Section 4 for further discussion).44

For a general covariance Σ, no algorithm is even known that can achieve sample complexity f(t) ·45

n1−ϵ (for an arbitrary function f ) without brute-force search.46

A computationally efficient algorithm that approaches the optimal statistical rate for arbitrary Σ47

might be too much to hope for. While no computational lower bounds are known, even in restricted48

computational models such as the Statistical Query model,2 the related worst-case problem of find-49

ing a t-sparse solution to a system of linear equations requires nΩ(t) time under standard complexity50

assumptions [15]. So it is plausible, though not certain, that some assumptions on Σ are neces-51

sary. In this work – inspired by a long tradition (in random matrix theory, statistics, graph theory,52

and other areas) of studying matrices with a spectrum that is split between a large “bulk” and a53

small number of outlier “spike” eigenvalues [28, 39, 43] – we identify a broad generalization of the54

standard well-conditionedness assumption, under which brute-force search can still be avoided.55

1.1 Beyond well-conditioned Σ56

Say that Σ has eigenvalues λ1 ≤ · · · ≤ λn, and that the sparsity t is a constant.3 Then standard57

bounds for Lasso require sample complexity (λn/λ1) ·O(log n). But if the covariates contain even58

a single approximate linear dependency, then λn/λ1 may be arbitrarily large. Moreover, if the59

dependency is sparse (e.g. two covariates are highly correlated), then there is a natural choice of60

v∗ for which Lasso provably fails (see Theorem 6.5 of [23]). Indeed, this phenomenon is not just61

a limitation of the analysis; Lasso fails empirically as well, even for very small t (see Figure 2 in62

Appendix H for a simple example with t = 3).63

Such dependencies arise in applications ranging from finance (e.g., where some pairs of stocks or64

ETFs may be highly correlated, and an investor may be interested in the differences) to genomic65

data (where functionally related genes may have highly correlated expression patterns). Two-sparse66

dependencies can be directly identified by looking at the covariance matrix; see Section 4 for some67

discussion of previous research in this direction. But as t increases, naive methods for identifying t-68

sparse dependencies quickly become computationally intractable. With domain knowledge, it may69

be possible to manually identify and correct such dependencies, but this process would also be70

time-consuming. Thus, we ask the following question: instead of assuming that λn/λ1 is bounded,71

suppose that there are constants dℓ and dh so that λn−dh
/λdℓ+1 is bounded, i.e. the spectrum of72

Σ has only dℓ outliers at the low end, and only dh outliers at the high end. Can we still design an73

algorithm that achieves sample complexity O(log n) without resorting to brute-force search?74

Main result. We give a positive answer: an algorithm for sparse linear regression that is both75

computationally and statistically efficient for covariance matrices with a small number of “outlier”76

eigenvalues. In particular, this means we can handle a few approximate dependencies among the77

covariates (quantified by the number of eigenvalues below a threshold). In comparison, Lasso and78

other classical algorithms cannot tolerate even a single sparse approximate dependency. Our main79

algorithmic result is the following:80

2There are lower bounds for a family of regression estimators with coordinate-separable regularization [44]
and a family of “preconditioned-Lasso” estimators [23, 24].

3Note that for moderate-sized datasets (e.g. n = 1000), brute-force search is infeasible even for t as small
as four or five.
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Theorem 1.1. Let n, t, dℓ, dh, L ∈ N and σ, δ > 0. Let Σ ∈ Rn×n be a positive semi-definite81

matrix with (non-negative) eigenvalues λ1 ≤ · · · ≤ λn. Let v∗ ∈ Rn be any t-sparse vector. Let82

(Xi, yi)
m
i=1 be independent with Xi ∼ N(0,Σ) and yi = ⟨Xi, v

∗⟩+ ξi, where ξi ∼ N(0, σ2).83

Let neff := t(λn−dh
/λdℓ+1) log(nL/δ) + tO(t)dl + dh. Given Σ, t, dℓ, δ, and (Xi, yi)

m
i=1, there is84

an estimator v̂ ∈ Rn that has excess risk85

∥v̂ − v∗∥2Σ ≤ O

(
σ2neffL

m

)
+ 2−L · ∥v∗∥2Σ

with probability at least 1 − δ, so long as m ≥ Ω(neffL). Moreover, v̂ can be computed in time86

poly(n).87

Specifically, taking L ∼ log(m ∥v∗∥2Σ /σ2), the time complexity is dominated by L eigendecom-88

positions and L calls to a Lasso program, for overall runtime Õ(n3) (see Algorithm 2). This is89

substantially faster than the brute-force method (which takes O(nt) time) even for small values of t.90

The excess risk decays at rate Õ(σ2neff/m) (hiding the logarithmic factor), which is near the statis-91

tically optimal rate of Õ(σ2t/m) so long as neff is small, i.e. t is small and only a few eigenvalues92

lie outside a constant-factor range. In our analysis, we prove that the standard Lasso estimator can93

already tolerate a few large eigenvalues — the main algorithmic innovation is needed to tolerate a94

few small eigenvalues, which turns out to be much trickier. Notice that when dℓ = dh = 0 we95

recover standard Lasso guarantees up to the factor of L; thus, Theorem 1.1 morally represents a96

generalization of classical results.97

We also show how to achieve a different trade-off between time and samples, eliminating the depen-98

dence on dℓ in sample complexity at the cost of larger runtime:99

Theorem 1.2. In the setting of Theorem 1.1, let n′
eff := t(λn−dh

/λdℓ+1) log(nL/δ)+t2 log(t)+dh.100

Given Σ, t, dℓ, δ, and (Xi, yi)
m
i=1, there is an estimator v̂ ∈ Rn that has excess risk101

∥v̂ − v∗∥2Σ ≤ O

(
σ2n′

effL

m

)
+ 2−L · ∥v∗∥2Σ

with probability at least 1 − δ, so long as m ≥ Ω(n′
effL). Moreover, v̂ can be computed in time102

poly(n,m, dtℓ, t
t2).103

Discussion & limitations. We discuss two limitations of the above results. First, both results104

incur exponential dependence on the sparsity t (in the sample complexity for Theorem 1.1, and the105

runtime for Theorem 1.2), which may be suboptimal. For Theorem 1.1, we remark that in practice106

the algorithm may not suffer this dependence (see e.g. Figure 1), and it is possible that the analysis107

can be tightened. For Theorem 1.2, we emphasize that the runtime is still fundamentally different108

than brute-force search: in particular, it’s fixed-parameter tractable in t and dℓ.109

Second, both results require that Σ is known. Thus, they are only applicable in settings where we110

either have a priori knowledge, or can estimate Σ accurately because a large amount of unlabelled111

data is available. At a high level, this limitation is due to the need to compute the eigendecomposition112

of Σ, which cannot be approximated from the empirical covariance of a small number of samples.113

For simplicity, we have stated our results in terms of Gaussian covariates and noise, but this is not a114

fundamental limitation. We expect it is possible to prove similar results in the sub-Gaussian case at115

the cost of making the proof longer — for instance, by building upon the techniques from [25] and116

related works.117

Pseudocode & simulation. See Algorithm 1 for complete pseudocode of AdaptedBP(), a sim-118

plification of the method for the noiseless setting σ = 0. In Figure 1 we show that AdaptedBP()119

significantly outperforms standard Basis Pursuit (i.e. Lasso for noiseless data [7]) on a simple ex-120

ample with n = 1000 variables, dℓ = 10 sparse approximate dependencies, and a ground truth121

regressor with sparsity t = 13. The covariates X1:1000 are all independent N(0, 1) except for 10122

disjoint triplets {(Xi, Xi+1, Xi+2) : i = 1, 4, . . . , 28}, each of which has joint distribution123

Xi := Zi; Xi+1 = Zi + 0.4Zi+1; Xi+2 = Zi+1 + 0.4Zi+2

where Zi, Zi+1, Zi+2 ∼ N(0, 1) are independent. The (noiseless) responses are y = 6.25(X1 −124

X2) + 2.5X3 +
1√
10

∑1000
i=991 Xi. See Appendix I for implementation details.125
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Algorithm 1: Adapted BP for sparse linear regression with few outlier eigenvalues
Procedure FindHeavyCoordinates({v1, . . . , vk},α)

/* Gram-Schmidt computes an orthonormalization of v1, . . . , vk */
a1, . . . , ak ← GRAM-SCHMIDT({v1, . . . , vk})
return {i ∈ [n] :

∑k
j=1((aj)i)

2 ≥ α2}
Procedure IterativePeeling(Σ, d, t)

Compute eigendecomposition Σ =
∑n

i=1 λiuiu
⊤
i

P ←
∑n

i=d+1 uiu
⊤
i

Kt ← {i ∈ [n] : Pii < 1− 1/(9t2)}
for j = t to 1 do
IP (Kj)← FindHeavyCoordinates({Pi : i ∈ Kj}, 1/(6t))
Kj−1 ← Kj ∪ IP (Kj)

return K0

Procedure AdaptedBP(Σ, d, t, (Xi, yi)
m
i=1)

S ← IterativePeeling(Σ, d, t)
return v̂ ∈ argminv∈Rn:Xv=y

∑
i̸∈S |vi|

Figure 1: Basis Pursuit (BP) versus Adapted BP in a simple synthetic example with n = 1000
covariates. The x-axis is the number of samples. The y-axis is the out-of-sample prediction error
(averaged over 10 independent runs, and error bars indicate the standard deviation).

1.2 Organization126

In Section 2 we give an overview of the proofs of Theorem 1.1 and 1.2 (the complete proofs and full127

algorithm pseudocode are given in Appendix C). In Section 3 we discuss our other results obtained128

via feature adaptation. Section 4 covers related work.129

2 Proof techniques130

We obtain Theorems 1.1 and 1.2 as outcomes of a flexible algorithmic approach for tackling sparse131

linear regression with ill-conditioned covariates: feature adaptation. As a pre-processing step, adapt132

or augment the covariates with additional features (i.e. well-chosen linear combinations of the co-133

variates). Then, to predict the responses, apply ℓ1-regularized regression (Lasso) over the new set of134

features rather than the original covariates. In other words, we algorithmically change the dictionary135

(set of features) used in the Lasso regression. See Section 4 for a comparison to past approaches.136

We start by explaining the goals of feature adaptation for general Σ, and then show how we achieve137

those desiderata when Σ has few outlier eigenvalues. More precisely, the main technical difficulty138

is in dealing with the small eigenvalues, so in this proof overview we focus on the case where the139

only outliers are small eigenvalues. Complete proofs of Theorems 1.1 and 1.2 are in Appendix C.140
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2.1 What makes a good dictionary: the view from weak learning141

Obviously, the feature adaptation approach generalizes Lasso. Surprisingly, even though the sample142

complexity of the standard Lasso estimator is thoroughly understood, the basic question of whether143

for every covariate distribution (i.e. every Σ) there exists a good dictionary remains wide-open. To144

crystallize the power of feature adaptation, we introduce the following notion of a “good” dictionary.145

We suggest considering the simplified setting of α-weak learning, where the goal is just to find some146

v̂ so that the predictions ⟨X, v̂⟩ are α-correlated with the ground truth ⟨X, v∗⟩ when X ∼ N(0,Σ).147

Moreover, we focus first on the existential question (rather than the algorithmic question of finding148

the dictionary). We will return to the setting of Theorems 1.1 and 1.2 later. For now, in the weak149

learning setting, a good dictionary (when the covariate distribution is N(0,Σ)) is one that satisfies150

the following covering property, but is not too large:151

Definition 2.1. Let Σ ∈ Rn×n be a positive semi-definite matrix and let t, α > 0. A set152

{D1, . . . , DN} ⊆ Rn is a (t, α)-dictionary for Σ if for every t-sparse v ∈ Rn, there is some i ∈ [N ]153

with154

|⟨v,Di⟩Σ| ≥ α ∥v∥Σ ∥Di∥Σ ,

where we define ⟨x, y⟩Σ := x⊤Σy and ∥x∥2Σ := x⊤Σx for any x, y ∈ Rn. Let Nt,α(Σ) be the size155

of the smallest (t, α)-dictionary.156

The relevance of the covering number Nt,α(Σ) is quite simple: given a (t, α)-dictionary D for Σ,157

and given samples (Xi, yi)
m
i=1, the weak learning algorithm can simply output the vector v̂ ∈ D158

that maximizes the empirical correlation between the predictions ⟨Xi, v̂⟩ and the responses yi. So159

long as there are enough samples for empirical correlations to concentrate, Definition 2.1 guarantees160

success. Formally, allowing for preprocessing time to compute the dictionary, O(α)-weak learning161

is possible in time Nt,α(Σ) · poly(n), with O(α−2 logNt,α(Σ)) samples (Proposition A.5).162

Hypothetically, boundingNt,α(Σ) may not be necessary to develop an efficient sparse linear regres-163

sion algorithm. However, all assumptions on Σ that are currently known to enable efficient sparse164

linear regression also immediately imply bounds on Nt,α (see Appendix G). For example, when Σ165

is well-conditioned, the standard basis is a good dictionary of size n (Fact A.4).166

In contrast, the only known bounds for arbitrary Σ (until the present work) areNt,1/
√
t(Σ) ≤ t ·

(
n
t

)
167

(the brute-force dictionary, which includes a Σ-orthonormal basis for every set of t covariates) and168

Nt,1/
√
n(Σ) ≤ n (a Σ-orthonormal basis for all n covariates, which doesn’t take advantage of169

sparsity and corresponds to algorithms such as Ordinary Least Squares). Thus, the following basic170

question – when can we improve upon these trivial bounds – seems central to understanding when171

brute-force search can be avoided in sparse linear regression:172

Question 2.2. How large is Nt,α(Σ) for an arbitrary positive semi-definite Σ ∈ Rn×n? Are there173

natural families of ill-conditioned Σ (and functions f, g) for which Nt,1/f(t)(Σ) ≤ g(t) · poly(n)?174

2.2 Constructing a good dictionary when Σ has few small eigenvalues175

We now address Question 2.2 in the setting where Σ has a small number of eigenvalues that are176

much smaller than λn. In this setting, the standard basis may not be a good dictionary. For example,177

if two covariates are highly correlated, their difference may not be correlated with any of them.178

Nonetheless, we can prove the following covering number bound:179

Theorem 2.3. Let n, t, d ∈ N. Let Σ ∈ Rn×n be a positive semi-definite matrix with eigenvalues180

λ1 ≤ · · · ≤ λn. Then Nt,α(Σ) ≤ t(7t)2t
2+tdt + n, where α = 1

7
√
t

√
λd+1/λn.181

In particular, when t = O(1) and Σ is well-conditioned except for O(1) outliers λ1, . . . , λd, we182

get a linear-size dictionary just as in the case where Σ is well-conditioned. In fact, the desired183

(t, α)-dictionary can be constructed efficiently. Our key lemma shows that when Σ has few small184

eigenvalues, there is a small subset of covariates that “causes” all of the sparse approximate depen-185

dencies – in the sense that the ℓ2 norm of any sparse vector, excluding the mass on the subset, can be186

upper bounded in terms of the Σ-norm of the vector. Moreover, there is an efficient algorithm that187

finds a superset of these covariates. Formally, we prove the following:188

Lemma 2.4. Let n, t, d ∈ N. Let Σ ∈ Rn×n be a positive semi-definite matrix with eigenvalues189

λ1 ≤ · · · ≤ λn. Given Σ, d, and t, there is a polynomial-time algorithm IterativePeeling()190

producing a set S ⊆ [n] with the following guarantees:191
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(a) For every t-sparse v ∈ Rn, it holds that
∥∥v[n]\S∥∥2 ≤ 3λ

−1/2
d+1 ∥v∥Σ.192

(b) |S| ≤ (7t)2t+1d.193

Once this set S has been found, the dictionary is simply the standard basis {e1, . . . , en}, together194

with a Σ-orthonormal basis for every set of t covariates in S. By guarantee (a), we can prove that195

every t-sparse vector correlates with some element of this dictionary under the Σ-inner product. By196

guarantee (b), the dictionary is much smaller than the brute-force dictionary that contains a basis for197

all
(
n
t

)
sets of t covariates. Together, this gives an algorithmic proof for Theorem 2.3.198

Intuition for IterativePeeling(). We compute the set S via a new iterative method which199

leverages knowledge of the small eigenspaces of Σ. See Algorithm 1 for the pseudocode. To com-200

pute S, the algorithm IterativePeeling() first computes the orthogonal projection matrix P that201

projects onto the subspace spanned by the top n − d eigenvectors of Σ. Starting with the set of202

coordinates that correlate with ker(P ), the procedure then iteratively grows S in such a way that at203

each step, a new participant of each approximate sparse dependency is discovered, but S does not204

become too much larger.205

The intuition is as follows: as a preliminary attempt, we could identify all O(d) coordinates that206

correlate (with respect to the standard inner product) with the lowest d eigenspaces of Σ. If e.g. the207

covariates have a sparse dependency208

X1 +X2 = 0,

then kerΣ contains the vector e1 + e2, so the coordinates {e1, e2} will be correctly discovered.209

Unfortunately, if Σ contains a more complex sparse dependency such as210

ϵ−1(X1 −X2)−X3 −X4 = 0

where ϵ > 0 is very small, then this heuristic will discover {e1, e2} but miss {e3, e4}. For this211

example, the solution is to notice that e3 and e4 do correlate with the subspace spanned by ker(Σ)∪212

{e1, e2} (which contains e3 + e4). In general, if S is the set of coordinates discovered thus far,213

then by finding basis vectors that correlate with an appropriate subspace (of dimension at most214

|S|), we can efficiently augment S with at least one new coordinate from each t-sparse approximate215

dependency, without making S bigger by more than a factor of O(t). Iterating this augmentation t216

times therefore provably identifies all problematic coordinates.217

To formalize this intuition, the following lemma will be needed to bound how much S grows at each218

iteration; it shows that the number of coordinates that correlate with a low-dimensional subspace is219

not too large (proof deferred to Appendix B):220

Lemma 2.5. Let V ⊆ Rn be a subspace with d := dimV . For some α > 0 define221

S =

{
i ∈ [n] : sup

x∈V \{0}

xi

∥x∥2
≥ α

}
.

Then |S| ≤ d/α2. Moreover, given a set of vectors that span V , we can compute S in time poly(n).222

We also define the set of vectors v that have unusually large norm outside a set S, compared to223 √
v⊤Pv, which is the distance from v to the subspace spanned by the bottom d eigenvectors of Σ:224

Definition 2.6. For any matrix P ∈ Rn×n and subset S ⊆ [n], defineWP,S := {v ∈ Rn : ∥vSc∥2 >225

3
√
v⊤Pv}.226

We then formalize the guarantee of each iteration of IterativePeeling() as follows:227

Lemma 2.7. Let n, t ∈ N and let P : n × n be an orthogonal projection matrix. Suppose τ ≥ 1228

and K ⊆ [n] satisfy229

(a) Pii ≥ 1− 1/(9t2) for all i ̸∈ K,230

(b) | supp(v) \K| ≤ τ for every v ∈ B0(t) ∩WP,K .231

Then there exists a set IP (K) with |IP (K)| ≤ 36t2|K| such that232

| supp(v) \ (IP (K) ∪K)| ≤ τ − 1

for all v ∈ B0(t) ∩WP,K . Moreover, given P , K, and t, we can compute IP (K) in time poly(n).233
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Proof sketch. We define the set234

IP (K) :=

{
a ∈ [n] \K : sup

x∈span{Pei:i∈K}\{0}

|xa|
∥x∥2

≥ 1/(6t)

}
.

It is clear from Lemma B.2 (applied with parameters V := span{Pei : i ∈ K} and α := 1/(6t))235

that |IP (K)| ≤ 36t2|K|, and that IP (K) can be computed in time poly(n). It remains to show that236

|GP (v) \ (IP (K) ∪K)| ≤ τ − 1 for all v ∈ B0(t).237

Consider any v ∈ B0(t) ∩ WP,K . Then ∥vKc∥2 > 3 ∥Pv∥2. It’s sufficient to show that IP (K)238

contains some j ∈ supp(v) \K, i.e. that there is some j ∈ supp(v) \K such that ej correlates with239

span{Pi : i ∈ K}. We accomplish this by showing that vKc correlates with PvK =
∑

i∈K viPi.240

At a high level, the reason for this is that vKc is close to PvKc (since Pi ≈ ei for i ∈ Kc),241

and Pv = PvK + PvKc is much smaller than PvKc ≈ vKc , so PvK and PvKc must be highly242

correlated. See Appendix B for the full proof. ■243

We can now complete the proof of Lemma 2.4 by repeatedly invoking Lemma B.4.244

Proof of Lemma 2.4. Let Σ =
∑n

i=1 λiuiu
⊤
i be the eigendecomposition of Σ, and let P :=245 ∑n

i=d+1 uiu
⊤
i be the projection onto the top n − d eigenspaces of Σ. Set Kt = {i ∈ [n] : Pii <246

1− 1/(9t2)}. Because tr(P ) = n− d and Pii ≤ 1 for all i ∈ [n], it must be that |Kt| ≤ 9t2d. Also,247

for any v ∈ B0(t) ∩WP,Kt we have trivially by t-sparsity that | supp(v) \Kt| ≤ t.248

Define Kt−1 to be Kt∪IP (Kt) where IP (Kt) is as defined in Lemma B.4; we have the guarantees249

that |Kt−1| ≤ (1+36t2)|Kt| and |GP (v)\Kt| ≤ t−1 for all v ∈ B0(t)∩WP,Kt
. Since Kt−1 ⊇ Kt,250

it holds that WP,Kt−1
⊆ WP,Kt

, and thus |GP (v) \ Kt| ≤ t − 1 for all v ∈ B0(t) ∩ WP,Kt−1
.251

Moreover, since Kt−1 ⊇ Kt, it obviously holds that Pii ≥ 1 − 1/(9t2) for all i ̸∈ Kt−1. This252

means we can apply Lemma B.4 with τ := t − 1 and K := Kt−1 and so iteratively define sets253

Kt−2 ⊆ · · · ⊆ K1 ⊆ K0 ⊆ [n] in the same way. In the end, we obtain the set K0 ⊆ [n] with254

|K0| ≤ 9t2d(1 + 36t2)t and supp(v) ⊆ K0 for all v ∈ B0(t)∩WP,K0
. The latter guarantee means255

that in fact B0(t) ∩WP,K0
= ∅. So for any t-sparse v ∈ Rn it holds that256 ∥∥vKc

0

∥∥
2
≤ 3
√
v⊤Pv ≤ 3λ

−1/2
d+1

√
v⊤Σv

where the last inequality holds since λd+1P ⪯ Σ. ■257

2.3 Beyond weak learning258

So far, we have sketched a proof that if Σ has few outlier eigenvalues, then there is an efficient259

algorithm to compute a good dictionary (as in Theorem 2.3). This gives an efficient α-weak learning260

algorithm (via Proposition A.5). However, our ultimate goal is to find a regressor v̂ with prediction261

error going to 0 as the number of samples increases. Definition 2.1 is not strong enough to ensure262

this.4 However, it turns out that the dictionary constructed in Theorem 2.3 in fact satisfies a stronger263

guarantee5 that is sufficient to achieve vanishing prediction error:264

Definition 2.8. Let Σ ∈ Rn×n be a positive semi-definite matrix and let t, B > 0. A set265

{D1, . . . , DN} ⊆ Rn is a (t, B)-ℓ1-representation for Σ if for any t-sparse v ∈ Rn there is some266

α ∈ RN with v =
∑N

i=1 αiDi and
∑N

i=1 |αi| · ∥Di∥Σ ≤ B · ∥v∥Σ .267

With this definition in hand, we can actually prove the following strengthening of Theorem 2.3:268

Lemma 2.9. Let n, t, d ∈ N. Let Σ ∈ Rn×n be a positive semi-definite matrix with eigen-269

values λ1 ≤ · · · ≤ λn. Then Σ has a (t, 7
√
t
√

λn/λd+1)-ℓ1-representation D of size at most270

n+ t(7t)2t
2+tdt. Moreover, D can be computed in time tO(t2)dt poly(n).271

4Moreover, standard notions of boosting weak learners (e.g. in distribution-free classification) do not apply
in this setting.

5See Lemma A.3 for a proof that the ℓ1-representation property implies the (t, α)-dictionary property.
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Proof sketch. Let S be the output of IterativePeeling(Σ, d, t). The dictionary D consists of272

the standard basis, together with a Σ-orthogonal basis for each set of t coordinates from S. The273

bound on |D| comes from the guarantee |S| ≤ (7t)2t+1d. For any t-sparse vector v ∈ Rn, we274

know that vSc is efficiently represented by the standard basis (because Theorem B.1 guarantees that275

∥vSc∥2 ≤ O(λ
−1/2
d+1 ∥v∥Σ)), and vS is efficiently represented by one of the Σ-orthonormal bases.276

See Appendix B for the full proof. ■277

Why is the above guarantee useful? If each Di is normalized to unit Σ-norm, then the condition of278

(t, B)-ℓ1-representability is equivalent to ∥α∥1 ≤ B · ∥v∥Σ. That is, with respect to the new set of279

features, the regressor α has bounded ℓ1 norm. Thus, if we apply the Lasso with a set of features that280

is a (t, B)-ℓ1-representation for Σ, then standard “slow rate” guarantees hold (proof in Section A):281

Proposition 2.10. Let n,m,N, t ∈ N and B > 0. Let Σ ∈ Rn×n be a positive semi-definite matrix282

and let D be a (t, B)-ℓ1-representation of size N for Σ, normalized so that ∥v∥Σ = 1 for all v ∈ D.283

Fix a t-sparse vector v∗ ∈ Rn, let X1, . . . , Xm ∼ N(0,Σ) be independent and let yi = ⟨Xi, v
∗⟩+ξi284

where ξi ∼ N(0, σ2). For any R > 0, define285

ŵ ∈ argmin
w∈RN :∥w∥1≤BR

∥XDw − y∥22

where D ∈ Rn×N is the matrix with columns comprising the elements of D, and X ∈ Rm×n is the286

matrix with rows X1, . . . , Xm. So long as m = Ω(log(n/δ)) and ∥w∗∥Σ ∈ [R/2, R], it holds with287

probability at least 1− δ that288

∥Dŵ − w∗∥2Σ = O

(
B ∥w∗∥Σ σ

√
log(2n/δ)

m
+

σ2 log(4/δ)

m
+

B2 ∥w∗∥2Σ log(n)

m

)
.

Combining Proposition 2.10 with Lemma 2.9 shows that there is an algorithm with time complexity289

tO(t2)dt poly(n) and sample complexity O(poly(t)(λn/λd+1) log(n) log(d)) for finding a regressor290

with squared prediction error o(σ2 + ∥v∗∥2Σ). This is a simplified version of Theorem 1.2. The291

full proof involves additional technical details (e.g. more careful analysis to take care of large292

eigenvalues, and to avoid needing an estimate R for ∥w∗∥Σ) but the above exposition contains the293

central ideas. Theorem 1.1 similarly computes the set S from Lemma 2.4 but uses it to construct a294

different dictionary: the standard basis, plus a Σ-orthonormal basis for S.6 See Appendix C for the295

full proofs and pseudocode.296

3 Additional Results297

We now return to Question 2.2 and ask whether there are other families of ill-conditioned Σ for298

which we can prove non-trivial bounds on Nt,α(Σ).299

First, we ask what can be shown for arbitrary covariance matrices. We prove that every covari-300

ance matrix Σ satisfies a non-trivial bound Nt,1/O(t3/2 logn)(Σ) ≤ O(nt−1/2). In fact, building on301

tools from computational geometry, we show the stronger result that Σ has a (t, O(t3/2 log n))-ℓ1-302

representation that of size O(nt−1/2), that is computable from samples in time Õ(nt−Ω(1/t)) for303

any constant t > 1 (Theorem D.5). As a corollary, we provide the first sparse linear regression algo-304

rithm with time complexity that is a polynomial-factor better than brute force, and with near-optimal305

sample complexity, for any constant t and arbitrary Σ (proof in Section D):306

Theorem 3.1. Let n,m, t, B ∈ N and σ > 0, and let Σ ∈ Rn×n be a positive-definite matrix. Let307

w∗ ∈ Rn be t-sparse, and suppose ∥w∗∥Σ ∈ [B/2, B]. Suppose m ≥ Ω(t log n). Let (Xi, yi)
m
i=1308

be independent samples where Xi ∼ N(0,Σ) and yi = ⟨Xi, w
∗⟩ + N(0, σ2). Then there is an309

O(m2nt−1/2+nt−Ω(1/t) logO(t) n)-time algorithm that, given (Xi, yi)
m
i=1, B, and σ2, produces an310

estimate ŵ ∈ Rn satisfying, with probability 1− o(1),311

∥ŵ − w∗∥2Σ ≤ Õ

(
σ2

√
m

+
σ ∥w∗∥Σ t3/2√

m
+
∥w∗∥2Σ t3

m

)
.

6More precisely, the algorithm just skips regularizing S, which is morally equivalent. As it is simpler to
implement, that is shown in Algorithm 1, and analyzed for the proofs.
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Second, one goal is to improve “sample complexity” (i.e. obtain α without dependence on condition312

number) without paying too much in “time complexity” (i.e. retain bounds on Nt,α that are better313

than nt). To this end, we prove that the dependence on κ in the correlation level (see Fact A.4) can314

actually be replaced by dependence on κ in the dictionary size (proof in Appendix E):315

Theorem 3.2. Let n, t ∈ N. Let Σ ∈ Rn×n be a positive-definite matrix with condition number κ.316

Then Nt,1/3t+1(Σ) ≤ 2O(t2)κ2t+1 · n.317

In particular, for any constant t = 1/ϵ, our result shows that there is a nearly-linear size dictionary318

with constant correlations even for covariance matrices with polynomially-large condition number319

κ ≤ nϵ/100. While we are not currently aware of an efficient algorithm for computing the dictionary,320

the above bound nonetheless raises the interesting possibility that there may be a sample-efficient321

and computationally-efficient weak learning algorithm under a super-constant bound on κ.322

4 Related work323

Dealing with correlated covariates. There is considerable work on improving the performance of324

Lasso in situations where some clusters of covariates are highly correlated [47, 19, 2, 42, 21, 12, 27].325

These methods can work well for two-sparse dependencies, but generally do not work as well for326

higher-order dependencies — hence they cannot be used to prove our main result. The approach327

of [2] is perhaps the closest in spirit to ours. They perform agglomerative clustering of correlated328

covariates, orthonormalize the clusters with respect to Σ, and apply Lasso (or solve an essentially329

equivalent group Lasso problem). This method fails, for example, when there is a single three-330

sparse dependency, and the remaining covariates have some mild correlations. Depending on the331

correlation threshold, their method will either aggressively merge all covariates into a single cluster,332

or fail to merge the dependent covariates.333

Feature adaptation and preconditioning. Generalizations of Lasso via a preliminary change-of-334

basis (or explicitly altering the regularization term) have been studied in the past, but largely not to335

solve sparse linear regression per se; instead the goal has been using ℓ1 regularization to encourage336

other structural properties such as piecewise continuity (e.g. in the “fused lasso”, see [35, 36, 20, 8]337

for some more examples). An exception is recent work showing that a “sparse preconditioning” step338

can enable Lasso to be statistically efficient for sparse linear regression when the covariates have339

a certain Markovian structure [23]. Our notion of feature adaptation via dictionaries generalizes340

sparse preconditioning, which corresponds to choosing a non-standard basis in which Σ becomes341

well-conditioned and the sparsity of the signal is preserved.342

Statistical query (SQ) model; sparse halfspaces. From the complexity standpoint, Nt,α(Σ) is a343

covering number and therefore closely corresponds to a packing number Pt,α(Σ) (see Section A.1344

for the definition). This packing number is essentially the (correlational) statistical dimension,345

which governs the complexity of sparse linear regression with covariates from N(0,Σ) in the (cor-346

relational) SQ model (see e.g. [14] for exposition of this model). Whereas strong nΩ(t) SQ lower347

bounds are known for related problems such as sparse parities with noise [29], no non-trivial (i.e.348

super-linear) lower bounds are known for sparse linear regression. Relatedly, in a COLT open prob-349

lem, Feldman asked whether any non-trivial bounds can be shown for the complexity of weak learn-350

ing sparse halfspaces in the SQ model [11]. Our results also yield improved bounds for weakly351

SQ-learning sparse halfspaces over certain families of multivariate Gaussian distributions.352

Improving brute-force for arbitrary Σ. Several prior works have suggested improvements on353

brute-force search for variants of t-sparse linear regression [18, 16, 31, 6]. However, all of these354

have limitations preventing their application to the general setting we address in Theorem 3.1.355

Specifically, [18] requires Ω(nt) preprocessing time on the covariates; [16, 31] require noiseless356

responses; and [6] has time complexity scaling with logm n (since our random-design setting neces-357

sitates m ≥ Ω(t log n), their algorithm has time complexity much larger than nt).358
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A Preliminaries469

Throughout, we use the following standard notation. For positive integers n,m ∈ N, we write470

A : m× n to denote a matrix with m rows, n columns, and real-valued entries. The standard inner471

product on Rn is denoted ⟨u, v⟩ := u⊤v. For a positive semi-definite matrix Σ : n × n we define472

the Σ-inner product on Rn by ⟨u, v⟩Σ := u⊤Σv and the Σ-norm by ∥u∥Σ =
√
⟨u, u⟩Σ. For n ∈ N473

(made clear by context) we let e1, . . . , en ∈ Rn be the standard basis vectors ei(j) := 1[j = i]. For474

a vector v ∈ Rn and set S ⊆ [n] we write vS to denote the restriction of v to coordinates in S. For475

symmetric matrices A,B : n× n we write A ⪯ B to denote that B −A is positive semi-definite.476

A.1 Covering, packing, and ℓ1-representability477

We previously defined the covering number of t-sparse vectors with respect to a covariance matrix Σ.478

We next define the packing number (i.e. correlational statistical dimension) and ℓ1-representability,479

and discuss the connections between these quantities as well as their algorithmic implications.480

Definition A.1. Let Σ : n × n be a positive semi-definite matrix and let t, α > 0. A set481

{v1, . . . , vN} ⊆ Rn is a (t, α)-packing for Σ if every vi is t-sparse, and482

|⟨vi, vj⟩Σ| < α ∥vi∥Σ ∥vj∥Σ

for all i, j ∈ [N ] with i ̸= j. The (correlational) statistical dimension of t-sparse vectors with483

maximum correlation α, under the Σ-inner product, is denoted Pt,α(Σ) and defined as the size of484

the largest (t, α)-packing.485

We will make use of the following connections between packing, covering, and ℓ1-representability.486

Lemma A.2 (Covering⇔ packing). For any positive semi-definite matrix Σ : n× n and t, α > 0,487

it holds that (α2/3)Pt,α2/2(Σ) ≤ Nt,α(Σ) ≤ Pt,α(Σ).488

Proof. First inequality. Let {D1, . . . , DN} be any maximum-size (t, α2/2)-packing. Since the489

Di’s are all t-sparse, each must be correlated with some element of a (t, α)-dictionary. Thus, it490

suffices to show that for any v ∈ Rn, the set S(v) := {i ∈ [N ] : |⟨Di, v⟩Σ| ≥ α ∥Di∥Σ ∥v∥Σ} has491

size |S(v)| ≤ 3/α2. Indeed, for any i, j ∈ S(v) with i ̸= j, we have by the definition of a packing492

that493 〈
Di −

⟨Di, v⟩Σ
∥v∥2Σ

v,Dj −
⟨Dj , v⟩Σ
∥v∥2Σ

v

〉
Σ

= ⟨Di, Dj⟩ −
⟨Di, v⟩Σ⟨Dj , v⟩Σ

∥v∥2Σ

≤ −α2

2
∥Di∥Σ ∥Dj∥Σ .

For each i ∈ S(v) define Ri = Di − ⟨Di, v⟩Σv/ ∥v∥2Σ. Then494

0 ≤

∥∥∥∥∥∥
∑

i∈S(v)

Ri

∥Ri∥Σ

∥∥∥∥∥∥
2

Σ

= |S(v)|+
∑

i,j∈S(v):i ̸=j

⟨Ri, Rj⟩Σ
∥Ri∥Σ ∥Rj∥Σ

≤ |S(v)| − |S(v)|(|S(v)| − 1) · α
2

2

where the last inequality uses the bound ∥Ri∥Σ ≤ ∥Di∥Σ. Rearranging gives |S(v)| ≤ 1 + (2/α2).495

Second inequality. Let {D1, . . . , DN} be any maximal (t, α)-packing. Then for any t-sparse496

v ∈ Rn, maximality implies that there must be some i ∈ [N ] with |⟨Di, v⟩Σ| ≥ α ∥Di∥Σ ∥v∥Σ.497

So {D1, . . . , DN} is also a (t, α)-dictionary.498

Lemma A.3 (ℓ1-representation =⇒ covering). Let Σ : n × n be a positive semi-definite matrix499

and let t, B > 0. If {D1, . . . , DN} ⊆ Rn is a (t, B)-ℓ1-representation for Σ, then it is also a500

(t, 1/B)-dictionary for Σ.501

13



Proof. Pick any t-sparse v ∈ Rn. By ℓ1-representability, there is some α ∈ RN with v =502 ∑N
i=1 αiDi and

∑N
i=1 |αi| · ∥Di∥Σ ≤ B · ∥v∥Σ. Hence503

∥v∥2Σ =

N∑
i=1

αi⟨v,Di⟩Σ

≤
N∑
i=1

|αi| ∥v∥Σ ∥Di∥Σ · max
j∈[N ]

|⟨v,Dj⟩Σ|
∥v∥Σ ∥Dj∥Σ

≤ B ∥v∥2Σ · max
j∈[N ]

|⟨v,Dj⟩Σ|
∥v∥Σ ∥Dj∥Σ

and thus maxj∈[N ]
|⟨v,Dj⟩Σ|

∥v∥Σ∥Dj∥Σ
≥ 1/B.504

We can now easily prove that the standard basis is a good dictionary for well-conditioned Σ.505

Fact A.4. Let Σ be a positive definite matrix with condition number λmax(Σ)
λmin(Σ) ≤ κ. Under the Σ-inner506

product, every t-sparse vector is at least 1/(
√
κt)-correlated with some standard basis vector.507

Proof. By Lemma A.3, it suffices to show that the standard basis {e1, . . . , en} is a (t,
√
κt)-ℓ1-508

representation for Σ. Indeed, for any t-sparse v ∈ Rn,509

n∑
i=1

|vi| · ∥ei∥Σ ≤
n∑

i=1

|vi| ·
√
λmax(Σ) ∥ei∥2 =

√
λmax(Σ) ∥v∥1

≤
√
λmax(Σ)

√
t ∥v∥2 ≤

√
λmax(Σ)

λmin(Σ)

√
t ∥v∥Σ

as desired.510

A.2 Algorithmic implications511

An existential proof that Nt,α(Σ) is small unfortunately does not in general give an efficient algo-512

rithm for constructing a concise dictionary. However, with the caveat that the dictionary must be513

given to the algorithm as advice, bounds on Nt,α do imply weak learning algorithms with sample514

complexity O(α−2 log(n)):515

Proposition A.5. Let Σ : n×n be a positive semi-definite matrix and letD be a (t, α)-dictionary for516

Σ, for some t ∈ N and α ∈ (0, 1). For m ∈ N and t-sparse v∗ ∈ Rn, let X1, . . . , Xm ∼ N(0,Σ)517

be independent and let yi = ⟨Xi, v
∗⟩+ ξi where ξi ∼ N(0, σ2). Define the estimator518

v̂ = argmin
v∈D
β∈R

∥βXv − y∥22

where X : m× n is the matrix with rows X1, . . . , Xm. For any δ > 0, if m ≥ Cα−2 log(32|D|/δ)519

for a sufficiently large absolute constant C, then with probability at least 1− δ,520 ∥∥∥β̂ŵ − w∗
∥∥∥2
Σ
≤ (1− α2/4) ∥w∗∥2Σ +

400σ2 log(4|D|/δ)
α2m

.

Proof. Since D is a (t, α)-dictionary, we know that there is some ṽ ∈ D with |⟨ṽ, v∗⟩Σ| ≥521

α ∥ṽ∥Σ ∥v∗∥Σ . We then apply Lemma F.4.522

The above guarantee is essentially of the form “at least 1% of the signal variance can be explained”.523

Under the ℓ1-representability condition, something much stronger is true:524

Proposition A.6. Let n,m,N, t ∈ N and B > 0. Let Σ : n × n be a positive semi-definite matrix525

and let D be a (t, B)-ℓ1-representation of size N for Σ, normalized so that ∥v∥Σ = 1 for all v ∈ D.526
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Fix a t-sparse vector v∗ ∈ Rn, let X1, . . . , Xm ∼ N(0,Σ) be independent and let yi = ⟨Xi, v
∗⟩+ξi527

where ξi ∼ N(0, σ2). For any R > 0, define528

ŵ ∈ argmin
w∈RN :∥w∥1≤BR

∥XDw − y∥22

where D : n × N is the matrix with columns comprising the elements of D, and X : m × n is529

the matrix with rows X1, . . . , Xm. So long as m = Ω(log(n/δ)) and R ≥ ∥v∗∥Σ, it holds with530

probability at least 1− δ that531

∥Dŵ − w∗∥2Σ = O

(
BRσ

√
log(2n/δ)

m
+

σ2 log(4/δ)

m
+

B2R2 log(n)

m

)
.

Proof. By ℓ1-representability and normalization of D, there is some w∗ ∈ RN such that v∗ = Dw∗532

and ∥w∗∥1 ≤ B ∥v∗∥Σ ≤ BR. Let Γ = D⊤ΣD. Also, by normalization, maxi Γii = 1. Thus, we533

can apply standard “slow rate” Lasso guarantees to the samples (D⊤Xi, yi)
m
i=1 to get the claimed534

bound (see e.g. Theorem 14 of [22]).535

A.3 Optimizing the Lasso in near-linear time536

Theorem A.7 (see e.g. Corollary 4 and Section 5.3 in [34]). Let n,m,B,H, T ∈ N and σ > 0. Fix537

X1, . . . , Xm ∈ Rn with ∥Xi∥∞ ≤ H for all i, and fix w∗ ∈ Rn with ∥w∗∥1 ≤ B. For i ∈ [m] define538

yi = ⟨Xi, w
∗⟩ + ξi where ξi ∼ N(0, σ2) are independent random variables. Given (Xi, yi)

m
i=1 as539

well as B, T , and σ2, there is an algorithm MirrorDescentLasso((Xi, yi)
m
i=1, B, T , σ2), which540

optimizes the Lasso objective via T iterations of mirror descent, that produces an estimate ŵ ∈ Rn541

satisfying ∥ŵ∥1 ≤ B and, with probability 1− o(1),542

1

m
∥Xŵ − y∥22 ≤

1

m
∥Xw∗ − y∥22 + Õ

(
H2B2

T
+

√
H2B2σ2

T

)
.

Moreover, the time complexity of MirrorDescentLasso() is Õ(nmT ).543

Theorem A.8. Let n,m,B,H ∈ N and σ > 0. Let Σ : n × n be positive semi-definite with544

maxj∈[n] Σjj ≤ H2. Fix w∗ ∈ Rn with ∥w∗∥1 ≤ B. Let (Xi, yi)
m
i=1 be independent draws where545

Xi ∼ N(0,Σ) and yi = ⟨Xi, w
∗⟩ + N(0, σ2). Then MirrorDescentLasso((Xi, yi)

m
i=1, B, m,546

σ2) computes, in time Õ(nm2), an estimate ŵ satisfying, with probability 1− o(1),547

∥ŵ − w∗∥2Σ ≤ Õ

(
σ2

√
m

+
σHB√

m
+

H2B2

m

)
Proof. Since maxj Σjj ≤ H we have that maxi ∥Xi∥∞ ≤ O(H log n) with probability 1 − o(1).548

Applying Theorem A.7 with this bound and with T = m, we obtain some ŵ ∈ Rn with ∥ŵ∥1 ≤ B549

and, with probability 1− o(1),550

1

m
∥Xŵ − y∥22 ≤

1

m
∥Xw∗ − y∥22 + ϵ

where ϵ = Õ(H2B2/m) +
√
H2B2σ2/m). By χ2-concentration, we have 1

m ∥Xw∗ − y∥22 ≤551

σ2(1 +O(1/
√
m)) with probability 1− o(1). Thus,552

∥Xŵ − y∥2 ≤ ∥Xw∗ − y∥2 +
√
ϵm ≤ σ

√
m+O(σm1/4) +

√
ϵm

and553

∥Xŵ − y∥22 ≤ ∥Xw∗ − y∥22 +mϵ ≤ σ2m+O(σ2
√
m) + ϵm.

Next, since supw∈Rn:∥w∥1≤B⟨w − w∗, x⟩ ≤ 2B ∥x∥∞ ≤ O(HB log n) with probability 1 − o(1)554

over x ∼ N(0,Σ), we can apply Theorem C.1 to get that with probability 1− o(1),555

∥ŵ − w∗∥2Σ + σ2 ≤ 1 + Õ(1/
√
m)

m
(∥Xŵ − y∥2 + Õ(HB))2.
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Substituting the bounds on ∥Xŵ − y∥2 and ∥Xŵ − y∥22 gives556

∥ŵ − w∗∥2Σ + σ2 ≤ σ2 +O(σ2m−1/2 + ϵ) + Õ(σHBm−1/2 +HB
√
ϵ/m) + Õ(H2B2/m).

Substituting in the value of ϵ and simplifying, we get557

∥ŵ − w∗∥2Σ ≤ Õ

(
σ2

√
m

+
σHB√

m
+

H2B2

m

)
as claimed.558

B Iterative Peeling559

In this section we give the complete proof of Lemma 2.4, restated below as Theorem B.1, which560

describes the guarantees of IterativePeeling() (see Algorithm 1). This is a key ingredient in561

the proofs of Theorems 1.1 and 1.2. We also use it to formally prove Theorem 2.3, as well as562

Lemma 2.9.563

Theorem B.1. Let n, t, d ∈ N. Let Σ : n × n be a positive semi-definite matrix with eigenvalues564

λ1 ≤ · · · ≤ λn. Given Σ, d, and t, there is a polynomial-time algorithm IterativePeeling()565

producing a set S ⊆ [n] with the following guarantees:566

• For every t-sparse v ∈ Rn, it holds that
∥∥v[n]\S∥∥2 ≤ 3λ

−1/2
d+1 ∥v∥Σ.567

• |S| ≤ (7t)2t+1d.568

Essentially, the set S contains every coordinate i ∈ [n] that “participates” in an approximate sparse569

dependency, in the sense that there is some sparse linear combination of the covariates with small570

variance compared to the coefficient on i. To compute S, the algorithm IterativePeeling() first571

computes the orthogonal projection matrix P that projects onto the subspace spanned by the top n−d572

eigenvectors of Σ. Starting with the set of coordinates that correlate with ker(P ), the procedure then573

iteratively grows S in such a way that at each step, a new participant of each approximate sparse574

dependency is discovered, but S does not become too much larger.575

The following lemma will be needed to bound how much S grows at each iteration:576

Lemma B.2. Let V ⊆ Rn be a subspace with d := dimV . For some α > 0 define577

S =

{
i ∈ [n] : sup

x∈V \{0}

xi

∥x∥2
≥ α

}
.

Then |S| ≤ d/α2. Moreover, given a set of vectors that span V , we can compute S in time poly(n).578

Proof. Let k := |S| and without loss of generality suppose S = {1, . . . , k}. Define a matrix579

A ∈ Rn×n as follows. For 1 ≤ i ≤ k let row Ai ∈ V be some vector such that ∥Ai∥2 = 1580

and Aii ≥ α. For k + 1 ≤ i ≤ n let Ai = 0. Then tr(A) ≥ kα and ∥A∥F =
√
k. However,581

rank(A) ≤ d, so the singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 of A satisfy σd+1 = 0. Thus,582

kα ≤ tr(A) ≤
n∑

i=1

σi ≤
√
d

√√√√ n∑
i=1

σ2
i =
√
d ∥A∥F =

√
dk

where the second inequality is by e.g. Von Neumann’s trace inequality, and the third inequality is583

by d-sparsity of the vector σ. It follows that k ≤ d/α2 as claimed.584

Let A be the matrix with columns consisting of the given spanning set for V . By Gram-Schmidt,585

we may transform the spanning set into an orthonormal basis for V , so that A has d columns, and586

A⊤A = Id. Fix i ∈ [n]. Then supx∈V \{0} xi/ ∥x∥2 ≥ α if and only if (Av)2i − α2 ∥Av∥22 ≥ 0 for587

some nonzero v ∈ Rd. Equivalently, (Av)2i ≥ α2 for some unit vector v. This is possible if and588

only if ∥Ai∥2 ≥ α (where Ai is the i-th row of A), which can be checked in polynomial time.589

For notational convenience, we also define the set WP,S of vectors v with unusually large norm590

outside the set S.591
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Definition B.3. For any matrix P : n×n and subset S ⊆ [n], defineWP,S := {v ∈ Rn : ∥vSc∥2 >592

3
√
v⊤Pv}.593

We then formalize the guarantee of each iteration of IterativePeeling() as follows:594

Lemma B.4. Let n, t ∈ N and let P : n × n be an orthogonal projection matrix. Suppose τ ≥ 1595

and K ⊆ [n] satisfy596

(a) Pii ≥ 1− 1/(9t2) for all i ̸∈ K,597

(b) | supp(v) \K| ≤ τ for every v ∈ B0(t) ∩WP,K .598

Then there exists a set IP (K) with |IP (K)| ≤ 36t2|K| such that599

| supp(v) \ (IP (K) ∪K)| ≤ τ − 1

for all v ∈ B0(t) ∩WP,K . Moreover, given P , K, and t, we can compute IP (K) in time poly(n).600

Proof. We define the set601

IP (K) :=

{
a ∈ [n] \K : sup

x∈span{Pei:i∈K}\{0}

|xa|
∥x∥2

≥ 1/(6t)

}
.

It is clear from Lemma B.2 (applied with parameters V := span{Pei : i ∈ K} and α := 1/(6t))602

that |IP (K)| ≤ 36t2|K|, and that IP (K) can be computed in time poly(n). It remains to show that603

| supp(v) \ (IP (K) ∪K)| ≤ τ − 1 for all v ∈ B0(t) ∩WP,K .604

Consider any v ∈ B0(t) ∩WP,K . Then ∥vKc∥2 > 3
√
v⊤Pv. We have605

∥vKc∥22
9

> v⊤Pv = ∥Pv∥22 =

∥∥∥∥∥
n∑

i=1

viPi

∥∥∥∥∥
2

2

(1)

where the first equality uses the fact that P is a projection matrix. We also know that606 ∥∥∥∥∥∥
∑

i∈[n]\K

vi(Pi − ei)

∥∥∥∥∥∥
2

≤
∑

i∈[n]\K

|vi| ∥Pi − ei∥2 ≤
1

3
√
t
∥vKc∥1 ≤

1

3
∥vKc∥2 (2)

by the triangle inequality, the bound ∥Pi − ei∥22 = (I − P )ii = 1 − Pii ≤ 1/(9t) (since i ̸∈ K),607

and t-sparsity of v. Moreover, (2) implies that608 ∥∥∥∥∥∥
∑

i∈[n]\K

viPi

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈[n]\K

vi(Pi − ei)

∥∥∥∥∥∥
2

+ ∥vKc∥2 ≤
4

3
∥vKc∥2 . (3)

Combining (1) and (3), the triangle inequality gives609 ∥∥∥∥∥∑
i∈K

viPi

∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈[n]\K

viPi

∥∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

i=1

viPi

∥∥∥∥∥
2

≤ 5

3
∥vKc∥2 . (4)

Next, observe that610

∥vKc∥22
3

>

∥∥∥∥∥
n∑

i=1

viPi

∥∥∥∥∥
2

∥vKc∥2 (by (1))

≥

∣∣∣∣∣
〈

n∑
i=1

viPi, vKc

〉∣∣∣∣∣ (by Cauchy-Schwarz)

≥

∣∣∣∣∣∣
〈 ∑

i∈[n]\K

viPi, vKc

〉∣∣∣∣∣∣−
∣∣∣∣∣
〈∑

i∈K

viPi, vKc

〉∣∣∣∣∣ (by triangle inequality)
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≥

∣∣∣∣∣∣
〈 ∑

i∈[n]\K

viei, vKc

〉∣∣∣∣∣∣−
∣∣∣∣∣∣
〈 ∑

i∈[n]\K

vi(Pi − ei), vKc

〉∣∣∣∣∣∣−
∣∣∣∣∣
〈∑

i∈K

viPi, vKc

〉∣∣∣∣∣
(by triangle inequality)

≥ ∥vKc∥22 −

∥∥∥∥∥∥
∑

i∈[n]\K

vi(Pi − ei)

∥∥∥∥∥∥
2

∥vKc∥2 −

∣∣∣∣∣
〈∑

i∈K

viPi, vKc

〉∣∣∣∣∣
(by Cauchy-Schwarz)

≥ ∥vKc∥22 −
1

3
∥vKc∥22 −

∣∣∣∣∣
〈∑

i∈K

viPi, vKc

〉∣∣∣∣∣ (by (2))

and hence611 ∣∣∣∣∣
〈∑

i∈K

viPi, vKc

〉∣∣∣∣∣ > 1

3
∥vKc∥22 ≥

1

5
∥vKc∥2

∥∥∥∥∥∑
i∈K

viPi

∥∥∥∥∥
2

where the last inequality is by (4). On the other hand, observe that612 ∣∣∣∣∣
〈∑

i∈K

viPi, vKc

〉∣∣∣∣∣ ≤ ∑
j∈[n]\K

|vj |·

∣∣∣∣∣
〈∑

i∈K

viPi, ej

〉∣∣∣∣∣ ≤ √t ∥vKc∥2 max
j∈supp(v)\K

∣∣∣∣∣
〈∑

i∈K

viPi, ej

〉∣∣∣∣∣ .
Hence, there is some j ∈ supp(v) \K such that613 ∣∣∣∣∣

〈∑
i∈K

viPi, ej

〉∣∣∣∣∣ > 1

5
√
t

∥∥∥∥∥∑
i∈K

viPi

∥∥∥∥∥
2

.

So the vector x(v) :=
∑

i∈K viPi ∈ span{Pi : i ∈ K} satisfies |x(v)j | > ∥x(v)∥2 /(5
√
t).614

Moreover, x(v) is nonzero since |x(v)j | > 0. Thus, j ∈ IP (K). Since we chose j to be in615

supp(v) \K, it follows that616

| supp(v) \ (IP (K) ∪K)| ≤ | supp(v) \K| − 1 ≤ τ − 1

where the last inequality is by assumption (b) in the lemma statement.617

We can now complete the proof of Theorem B.1 by repeatedly invoking Lemma B.4 (this proof was618

given in Section 2.2 and is duplicated here for completeness).619

Proof of Theorem B.1. Let Σ =
∑n

i=1 λiuiu
⊤
i be the eigendecomposition of Σ, and let P :=620 ∑n

i=d+1 uiu
⊤
i be the projection onto the top n − d eigenspaces of Σ. Set Kt = {i ∈ [n] : Pii <621

1− 1/(9t2)}. Because tr(P ) = n− d and Pii ≤ 1 for all i ∈ [n], it must be that |Kt| ≤ 9t2d. Also,622

for any v ∈ B0(t) ∩WP,Kt
we have trivially by t-sparsity that | supp(v) \Kt| ≤ t.623

Define Kt−1 to be Kt∪IP (Kt) where IP (Kt) is as defined in Lemma B.4; we have the guarantees624

that |Kt−1| ≤ (1+36t2)|Kt| and |GP (v)\Kt| ≤ t−1 for all v ∈ B0(t)∩WP,Kt
. Since Kt−1 ⊇ Kt,625

it holds that WP,Kt−1
⊆ WP,Kt

, and thus |GP (v) \ Kt| ≤ t − 1 for all v ∈ B0(t) ∩ WP,Kt−1
.626

Moreover, since Kt−1 ⊇ Kt, it obviously holds that Pii ≥ 1 − 1/(9t2) for all i ̸∈ Kt−1. This627

means we can apply Lemma B.4 with τ := t − 1 and K := Kt−1 and so iteratively define sets628

Kt−2 ⊆ · · · ⊆ K1 ⊆ K0 ⊆ [n] in the same way. In the end, we obtain the set K0 ⊆ [n] with629

|K0| ≤ 9t2d(1 + 36t2)t and supp(v) ⊆ K0 for all v ∈ B0(t)∩WP,K0
. The latter guarantee means630

that in fact B0(t) ∩WP,K0
= ∅. So for any t-sparse v ∈ Rn it holds that631 ∥∥vKc

0

∥∥
2
≤ 3
√
v⊤Pv ≤ 3λ

−1/2
d+1

√
v⊤Σv

where the last inequality holds since λd+1P ⪯ Σ. ■632

18



Proof of Lemma 2.9. By Theorem B.1, there is a polynomial-time computable set S ⊆ [n] such633

that ∥vSc∥2 ≤ 3
√
tλ

−1/2
d+1 ∥v∥Σ for all v ∈ B0(t), and |S| ≤ (7t)2t+1d. Let the dictionary D consist634

of the standard basis {e1, . . . , en} together with a Σ-orthogonal basis for each subspace spanned635

by t vectors in {ei : i ∈ S}. Let v ∈ Rn be t-sparse. Let vS denote the restriction of v to S,636

i.e. vS := v −
∑

i∈[n]\S viei. By construction of the dictionary, there is a Σ-orthogonal basis for637

{ei : i ∈ S ∩ supp(v)}, so there are d1, . . . , dt ∈ D and coefficients bd1 , . . . , bdt ∈ R with vS =638 ∑t
i=1 bdidi and ⟨di, dj⟩Σ = 0 for all i, j ∈ [t] with i ̸= j. Note that ∥vS∥2Σ =

∑t
i=1 b

2
di
∥di∥2Σ, so639

t∑
i=1

|bdi
| ∥di∥Σ ≤

√
t

√√√√ t∑
i=1

b2di
∥di∥2Σ =

√
t ∥vS∥Σ .

Now, we claim that the desired coefficient vector {αd : d ∈ D} for v is defined by αd = bd +640 ∑
i∈[n]\S vi1[d = ei]. We can check that

∑
d∈D αdd =

∑t
i=1 bdi

+
∑

i∈[n]\S viei = v. Also,641

∥vS∥Σ ≤ ∥v∥Σ + ∥vSc∥Σ
≤ ∥v∥Σ +

√
λn ∥vSc∥2

≤ (1 + 3
√
λn/λd+1) ∥v∥Σ

by the guarantee of set S.642

It follows that643
t∑

i=1

|bdi
| ∥di∥Σ ≤ (1 + 3

√
λn/λd+1)

√
t ∥v∥Σ

√
λn/λd+1.

Thus,644 ∑
d∈D

|cd| ∥d∥Σ ≤ (1 + 3
√

λn/λd+1)
√
t ∥v∥Σ +

∑
i∈[n]\S

|vi| ∥ei∥Σ

≤ (1 + 3
√

λn/λd+1)
√
t ∥v∥Σ +

√
t ∥vSc∥2

√
λn

≤ (1 + 3
√
λn/λd+1)

√
t ∥v∥Σ + 3

√
t ∥v∥Σ

√
λn/λd+1

≤ 7
√
t
√
λn/λd+1 ∥v∥Σ

which completes the proof. ■645

Proof of Theorem 2.3. Immediate from Lemma 2.9 and Lemma A.3. ■646

C An efficient algorithm for handling outlier eigenvalues647

In this section we describe and provide error guarantees for a novel sparse linear regression algo-648

rithm BOAR-Lasso() (see Algorithm 2 for pseudocode), completing the proof of Theorem 1.1; in649

Section C.1 we then analyze a modified algorithm to prove Theorem 1.2.650

The key subroutine of BOAR-Lasso() is the procedure AdaptivelyRegularizedLasso(),651

which (like the simplified procedure AdaptedBP() from Section 3) first invokes procedure652

IterativePeeling() to compute the set of coordinates that participate in sparse approximate653

dependencies, and second computes a modified Lasso estimate where those coordinates are not reg-654

ularized.655

We start with Theorem C.2, which shows that, in the setting where Σ has few outlier eigenvalues,656

the procedure AdaptivelyRegularizedLasso() estimates the sparse ground truth regressor at the657

“slow rate” (e.g. in the noiseless setting, the excess risk is at most O(∥v∗∥2Σ reff/m)). Typical excess658

risk analyses for Lasso proceed by applying some general-purpose machinery for generalization659

bounds, such as the following result which only requires understanding ⟨w − w∗, X⟩ for X ∼660

N(0,Σ).661
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Algorithm 2: Solve sparse linear regression when covariate eigenspectrum has few outliers
Procedure AdaptivelyRegularizedLasso(Σ, (Xi, yi)

m
i=1, t, dl, δ)

Data: Covariance matrix Σ : n× n, samples (Xi, yi)
m
i=1, sparsity t, small eigenvalue count

dl, failure probability δ
Result: Estimate v̂ of unknown sparse regressor, satisfying Theorem C.2∑n

i=1 λiuiu
⊤
i ← eigendecomposition of Σ

S ← IterativePeeling(Σ, dl, t) /* See Algorithm 1 */
Return

v̂ ← argmin
v∈Rn

m∑
i=1

(⟨Xi, v⟩−y)2+8λn−dh
log(12n/δ) ∥vSc∥21+2

√
2λn−dh

log(12n/δ) ∥vSc∥1 .

Procedure BOAR-Lasso(Σ, (Yi, yi)
m
i=1, t, dl, L, δ)

Data: Covariance matrix Σ : n× n, samples (Xi, yi)
m
i=1, sparsity t, small eigenvalue count

dl, repetition count L, failure probability δ
Result: Estimate v̂ of unknown sparse regressor, satisfying Theorem C.3
ŝ(0) ← 0 ∈ Rn

for 0 ≤ j < L do
Set

Σ(j) ←
[

Σ (ŝ(j))⊤Σ
Σŝ(j) (ŝ(j))⊤Σŝ(j)

]
.

Set A(j) := {mj + 1, . . . ,m(j + 1)}
ŵ(j+1) ← AdaptivelyRegularizedLasso(Σ(j),
((Xi, ⟨Xi, ŝ

(j)⟩), yi − ⟨Xi, ŝ
(j)⟩)i∈A(j) , t+ 1, dl + 1, δ/L)

v̂(j+1) ← ŵ
(j+1)
[n] + ŵ

(j+1)
n+1 ŝ(j)

ŝ(j+1) ← ŝ(j) + v̂(j+1)

return ŝ(L)

Theorem C.1 (Theorem 1 in [45]). Let n,m ∈ N and ϵ, δ, σ > 0. Let Σ : n × n be a positive
semi-definite matrix and fix w∗ ∈ Rn. Let X : m× n have i.i.d. rows X1, . . . , Xm ∼ N(0,Σ), and
let y = Xw∗ + ξ where ξ ∼ N(0, σ2Im). Let F : Rd → [0,∞] be a continuous function such that

Pr
x∼N(0,Σ)

[ sup
w∈Rn

⟨w − w∗, x⟩ − F (w) > 0] ≤ δ.

If m ≥ 196ϵ−2 log(12/δ), then with probability at least 1− 4δ it holds that for all w ∈ Rd,

∥w − w∗∥2Σ + σ2 ≤ 1 + ϵ

m
(∥Xw − y∥2 + F (w))

2
.

In classical settings, e.g. (a) where ∥v∗∥1 is bounded and maxi Σii ≤ 1 (see Proposition A.6) or (b)662

where Σ satisfies the compatibility condition (see Definition G.1), the above result can be applied663

together with the straightforward bound ⟨v − v∗, X⟩ ≤ ∥v − v∗∥1 ∥X∥∞. To prove Theorem C.2664

we follow the same general recipe as (a), with several modifications.665

First, since maxi Σii could be arbitrarily large, we need to treat the (few) large eigenspaces of Σ666

separately when bounding ⟨v − v∗, X⟩. Similarly, since Theorem B.1 only gives bounds on v∗667

for coordinates outside S, we separately bound ⟨(v − v∗)S , X⟩ using that |S| is small. Second, to668

achieve the optimal rate of σ2neff/m rather than σ2
√

neff/m, we do not directly apply Theorem C.1669

to the noisy samples (Xi, yi); instead, we derive a modification of that result (Lemma F.7) that only670

invokes Theorem C.1 on the noiseless samples (Xi, ⟨Xi, v
∗⟩), and separately bounds the in-sample671

prediction error ∥X(v̂ − v∗)∥2. A similar technique is used in [45] for constrained least-squares672

programs (see their Lemma 15); our Lemma F.7 applies to a broad family of additively regular-673

ized programs, which obviates the need to independently estimate ∥v∗∥Σ but otherwise achieves674

comparable bounds.675

Theorem C.2. Let n, t, dl, dh,m ∈ N and σ, δ > 0. Let Σ : n×n be a positive semi-definite matrix
with eigenvalues λ1 ≤ · · · ≤ λn. Let (Xi, yi)

m
i=1 be independent samples where Xi ∼ N(0,Σ) and

20



yi = ⟨Xi, v
∗⟩ + ξi, for ξi ∼ N(0, σ2) and a fixed t-sparse vector v∗ ∈ Rn. Let v̂ be the output of

AdaptivelyRegularizedLasso(Σ, (Xi, yi)
m
i=1, t, dl,δ). Let neff := (7t)2t+1dl+ dh+log(48/δ)

and let reff := t(λn−dh
/λdl+1) log(12n/δ). There are absolute constants c, C > 0 so that the

following holds. If m ≥ Cneff, then with probability at least 1− δ,

∥v̂ − v∗∥2Σ ≤ c

(
σ2neff

m
+

(σ + ∥v∗∥Σ) ∥v∗∥Σ
√
reff√

m
+
∥v∗∥2Σ reff

m

)
.

Proof. Define projection matrix P :=
∑n−dh

i=1 uiu
⊤
i , so that rank(P⊥) = dh and λmax(PΣP ) ≤676

λn−dh
. For any v ∈ Rn and X ∼ N(0,Σ), we can bound677

⟨v − v∗, X⟩ = ⟨(v − v∗)Sc , PX⟩+ ⟨(v − v∗)Sc , P⊥X⟩+ ⟨(v − v∗)S , X⟩
= ⟨(v − v∗)Sc , PX⟩+ ⟨Σ1/2(v − v∗),Σ−1/2(P⊥X)Sc⟩+ ⟨Σ1/2(v − v∗),Σ−1/2XS⟩

≤ ∥(v − v∗)Sc∥1 ∥PX∥∞ +
∥∥∥Σ1/2(v − v∗)

∥∥∥
2
(∥Z∥2 + ∥W∥2)

where PX ∼ N(0, PΣP ), Z ∼ N(0,Σ−1/2(P⊥ΣP⊥)ScScΣ−1/2), and W ∼
N(0,Σ−1/2ΣSSΣ

−1/2). First, since maxi(PΣP )ii ≤ λmax(PΣP ) ≤ λn−dh
, we have the Gaus-

sian tail bound
Pr
[
∥PX∥∞ >

√
λn−dh

· 2 log(12n/δ)
]
≤ δ/12.

Second, since678

Σ−1/2(P⊥ΣP⊥)ScScΣ−1/2 ⪯ Σ−1/2(P⊥ΣP⊥)Σ−1/2 (by Cauchy Interlacing Theorem)

= P⊥ (since P⊥ commutes with Σ)

we have that ∥Z∥22 is stochastically dominated by χ2
dh

, and thus

Pr
[
∥Z∥2 >

√
2dh

]
≤ e−m/4 ≤ δ/12.

Third, similarly, since Σ−1/2ΣSSΣ
−1/2 ⪯ I (again by Cauchy Interlacing Theorem) and also

rank(Σ−1/2ΣSSΣ
−1/2) ≤ |S|, we have that ∥W∥22 is stochastically dominated by χ2

|S|, and thus

Pr
[
∥W∥22 >

√
2|S|

]
≤ e−m/4 ≤ δ/12.

Combining the above bounds, we have that with probability at least 1− δ/4 over X ∼ N(0,Σ), for679

all v ∈ Rn,680

⟨v − v∗, X⟩ ≤ ∥(v − v∗)Sc∥1
√
λn−dh

· 2 log(12n/δ) +
∥∥∥Σ1/2(v − v∗)

∥∥∥
2
(
√
2dh +

√
2|S|).

We can therefore apply Lemma F.7 with covariance Σ, seminorm Φ(v) :=

2
√

2λn−dh
log(12n/δ) ∥vSc∥1, p := 4(dh + |S|), ground truth v∗, samples (Xi, yi)

m
i=1, and failure

probability δ/4. By the bound on |S| (Theorem B.1) we have |S| + dh ≤ (7t)2t+1dl + dh ≤ neff,
so it holds that m ≥ 16p+ 196 log(48/δ). Thus, with probability at least 1− 2δ, we have

∥v̂ − v∗∥2Σ ≤ O

(
σ2neff

m
+

(σ + ∥v∗∥Σ) ∥v∗Sc∥1
√

λn−dh
log(12n/δ)

√
m

+
∥v∗Sc∥21 λn−dh

log(12n/δ)

m

)
.

By the guarantee of S (Theorem B.1) and t-sparsity of v∗, we have ∥v∗Sc∥2 ≤ 3λ
−1/2
dl+1 ∥v∗∥Σ, and

thus ∥v∗Sc∥1 ≤ 3
√
tλ

−1/2
dl+1 ∥v∗∥Σ . Substituting into the previous bound, we get

∥v̂ − v∗∥2Σ ≤ O

(
σ2neff

m
+

(σ + ∥v∗∥Σ) ∥v∗∥Σ
√
reff√

m
+
∥v∗∥2Σ reff

m

)
as claimed.681
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The limitation of AdaptivelyRegularizedLasso() is that the excess risk bound depends on682

∥v∗∥2Σ rather than just σ2. We next show that by a boosting approach, we can exponentially at-683

tenuate that dependence, essentially achieving the near-optimal rate of σ2neff/m. The key insight is684

that after producing an estimate v̂ of v∗, we can augment the set of covariates with the feature ⟨X, v̂⟩,685

and try to predict the response y−⟨X, v̂⟩, which is now a (t+1)-sparse combination of the features.686

In standard settings, this is typically a bad idea because it introduces a sparse linear dependence.687

However, by the Cauchy Interlacing Theorem it increases the number of outlier eigenvalues by at688

most one – so our algorithms still apply. Thus, if we have enough samples that the excess risk bound689

in Theorem C.2 is non-trivially smaller than ∥v∗∥2Σ, then we can iteratively achieve better and better690

estimates up to the noise limit. This is precisely what BOAR-Lasso() does; the precise guarantees691

are stated in the following theorem, which completes the proof of Theorem 1.1.692

Theorem C.3. Let n, t, dl, dh,m,L ∈ N and σ, δ > 0. Let Σ : n × n be a positive semi-definite693

matrix with eigenvalues λ1 ≤ · · · ≤ λn. Let (Xi, yi)
m
i=1 be independent samples where Xi ∼694

N(0,Σ) and yi = ⟨Xi, v
∗⟩+ ξi, for ξi ∼ N(0, σ2) and a fixed t-sparse vector v∗ ∈ Rn.695

Then, given Σ, (Xi, yi)
m
i=1, t, dl, and δ, the algorithm BOAR-Lasso() outputs an estimator v̂ with696

the following properties.697

Let neff := (7t)2t+1dl + dh + log(48/δ) and let reff := t(λn−dh
/λdl+1) log(12n/δ). There are

absolute constants c0, C0 > 0 such that the following holds. If m ≥ C0L(neff + reff), then with
probability at least 1− δ, it holds that

∥v̂ − v∗∥2Σ ≤ c0
σ2(neff + reff)

m/L
+ 2−L · ∥v∗∥2Σ .

Moreover, BOAR-Lasso() has time complexity poly(n,m, t).698

Proof. Let (A0, . . . , AL−1) be an partition of [m] into L sets of size m/L. The idea of the algorithm
is to compute vectors v̂(1), . . . , v̂(L) where each v(i) is an estimate of v∗ −

∑i−1
j=1 v̂

(j). Concretely,
fix some 0 ≤ j ≤ L − 1 and suppose that we have computed some vectors v̂(1), . . . , v̂(j). Set
ŝ(j) := v̂(1) + · · ·+ v̂(j). Define a matrix Σ(j) : (n+ 1)× (n+ 1) by

Σ(j) :=

[
Σ (ŝ(j))⊤Σ

Σŝ(j) (ŝ(j))⊤Σ(ŝ(j))

]
.

Thus, for example, Σ(0) has zeroes in the last row and last column. Now for each i ∈ Aj , define
(X

(j)
i , y

(j)
i ) by

X
(j)
i := (Xi, ⟨Xi, ŝ

(j)⟩)

y
(j)
i := yi − ⟨Xi, ŝ

(j)⟩.

By construction, the m/L samples (X
(j)
i , y

(j)
i )i∈Aj

are independent and distributed as X
(j)
i ∼699

N(0,Σ(j)) and y
(j)
i = ⟨X(j)

i , (v∗,−1)⟩+ ξi. Let λ(j)
1 ≤ · · · ≤ λ

(j)
n+1 be the eigenvalues of Σ(j).700

Now we apply Theorem C.2 with covariance Σ(j), samples (X(j)
i , y

(j)
i )i∈Aj

, sparsity t+ 1, outlier701

counts dl + 1 and dh + 1, and failure probability δ/L; let n(j)
eff and r

(j)
eff be the induced parameters702

defined in that theorem statement, and let c, C be the constants. By the Cauchy Interlacing Theorem,703

we have λ
(j)
dl+2 ≥ λdl+1 and similarly λ

(j)
n+1−(dh+1) ≤ λn−dh

. Thus r(j)eff ≤ 2reff. Also n
(j)
eff ≤ neff.704

Thus, if the constant C0 is chosen appropriately large, then m/L ≥ 16cr
(j)
eff and also m/L ≥ Cn

(j)
eff .705

Hence (by the error guarantee of Theorem C.2) with probability at least 1− δ/L we obtain a vector706

ŵ(j+1) such that707 ∥∥∥ŵ(j+1) − (v∗,−1)
∥∥∥2
Σ(j)
≤

cσ2n
(j)
eff

m/L
+ c ∥(v∗,−1)∥2Σ(j)

√
r
(j)
eff

m/L
+ cσ ∥(v∗,−1)∥Σ(j)

√
r
(j)
eff

m/L

≤ 2cσ2neff

m/L
+
∥(v∗,−1)∥2Σ(j)

4
+

(
∥(v∗,−1)∥2Σ(j)

4
+

4c2σ2reff

m/L

)
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≤ c0
2

σ2(neff + reff)

m/L
+
∥(v∗,−1)∥2Σ(j)

2
(5)

where the second inequality uses AM-GM to bound the third term, and the third inequality is by708

choosing c0 ≥ 4c+ 8c2.709

But now define v̂(j+1) := ŵ
(j+1)
[n] + ŵ

(j+1)
n+1 ŝ(j). Then we observe that ∥(v∗,−1)∥2Σ(j) =∥∥v∗ − ŝ(j)

∥∥2
Σ

and
∥∥ŵ(j+1) − (v∗,−1)

∥∥2
Σ(j) =

∥∥v̂(j+1) − (v∗ − ŝ(j))
∥∥2
Σ
=
∥∥v∗ − ŝ(j+1)

∥∥2
Σ

where
ŝ(j+1) = v̂(1) + · · ·+ v̂(j+1). So (5) is equivalent to∥∥∥v∗ − ŝ(j+1)

∥∥∥2
Σ
≤ c0

2

σ2(neff + reff)

m/L
+

1

2

∥∥∥v∗ − ŝ(j)
∥∥∥2
Σ
.

Inductively, we conclude that∥∥∥v∗ − ŝ(L)
∥∥∥2
Σ
≤ c0

σ2(neff + reff)

m/L
+ 2−L ∥v∗∥2Σ

as desired. The time complexity (see Algorithm 2 for full pseudocode) is dominated by L eigen-710

decompositions of n × n Hermitian matrices (each of which takes time O(n3) by e.g. the QR711

algorithm), as well as L convex optimizations (each of which takes time Õ(n3) to solve to inverse-712

polynomial accuracy [26], which is sufficient for the correctness proof).713

C.1 An alternative algorithm (proof of Theorem 1.2)714

In this section we prove Theorem 1.2, which essentially states that the sample complexity depen-715

dence on dl in BOAR-Lasso() can be removed at the cost of a time complexity depending on dtl .716

See Algorithm 3 for the pseudocode of how we modify AdaptivelyRegularizedLasso(): essen-717

tially, we brute force search over all size-t subsets of the set S produced by IterativePeeling(),718

construct an appropriate dictionary for each of these
(|S|

t

)
subsets, and then perform a final model719

selection step (with fresh samples) to pick the best dictionary/estimator. The boosting step is exactly720

identical to that in BOAR-Lasso().721

Lemma C.4. Let n, t, d ∈ N. Let Σ : n × n be a positive semi-definite matrix with eigenvalues
λ1 ≤ · · · ≤ λn. Then there is a family D ⊆ Rn×(n+t) of size |D| ≤ (7t)2t

2+t(2d)t, consisting
entirely of n× (n+ t) matrices with the form

D := [In d1 . . . dt] ,

with the following property. For any t-sparse v ∈ Rn, there is some D ∈ D and w ∈ Rn+k with
v = Dw and

∥w∥1 ≤
7t1/2√
λd+1

√
v⊤Σv.

Proof. Let u1, . . . , un ∈ Rn be the eigenvectors of Σ corresponding to eigenvalues λ1, . . . , λn722

respectively, so that Σ =
∑n

i=1 λiuiu
⊤
i . Define Σ := λ−1

d+1

∑n
i=1 min(λi, λd+1)uiu

⊤
i . Let S be the723

output of IterativePeeling(Σ, dl, t), and let D := {D(T ) : T ∈
(
S
t

)
}, where for any T ∈

(
S
t

)
,724

we let {d1, . . . , dt} be a Σ-orthonormal basis for span{ei : i ∈ T}, and let D(T ) be the n× (n+ t)725

matrix with columns e1, . . . , en, d1, . . . , dt. The bound on |D| follows from Theorem B.1.726

For any t-sparse v ∈ Rn, pick the matrix D ∈ D indexed by any T ∈
(
S
t

)
with S ∩ supp(v) ⊆ T .727

Let d1, . . . , dt ∈ Rn be the last t columns of D. Then there are coefficients b1, . . . , bt so that we728

can write vS =
∑t

i=1 bidi. Since d⊤i Σdi′ = 1[i = i′] for all i, i′ ∈ [t], we have v⊤S ΣvS =
∑t

i=1 b
2
i .729

Hence, ∥b∥1 ≤
√
t
√
v⊤S ΣvS . But we can bound730 √

v⊤S ΣvS =
∥∥∥Σ1/2

vS

∥∥∥
2

≤
∥∥∥Σ1/2

v
∥∥∥
2
+
∥∥∥Σ1/2

vSc

∥∥∥
2

(by triangle inequality)
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Algorithm 3: Alternative algorithm to solve sparse linear regression when covariate eigenspec-
trum has few outliers
Procedure AugmentedDictionaryLasso(Σ, (Xi, yi)

m
i=1, t, dl, δ)

Data: Covariance matrix Σ : n× n, samples (Xi, yi)
m
i=1, sparsity t, small eigenvalue count

dl, failure probability δ
Result: Estimate v̂ of unknown sparse regressor, satisfying Theorem C.5∑n

i=1 λiuiu
⊤
i ← eigendecomposition of Σ

S ← IterativePeeling(Σ, dl, t) /* See Algorithm 1 */

Σ← λ−1
dl+1

∑n
i=1 min(λi, λdl+1)uiu

⊤
i

for T ∈
(
S
[t]

)
do

d
(T )
1 , . . . , d

(T )
t ← Σ-orthogonal basis for span{ei : i ∈ T}

D(T )←
[
In d

(T )
1 . . . d

(T )
t

]
Compute

ŵ(T )← argmin
w∈Rn+t

[
m/2∑
i=1

(
⟨Xi, D(T )w⟩ − y1:m/2

)2
+ 8λn−d log(8n/δ) ∥w∥21 + 2

√
2λn−d log(8n/δ)

∥∥y1:m/2

∥∥
2
∥w∥1

]
Select best hypothesis

T̂ ← argmin
T∈(S

[t])

m∑
i=m/2+1

(⟨Xi, D(T )ŵ(T )⟩ − yi)
2

return D(T̂ )ŵ(T̂ )

≤ λ
−1/2
d+1

∥∥∥Σ1/2v
∥∥∥
2
+ ∥vSc∥2 (by Σ ⪯ λ−1

d+1Σ and Σ ⪯ In)

≤ λ
−1/2
d+1

∥∥∥Σ1/2v
∥∥∥
2
+ 3λ

−1/2
d+1

√
v⊤Σv (by Theorem B.1 and t-sparsity of v)

≤ 4λ
−1/2
d+1

√
v⊤Σv.

We conclude that ∥b∥1 ≤ 4
√
tλ

−1/2
d+1

√
v⊤Σv. Thus, if we define

w :=
∑

i∈[n]\S

viei +

t∑
i=1

bien+i,

where here e1, . . . , en+k refer to the standard basis vectors in Rn+t, then we have Dw = v[n]\S +∑t
i=1 bidi = v, and also

∥w∥1 ≤ ∥b∥1 +
∑

i∈[n]\S

|vi| ≤ 4
√
tλ

−1/2
d+1

√
v⊤Σv +

√
t ∥vSc∥2 ≤

7
√
t

λ
1/2
d+1

√
v⊤Σv

as desired.731

Theorem C.5. Let n, t, dl, dh,m ∈ N and let Σ : n × n be a positive semi-definite matrix with732

eigenvalues λ1 ≤ · · · ≤ λn. Let (Xi, yi)
m
i=1 be independent samples where Xi ∼ N(0,Σ) and733

yi = ⟨Xi, v
∗⟩ + ξi, for ξi ∼ N(0, σ2) and a fixed t-sparse vector v∗ ∈ Rn. Set k := t(7t)2t

2+tdtl734

and let D be the family of matrices (of size at most k) guaranteed by Lemma C.4.735

Let δ > 0. For every D ∈ D, define736

ŵ(D) ∈ argmin
w∈Rn+t

∥∥∥X(1)Dw − y1:m/2

∥∥∥2
2
+8λn−d log(8n/δ) ∥w∥21+2

√
2λn−d log(8n/δ)

∥∥y1:m/2

∥∥
2
∥w∥1

(6)
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where X(1) : (m/2)× n is the matrix with rows X1, . . . , Xm/2, and define v̂ = D̂ŵ(D̂) where

D̂ ∈ argmin
D∈D

∥∥∥X(2)Dŵ(D)− ym/2+1:m

∥∥∥2
2

where X(2) : (m/2)× n is the matrix with rows Xm/2+1, . . . , Xm.737

Let neff := t2 log(t) + t log(dl) + dh + log(48/δ) and let reff := t(λn−dh
/λdl+1) log(8n/δ). There

are absolute constants c, C > 0 so that the following holds. If m ≥ Cneff, then with probability at
least 1− 3δ it holds that

∥v̂ − v∗∥2Σ ≤ c

(
σ2neff

m
+ ∥v∗∥2Σ

(
reff

m
+

√
reff

m

)
+ σ ∥v∗∥Σ

√
reff

m

)
.

Let D∗ ∈ D and w∗ ∈ Rn+t be the matrix and vector guaranteed by Lemma C.4 for the t-sparse738

vector v∗. Let Γ = (D∗)⊤ΣD∗ with eigenvalues γ1 ≤ · · · ≤ γn+t. We make the following claim:739

Claim C.6. With probability at least 1 − δ/4 over G ∼ N(0,Γ), it holds uniformly in w ∈ Rn+t

that
⟨w − w∗, G⟩ ≤ ∥w − w∗∥1

√
λn−dh

· 2 log(8n/δ) + ∥w − w∗∥Γ
√
2(dh + t).

Proof. Since Σ is a principal submatrix of Γ, we have γn−dh
≤ λn−dh

(by the Cauchy Interlacing740

Theorem). Suppose that Γ has eigendecomposition Γ =
∑n+t

i=1 γigig
⊤
i , and define projection matrix741

P : (n + t) × (n + t) by P :=
∑n−dh

i=1 gig
⊤
i , so that rank(P⊥) = dh + t and λmax(PΓP ) ≤742

γn−dh
≤ λn−dh

. Then for any w ∈ Rn+t and G ∼ N(0,Γ), we can bound743

⟨w − w∗, G⟩ = ⟨w − w∗, PG⟩+ ⟨w − w∗, P⊥G⟩
≤ ∥w − w∗∥1 ∥PG∥∞ + ⟨Γ1/2(w − w∗),Γ−1/2P⊥G⟩
= ∥w − w∗∥1 ∥PG∥∞ + ⟨Γ1/2(w − w∗), P⊥Γ−1/2G⟩

≤ ∥w − w∗∥1 ∥PG∥∞ +
∥∥∥Γ1/2(w − w∗)

∥∥∥
2
∥Z∥2

where Z ∼ N(0, P⊥). The second equality above uses that Γ−1/2 and P⊥ are simultaneously
diagonalizable (and therefore commute). But now for any δ > 0, we have the Gaussian tail bounds

Pr

[
∥PG∥∞ >

√
max

i
(PΓP )ii · 2 log(8n/δ)

]
≤ δ/8

and

Pr

[
∥Z∥2 >

√
2 rank(P⊥)

]
≤ e−m/8 ≤ δ/8.

Thus, with probability at least 1− δ/4 over G ∼ N(0,Γ), for any w ∈ Rn+t, we have744

⟨w − w∗, G⟩ ≤ ∥w − w∗∥1
√
max

i
(PΓP )ii · 2 log(8n/δ) +

∥∥∥Γ1/2(w − w∗)
∥∥∥
2

√
2 rank(P⊥)

≤ ∥w − w∗∥1
√
λn−dh

· 2 log(8n/δ) +
∥∥∥Γ1/2(w − w∗)

∥∥∥
2

√
2(dh + t) = F (w)

which proves the claim.745

We now proceed with proving the theorem.746

Proof of Theorem C.5. Applying Claim C.6, we can now invoke Lemma F.7 with covariance matrix
Γ, seminorm Φ(v) := 2

√
2λn−dh

· log(8n/δ) ∥v∥1, p := 2(dh + t), ground truth w∗, samples
((D∗)⊤Xi, yi)

m/2
i=1 , and failure probability δ/4. Since we chose m sufficiently large that m/2 ≥

16p + 196 log(12/δ), we conclude that with probability at least 1 − 2δ over the randomness of
(Xi, yi)

m/2
i=1 , it holds that

∥ŵ(D∗)− w∗∥2Γ ≤ O

(
σ2(dh + t)

m
+

(σ + ∥w∗∥Γ) ∥w∗∥1
√

λn−dh
· log(8n/δ)√

m
+
∥w∗∥21 λn−dh

log(8n/δ)

m

)
.
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Since v∗ = D∗w∗ and ∥w∗∥1 ≤ 7t1/2λ
−1/2
dl+1 ∥v∗∥Σ (the guarantees of Lemma C.4), it follows that

∥D∗ŵ(D∗)− v∗∥2Σ ≤ O

(
σ2(dh + t)

m
+

(σ + ∥v∗∥Σ) ∥v∗∥Σ
√
reff√

m
+
∥v∗∥2Σ reff

m

)
.

To complete the proof of the theorem, condition on any values of (Xi, yi)
m/2
i=1 for which the

above bound holds. By applying Lemma F.2 with covariance matrix Σ, hypothesis set W :=
{Dŵ(D) : D ∈ D}, and samples (Xi, yi)

m
i=m/2+1 (which are independent of W), since m/2 ≥

32 log(2|D|/δ), we have with probability at least 1− 2δ over the samples (Xi, yi)
m
i=m/2+1 that∥∥∥D̂ŵ(D̂)− v∗

∥∥∥2
Σ
≤ 6 min

D∈D
∥Dŵ(D)− v∗∥2Σ +

32σ2 log(2|D|/δ)
m

.

Hence, with probability at least 1− 5δ we have∥∥∥D̂ŵ(D̂)− v∗
∥∥∥2
Σ
≤ O

(
σ2(dh + t+ log(2|D|/δ))

m
+

(σ + ∥v∗∥Σ) ∥v∗∥Σ
√
reff√

m
+
∥v∗∥2Σ reff

m

)
which proves the theorem. ■747

We can use the above theorem (together with the previously discussed boosting approach) to get the748

following result, which proves Theorem 1.2.749

Theorem C.7. Let n, t, dl, dh,m,L ∈ N and σ, δ > 0. Let Σ : n × n be a positive semi-definite750

matrix with eigenvalues λ1 ≤ · · · ≤ λn. Let (Xi, yi)
m
i=1 be independent samples where Xi ∼751

N(0,Σ) and yi = ⟨Xi, v
∗⟩+ ξi, for ξi ∼ N(0, σ2) and a fixed t-sparse vector v∗ ∈ Rn.752

Then, given Σ, (Xi, yi)
m
i=1, t, dl, and δ, there is an estimator v̂ with the following properties.753

Let n′
eff := t2 log(t) + t log(dl) + dh + log(48L/δ) and let r′eff := t(λn−dh

/λdl+1) log(8nL/δ).
There are absolute constants c0, C0 > 0 such that the following holds. If m ≥ C0L(n

′
eff + r′eff), then

with probability at least 1− δ, it holds that

∥v̂ − v∗∥2Σ ≤ c0
σ2(n′

eff + r′eff)

m/L
+ 2−L · ∥v∗∥2Σ .

Moreover, v̂ is computable in time (t+ 1)O(t2)(dl + 1)t+1 · poly(n).754

Proof. Identical to that of Theorem C.3, except using Theorem C.5 instead of Theorem C.2.755

D Faster sparse linear regression for arbitrary Σ756

In this section we prove Theorem 3.1. The approach is via feature adaptation: in Theorem D.5, we757

show that any covariance matrix Σ has a (t, O(t3/2 log n)-ℓ1-representation of size O(nt−1/2) that758

is computable in time nt−Ω(1/t) logO(t) n, using O(t log n) samples from N(0,Σ). The algorithm759

for computing this representation is described in Algorithm 4. One of the key tools is the following760

result from computational geometry:761

Theorem D.1 ([30]). Let n, d, k ∈ N and δ > 0. Given points p1, . . . , pn ∈ Rd, query dimen-762

sion k, and failure probability δ, there an algorithm DS((p1, . . . , pn), k, δ) with time complexity763

nk+1(log n)O(k) poly(d) log(1/δ), that constructs a data structure N that answers queries of the764

following form. Given a k-dimensional subspace F ⊆ Rd, the output N (F ) is some i∗ ∈ [n]. With765

probability at least 1− δ, the query time complexity is n1−1/(2k) poly(d) log(1/δ), and it holds that766

min
q∈F
∥pi∗ − q∥2 ≤ O(log n) · min

i∈[n]
min
q∈F
∥pi − q∥2 .

How do we use the above theorem to efficiently construct the ℓ1-representation? The intuition is as767

follows. Let X be the m × n matrix where each row is a sample from N(0,Σ). Then each column768

is a vector pi representing a particular covariate. To find the ℓ1-representation, it essentially suffices769
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Algorithm 4: ℓ1-representation for arbitrary Σ

1 Procedure FindOrthonormalization(p1, . . . , pt)
Data: Nonzero vectors p1, . . . , pt ∈ Rm

Result: α(1), . . . , α(t) ∈ Rt such that span{α(1), . . . , α(t)} = span{e1, . . . , et} and
⟨
∑

ℓ α
(i)
ℓ pℓ,

∑
ℓ α

(j)
ℓ pℓ⟩ = 0 for all i ̸= j

2
3 for i = 1, . . . , t do
4 α(i) ← ei/ ∥pi∥2 ∈ Rk

5 for j = 1, . . . , i− 1 do
6 if

∑
ℓ α

(j)
ℓ pℓ ̸= 0 then

7 α(i) ← α(i) − ⟨
∑

ℓ α
(i)
ℓ pℓ,

∑
ℓ α

(j)
ℓ pℓ⟩∥∥∥∑ℓ α

(j)
ℓ pℓ

∥∥∥
2

α(j)

8 return α(1), . . . , α(k)

9 Procedure RepresentVectors({p1, . . . , pn},t,δ)
Data: Unit vectors p1, . . . , pn ∈ Rm, sparsity parameter t, failure probability δ
Result: Set D ⊆ Rn of size O(nt−1/2), where all elements d ∈ D are t-sparse (and

represented succinctly)
10

11 Compute partition I1 ⊔ · · · ⊔ I√n = [n] where |Ii| ≤ ⌈
√
n⌉ for all i

12 Initialize D ← ∅
13 for j = 1, . . . ,

√
n do

14 Construct data structure N j ← DS((pi : i ∈ Ij), t− 1, δ/nt) /* Theorem D.1 */

15 for T ⊆
(
[n]
t−1

)
do

16 h(T, j)← N j(span{pi : i ∈ T}) /* Theorem D.1 */

17 Find γ ∈ RT such that
∑

i∈T γipi = Projspan{pi:i∈T} ph(T,j)

18 Write γ as a sparse vector in Rn (supported on T )
19 Add γ − eh(T,j) to D
20 for T ⊆

(
[n]
t−2

)
do

21 for a, b ∈ Ij do
22 γ(1), . . . , γ(t) ← FindOrthonormalization((pi : i ∈ T ∪ {a, b}))
23 Write γ(1), . . . , γ(t) as sparse vectors in Rn (supported on T ∪ {a, b})
24 Add γ(1), . . . , γ(t) to D
25 return D
26 Procedure ComputeL1Representation({X1, . . . , Xm}, t)
27 Let X : m× n be the matrix with rows X1, . . . , Xm

28 Let q1, . . . , qn be the columns of X, and let pi := qi/ ∥qi∥2 for i ∈ [n]

29 D̃ ← RepresentVectors({p1, . . . , pn}, t, e−m)

30 D̂ ← diag(∥q1∥2 , . . . , ∥qn∥2)
31 D ← {D̂d : d ∈ D̃}
32 return D

to find a dictionary D of O(nt−1/2) sparse combinations of {p1, . . . , pn} so that every t-sparse770

combination of {p1, . . . , pn} can be written in terms of the chosen combinations, with a coefficient771

vector that has bounded ℓ1 norm.772

For notational ease, we define C(x) to be the “cost” of a particular linear combination x ∈ Rn with773

respect to the set D of chosen combinations:774

Definition D.2. For a subset D ⊆ Rn, define CD : Rn → [0,∞] by775

CD(x) := min
α∈RD:

∑
d∈D αdd=x

∑
d∈D

|αd| ·

∥∥∥∥∥
n∑

i=1

dipi

∥∥∥∥∥
2

.
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With this notation, we want to construct a set D of size O(nt−1/2), consisting of t-sparse vectors,776

such that777

CD(x) ≤ poly(t, log n) ·
∥∥∥∑xipi

∥∥∥
2

for all t-sparse x ∈ Rn.778

The construction is quite simple: divide the set {p1, . . . , pn} into
√
n equal-sized groups. For each779

set T of t−1 vectors and each of the
√
n groups, find the closest vector in the group to the subspace780

spanned by T (using Theorem D.1 to achieve sublinear time complexity). Then add the difference781

between the vector and its projection (onto the subspace) to the dictionary. Finally, for each set of t782

vectors where two of the vectors lie in the same group, add an orthonormal basis for those vectors783

to the dictionary. See the procedure RepresentVectors() in Algorithm 5 for pseudocode.784

By construction, the dictionary clearly has size O(nt−1/2). At a high level, the reason it satisfies the785

representational property is the following. Consider some t-sparse combination, such as p1+· · ·+pt.786

If−pt is not very close to p1+ · · ·+pt−1, then we can bound C(p1+ · · ·+pt) by C(p1+ · · ·+pt−1)787

and C(pt), which are O(
√
t ∥p1 + · · ·+ pt−1∥2) and O(

√
t ∥pt∥2) respectively, since the dictionary788

contains an orthonormal basis for both terms. The only case where these bounds are not good enough789

is when ∥p1 + · · ·+ pt∥2 is much smaller than ∥p1 + · · ·+ pt−1∥2 and ∥pt∥2. In this case, pt is very790

close to span{p1, . . . , pt−1}. However, in the construction we found some (potentially different) pj791

which is just as close to span{p1, . . . , pt−1}, and moreover is in the same group as pt. Letting q be792

the projection of pj onto span{p1, . . . , pt−1}, we have the crucial fact that ∥pj − q∥2 is as small as793

∥p1 + · · ·+ pt∥2.794

Now, bounding C(p1 + · · ·+ pt) proceeds as follows. We can subtract some appropriate (bounded)795

multiple of pj − q from p1 + · · · + pt to zero out at least one of the coefficients. This residual796

then is a t-sparse combination of {p1, . . . , pt, pj} where two of the vectors {pt, pj} are in the same797

group; thus it has small cost with respect to D. Moreover, pj − q is contained in D and thus has798

small cost (specifically, not much more than ∥pj − q∥2, which crucially is not much more than799

∥p1 + · · ·+ pt∥2). It follows that p1 + · · ·+ pt has small cost.800

Formalizing this argument, we start by proving one of the facts that we freely used above: that the801

cost function C satisfies the triangle inequality.802

Fact D.3. For any D ⊆ Rn and x, y ∈ Rn, it holds that C(x+ y) ≤ C(x) + C(y).803

Proof. For any α, β ∈ RD with
∑

d αdd = x and
∑

d βdd = y, the vector α+ β satisfies
∑

d(α+804

β)dd = x + y. Applying the triangle inequality to
∑

d |(α + β)d| · ∥
∑

i dipi∥2 completes the805

proof.806

We now prove the key lemma, formalizing the above intuition.807

Lemma D.4. Let n,m, t ∈ N, with t ≥ 2, and δ > 0. Fix p1, . . . , pn ∈ Rm with ∥pi∥2 = 1 for all808

i ∈ [n]. Let D be the output of RepresentVectors({p1, . . . , pn}, t, δ). Then |D| = O(nt−1/2),809

and every element of D is t-sparse. Also, with probability at least 1 − δ, the following guarantees810

hold. The time complexity of computing D is O(nt−Ω(1/t)(log n)O(t)mO(1) log(1/δ)). Moreover,811

for every t-sparse x ∈ Rn it holds that812

CD(x) ≤ O(t3/2 log n) ·
∥∥∥∑xipi

∥∥∥
2
.

Proof. Since the algorithm RepresentVectors() makes less than nt queries to the data structures813

N j , and each query has failure probability at most δ′ = δ/nt, the probability that any query fails is814

at most 1− δ. We henceforth assume that all queries succeed, i.e. satisfy the correctness guarantee815

and time complexity bound stated in Theorem D.1.816

Time complexity. We start by analyzing the time complexity of817

RepresentVectors({p1, . . . , pn}, t, δ). For any fixed j ∈ [
√
n], the construction time of818

N j (with |Ij | = O(
√
n) points in Rm, query dimension t − 1, and failure probability δ/nt) is819

O(nt/2(log n)O(t)mO(1) log(1/δ)). We make
(

n
t−1

)
+ |Ij |2

(
n

t−2

)
= O(nt−1) queries to N j , each820

with time complexity n1/2−1/(4(t−1))mO(1) log(1/δ). Each projection step and each orthonor-821

malization step has time complexity poly(t,m). Thus, since t ≥ 2, the time complexity for any822
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fixed j is bounded by nt−1/2−1/(8t)(log n)O(t)mO(1) log(1/δ). Summing over j, the overall time823

complexity to compute D is at most nt−1/(8t)(log n)O(t)mO(1) log(1/δ) as claimed.824

Correctness. The bound on |D| and the fact that all elements ofD are t-sparse are immediate from825

the algorithm definition. It remains to bound CD(x) for t-sparse vectors x. First, note that for any826

(t − 1)-sparse y ∈ Rn, because of step (4), the dictionary contains vectors γ1, . . . , γt−1 that span827

supp(y) and satisfy ⟨
∑n

i=1 γ
k
i pi,

∑n
i=1 γ

ℓ
i pi⟩ = 0 for all k ̸= ℓ. Thus, letting α1, . . . , αt−1 ∈ R be828

such that y = α1γ
1 + · · ·+ αt−1γ

t−1, we get829

CD(y) ≤
t−1∑
j=1

|αj | ·

∥∥∥∥∥
n∑

i=1

γj
i pi

∥∥∥∥∥
2

≤
√
t

√√√√t−1∑
j=1

α2
j

∥∥∥∥∥
n∑

i=1

γj
i pi

∥∥∥∥∥
2

2

=
√
t

∥∥∥∥∥
n∑

i=1

yipi

∥∥∥∥∥
2

. (7)

Now fix any nonzero t-sparse x ∈ Rn. Fix any a ∈ argmaxi∈[n] |xi|, and let j ∈ [
√
n] be such830

that a ∈ Ij . Let T = supp(x) \ {a}. Let q := Projspan{pi:i∈T} ph(T,j). Then by the correctness831

guarantee of N j on query span{pi : i ∈ T},832

∥∥ph(T,j) − q
∥∥
2
≤ O(log n) ·

∥∥∥∥∥∥pa +
∑
i ̸=a

xi

xa
pi

∥∥∥∥∥∥
2

= O(log n) ·
∥
∑

i xipi∥2
|xa|

. (8)

Case I. Suppose that
∥∥ph(T,j) − q

∥∥
2
≥ 1/2. Then by (8), we have |xa| ≤ O(log n) · ∥

∑
i xipi∥2.833

Thus, by the triangle inequality,834 ∥∥∥∥∥∥
∑
i ̸=a

xipi

∥∥∥∥∥∥
2

≤ |xa|+

∥∥∥∥∥∑
i

xipi

∥∥∥∥∥
2

≤ O(log n) ·

∥∥∥∥∥∑
i

xipi

∥∥∥∥∥
2

.

It follows from Fact D.3 and (7) that835

CD(x) ≤ CD(xaea) + CD(x− xaea) ≤
√
t|xa|+

√
t

∥∥∥∥∥∥
∑
i ̸=a

xipi

∥∥∥∥∥∥
2

≤ O(
√
t log n) ·

∥∥∥∥∥∑
i

xipi

∥∥∥∥∥
2

as desired.836

Case II. It remains to consider the case that
∥∥ph(T,j) − q

∥∥
2
≤ 1/2. In this case we have ∥q∥2 ≥837 ∥∥ph(T,j)

∥∥
2
−1/2 ≥ 1/2. By step (3) of the algorithm, the dictionary contains some vector γ−eh(T,j)838

such that supp(γ) ⊆ T and q =
∑

i∈T γipi. Fix any b ∈ argmaxi |γi|. Since q =
∑

γipi we get839

|γb| ≥
∥q∥2

t ≥ 1/(2t). Now, by Fact D.3,840

CD(x) ≤ CD

(
−xb

γb
(eh(T,j) − γ)

)
+ CD

(
x+

xb

γb
(eh(T,j) − γ)

)
.

By construction, eh(T,j) − γ is an element of the dictionary, so we can bound the first term as841

CD

(
−xb

γb
(eh(T,j) − γ)

)
≤ |xb|
|γb|

∥∥∥∥∥
n∑

i=1

(eh(T,j) − γ)ipi

∥∥∥∥∥
2

=
|xb|
|γb|

∥∥ph(T,j) − q
∥∥
2

≤ 2t|xa|
∥∥ph(T,j) − q

∥∥
2

≤ O(t log n)

∥∥∥∥∥
n∑

i=1

xipi

∥∥∥∥∥
2

where the equality uses that q =
∑n

i=1 γipi, the second inequality uses that |xb| ≤ |xa| and |γb| ≥842

1/(2t), and the final inequality uses (8).843
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Finally, observe that844

z := x+
xb

γb
(eh(T,j) − γ) = xaea +

xb

γb
eh(T,j) +

∑
i∈T\{a,b}

(
xi −

xbγi
γb

)
ei

since the coefficients on eb cancel out. Thus, z is a linear combination of two elements of {pi :845

i ∈ Ij} together with t − 2 elements of {pi : i ∈ [n]}. Because of step (4) of the algorithm, the846

dictionary contains vectors γ1, . . . , γt that span supp(z) and satisfy ⟨
∑n

i=1 γ
k
i pi,

∑n
i=1 γ

ℓ
i pi⟩ = 0847

for all k ̸= ℓ. The same argument as for (7) gives that848

CD

(
x+

xb

γb
(eh(T,j) − γ)

)
≤
√
t

∥∥∥∥∥
n∑

i=1

xipi +
xb

γb
(ph(T,j) − q)

∥∥∥∥∥
2

≤
√
t

∥∥∥∥∥
n∑

i=1

xipi

∥∥∥∥∥
2

+O(
√
t log n)

|xb|
|γb||xa|

∥∥∥∥∥
n∑

i=1

xipi

∥∥∥∥∥
2

≤ O(t3/2 log n)

∥∥∥∥∥
n∑

i=1

xipi

∥∥∥∥∥
2

where the second inequality uses the triangle inequality and (8), and the final inequality uses that849

|xb| ≤ |xa| and |γb| ≥ 1/(2t). Putting everything together, we conclude that850

CD(x) ≤ O(t3/2 log n)

∥∥∥∥∥
n∑

i=1

xipi

∥∥∥∥∥
2

as claimed.851

We now show that RepresentVectors() can be applied to the columns of the sample matrix to852

obtain a ℓ1-representation for Σ (procedure ComputeL1Representation() in Algorithm 5). Up853

to an appropriate rescaling of the covariates, Lemma D.4 immediately implies that D gives a ℓ1-854

representation for the empirical covariance Σ̂. The main result then follows from concentration of855

Σ̂ and sparsity of the elements of the dictionary.856

Theorem D.5. Let n,m, t ∈ N and let Σ : n × n be a positive-definite matrix. Suppose857

m ≥ Ct log n for a sufficiently large constant C. Let X1, . . . , Xm ∼ N(0,Σ) be indepen-858

dent samples, and let D be the output of ComputeL1Representation({X1, . . . , Xm}, t). Then859

|D| ≤ O(nt−1/2), and every element ofD is t-sparse. Also, with probability at least 1−e−Ω(m), the860

time complexity of the algorithm is O(nt−Ω(1/t)(log n)O(t)mO(1)), and D is a (t, Cl1rept
3/2 log n)-861

ℓ1-representation for Σ, for some universal constant Cl1rep.862

Proof. Let Σ̂ = 1
mX⊤X. Let D̃ denote the intermediary dictionary constructed by the algorithm863

using RepresentVectors(). With probability at least 1−e−m, the successful event of Lemma D.4864

holds. By standard concentration bounds (see e.g. Exercise 4.7.3 in [41]), it holds that 1
2 ∥x∥Σ ≤865

∥x∥Σ̂ ≤ 2 ∥x∥Σ for all t-sparse x ∈ Rn, with probability at least 1 − e−Ω(m). Henceforth assume866

that both of these events hold.867

Time complexity. The time complexity of the algorithm is dominated by the868

call to RepresentVectors(). By the guarantee of Lemma D.4, this takes time869

O(nt−Ω(1/t)(log n)O(t)mO(1)).870

Correctness. The bounds on |D| and sparsity of elements of D follow from identical bounds for871

D̃ (see Lemma D.4), and the fact that every element of D is obtained by rescaling the coordinates of872

some element of D̃. It remains to show that D is a (t, O(t3/2 log n))-ℓ1 representation for Σ.873

Fix any t-sparse v ∈ Rn, and define ṽ = D̂v. By the guarantee of Lemma D.4, since ṽ is also874

t-sparse, there is some α ∈ RD̃ such that ṽ =
∑

d̃∈D̃ αd̃d̃ and875 ∑
d̃∈D̃

|αd̃| ·

∥∥∥∥∥
n∑

i=1

d̃i
qi
∥qi∥2

∥∥∥∥∥
2

≤ O(t3/2 log n) ·

∥∥∥∥∥
n∑

i=1

ṽi
qi
∥qi∥2

∥∥∥∥∥
2

.
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Algorithm 5: Sparse linear regression for arbitrary Σ

1 Procedure SparseLinearRegression((Xi, yi)
m
i=1, t, B, σ2)

2 D ← ComputeL1Representation({X1, . . . , X100t logn}, t)
3 for j = m/2 + 1, . . . ,m do
4 for d ∈ D do

5 X̃j,d ←
〈
Xj , d/

√
(2/m)

∑m/2
i=1 ⟨Xi, d⟩2

〉
/* See Theorem A.7 for definition of MirrorDescentLasso(), and
Theorem D.5 for definition of Cl1rep */

6 β̂ ← MirrorDescentLasso((X̃i, yi)
m
i=m/2+1, 2Cl1rept

3/2B log(n), m/2, σ2)

7 ŵ ←
∑

d∈D β̂dd/

√
(2/m)

∑m/2
i=1 ⟨Xi, d⟩2

8 return ŵ

But note that ṽi = D̂iivi = ∥qi∥2 vi for all i. Similarly, every d̃ ∈ D̃ corresponds to some d ∈ D876

with d̃i = ∥qi∥2 di for all i. Thus, reindexing α according to D in the natural way, we have that877

v =
∑

d∈D αdd and878

∑
d∈D

|αd| ·

∥∥∥∥∥
n∑

i=1

diqi

∥∥∥∥∥
2

≤ O(t3/2 log n) ·

∥∥∥∥∥
n∑

i=1

viqi

∥∥∥∥∥
2

.

But now let Σ̂ = 1
mX⊤X. For any i, j ∈ [n] we have ⟨qi, qj⟩ = mΣ̂ii. Hence,879 ∥∥∥∥∥

n∑
i=1

viqi

∥∥∥∥∥
2

2

=
∑

i,j∈[n]

vivjΣ̂ij = v⊤Σ̂v

and similarly for ∥
∑n

i=1 diqi∥
2

2
. Thus, we get880 ∑

d∈D

|αd| · ∥d∥Σ̂ ≤ O(t3/2 log n) · ∥v∥Σ̂ .

But as shown above, we know that 1
2 ∥x∥Σ ≤ ∥x∥Σ̂ ≤ 2 ∥x∥Σ for all t-sparse x ∈ Rn. Since v and881

all d ∈ D are t-sparse, we conclude that882 ∑
d∈D

|αd| · ∥d∥Σ ≤ O(t3/2 log n) · ∥v∥Σ

as desired.883

We finally restate and prove Theorem 3.1, as a corollary of Theorem D.5 and the well-known fact884

that standard “slow rate” guarantees for Lasso (i.e. based on the ℓ1 norm of the regressor) can be885

achieved in near-linear time (Theorem A.8). The pseudocode for the main algorithm is given in886

Algorithm 5.887

Corollary D.6. Let n,m, t, B ∈ N and σ > 0, and let Σ : n × n be a positive-definite matrix. Let888

w∗ ∈ Rn be t-sparse with ∥w∗∥Σ ≤ B. Suppose m ≥ Ct log n for a sufficiently large constant C.889

Let (Xi, yi)
m
i=1 be independent samples where Xi ∼ N(0,Σ) and yi = ⟨Xi, w

∗⟩+N(0, σ2). Then890

there is an O(m2nt−1/2+nt−Ω(1/t) logO(t) n)-time algorithm (Algorithm 5) that, given (Xi, yi)
m
i=1,891

t, B, σ2, produces an estimate ŵ ∈ Rn satisfying, with probability 1− o(1),892

∥ŵ − w∗∥2Σ ≤ Õ

(
σ2

√
m

+
σBt3/2√

m
+

B2t3

m

)
.

Proof. By Theorem D.5 it holds with probability 1 − n−100t that D is a (t, Cl1rept
3/2 log n)-ℓ1-893

representation for Σ. Also, by standard concentration bounds (e.g. Exercise 4.7.3 in [41]), we have894
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1
2 ∥x∥Σ ≤ ∥x∥Σ̂ ≤ 2 ∥x∥Σ for all t-sparse x ∈ Rn (where Σ̂ = 2

m

∑m/2
i=1 XiX

⊤
i ) with probability895

at least 1− exp(−Ω(m)). Suppose that both of these events occur.896

For each of the remaining m/2 samples Xj , compute X̃j ∈ RD where the entry X̃j,d correspond-897

ing to d ∈ D is ⟨Xj , d/ ∥d∥Σ̂⟩ (where Σ̂ = 2
m

∑m/2
i=1 XiX

⊤
i is not explicitly computed; since d is898

sparse, both ⟨Xj , d⟩ and ∥d∥Σ̂ can be computed in poly(t,m) time). Let N(0,Γ) denote the distri-899

bution of each X̃j . For each d ∈ D, since d is t-sparse, we have that Ex∼N(0,Σ)⟨x, d/ ∥d∥Σ̂⟩2 =900

∥d∥2Σ / ∥d∥2Σ̂ ≤ 4. Thus, Γdd ≤ 4 for all d.901

Moreover, since w∗ is t-sparse, there is some α ∈ RD with w∗ =
∑

d αdd and
∑

d |αd| ∥d∥Σ ≤902

Cl1rept
3/2 log(n) · ∥w∗∥Σ. Define β ∈ Rd by βd = αd ∥d∥Σ̂. Then w∗ =

∑
d βdd/ ∥d∥Σ̂ and903 ∑

d

|βd| ≤ 2 ·
∑
d

|αd| ∥d∥Σ ≤ 2Cl1rept
3/2 log(n) · ∥w∗∥Σ .

But now for any of the remaining m/2 samples, we have that904

⟨X̃j , β⟩ =
∑
d

⟨Xj , d/ ∥d∥Σ̂⟩αd ∥d∥Σ̂ = ⟨Xj ,
∑
d

αdd⟩ = ⟨Xj , w
∗⟩,

and thus y − ⟨X̃j , β⟩ ∼ N(0, σ2). So we can apply Theorem A.8 to samples (X̃j , yj)
m
j=m/2+1 to905

compute an estimator β̂ satisfying906 ∥∥∥β̂ − β
∥∥∥2
Γ
≤ Õ

(
σ2

m
+

σBt3/2√
m

+
B2t3

m

)
using that ∥β∥1 ≤ 2Cl1rept

3/2 log(n) · ∥w∗∥Σ ≤ 2Cl1rept
3/2B log(n), and using the bound907

maxd Γdd ≤ 4. The time complexity of this step is Õ(|D|m2) = Õ(m2nt−1/2). Finally, com-908

pute ŵ :=
∑

d β̂dd/ ∥d∥Σ̂. We have that ∥ŵ − w∗∥Σ =
∥∥∥β̂ − β

∥∥∥
Γ

, which completes the proof.909

E Fixed-parameter tractability in κ and t910

In this section we prove Theorem 3.2, which shows we can achieve upper bounds on Nt,α(Σ) for α911

independent of κ and n, if we are willing to incur dependence on κ in the resulting bound. In fact,912

we actually prove an upper bound on the packing number Pt,α(Σ).913

To achieve this, the first key idea is to consider the dual certificates for a packing. Suppose that914

v1, . . . , vN are unit vectors (in the Σ-norm) with |⟨vi, vj⟩Σ| ≤ α for all i ̸= j. Then |⟨vi,Σvi⟩| ≥915

α−1 maxj ̸=i |⟨vj ,Σvi⟩|, so Σvi certifies that any linear combination vi =
∑

j ̸=i xjvj must have the916

property that ∥x∥1 ≥ α−1. Thus, to show that there cannot be a large packing of sparse vectors in917

the Σ-norm, it would suffice to prove that any large set of sparse vectors must have one vector that918

can be written as a linear combination of the remaining vectors, where the coefficient vector has919

small ℓ1 norm. In fact, this would give an upper bound on Nt,α(Σ) for all Σ.920

We do not know if such a statement is true. However, we can prove an approximate analogue. The921

following lemma shows that under a condition number bound on Σ, the dual certificate argument922

can be generalized to require only a weaker property: that any large set of sparse vectors must have923

one vector that can be approximately written as a linear combination of the remaining vectors, with924

low ℓ1 cost. The approximation error determines how small the condition number must be:925

Lemma E.1. Let n,N, t, T ∈ N and let δ > 0. Suppose that for all t-sparse vectors v1, . . . , vN ∈926

Rn, there exists some i ∈ [N ] and x ∈ RN such that ∥x∥1 ≤ T and927 ∥∥∥∥∥∥vi −
∑
j ̸=i

xjvj

∥∥∥∥∥∥
2

≤ δ · max
j∈[N ]

∥vj∥2 .

Then for every positive-definite matrix Σ : n× n with κ(Σ) < 1/(4δ2) it holds that Pt,1/(3T )(Σ) ≤928

N log2 κ(Σ).929
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Proof. Fix a positive-definite matrix Σ : n×n and suppose that K := Pt,1/(3T )(Σ) > N log2 κ(Σ).930

By definition, there are nonzero t-sparse vectors v1, . . . , vK ∈ RN such that931

|⟨vi, vj⟩Σ| ≤
1

3T
∥vi∥Σ ∥vj∥Σ

for all i ̸= j. Without loss of generality, assume that ∥vi∥2 = 1 for all i ∈ [K], so that932

λmin(Σ) ≤ ∥vi∥2Σ ≤ λmax(Σ).

So we can partition [K] into log2 κ(Σ) buckets such that maxi∈B ∥vi∥2Σ /mini∈B ∥vi∥2Σ ≤ 2 for933

each bucket B ⊆ [K]. There must be some bucket B with |B| ≥ N . By assumption, there is some934

i ∈ B and x ∈ RN such that ∥x∥1 ≤ T and935 ∥∥∥∥∥∥vi −
∑

j∈B:j ̸=i

xjvj

∥∥∥∥∥∥
2

≤ δ.

Now936

⟨vi, vi⟩Σ =

〈
Σvi,

∑
j∈B:j ̸=i

xjvj

〉
+

〈
Σvi, vi −

∑
j∈B:j ̸=i

xjvj

〉

=
∑

j∈B:j ̸=i

xj⟨vi, vj⟩Σ +

〈
Σvi, vi −

∑
j∈B:j ̸=i

xjvj

〉
≤ ∥x∥1 max

j∈B:j ̸=i
|⟨vi, vj⟩Σ|+

∥∥v⊤i Σ∥∥2 · δ
≤
∥x∥1
3T

max
j∈B:j ̸=i

∥vi∥Σ ∥vj∥Σ + δ
√

λmax(Σ) · v⊤i Σvi

≤
√
2 ∥vi∥2Σ
3

+ ∥vi∥Σ δ
√

λmax(Σ).

Simplifying, we get ∥vi∥Σ ≤ 2δ
√
λmax(Σ). Since also ∥vi∥Σ ≥

√
λmin(Σ), it follows that κ(Σ) =937

λmax(Σ)/λmin(Σ) ≥ 1/(4δ2).938

It remains to show that the precondition of Lemma E.1 can be satisfied for sub-constant δ without939

requiring N to scale with nt. We start by proving the desired property when the vectors are all940

t-sparse and binary, i.e. v1, . . . , vN ∈ {0, 1}n, and afterwards we will black-box extend the result941

to the real-valued setting. Concretely, given sparse binary vectors v1, . . . , vN ∈ {0, 1}n (with942

N ≫ n), we want to find one that can be “efficiently” approximated (in ℓ2 norm) by the rest, where943

“efficient” means that the coefficients have small absolute sum. Thinking of each vector as the944

indicator vector of a subset of [n], a first step towards an efficient approximation for vi = 1[· ∈ Si]945

may be constructing an efficient approximation for a standard basis vector ej for some j ∈ Si.946

Indeed, there is some j ∈ [n] such that Sj := {i : vij = 1} is large, i.e. |Sj | ≥ N/n. If the vectors947

(vi)i∈Sj were in some sense random, then the average 1
|Sj |

∑
i∈Sj vi would be a good approximation948

for ej . It is also efficient, in that the absolute sum of coefficients is 1. But of course the vectors are949

not random; it could be that many vectors in Sj also contain some other coordinate j′. In this case950

we restrict to the set of vectors containing both j and j′. Now we may hope to approximate the951

vector 1[· ∈ {j, j′}]. Completing this argument, we get the following lemma which states that there952

exists a subset of [n] that is contained in many of the vectors, and that is well-approximated by the953

average of those vectors.954

For notational convenience, for vectors x, y ∈ {0, 1}n we say that x ⪯ y if xi ≤ yi for all i ∈ [n].955

Lemma E.2. Let n,N, t, s ∈ N with sn ≤ N , and let v1, . . . , vN ∈ {0, 1}n be nonzero t-sparse956

binary vectors. Then there is some set S ⊆ [N ] of size |S| ≥ s and some nonzero vector u ∈ {0, 1}n957

such that u ⪯ vi for all i ∈ S, and958 ∥∥∥∥∥u− 1

|S|
∑
i∈S

vi

∥∥∥∥∥
2

≤
√

t(sn/N)1/t.
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Proof. For each J ⊆ [n], define SJ := {i ∈ [N ] : vij = 1 ∀j ∈ J}. Since all vi are nonzero,959

there is some j∗ ∈ [n] with |S{j∗}| ≥ N/n. We iteratively construct a set J ⊆ [n] as follows.960

Initially, set J = {j∗}. While there exists some a ∈ [n] \ J such that |SJ∪{a}| > (sn/N)1/t|SJ |,961

update J to J ∪ {a} (if there are multiple such a, pick any one of them arbitrarily). At termination962

of this process, we have |SJ | > 0. Since every vi is t-sparse, it must be that |J | ≤ t. Thus,963

|SJ | ≥ (N/n) · (sn/N)(t−1)/t ≥ s. Set S := SJ and u := 1J ∈ {0, 1}n. By definition of SJ , we964

have that u ⪯ vi for all i ∈ S.965

For any j ∈ J , we have uj = 1 = 1
|S|
∑

i∈S vij . For any j ̸∈ J , we have uj = 0 and966 ∣∣∣∣∣ 1|S|∑
i∈S

vij

∣∣∣∣∣ = |{i ∈ S : vij = 1}|
|S|

=
|SJ∪{j}|
|SJ |

≤ (sn/N)1/t

by construction of J . Thus,967 ∥∥∥∥∥u− 1

|S|
∑
i∈S

vi

∥∥∥∥∥
∞

≤ (sn/N)1/t.

Additionally,968 ∥∥∥∥∥u− 1

|S|
∑
i∈S

vi

∥∥∥∥∥
1

≤

∥∥∥∥∥ 1

|S|
∑
i∈S

vi

∥∥∥∥∥
1

≤ 1

|S|
∑
i∈S

∥vi∥1 ≤ t.

By the inequality ∥x∥22 ≤ ∥x∥1 ∥x∥∞, we conclude that969 ∥∥∥∥∥u− 1

|S|
∑
i∈S

vi

∥∥∥∥∥
2

≤
√

t(sn/N)1/t

as claimed.970

We now use Lemma E.2 to show that if N is sufficiently large, then at least one of the vectors vi971

can be efficiently approximated by the rest. The proof is by induction on t. As a first attempt, one972

might use Lemma E.2 to find some u ∈ {0, 1}n and some large set S ⊆ [N ] such that u ⪯ vi for973

all i ∈ S, and the average of the vi’s approximates u. Then, restrict to the vectors in S, and induct974

on the (t − 1)-sparse residual vectors {vi − u : i ∈ S}. If one of the vi − u’s can be efficiently975

approximated by the other residuals, then since u can also be efficiently approximated, we can derive976

an efficient approximation of vi by the remaining vj’s.977

This doesn’t quite work, since at each step of the induction the set of vectors will become smaller978

by a factor of roughly n. However, instead of throwing away the vectors outside S =: S(1) we can979

iteratively re-apply Lemma E.2 to get disjoint sets S(1), S(2), . . . , S(m), where each S(a) has the980

same property as S (for some potentially different vector u(a)). We can then induct on the residual981

vectors ∪a{vi − u(a) : i ∈ S(a)}. This suffices to efficiently approximate some vi. Since we throw982

away fewer vectors at each step of the induction, we do not need the initial number of vectors N to983

be as large.984

We formalize the above ideas in the following theorem.985

Theorem E.3. Let n,N, t ∈ N and let v1, . . . , vN ∈ {0, 1}n be t-sparse binary vectors. Then there986

is some i ∈ [N ] and x ∈ RN such that ∥x∥1 ≤ 3t and987 ∥∥∥∥∥∥vi −
∑
j ̸=i

xjvj

∥∥∥∥∥∥
2

≤ 4t
√

9t(tn/N)1/t.

Proof. We induct on t, observing that the case t = 0 is immediate. Fix t > 0 and t-sparse vectors988

{v1, . . . , vN} ∈ {0, 1}n, and suppose that the theorem statement holds for t − 1. If any vi is989

identically zero, then the claim is trivially true with x = 0. If N ≤ t3t+1n then the RHS of the990

desired norm bound exceeds 4t
√
t, so the claim is trivially true with x = 0 and any i ∈ [N ].991

Thus, we may assume that all vi are nonzero, and N ≥ t3t+1n. Applying the previous lemma with992
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s := 3t+1 ≤ N/n gives some S(1) ⊆ [N ] and nonzero u(1) ∈ {0, 1}n such that |S(1)| ≥ 3t+1 and993

u(1) ⪯ vi for all i ∈ S(1), and994 ∥∥∥∥∥∥u(1) − 1

|S(1)|
∑

i∈S(1)

vi

∥∥∥∥∥∥
2

≤
√
9t(n/N)1/t.

If |N | − |S(1)| ≥ N/t ≥ 3t+1n then we can reapply the lemma with vectors (vi)i∈[N ]\S(1) and995

s := 3t+1 to get some S(2) ⊆ [N ]\S(1) and u(2) ∈ {0, 1}n. Continuing this process so long as there996

are at least N/t ≥ 3t+1n remaining vectors, we can generate disjoint sets S(1), . . . , S(m) ⊆ [N ]997

and vectors u(1), . . . , u(m) ∈ {0, 1}n with the following properties:998

(i) |S(1) ∪ · · · ∪ S(m)| > N −N/t999

(ii) |S(a)| ≥ 3t+1 for every a ∈ [m]1000

(iii) For every a ∈ [m], it holds that u(a) is nonzero and u(a) ⪯ vi for all i ∈ S(a)1001

(iv) For every a ∈ [m],1002 ∥∥∥∥∥∥u(a) − 1

|S(a)|
∑

i∈S(a)

vi

∥∥∥∥∥∥
2

≤
√
9t(tn/N)1/t.

For each a ∈ [m] and i ∈ S(a), define v′i := vi − u(a). By Property (iii) we have that v′i ∈ {0, 1}N1003

and v′i is (t − 1)-sparse. By the inductive hypothesis applied to vectors (v′i)i∈S(1)∪···∪S(m) , there is1004

some i ∈ S(1) ∪ · · · ∪ S(m) and x′ ∈ RN (supported on S(1) ∪ · · · ∪ S(m)) such that ∥x′∥1 ≤ 3t−11005

and1006 ∥∥∥∥∥∥v′i −
∑
j ̸=i

x′
jv

′
j

∥∥∥∥∥∥
2

≤ 4t−1
√
9(t− 1)((t− 1)n/|S(1) ∪ · · · ∪ S(m)|)1/(t−1)

≤ 4t−1
√
9t(tn/N)1/t (9)

where the last inequality uses Property (i) and the bound N ≥ tn. Of course, without loss of1007

generality x′
i = 0. Let a ∈ [m] be the unique index such that i ∈ S(a). We define x ∈ {0, 1}N1008

(supported on S(1) ∪ · · · ∪ S(m)) as follows. For each b ∈ [m] and each r ∈ S(b), set1009

xr = x′
r −

1

|S(b)|
∑

j∈S(b)

x′
j +

1[b = a]

|S(b)|
.

Since ∥x′∥1 ≤ 3t−1, we can see that1010

∥x∥1 ≤ ∥x
′∥1 +

∑
b∈[m]

∑
r∈S(b)

1

|S(b)|
∑

j∈S(b)

|x′
j |+

∑
r∈S(a)

1

|S(a)|

≤ 2 ∥x′∥1 + 1

≤ 2 · 3t−1 + 1.

Next, we use x to approximate vi. The following bound is almost what we want:1011

Claim E.4.
∥∥∥vi −∑j∈[N ] xjvj

∥∥∥
2
≤ 3 · 4t−1

√
9t(tn/N)1/t1012

Proof of claim. We have1013 ∥∥∥∥∥∥vi −
∑
r∈[N ]

xrvr

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥u(a) − 1

|S(a)|
∑

r∈S(a)

vr

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥v′i + 1

|S(a)|
∑

r∈S(a)

vr −
∑
r∈[N ]

xrvr

∥∥∥∥∥∥
2
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=

∥∥∥∥∥∥u(a) − 1

|S(a)|
∑

r∈S(a)

vr

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥v′i −
∑
r∈[N ]

x′
rvr +

∑
b∈[m]

∑
r∈S(b)

1

|S(b)|
∑

j∈S(b)

x′
jvr

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥u(a) − 1

|S(a)|
∑

r∈S(a)

vr

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥v′i −
∑
r∈[N ]

x′
rv

′
r

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥−
∑
b∈[m]

∑
r∈S(b)

x′
ru

(b) +
∑
b∈[m]

∑
r∈S(b)

1

|S(b)|
∑

j∈S(b)

x′
jvr

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥u(a) − 1

|S(a)|
∑

r∈S(a)

vr

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥v′i −
∑
r∈[N ]

x′
rv

′
r

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
b∈[m]

∑
j∈S(b)

x′
j

u(b) − 1

|S(b)|
∑

r∈S(b)

vr

∥∥∥∥∥∥
2

where the first and third inequalities use that vr = v′r + u(b) for all r ∈ S(b), and throughout we use1014

that xr = x′
r = 0 for r ̸∈ S(1) ∪ · · · ∪ S(m). Applying Property (iv), equation (9), and the bound1015

∥x′∥1 ≤ 3t−1, we get1016 ∥∥∥∥∥∥vi −
∑
r∈[N ]

xrvr

∥∥∥∥∥∥
2

≤
√
9t(tn/N)1/t + 4t−1

√
9t(tn/N)1/t + 3t−1

√
9t(tn/N)1/t

≤ 3 · 4t−1
√

9t(tn/N)1/t

as claimed.1017

However, we wanted a bound on vi−
∑

j ̸=i xjvj , and unfortunately xi ̸= 0. Fortunately, it is enough1018

that xi is bounded away from 1. Since x′
i = 0, we have1019

|xi| ≤
1

|S(a)|
∑

j∈S(a)

|x′
j |+

1

|S(a)|
≤
∥x′∥1 + 1

|S(a)|
≤ 3t−1

3t+1
=

1

9
.

Thus, by Claim E.4,1020 ∥∥∥∥∥∥vi − 1

1− xi

∑
j ̸=i

xjvj

∥∥∥∥∥∥
2

≤ 1

1− xi
· 3 · 4t−1

√
9t(tn/N)1/t ≤ 4t

√
9t(tn/N)1/t.

Finally, we have ∥x/(1− xi)∥1 ≤ (9/8)(2 · 3t−1 + 1) ≤ 3t, so x/(1− xi) satisfies all the desired1021

conditions. This completes the induction.1022

Finally, we extend Theorem E.3 to real-valued sparse vectors via a discretization argument.1023

Lemma E.5. Let n,N, t ∈ N and let v1, . . . , vN ∈ Rn be t-sparse vectors. Then there is some1024

i ∈ [N ] and x ∈ Rn such that ∥x∥1 ≤ 3t and1025 ∥∥∥∥∥∥vi −
∑
j ̸=i

xjvj

∥∥∥∥∥∥
2

≤ 4t+2
√
t(n/N)1/(4t) · max

j∈[N ]
∥vj∥∞ .

Proof. Without loss of generality assume that maxj∈[N ] ∥vj∥∞ = 1. Let k ∈ N be fixed later.1026

Define a map φ : [−1, 1]→ {0, 1}2k+1 by1027

φ(c) =


ek+1+⌊ck⌋ if c < 0

ek+1 if c = 0

ek+1+⌈ck⌉ if c > 0

.
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Also let Φ : R2k+1 → R be the linear map that sends Φei 7→ (i − k − 1)/k for each i ∈ [2k + 1].1028

Note that |Φφ(c) − c| ≤ 1/k for all c ∈ [−1, 1] and Φφ(0) = 0. Define φ⊕n : [−1, 1]n →1029

{0, 1}(2k+1)n by φ(c1, . . . , cn) = (φ(c1), . . . , φ(cn)), and define Φ⊕n : {0, 1}(2k+1)n → Rn by1030

Φ⊕n(x1, . . . , xn) = (Φ(x1), . . . ,Φ(xn)). For any i ∈ [N ], the vector φ⊕n(vi) is t-sparse and lies1031

in {0, 1}(2k+1)n. Thus, applying Theorem E.3 gives some i ∈ [N ] and x ∈ RN with ∥x∥1 ≤ 3t and1032 ∥∥∥∥∥∥φ⊕n(vi)−
∑
j ̸=i

xjφ
⊕n(vj)

∥∥∥∥∥∥
2

≤ 4t
√

9t(tn(2k + 1)/N)1/t.

Since Φ⊕n is a linear map and ∥Φ⊕n∥2 = ∥Φ∥2 ≤
√
2k + 1, we then get1033 ∥∥∥∥∥∥Φ⊕nφ⊕n(vi)−

∑
j ̸=i

xjΦ
⊕nφ⊕n(vj)

∥∥∥∥∥∥
2

≤ 4t
√
9t(2k + 1)(tn(2k + 1)/N)1/t.

But now for every j ∈ [N ], we know that1034 ∥∥vj − Φ⊕nφ⊕n(vj)
∥∥2
2
=

∑
a∈supp(vj)

(vja − Φφ(vja))
2 ≤ t

k2
.

We conclude that1035 ∥∥∥∥∥∥vi −
∑
j ̸=i

xjvj

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥Φ⊕nφ⊕n(vi)−
∑
j ̸=i

xjΦ
⊕nφ⊕n(vj)

∥∥∥∥∥∥
2

+
∥∥vi − Φ⊕nφ⊕n(vi)

∥∥
2

+
∑
j ̸=i

|xj | ·
∥∥vj − Φ⊕nφ⊕n(vj)

∥∥
2

≤ 4t
√
9t(2k + 1)(tn(2k + 1)/N)1/t + (1 + 3t) ·

√
t

k

≤ (2k + 1) · 4t+1
√
t(n/N)1/(2t) +

4t
√
t

k
.

Taking k = (N/n)1/(4t) gives the claimed bound.1036

Combining Lemma E.5 with Lemma E.1 lets us prove Theorem 3.2.1037

Proof of Theorem 3.2. Set δ :=
√
1/(4κ) and N = 44t(t+3)t2tκ2tn. By Lemma E.5, for any1038

t-sparse vectors v1, . . . , vN ∈ Rn with ∥vi∥2 ≤ 1 for all i ∈ [N ], there is some i ∈ [N ] and x ∈ Rn1039

such that ∥x∥1 ≤ 3t and1040 ∥∥∥∥∥∥vi −
∑
j ̸=i

xjvj

∥∥∥∥∥∥
2

≤ 4t+2
√
t(n/N)1/(4t) ≤ 1

4
√
κ
< δ.

It follows from Lemma E.1 that Pt,1/3t+1(Σ) ≤ N log2 κ. Finally, by Lemma A.2, we conclude1041

that Nt,1/3t+1(Σ) ≤ N log2 κ. ■1042

F Generalization bounds1043

F.1 Finite-class model selection1044

Lemma F.1. Let n,m, neff ∈ N and let Σ be a positive semi-definite matrix. Fix a vector w∗ ∈ Rn1045

and a closed set W ⊆ Rn and let (Xi, yi)
m
i=1 be independent draws Xi ∼ N(0,Σ) and yi =1046

⟨Xi, w
∗⟩+ ξi where ξi ∼ N(0, σ2). Pick1047

ŵ ∈ argmin
w∈W

∥Xw − y∥22

where X : m × n is the matrix with rows X1, . . . , Xm. For any ϵ, δ ∈ (0, 1), suppose that with1048

probability at least 1− δ, the following bounds hold uniformly over w ∈ W:1049
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1.
∣∣∣ 1m ∥X(w − w∗)∥22 − ∥w − w∗∥2Σ

∣∣∣ ≤ ϵ ∥w − w∗∥2Σ1050

2.
∣∣∣〈ξ, X(w−w∗)

∥X(w−w∗)∥2

〉∣∣∣ ≤ σ
√
neff.1051

Then with probability at least 1− δ it also holds that1052

∥ŵ − w∗∥Σ ≤
√

1 + ϵ

1− ϵ
inf

w∈W
∥w − w∗∥Σ + 2σ

√
2neff

m
.

Proof. Consider the event in which both bounds hold. Let wopt ∈ argminw∈W ∥w − w∗∥2Σ. Then1053

∥X(ŵ − w∗)∥22 = ∥Xŵ − y∥22 + 2⟨ξ,X(ŵ − w∗)⟩ − ∥ξ∥22
≤ ∥Xwopt − y∥2

2
+ 2⟨ξ,X(ŵ − w∗)⟩ − ∥ξ∥22

= ∥X(wopt − w∗)∥2
2
+ 2⟨ξ,X(ŵ − w∗)⟩ − 2⟨ξ,X(wopt − w∗)⟩

≤ ∥X(wopt − w∗)∥2
2
+ 2

(
∥X(ŵ − w∗)∥2 + ∥X(wopt − w∗)∥

2

)
σ
√
neff.

Subtracting ∥X(wopt − w∗)∥2
2

from both sides and dividing by ∥X(ŵ − w∗)∥2 + ∥X(wopt − w∗)∥
2
,1054

we get that1055

∥X(ŵ − w∗)∥2 − ∥X(wopt − w∗)∥
2
≤ 2σ

√
neff.

It follows that1056

∥ŵ − w∗∥Σ ≤

√
1

(1− ϵ)m
∥X(ŵ − w∗)∥2

≤

√
1

(1− ϵ)m
∥X(wopt − w∗)∥

2
+ 2σ

√
(1 + ϵ)neff

m

≤
√

1 + ϵ

1− ϵ
∥wopt − w∗∥

Σ
+ 2σ

√
2neff

m

as desired.1057

Lemma F.2. Let n,m ∈ N and let Σ be a positive semi-definite matrix. Fix a vector w∗ ∈ Rn and a1058

finite setW ⊆ Rn and let (Xi, yi)
m
i=1 be independent draws Xi ∼ N(0,Σ) and yi = ⟨Xi, w

∗⟩+ ξi1059

where ξi ∼ N(0, σ2). Pick1060

ŵ ∈ argmin
w∈W

∥Xw − y∥22 .

For any ϵ, δ ∈ (0, 1), if m ≥ 8ϵ−2 log(2|W|/δ), then with probability at least 1− 2δ, we have1061

∥ŵ − w∗∥Σ ≤
√

1 + ϵ

1− ϵ
inf

w∈W
∥w − w∗∥Σ + 4σ

√
log(2|W|/δ)

m
.

Proof. For any fixed w ∈ W , the random variables ⟨Xi, w − w∗⟩ ∼ N(0, ∥w − w∗∥2Σ) are inde-1062

pendent, and therefore ∥X(w − w∗)∥22 ∼ ∥w − w∗∥2Σ χ2
m. It follows that for any ϵ > 0,1063

Pr

[∣∣∣∣ 1m ∥X(w − w∗)∥22 − ∥w − w∗∥2Σ

∣∣∣∣ > ϵ ∥w − w∗∥2Σ

]
≤ 2e−mϵ2/8.

By the union bound, if m ≥ 8ϵ−2 log(2|W|/δ), then with probability at least 1− δ it holds that for1064

all w ∈ W ,1065 ∣∣∣∣ 1m ∥X(w − w∗)∥22 − ∥w − w∗∥2Σ

∣∣∣∣ ≤ ϵ ∥w − w∗∥2Σ . (10)

Also, for any fixed w ∈ W , conditioned on X, the random variable ⟨ξ, X(w−w∗)
∥X(w−w∗)∥2

⟩ has distribution1066

N(0, σ2). Thus, by a Gaussian tail bound and the union bound, we have for any t > 0 that1067

Pr

[
max
w∈W

∣∣∣∣〈ξ, X(w − w∗)

∥X(w − w∗)∥

〉∣∣∣∣ ≥ σt

]
≤ 2|W| · e−t2/2.
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In particular, with probability at least 1− δ it holds that1068

max
w∈W

∣∣∣∣〈ξ, X(w − w∗)

∥X(w − w∗)∥

〉∣∣∣∣ ≤ σ
√

2 log(2|W|/δ). (11)

Using (10) and (11) we apply Lemma F.1 which gives the desired bound.1069

F.2 Weak learning1070

Lemma F.3. Let n,m ∈ N and ϵ, δ > 0. Let Σ : n × n be a positive semi-definite matrix and1071

let X : m × n have independent rows X1, . . . , Xm ∼ N(0,Σ). For any fixed u, v ∈ Rn, if1072

m ≥ 8ϵ−2 log(8/δ), then it holds with probability at least 1− δ that1073 ∣∣∣∣u⊤
(

1

m
X⊤X− Σ

)
v

∣∣∣∣ ≤ 2ϵ ∥u∥Σ ∥v∥Σ .

Proof. Decompose u = av + w where ⟨v, w⟩Σ = 0, so that a = ⟨u, v⟩Σ/ ∥v∥2Σ. Since ∥Xv∥22 ∼1074

∥v∥2Σ χ2
m and m ≥ 8ϵ−2 log(4/δ) it holds with probability at least 1− δ/2 that1075 ∣∣∣∣v⊤( 1

m
X⊤X− Σ

)
v

∣∣∣∣ =
∣∣∣∣∣ 1m

m∑
i=1

⟨Xi, v⟩2 − ∥v∥2Σ

∣∣∣∣∣ ≤ ϵ ∥v∥2Σ .

Next,1076 ∣∣∣∣w⊤
(

1

m
X⊤X− Σ

)
v

∣∣∣∣ =
∣∣∣∣∣ 1m

m∑
i=1

⟨Xi, w⟩⟨Xi, v⟩

∣∣∣∣∣ =
∣∣∣∣∣ 1m

m∑
i=1

⟨Zi,Σ
1/2w⟩⟨Zi,Σ

1/2v⟩

∣∣∣∣∣
where we define independent random vectors Z1, . . . , Zm ∼ N(0, In) so that Xi = Σ1/2Zi. Since1077

m ≥ 8 log(2/δ), with probability at least 1− δ/4 we have
∑m

i=1⟨Zi,Σ
1/2v⟩2 ≤ 2m ∥v∥2Σ. Condi-1078

tion on the value of this sum, and note that since Σ1/2v ⊥ Σ1/2w, the random variables ⟨Zi,Σ
1/2w⟩1079

are still (independent and) distributed as N(0, ∥w∥2Σ). Thus1080

1

m

m∑
i=1

⟨Zi,Σ
1/2w⟩⟨Zi,Σ

1/2v⟩ ∼ N

(
0,

1

m2

m∑
i=1

∥w∥2Σ ⟨Zi,Σ
1/2v⟩2

)
.

When the variance is at most 2 ∥w∥2Σ ∥v∥
2
Σ /m, we have with probability at least 1 − δ/4 that the1081

sum is at most 2 ∥w∥Σ ∥v∥Σ
√
2 log(8/δ)/m in magnitude. So, using m ≥ 8ϵ−2 log(8/δ) it holds1082

unconditionally with probability at least 1− δ/2 that1083 ∣∣∣∣∣ 1m
m∑
i=1

⟨Zi,Σ
1/2w⟩⟨Zi,Σ

1/2v⟩

∣∣∣∣∣ ≤ ϵ ∥w∥Σ ∥v∥Σ .

In all, we have that1084 ∣∣∣∣u⊤
(

1

m
X⊤X− Σ

)
v

∣∣∣∣ ≤ |a|ϵ ∥v∥2Σ + ϵ ∥w∥Σ ∥v∥Σ ≤ 2ϵ ∥u∥Σ ∥v∥Σ

using that |a| ≤ ∥u∥Σ / ∥v∥Σ and ∥w∥Σ ≤ ∥u∥Σ.1085

Lemma F.4. Let n,m ∈ N and let Σ be a positive semi-definite matrix. Fix a vector w∗ ∈ Rn and a1086

finite setW ⊆ Rn and let (Xi, yi)
m
i=1 be independent draws Xi ∼ N(0,Σ) and yi = ⟨Xi, w

∗⟩+ ξi1087

where ξi ∼ N(0, σ2). Pick1088

(ŵ, β̂) ∈ argmin
w∈W
β∈R

∥βXw − y∥22 .

Suppose α := maxw∈W
⟨w,w∗⟩Σ

∥w∥Σ∥w∗∥Σ
> 0. For any δ > 0, if m ≥ Cα−2 log(32|W|/δ) for a1089

sufficiently large absolute constant C, then with probability at least 1− δ,1090 ∥∥∥β̂ŵ − w∗
∥∥∥2
Σ
≤ (1− α2/4) ∥w∗∥2Σ +

400σ2 log(4|W|/δ)
α2m

.
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Proof. For any vectors u, v ∈ Rn, define ∆(u, v) = u⊤ ( 1
mX⊤X− Σ

)
v.1091

Claim F.5. With probability at least 1 − δ, the following bounds hold uniformly over w ∈ W and1092

β ∈ R:1093

1.
∣∣∣〈ξ, X(βw−w∗)

∥X(βw−w∗)∥2

〉∣∣∣ ≤ σ
√
neff where neff := 2 log(32|W|/δ).1094

2. |∆(βw,w∗)| ≤ α
100 ∥βw∥Σ ∥w

∗∥Σ1095

3. |∆(βw, βw)| ≤ α
100 ∥βw∥

2
Σ .1096

Proof of claim. For item (1), fix w ∈ W . Let Φ(w) : 2 × m be a matrix whose rows form an1097

orthonormal basis for span{Xw,Xw∗} ⊆ Rm. Then (denoting the unit Euclidean ball in R2 by B2)1098

we have for all β ∈ R that1099 ∣∣∣∣〈ξ, X(βw − w∗)

∥X(βw − w∗)∥2

〉∣∣∣∣ ≤ sup
u∈B2

∣∣∣〈ξ, (Φ(w))⊤u
〉∣∣∣ ≤ ∥∥∥Φ(w)ξ

∥∥∥
2
≤
√
2max

i∈[2]
|⟨Φ(w)

i , ξ⟩|.

Since ⟨Φ(w)
i , ξ⟩ ∼ N(0, σ2), we have Pr[|⟨Φ(w)

i , ξ⟩| > σ
√

2 log(4|W|/δ)] ≤ δ/(4|W|). A union1100

bound over i ∈ [2] and w ∈ W gives that condition (2) in Lemma F.1 is satisfied with probability at1101

least 1− δ/2.1102

For items (2) and (3), note that ∆ is bilinear, so it suffices to take β = 1. Applying Lemma F.3 and1103

the union bound, so long as m ≥ Cα−2 log(32|W|/δ) for a sufficiently large constant C, items (2)1104

and (3) hold simultaneously with probability at least 1− δ/2.1105

Henceforth we assume that all of the events in the above claim hold. Let w0 ∈ W be such that1106

|⟨w0, w
∗⟩Σ| = α ∥w0∥Σ ∥w∗∥Σ. Let β0 = ⟨w0, w

∗⟩Σ/ ∥w0∥2Σ. Then1107

∥β0w0 − w∗∥2Σ = (1− α2) ∥w∗∥2Σ .

Claim F.6. The excess empirical risk can be bounded as1108 ∥∥∥X(β̂ŵ − w∗)
∥∥∥
2
≤ ∥X(w0 − w∗)∥2 + 2σ

√
neff.

Proof of claim. We have1109 ∥∥∥X(β̂ŵ − w∗)
∥∥∥2
2
=
∥∥∥Xβ̂ŵ − y

∥∥∥2
2
+ 2⟨ξ,X(β̂ŵ − w∗)⟩ − ∥ξ∥22

≤ ∥Xβ0w0 − y∥22 + 2⟨ξ,X(β̂ŵ − w∗)⟩ − ∥ξ∥22
= ∥X(β0w0 − w∗)∥22 + 2⟨ξ,X(β̂ŵ − w∗)⟩ − 2⟨ξ,X(β0w0 − w∗)⟩

≤ ∥X(β0w0 − w∗)∥22 + 2
(∥∥∥X(β̂ŵ − w∗)

∥∥∥
2
+ ∥X(β0w0 − w∗)∥2

)
σ
√
neff

where the last bound is by item (1) of Claim F.5. Simplifying, we get the claimed bound.1110

Now we have1111 ∥∥∥β̂ŵ − w∗
∥∥∥2
Σ
=

1

m

∥∥∥X(β̂ŵ − w∗)
∥∥∥2
2
−∆(β̂ŵ − w∗, β̂ŵ − w∗)

≤ 1

m
(∥X(β0w0 − w∗)∥2 + 2σ

√
neff)

2 −∆(β̂ŵ − w∗, β̂ŵ − w∗)

≤ 1 + α2/100

m
∥X(β0w0 − w∗)∥22 + (1 + 100α−2)

σ2neff

m
−∆(β̂ŵ − w∗, β̂ŵ − w∗)

= (1 + α2/100) ∥β0w0 − w∗∥2Σ + (1 + 100α−2)
σ2neff

m

−∆(β̂ŵ − w∗, β̂ŵ − w∗) +

(
1 +

α2

100

)
∆(β0w0 − w∗, β0w0 − w∗)
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≤ (1 + α2/100) ∥β0w0 − w∗∥2Σ + (1 + 100α−2)
σ2neff

m

+ |∆(β̂ŵ, β̂ŵ)|+ 2|∆(β̂ŵ, w∗)|
+ (1 + α2/100)|∆(β0w0, β0w0)|+ 2(1 + α2/100)|∆(β0w0, w

∗)|
+ (α2/100)|∆(w∗, w∗)|.

where the first inequality is by Claim F.6, the second inequality is by AM-GM, and the final in-1112

equality is expanding out the terms ∆(β̂ŵ − w∗, β̂ŵ − w∗) and ∆(β0w0 − w∗, β0w0 − w∗) (via1113

bilinearity) and cancelling out the common term ∆(w∗, w∗). Finally applying items (2) and (3) of1114

Claim F.5, we get1115 ∥∥∥β̂ŵ − w∗
∥∥∥2
Σ
≤ (1 + α2/100) ∥β0w0 − w∗∥2Σ + (1 + 100α−2)

σ2neff

m

+
α

100

∥∥∥β̂ŵ∥∥∥2
Σ
+

α

50

∥∥∥β̂ŵ∥∥∥
Σ
∥w∗∥Σ

+
α

50
∥β0w0∥2Σ +

α

25
∥β0w0∥Σ ∥w

∗∥Σ +
α3

100
∥w∗∥2Σ

≤ (1− 9α2/10) ∥w∗∥2Σ +
101σ2neff

α2m

+
α

100

∥∥∥β̂ŵ∥∥∥2
Σ
+

α

50

∥∥∥β̂ŵ∥∥∥
Σ
∥w∗∥Σ (12)

where the second inequality uses the bounds ∥β0w0 − w∗∥2Σ = (1− α2) ∥w∗∥2Σ and1116

∥β0w0∥Σ =
|⟨w0, w

∗⟩Σ|
∥w0∥Σ

= α ∥w∗∥Σ .

But now on the other hand,1117 ∥∥∥β̂ŵ − w∗
∥∥∥2
Σ
=
∥∥∥β̂ŵ∥∥∥2

Σ
+ ∥w∗∥2Σ − 2⟨β̂ŵ, w∗⟩Σ ≥

∥∥∥β̂ŵ∥∥∥2
Σ
+ ∥w∗∥2Σ + 2α

∥∥∥β̂ŵ∥∥∥
Σ
∥w∗∥Σ .

Comparing with (12) gives1118 (
1− α

100

)∥∥∥β̂ŵ∥∥∥2
Σ
≤ 101σ2neff

α2m
+ 3α

∥∥∥β̂ŵ∥∥∥
Σ
∥w∗∥Σ

and therefore1119 ∥∥∥β̂ŵ∥∥∥
Σ
≤ 4α ∥w∗∥Σ + σ

√
101neff

α2m
.

Substituting into (12) we finally get1120 ∥∥∥β̂ŵ − w∗
∥∥∥2
Σ
≤ (1− α2/2) ∥w∗∥2Σ +

200σ2neff

α2m
as desired.1121

F.3 Excess risk at optima of additively-regularized programs1122

Lemma F.7. Let n ∈ N, and let Σ : n × n be a positive semi-definite matrix. For some seminorm1123

Φ : Rn → [0,∞) and some p, δ > 0, assume that with probability at least 1− δ over G ∼ N(0,Σ)1124

it holds uniformly over v ∈ Rn that1125

⟨v,G⟩ ≤ 1

2
Φ(v) +

√
p ∥v∥Σ .

Fix a vector v∗ ∈ Rn. For any m ∈ N and σ > 0 let (Xi, yi)
m
i=1 be independent samples distributed1126

as Xi ∼ N(0,Σ) and yi = ⟨Xi, v
∗⟩+ ξi where ξi ∼ N(0, σ2). Define1127

v̂ ∈ argmin
v∈Rn

∥Xv − y∥22 +Φ(v)2 + ∥y∥2 Φ(v)

where X : m × n is the matrix with rows X1, . . . , Xm. Then with probability at least 1 − 7δ over1128

(Xi, yi)
m
i=1, so long as m ≥ 16p+ 196 log(12/δ)), it holds that1129

∥v̂ − v∗∥2Σ ≤
128σ2p

m
+

8(σ + ∥v∗∥Σ)Φ(v∗)√
m

+
8Φ(w∗)2

m
.
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Proof. For notational convenience, define F (v) := (1/2)Φ(v− v∗)+
√
p ∥v − v∗∥Σ. We apply the1130

lemma’s assumption twice:1131

• For any fixed ξ, the random variable Xξ has distribution N(0, ∥ξ∥22 Σ). By the above claim,1132

with probability at least 1 − δ over X, we have ⟨ξ,X(v − v∗)⟩ ≤ ∥ξ∥2 F (v) uniformly in1133

v ∈ Rn.1134

Since ∥ξ∥22 ∼ σ2χ2
m and m ≥ 8 log(2/δ), it holds with probability at least 1 − δ that1135

1√
m
∥ξ∥2 ≤

√
2σ. Thus, with probability at least 1− 2δ, we have1136

⟨ξ,X(v − v∗)⟩ ≤
√
2mσF (v) (13)

uniformly in v ∈ Rn.1137

• The assumption means that we can apply Theorem C.1 with (noiseless) samples1138

(Xi, ⟨Xi, v
∗⟩)mi=1 to get the following: since m ≥ 196 log(12/δ), it holds with probability1139

at least 1− 4δ over the randomness of X that for all v ∈ Rn,1140

∥v − v∗∥2Σ ≤
2

m
∥X(v − v∗)∥22 +

2

m
F (v)2. (14)

We also observe that the entries of y are independent and identically distributed as N(0, ∥v∗∥2Σ+σ2),1141

so by a χ2 tail bound, since m ≥ 32 log(2/δ), it holds with probability at least 1− δ that1142

1

m
∥y∥22 ∈

[
1

2
(∥v∗∥2Σ + σ2),

3

2
(∥v∗∥2Σ + σ2)

]
. (15)

We now condition on the event (which occurs with probability at least 1− 7δ) that the bounds (13),1143

(14), and (15) all hold. Specifying (14) to v := v̂, we get that1144

m

2
∥v̂ − v∗∥2Σ

≤ ∥X(v̂ − v∗)∥22 + F (v̂)2

≤ ∥X(v̂ − v∗)∥22 − ∥Xv̂ − y∥22 − Φ(v̂)2 − ∥y∥2 Φ(v̂)
+ ∥Xv∗ − y∥22 +Φ(v∗)2 + ∥y∥2 Φ(v

∗) + F (v̂)2

= 2⟨Xv∗ − y,X(v̂ − v∗)⟩
− Φ(v̂)2 − ∥y∥2 Φ(v̂) + Φ(v∗)2 + ∥y∥2 Φ(v

∗) + F (v̂)2

≤
√
2mσF (v̂)− Φ(v̂)2 − ∥y∥2 Φ(v̂) + Φ(v∗)2 + ∥y∥2 Φ(v

∗) + F (v̂)2

where the first inequality is by (14), the second inequality is by optimality of v̂, and the third in-1145

equality is by (13). We now expand F (v̂) in the above expression. If
√
2mpσ ∥v̂ − v∗∥Σ exceeds1146

m
8 ∥v̂ − v∗∥2Σ then the lemma immediately holds since1147

∥v̂ − v∗∥2Σ ≤
128σ2p

m
.

So we may assume that in fact
√
2mpσ ∥v̂ − v∗∥Σ ≤

m
8 ∥v̂ − v∗∥2Σ. By the lemma assumptions,1148

we also know that m ≥ 16p. Thus, expanding F (v̂) and applying these bounds,1149

m

2
∥v̂ − v∗∥2Σ ≤

√
2mσ

(
1

2
Φ(v̂ − v∗) +

√
p ∥v̂ − v∗∥Σ

)
− Φ(v̂)2 − ∥y∥2 Φ(v̂) + Φ(v∗)2 + ∥y∥2 Φ(v

∗)

+
1

2
Φ(v̂ − v∗)2 + 2p ∥v̂ − v∗∥2Σ

≤
√

m

2
σΦ(v̂ − v∗) +

m

8
∥v̂ − v∗∥2Σ

− Φ(v̂)2 − ∥y∥2 Φ(v̂) + Φ(v∗)2 + ∥y∥2 Φ(v
∗)
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+
1

2
Φ(v̂ − v∗)2 +

m

8
∥v̂ − v∗∥2Σ .

Simplifying, applying the triangle inequality Φ(v̂ − v∗) ≤ Φ(v̂) + Φ(v∗), and grouping terms, we1150

get1151

m

4
∥v̂ − v∗∥2Γ

≤
(√

m

2
σ − ∥y∥2

)
Φ(v̂) +

(√
m

2
σ + ∥y∥2

)
Φ(v∗) + 2Φ(v∗)2

≤ 2(σ + ∥v∗∥Σ)
√
mΦ(v∗) + 2Φ(v∗)2

where the last inequality uses both sides of the bound (15).1152

G Covering bounds from classical assumptions1153

In this section, we further motivate the definition of our covering number Nt,α(Σ) by showing that1154

in all settings where efficient SLR algorithms are known, there is a straightforward linear upper1155

bound on the covering number. This lends weight to the need for stronger upper bounds on Nt,α as1156

a stepping stone towards more efficient algorithms for sparse linear regression.1157

G.1 Compatibility condition1158

Definition G.1 (Compatibility Condition, see e.g. [40]). For a positive semidefinite matrix Σ : n×n,1159

L ≥ 1, and set S ⊂ [n], we say Σ has S-restricted ℓ1-eigenvalue1160

ϕ2(Σ, S) = min
w∈C(S)

|S| · ⟨w,Σw⟩
∥wS∥21

where the cone C(S) is defined as1161

C(S) = {w ̸= 0 : ∥wSC∥1 ≤ L∥wS∥1}.

For t ∈ N, the t-restricted ℓ1-eigenvalue ϕ2(Σ, t) is the minimum over all S of size at most t.1162

It is well-known that an upper bound on maxi Σii

ϕ2(Σ,t) is sufficient for the success of Lasso (as well as1163

nearly necessary; see e.g. the Weak Compatibility Condition defined in [23]):1164

Theorem G.2 (see e.g. Corollary 5 in [45]). Fix n,m, t ∈ N, σ, δ > 0, and a positive semi-definite1165

matrix Σ : n × n with maxi Σii ≤ 1. Fix a t-sparse vector v∗ ∈ Rn and let (Xi, yi)
m
i=1 be1166

independent samples distributed as Xi ∼ N(0,Σ) and yi = ⟨Xi, v
∗⟩ + ξi where ξi ∼ N(0, σ2).1167

Define1168

v̂ ∈ argmin
v∈Rn:∥v∥1≤∥v∗∥1

∥Xv − y∥22

where X : m × n is the matrix with rows X1, . . . , Xm. If m ≥ 4ϕ2(Σ, t) · t log(16n/δ), then with1169

probability at least 1− δ, it holds that1170

∥v̂ − v∗∥2Σ ≤ O

(
σ2t log(16n/δ)

ϕ2(Σ, t)m

)
.

Fact G.3. Let n, t ∈ N. For any positive semi-definite Σ : n×n with ϕ2 := ϕ2(Σ, t) and maxi Σii ≤1171

1, it holds that Nt,ϕ/
√
t(Σ) ≤ n.1172

Proof. The proof is essentially the same as that of Fact A.4. By Lemma A.3, it suffices to show that1173

the standard basis is a (t,
√
t/ϕ)-ℓ1-representation for Σ. Indeed, for any t-sparse v ∈ Rn, we have1174

n∑
i=1

|vi| · ∥ei∥Σ ≤ ∥v∥1 ·max
i

√
Σii ≤

√
t ∥v∥Σ
ϕ

as claimed.1175
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G.2 Submodularity ratio1176

Definition G.4 (see e.g. [9]). For a positive semi-definite matrix Σ : n× n and a set L ⊆ [n] define1177

the normalized residual covariance matrx Σ(L) : n× n by1178

Σ(L) := (D1/2)†
(
Σ− Σ⊤

LΣ
†
LLΣL

)
(D1/2)†

where D := diag
(
Σ− Σ⊤

LΣ
†
LLΣL

)
.1179

Definition G.5. Fix a positive semi-definite matrix Σ : n × n, a positive integer t ∈ N, and any1180

v∗ ∈ Rn. Define the t-submodularity ratio of Σ with respect to v∗ by1181

γt(Σ, v
∗) := min

L,S⊆[n]:|L|,|S|≤t,L∩S=∅

(v∗)⊤(Σ(L))⊤S (Σ
(L))Sv

∗

(v∗)⊤(Σ(L))⊤S (Σ
(L))†SS(Σ

(L))Sv∗
.

In any t-sparse linear regression model with true regressor v∗, when the above quantity γ :=1182

γt(Σ, v
∗) is bounded away from zero, it can be shown that the standard Forward Regression al-1183

gorithm finds some t-sparse estimate v̂ ∈ Rn such that ∥v̂ − v∗∥2Σ ≤ e−γ ∥v∗∥2Σ (see e.g. Theorem1184

3.2 in [9]; that result is for the model where the algorithm is given exact access to ⟨v, v∗⟩Σ for any1185

t-sparse v ∈ Rn, but analogous finite-sample bounds can be obtained with O(γ−O(1)t log(n)) sam-1186

ples by applying the theorem to the empirical covariance matrix and using concentration of t × t1187

submatrices). A similar guarantee is also known for Orthogonal Matching Pursuit (Theorem 3.7 in1188

[9]).1189

Once again, it is simple to show that the standard basis is a good dictionary for matrices with a large1190

submodularity ratio.1191

Fact G.6. Let n, t ∈ N. For any positive semi-definite Σ : n × n with γ :=1192

minv∗∈Rn∩B0(t) γt(Σ, v
∗), it holds that N

t,
√

γ/t
(Σ) ≤ n.1193

Proof. We show that the standard basis is a (t, γ/t)-dictionary for Σ. Without loss of generality1194

assume that Σii = 1 for all i ∈ [n]. Then Σ(∅) = Σ. Fix any t-sparse v∗ ∈ Rn. Setting S :=1195

supp(v∗), we have that1196 ∑
i∈S

⟨ei, v∗⟩2Σ = (v∗)⊤Σ⊤
SΣSv

∗ ≥ γ(v∗)⊤Σ⊤
S (ΣSS)

†ΣSv
∗ = γ ∥v∗∥2Σ

where the inequality is by definition of γ, and the final equality uses that ΣSv
∗ = ΣSS(v

∗)S (since1197

v∗ is supported on S). It follows that maxi∈S⟨ei, v∗⟩2Σ ≥ (γ/t) ∥v∗∥2Σ. Since ∥ei∥Σ = 1 for all i,1198

we conclude that1199

max
i∈[n]

|⟨ei, v∗⟩Σ|
∥ei∥Σ ∥v∗∥Σ

≥
√

γ

t

as claimed.1200

G.3 Sparse preconditioning1201

Recent work [23] showed that if Σ : n×n is a positive definite matrix and the support of Θ := Σ−11202

is the adjacency matrix of a graph with low treewidth, then there is a polynomial-time, sample-1203

efficient algorithm for sparse linear regression with covariates drawn from N(0,Σ). The key to this1204

result was a proof that such covariance matrices are sparsely preconditionable: i.e., there is a matrix1205

S : n× n such that Σ = SS⊤ and S has sparse rows. We claim that this property also immediately1206

enables succinct dictionaries.1207

Concretely, suppose that S has s-sparse rows. By a change-of-basis argument, any t-sparse vec-1208

tor in the standard basis is st-sparse in the basis {(S⊤)−1
1 , . . . , (S⊤)−1

n }. Moreover these vec-1209

tors are orthonormal under Σ. Thus, by the same argument as for Fact A.4, it’s easy to see that1210

{(S⊤)−1
1 , . . . , (S⊤)−1

n } is a (t, 1/
√
st)-dictionary for Σ.1211

44



Figure 2: Performance of Basis Pursuit in a synthetic example with n = 1000 covariates. The co-
variates X1:1000 are all independent N(0, 1) except for (X0, X1, X2), which have joint distribution
X0 = Z0, X1 = Z0 + 0.4Z1, and X2 = Z1 + 0.4Z2 where Z0, Z1, Z2 ∼ N(0, 1) are independent.
The noiseless responses are y = 6.25(X1 − X2) + 2.5X3, i.e. the ground truth is 3-sparse. The
x-axis is the number of samples. The y-axis is the out-of-sample prediction error (averaged over 10
independent runs, and error bars indicate the standard deviation).

H Supplementary figure1212

I Experimental details1213

The simulations were done using Python 3.9 and the Gurobi library [17]. Each figure took several1214

minutes to generate using a standard laptop. See the file auglasso.py for code and execution1215

instructions.1216
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