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Abstract

Variational inference (VI) is a method to approximate the computationally in-
tractable posterior distributions that arise in Bayesian statistics. Typically, VI fits
a simple parametric distribution to be close to the target posterior, optimizing
an appropriate objective such as the evidence lower bound (ELBO). In this work,
we present a new approach to VI. Our method is based on the principle of score
matching—namely, that if two distributions are equal then their score functions
(i.e., gradients of the log density) are equal at every point on their support. With
this principle, we develop score-matching VI, an iterative algorithm that seeks to
match the scores between the variational approximation and the exact posterior. At
each iteration, score-matching VI solves an inner optimization, one that minimally
adjusts the current variational estimate to match the scores at a newly sampled value
of the latent variables. We show that when the variational family is a Gaussian, this
inner optimization enjoys a closed-form solution, which we call Gaussian score
matching VI (GSM-VI). GSM-VI is a “black box” variational algorithm in that
it only requires a differentiable joint distribution, and as such it can be applied to
a wide class of models. We compare GSM-VI to black box variational inference
(BBVI), which has similar requirements but instead optimizes the ELBO. We
first study how GSM-VI behaves as a function of the problem dimensionality, the
condition number of the target covariance matrix (when the target is Gaussian), and
the degree of mismatch between the approximating and exact posterior distribution.
We then study GSM-VI on a collection of real-world Bayesian inference problems
from the posteriorDB database of datasets and models. We find that GSM-VI is
faster than BBVI and equally or more accurate. Specifically, over a wide range of
target posteriors, GSM-VI requires 10-100x fewer gradient evaluations than BBVI
to obtain a comparable quality of approximation.1

1We provide a Python implementation of GSM-VI algorithm at https://github.com/modichirag/GSM-VI.
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1 Introduction

This paper is about variational inference for approximate Bayesian computation. Consider a statistical
model p(θ,x) of parameters θ ∈ Rd and observations x. Bayesian inference aims to infer the
posterior distribution p(θ |x), which is often intractable to compute. Variational inference is an
optimization-based approach to approximate the posterior [5, 18].

The idea behind VI is to approximate the posterior with a member of a variational family of dis-
tributions qw(θ), parameterized by variational parameters w [5, 18]. Specifically, VI methods
establish a measure of closeness between qw(θ) and the posterior, and then minimize it with an
optimization algorithm. Researchers have explored many aspects of VI, including different objec-
tives [8, 9, 20, 26, 27, 29, 34] and optimization strategies [1, 15, 28].

In its modern form, VI typically minimizes KL (qw(θ)||p(θ |x)) with stochastic optimization, and
further satisfies the so-called “black-box” criteria [1, 28, 33]. Black-box VI (BBVI) only requires
the practitioner to specify the log joint log p(θ,x) and (often) its gradient ∇θ log p(θ,x), which
for many models can be obtained by automatic differentiation [14, 25]. BBVI has been widely
implemented, and it is available in many probabilistic programming systems [4, 21, 31].

In this paper, we propose a new approach to VI. We begin with the principle of score matching [16],
that when two densities are equal then their gradients are equal as well, and we use this principle
to derive a new way to fit a variational distribution to be close to the exact posterior. The result
is score-matching VI. Rather than explicitly minimize a divergence, score-matching VI iteratively
projects the variational distribution onto the exact score-matching constraint. This strategy enables a
new black-box VI algorithm.

Score-matching VI relies on the same ingredients as reparameterization BBVI [21]—a differen-
tiable variational family and a differentiable log joint—and so it can be as easily incorporated into
probabilistic programming systems as well. Further, when the variational family is a Gaussian,
score-matching VI is particularly efficient: each iteration is computable in closed form. We call the
resulting algorithm Gaussian score matching VI (GSM-VI).

Unlike BBVI, GSM-VI does not rely on stochastic gradient descent (SGD) for its core optimization.
Though SGD has the appeal of simplicity, it requires careful tuning of learning rates. GSM-VI was
inspired by a different tradition of constraint-based algorithms for online learning [3, 7, 12, 13, 23].
These algorithms have been extensively developed and analyzed for problems in classification, and
under the right conditions, they have been observed to outperform SGD. This paper shows how to
extend this constraint-based framework—and the powerful machinery behind it—from the problem
of classification to the workhorse of Gaussian VI. The key insight is that score-matching (unlike
ELBO maximization) lends itself naturally to a constraint-based formulation.

We empirically compared GSM-VI to reparameterization BBVI on several classes of models, and with
both synthetic and real-world data. In general, we found that GSM requires 10-100x fewer gradient
evaluations to converge to an equally good approximation. When the exact posterior is Gaussian, we
found that GSM-VI scales significantly better with respect to dimensionality and is insensitive to the
condition number of the target covariance. When the exact posterior is non-Gaussian, we found that
GSM-VI converges more quickly without sacrificing the quality of the final approximation.

This paper makes the following contributions:

• We introduce score-matching variational inference, a new black-box approach to fitting
qw(θ) to be close to p(θ |x). Score-matching VI requires no tunable optimization hyperma-
rameters, to which BBVI can be sensitive.

• When the variational family is Gaussian, we develop Gaussian score-matching variational
inference (GSM-VI). It establishes efficient closed-form iterates for score-matching VI.

• We empirically compare GSM-VI to reparameterization BBVI. Across many models and
datasets, we found that GSM-VI enjoys faster convergence to an equally good approximation.

We develop score-matching VI in Section 2 and study its performance in Section 3.
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Related work. This paper introduces a new method for black-box variational inference that relies
only on having access to the gradients of the variational distribution and the log joint. GSM-VI
has similar goals to automatic-differentiation variational inference (ADVI) [21] and Pathfinder [35],
which also fit multivariate Gaussian variational families, but do so by maximizing the ELBO using
stochastic optimization. As in GSM-VI, the algorithm of ref. [32] also seeks to match the scores of
the variational and the target posterior, but it does so by minimizing the L2 loss between them.

A novel aspect of GSM-VI is how it fits the variational parameters. Rather than minimize a loss
function, it aims to solve a set of nonlinear equations. Similar ideas have been pursued in the
context of fitting a model to data using empirical risk minimization (ERM). For example, passive
agressive (PA) methods [7] and the stochastic polyak stepsize (SPS) are also derived via projections
onto sampled nonlinear equations [3, 13, 23]. A probabilistic extension of PA methods is known
as confidence-weighted (CW) learning [12]. In CW learning, the learner maintains a multivariate
Gaussian distribution over the weight vector of a linear classifier. Similarly, the second step of
GSM-VI also minimizes a KL divergence between multivariate Gaussians. Unlike CW learning,
however, the projection in GSM-VI enforces a score-matching constraint as opposed to a margin-based
constraint for linear classification.

2 Score Matching Variational Inference

Suppose for the moment that the variational family qw(θ) is rich enough to perfectly capture the
posterior p(θ |x). In other words, there exists a w∗ such that

log qw∗(θ) = log p(θ|x), ∀θ ∈ Θ. (1)

If we could solve Eq. 1 for w∗, the resulting variational distribution would be a perfect fit. The
challenge is that the posterior on the right side is intractable to compute.

To help, we appeal to the idea of score matching [16]. We define the score of a distribution to be the
gradient of its log with respect to the variable2, e.g.,∇θ log qw(θ). The principle of score matching
is that if two distributions are equal at every point in their support then their score functions are also
equal.

To use score matching for VI, we first write the log posterior as the log joint minus the normalizing
constant, i.e., the marginal distribution of x,

log p(θ |x) = log p(θ,x)− log p(x). (2)

With this expression, the principle of score matching leads to the following Lemma.

Lemma 2.1. Let Θ ⊂ Rd be a set that contains the support of p(θ, x) and qw∗(θ) for some w∗.
That is p(θ, x) = qw∗(θ) = 0 for every θ ̸∈ Θ. Furthermore, suppose that the support of p(θ, x)
and qw∗(θ), and Θ is path-connected. The parameter w∗ satisfies

∇θ log qw∗(θ) = ∇θ log p(θ, x), ∀θ ∈ Θ, (3)

if and only if w∗ also satisfies Eq. 1.

What is notable about Eq. 3 is that the right side is the gradient of the log joint. Unlike the posterior,
the gradient of the log joint is tractable to compute for a large class of probabilistic models. (The
proof of the lemma is in the appendix.)

This lemma motivates a new algorithm, score-matching VI. The idea is to iteratively refine the
variational parameters w in order to satisfy (as much as possible) the system of equations in Eq. 3.
At each iteration t, the algorithm first samples a new θt from the current variational approximation
and then minimally adjusts w to satisfy Eq. 3 for that value of θt, see (4). We want this adjustment
to be minimal because, eventually qwt will learn a good fit—one that increasingly matches the scores
over the support of the target posterior—and we want to preserve this good fit as much as possible.

2We make this clear because, in some literature, the score is defined as the gradient with respect to the
parameter.
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Score matching variational inference

At iteration t:

1. Sample θt ∼ qwt
(θ).

2. Update the variational parameters:

wt+1 = argmin
w

KL (qwt
(θ) || qw(θ))

such that ∇θ log qw(θt) = ∇θ log p(θt,x).
(4)

This algorithm for score matching VI was inspired by earlier online algorithms for learning a classifier
from a stream of labeled examples. One particularly elegant algorithm in this setting is known as
passive-aggressive (PA) learning [7]; this algorithm incrementally updates its model by the minimal
amount to classify each example correctly by a large margin. This approach was subsequently
extended to a probabilistic setting, known as confidence-weighted (CW) learning [12] in which
one minimally updates a distribution over classifiers. Our algorithm is similar in that it minimally
updates an approximating distribution for VI, but it is different in that it enforces constraints for score
matching instead of large margin classification.

At a high level, what makes this approach to VI likely to succeed or fail? Certainly it is necessary
that there are more variational parameters than elements of the latent variable θ; when this is not
the case, it may be impossible to satisfy a single score matching constraint in Eq. 4. That said, it is
standard (as in, e.g., a factorized or mean-field variational family) to have at least as many variational
parameters as there are elements of the latent variable. It is also apparent that the algorithm may
never converge if the target posterior is not contained in the variational family, or it may converge
to a degenerate solution if the variational approximation collapses to a point mass, thus terminating
the updates altogether. While we cannot dismiss these possibilities out of hand, we did not observe
erratic or pathological outcomes in any of the empirical studies of Section 3.

For more intuition, Figure 1a illustrates the effect of the update in Eq. 4 when both the target and
approximating distribution are 1d Gaussian. The target posterior p(θ |x) is shaded blue. The plot
shows the initial variational distribution qw0

(light grey curve) and its update to qw1
(medium grey)

so that the gradient of the updated distribution matches the gradient of the target at the sampled θ0
(dotted red tangent line). It also shows the update from w1 to w2, now matching the gradient at θ1.
With these two updates, qw2 (dark grey) is very close to the target p(θ |x). With this picture in mind,
we now develop the details of this algorithm for a more widely applicable setting.

Gaussian Score-Matching VI. Suppose the variational distribution belongs to a multivariate Gaussian
family qw(θ) := N (µ,Σ); this is a common choice especially in systems for automated approximate
inference [1, 21]. One of our main contributions is to show in this case that Eq. 4 has a closed-form
solution. The solution wt+1 = (µt+1,Σt+1) has the following form:

µt+1 = µt +At (∇θ log p(θt,x)−∇θ log qwt
(θt)) (5)

Σt+1 = Σt + (µt − θt)(µt − θt)
⊤ − (µt+1 − θt)(µt+1 − θt)

⊤ (6)

where At ∈ Rd×d is a matrix defined in the theorem below. Note that these updates, which exactly
solve the optimization in Eq. 4, only require the score of the log joint∇θ log p(θ,x) and the score of
the variational distribution∇θ log qw(θ).

Before deriving Eqs. 5 and 6 in full, we highlight the intuitive form of this closed-form solution.
Consider the approximation at the tth iteration qwt

and the current sample θt. First suppose the
scores already match at this sample, that is∇θ log p(θt,x) = ∇θ log qwt

(θt). Then the mean does
not change µt+1 = µt and, similarly, the two rank-one terms in the covariance update in Eq. 6 cancel
out so Σt+1 = Σt. This shows that when qwt(θ) = p(θ,x) for all θ, the method stops. On the
other hand, if the scores do not match, then the mean is updated proportionally to the difference
between the scores, and the covariance is updated by a rank-two correction. Figure 1b illustrates the
vector field of updates for a one dimensional target p(θ,x) = N (0, 1). The vector field points to the
solution (green star), which is also the only fixed point of the updates.
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(a) Two iterations of GSM-VI. The log density of the
target posterior p is shaded blue; the initial distribution
qw0 is light grey; the first update qw1 is medium grey;
and the second update qw2 is dark grey.

(b) The vector field of Eq. 4, averaged over 5
independent samples, where p(θ |x) = N (0, 1).
The solution (µ, σ) = (0, 1) is the green star.

We now formalize this result and give the complete expression for the matrix At that appears in the
update for the mean of the variational approximation in Eq. 5.

Theorem 2.2. (GSM-VI updates) Let p(θ,x) be given for some θ ∈ Rd, and let qwt(θ) and
qw(θ) be multivariate normal distributions with means µt and µ and covariance matrices Σt and
Σ, respectively. As shorthand, let gt := ∇θ log p(θt,x) and let

µt+1,Σt+1 = argmin
µ,Σ⪰0

[
KL(qt, q)

]
such that ∇θ log q(θt) = ∇θ log p(θt,x). (7)

The solution to eq. (7) is given by Eqs. 5 and 6 where

At :=
1

1 + ρ

[
I− (µt − θt)g

⊤
t

1 + ρ+ (µt − θt)⊤gt

]
Σt , (8)

and ρ is the positive root of the quadratic equation

ρ(1+ρ) = g⊤
t Σtgt +

[
(µt−θt)⊤gt

]2
. (9)

With the definition of At in Eq. 8 we can see that the computational complexity of updating µ and Σ
via Eqs. 5 and 6 isO(d2), where θ ∈ Rd and we assume the cost of computing the gradients isO(d).
Note this is the best possible iteration complexity we can hope for, since we store and maintain the
full covariance matrix of d2 elements. (The proof is in the appendix.)

Algorithm 1 presents the full GSM-VI algorithm. Here we also use mini-batching, where we average
over B ∈ N independently sampled updates of Eqs. 5 and 6 before updating the mean and covariance.

3 Empirical Studies

We evaluate how well GSM-VI can approximate a variety of target posterior distributions. Recall
that GSM-VI uses a multivariate Gaussian distribution as its variational family. We investigate two
separate cases—one when the target posterior is in this family, and the other when it is not.

Algorithmic details and comparisons. We compare GSM-VI with a reparameterization variant of
BBVI as the baseline, similar to [21]. BBVI uses the same multivariate Gaussian variational family,
which we fit by maximizing the ELBO. (Maximizing the ELBO is equivalent to minimizing KL).
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Algorithm 1: Gaussian Score Matching VI
Input :Initial mean estimate µ0, initial covariance estimate Σ0, target distribution p(θ|x),

number of iterations N ∈ N, batch size B ∈ N.
Output :Multivariate normal variational distribution qw(θ) := N (µ,Σ)
for i = 0, . . . , N − 1 ▷ iteration loop
do

for j = 0, . . . , B − 1 ▷ batch loop
do

Sample θ(j) ∼ N (µi,Σi)
g ← ∇θ log p(θ

(j)|x)
ε ← Σig − µi + θ

Solve ρ(1+ρ) = g⊤Σig +
[
(µi−θ)⊤g

]2
for ρ > 0

δµ(j) ← 1
1+ρ

[
I− (µi−θ)g⊤

1+ρ+(µi−θ)⊤g

]
ε

µ
(j)
i ← µi + δµ(j)

δΣ(j) ← (µi − θ)(µi − θ)⊤ − (µ
(j)
i − θ)(µ

(j)
i − θ)⊤

end
Update µi+1 ← µi +

∑
j δµ

(j)/B

Update Σi+1 ← Σi +
∑

j δΣ
(j)/B

end
qw(θ)← N (µN ,ΣN )

Algorithm 2: Black-box variational inference
Input :Initial mean estimate µ0, Initial covariance estimate Σ0, target distribution p(θ|x),

number of iterations N, batch size B, learning rate ϵ
Output :Multivariate normal variational distribution qw(θ) := N (µ,Σ)
qw ← N (µ0,Σ0) ;
for i = 0, . . . , N − 1 ▷ iteration loop
do
{θ(0),θ(1), ...,θ(B)} ∼ qw(θ) ▷ Sample a batch of B points;
ELBO =

∑
j log(p(θ(j),x)− log qw(θ(j)) ;

w ← w − ϵ∇wELBO ▷ Optimization step, we use ADAM;
end

We use the ADAM optimizer [19] with default settings but vary the learning rate between 10−1 and
10−3. We report results only for the best performing setting. The full BBVI algorithm is shown in
Algorithm 2.

The only free parameter in GSM-VI is the batch size B. We find that for Gaussian targets, GSM
performs equally well for all B ≥ 1. There are marginal gains for larger batches for high dimensional
targets, but B = 2 is a good conservative default. For non-Gaussian targets, we find that all batch
sizes converge to the same solution, but we also note that larger batch sizes help to dampen the
oscillations in KL divergence around the optimal solution. Notwithstanding these effects, it is not
generally necessary to fine-tune this hyperparameter. In all studies of this section we report results
for B = 2 and show that it is a good default baseline. We use the same batch size for BBVI.

Both GSM-VI and BBVI require an initial distribution for the variational approximation. Unless
specified otherwise, we initialize the variational approximation as a Gaussian distribution with zero
mean and identity covariance matrix.

Evaluation metric. GSM-VI does not explicitly minimize any loss function. Hence to compare
its performance against BBVI, we estimate empirical divergences between the variational and
the target distribution and show their evolution with the number of gradient evaluations. We
measure performance in terms of gradient evaluations as the actual running time can be sensitive
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(a) Evolution of forward KL divergence, KL(p||q).

(b) Evolution of reverse KL divergence, KL(q||p).

Figure 2: Scaling with dimensionality: evolution of forward (a) and reverse KL (b) with the number
of gradient evaluations of the target distribution, which here is a Gaussian distribution with a dense
D×D covariance matrix. Each panel shows the results for a different dimensionality D (indicated in
the title). Translucent lines show the scatter of 10 different runs, and the solid line shows the average.
GSM-VI and BBVI use batch sizes of B = 2, while the batch sizes for natural gradient descent are
shown in the legend.

to implementation details; moreover, we note that in real-world problems, the computation is often
bottlenecked by evaluations of the target log density and its gradient. For completeness, we also
measure running times of GSM-VI and BBVI for a full rank Gaussian target with 2048 dimensions
using sample size of 1 in Jax after JIT-compilation. The GSM update takes 230 ms/update while
BBVI takes 227 ms/update.

In the experiments with synthetic models in Sections 3.1, and 3.2 we have access to the true
distribution; hence for these experiments, we estimate the forward KL divergence (FKL) empirically
by
∑

θi∼p(θ) log p(θi)− log q(θi). To reduce stochasticity, we always use the same pre-generated
set of 1000 samples from the target distribution. In the experiments with real-world models in
Section 3.3, we do not have access to the samples from the target distribution; for these experiments
we monitor the negative ELBO. In all experiments, we show the results for 10 independent runs.

3.1 GSM-VI for Gaussian approximation

We begin by studying GSM-VI where the target distribution is also a multivariate Gaussian.

Scaling with dimensions. How does GSM-VI scale with respect to the dimensionality, D, of
the latent variable? Figure 2 shows the convergence of FKL for GSM-VI and BBVI for different
dimensionalities. Empirically, for GSM-VI, we find that the number of iterations required for
convergence increases almost linearly with dimensionality. The scaling for BBVI is worse: even for
small problems (D < 64) it requires 100 times more iterations while also converging to a sub-optimal
solution (as measured by the FKL metric). The figure also shows the evolution of the reverse KL
divergence, and it is noteworthy that GSM-VI also outperforms BBVI in this metric.

For completeness, we also experimented on these problems3 with methods for variational inference
based on natural gradient descent (NGD-VI) [2, 22]. Natural gradient descent is a stochastic gradient
method that uses the Fisher matrix as a preconditioner. We find NGD-VI is slower by factor of

3Specifically, we use the package GMMVI with default settings except changing the batch size.
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Figure 3: Impact of condition number: evolution of FKL with the number of gradient evaluations of
the target distribution. The target is a 10-dimensional Gaussian albeit with a dense covariance matrix
of different condition numbers c specified in the title of different panels. Translucent lines show the
scatter of 10 different runs and the solid line shows the average.
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Figure 4: Impact of non-Gaussianity: evolution of FKL with the number of gradient evaluations for
Sinh-arcsinh distributions with 10-dimensional dense Gaussian as the base distribution. Gaussian
distribution has s = 0, t = 1. In the left panel, we vary skewness s while fixing t = 1, and in the
right panel we vary the tail-weight t with skewness fixed to s = 0. Solid lines are the results for
GSM, dashed for BBVI.

5-10x than GSM-VI. While NGD-VI outperforms BBVI, its performance is sensitive to the choice of
batch size, with small batch sizes prone to divergence. Furthermore, we note that that per-iteration-
complexity of NGD-VI is cubic in the dimensionality (D3) as each iteration requires inverting a
Hessian approximation; this is in contrast to the quadratic (D2) per-iteration-complexities of GSM-VI
and BBVI. For these reasons, we do not investigate NGD-VI further in this paper.

Impact of condition number. What is the impact of the shape of the target distribution? We again
consider a Gaussian target distribution, but vary the condition number of its covariance matrix by
fixing its smallest eigenvalue to 0.1 and scaling the largest eigenvalue to 0.1 × c. Figure 3 shows
the results for a 10 dimensional Gaussian where we vary the condition number c from 1 to 1000.
Convergence of GSM-VI seems to be largely insensitive to the condition number of the covariance
matrix. BBVI on the other hand struggles with poorly conditioned problems, and it does not converge
for c > 100 even with 100 times more iterations than GSM.

3.2 GSM-VI for non-Gaussian target distributions

GSM-VI was designed to solve the exact score-matching equations in Eq. 3, but these equations
only have a solution when the family of variational distributions contains the target distribution
(see Lemma 2.1). Here we investigate the sensitivity of GSM-VI to this assumption by fitting non-
Gaussian target distributions with varying degrees on non-Gaussianity. Specifically, we suppose that
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the target has a multivariate Sinh-arcsinh normal distribution [17]

z ∼ N (µ,Σ); x = sinh

(
1

t

[
sinh−1(z) + s

])
(10)

where the scalar parameters s and t control, respectively, the skewness and the heaviness of the tails.
Note that Eq. 10 reduces as a special case to a Gaussian distribution for the choices s = 0 and t = 1
of these parameters.

Figure 4 shows the result for fitting the variational Gaussian to a 10-dimensional Sinh-arcsinh normal
distribution for different values of s and t. As the target departs further from Gaussianity, the quality
of variational fit worsens for both GSM-VI (solid lines) and BBVI (dashed lines), but they converge to
a fit of similar quality in terms of average FKL. GSM converges to this solution at least 10 times faster
than BBVI. For highly non-Gaussian targets (s ≥ 1 or |t− 1| ≥ 0.8), we have found that GSM-VI
does not converge to a fixed point, and it can experience oscillations that are larger in amplitude than
BBVI; see for instance s = 1.8 and t = 0.1 on the left and right of Figure 4, respectively.

3.3 GSM-VI on real-world data

We evaluate GSM-VI for approximate on real-world data with 8 models from the posteriordb
database [24]. The database provides the Stan code, data and reference posterior samples, and
we use bridgestan to access the gradients of these models [6, 30]. We study the following
statistical models, each with a different complexity and dimensionality (D) : diamonds (generalized
linear models, D=26), hudson-lynx-hare (differential equation dynamics, D=8), bball-drive
(hidden Markov models, D=8) and arK (time-series, D=7), eight-schools-centered and
non-centered (hierarchical meta-analysis, D=10), gp-pois-regr (Gaussian processes, D=13),
low-dim-gauss-mix (Gaussian mixture, D=5).

For each model (except hudson-lynx-hare), we initialize the variational parameter µ0 at the
mode of the distribution, and we set Σ0 = 0.1 Id where Id is the identity matrix of dimension d.
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For hudson-lynx-hare, we initialize the variational distribution as standard normal. We also
experimented with other initializations. We find that they do not qualitatively change the conclusions,
but can have larger variance between different runs.

We show the evolution of the ELBO for 10 runs of these models. Four of the models have pos-
teriors that can be fit with multivariate normal distribution: diamonds, hudson-lynx-hare,
bball-drive, and arK. Figure 5 shows the result for these models. The other models
have non-Gaussian posteriors: eight-schools-centered, eight-schools-non-centered,
gp-pois-regr,, and low-dim-gauss-mix. Figure 6 shows the results.

Overall, GSM-VI outperforms BBVI by a factor of 10-100x. When the target posterior is Gaussian,
GSM-VI leads to more stable solutions. When the target is non-Gaussian, it converges to the same
quality of variational approximation as BBVI. Finally, we note that while GSM-VI yields noisy
estimates of the ELBO, it does yield stable estimates of the 1-D marginals and their moments.

4 Conclusion and Future Work

In this paper we have proposed Gaussian score matching VI (GSM-VI), a new approach for VI
when the variational family is multivariate Gaussian. GSM-VI does not explicitly minimize a
divergence between the variational and target distribution; instead, it repeatedly enforces score-
matching constraints with closed-form updates for the mean and covariance matrix of the variational
distribution. This is in contrast to stochastic gradient based methods, such as in BBVI, that rely on
first-order Taylor approximations of their objective function.

GSM-VI is implemented in an open-source Python code at https://github.com/modichirag/GSM-VI.

Unlike approaches that are rooted in stochastic gradient descent, GSM-VI does not require the tuning
of step-size hyper-parameters. Rather, it is able to adaptively make large jumps in the initial iterations
(see Fig. 1a) and make smaller adjustments as the approximation converges to the target. GSM-VI
has only one free parameter, the batch size, and we found a batch-size of 2 to perform competitively
across all experiments. Another choice is how to initialize the variational distribution. For the
experiments in this paper, we initialized the covariance matrix as the identity matrix, but additional
gains could potentially be made with more informed choices derived from a Laplace approximation
or L-BFGS Hessian approximation [35].

We evaluated the performance of GSM-VI on synthetic targets and real-world models from
posteriordb. In general, we found that it requires 10-100x fewer gradient evaluations than BBVI
for the target distribution to converge. When the target distribution is itself multivariate Gaussian, we
observed that GSM-VI scales nearly linearly with dimensionality, which is significantly better than
BBVI, and that GSM-VI is fairly insensitive to the condition number of the target covariance matrix.
We also found that GSM-VI converges more quickly than BBVI—and also to a solution with a larger
ELBO, which is surprising given that BBVI explicitly maximizes the ELBO.

An important avenue for future work is to provide a proof that GSM-VI converges. We note that
good convergence results have been obtained for analogous methods that project onto interpolation
equations for empirical risk minimization. For instance the Stochastic Polyak Step achieves the
min-max optimal rates of convergence for SGD [23]. Note that convergence of VI is a generally
challenging problem, with no known rates of convergence even for BBVI [10, 11]. This and others
directions are left to future work.
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A Proof of Lemma 2.1
Lemma 2.1. Let Θ ⊂ Rd be a set that contains the support of p(θ, x) and qw∗(θ) for some w∗.
That is p(θ, x) = qw∗(θ) = 0 for every θ ̸∈ Θ. Furthermore, suppose that the support of p(θ, x)
and qw∗(θ), and Θ is path-connected. The parameter w∗ satisfies

∇θ log qw∗(θ) = ∇θ log p(θ, x), ∀θ ∈ Θ, (3)

if and only if w∗ also satisfies Eq. 1.

Proof. (1) =⇒ (3): Differentiating both sides of (1) in θ gives

∇θ log qw∗(θ) = ∇θ log p(θ|x) = ∇θ (log p(θ,x)− log p(x))

= ∇θ log p(θ, x), ∀θ ∈ Θ.

(3) =⇒ (1): Let θ0 be any arbitrary point in Θ. Because Θ is path-connected, every θ ∈ Θ is
connected to θ0 via a differentiable path r(t) where r(0) = θ0 and r(1) = θ. Integrating both
sides of (3) along this path r(t), using again that ∇θ log p(θ|x) = ∇θ log p(θ,x), and using the
Fundamental Theorem of Calculus gives

log qw∗(θ)− log qw∗(θ0) =

∫ 1

0

⟨∇θ log qw∗(r(t)), r′(t)⟩ dt

=

∫ 1

0

⟨∇θ log p((r(t))|x), r′(t)⟩ dt

= log p(θ|x)− log p(θ0|x), ∀θ ∈ Θ.

Rearranging and defining C := log qw∗(θ0)− log p(θ0|x) gives

log qw∗(θ) = log p(θ|x) + C, ∀θ ∈ Θ,
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By exponentiating both sides and integrating in θ over Θ we have that

1 =

∫
θ∈Θ

qw∗(θ)dθ = eC
∫
θ∈Θ

p(θ|x)dθ = eC ,

where we used that Θ contains the support of both p(θ|x) and qw∗(θ). Consequently C = 0, which
gives our result.

B Proof of Theorem 2.2

Here we give the proof for Theorem 2.2. We also re-introduce the theorem with a simplified notation,
where we use (µ0,Σ0) to denote the mean and covariance at the previous time step of the method,
thus dropping the iteration counter t.

Theorem B.1. (GSM updates) Let p(θ,x) be given for some θ ∈ Rd, and let q0(θ) and q(θ) be
the multivariate normal distributions, respectively, with means µ0 and µ and covariance matrices
Σ0 and Σ. We seek the distribution

arg min
µ,Σ=Σ⊤

[
KL(q0, q)

]
such that ∇θ log q(θ) = ∇θ log p(θ,x). (11)

As shorthand, let g := ∇θ log p(θ,x), and let ρ be the positive root of the quadratic equation

ρ(1+ρ) = g⊤Σ0g +
[
(µ0−θ)⊤g

]2
. (12)

Then the solution is given by the following closed-form updates:

µ = µ0 +
1

1 + ρ

[
I− (µ0 − θ)g⊤

1 + ρ+ (µ0 − θ)⊤g

]
Σ0 (g −∇θ log q0(θ)) , (13)

Σ = Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤. (14)

Furthermore, if Σ0 is symmetric positive definite then so is Σ.

Proof. The constraint in this optimization is given by

g = ∇θ log q(θ) (15)

= ∇θ

[
− 1

2 (θ − µ)Σ−1(θ − µ)− 1
2 log

(
(2π)d|Σ|

)]
(16)

= −Σ−1(θ − µ). (17)

The KL divergence is given by

KL(q0, q) =
1

2

{
tr[Σ−1Σ0] + log

|Σ|
|Σ0|

+ (µ− µ0)
⊤Σ−1(µ− µ0)− d

}
. (18)

Dropping irrelevant terms from the optimization, we obtain the Lagrangian

L(µ,Σ,λ) =
1

2

{
tr[Σ−1Σ0]− log |Σ−1|+ (µ− µ0)

⊤Σ−1(µ− µ0)
}
+λ⊤(g−Σ−1(µ−θ)

)
.

(19)
It is easier to optimize the matrix Σ−1 instead of Σ. We can enforce the symmetry of Σ−1 by writing

Σ−1 = 1
2

(
Φ+Φ⊤) (20)

and performing an unconstrained optimization over Φ. With respect to the latter, the gradients of the
Lagrangian are given by

∂L
∂Φij

=
∑
kl

(
∂L

∂Σ−1
kl

)(
∂Σ−1

kl

∂Φij

)
=
∑
kl

(
∂L

∂Σ−1
kl

)(
1

2
δkiδlj +

1

2
δkjδli

)
=

1

2

(
∂L

∂Σ−1
ij

+
∂L

∂Σ−1
ji

)
.

(21)
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Next we examine where the gradients of the Lagrangian vanish:

0 =
∂L
∂µ

=⇒ 0 = Σ−1(µ− µ0) − Σ−1λ =⇒ λ = µ− µ0 (22)

0 =
∂L
∂λ

=⇒ 0 = g −Σ−1(µ− θ) =⇒ µ− θ = Σg (23)

0 =
∂L
∂Φ

=⇒ 0 = Σ0 −Σ+ (µ− µ0)(µ− µ0)
⊤ −

[
λ(µ− θ)⊤ + (µ− θ)λ⊤] , (24)

=⇒ Σ = Σ0 + (µ− µ0)(µ− µ0)
⊤ − λ(µ− θ)⊤ − (µ− θ)λ⊤ (25)

We claim that these equations (though nonlinear) can be solved in closed form. The first step is to
eliminate λ from eq. (25) using eq. (22). In this way we find

Σ = Σ0 + (µ− µ0)(µ− µ0)
⊤ − (µ− µ0)(µ− θ)⊤ − (µ− θ)(µ− µ0)

⊤ (26)

= Σ0 − µµ⊤ + µθ⊤ + θµ⊤ + µ0µ
⊤
0 − µ0θ

⊤ − θµ⊤
0 (27)

= Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤. (28)

It is worth highlighting the form of this equation:

Σ = Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤

This is a simple rank-two update for Σ. Note that Σ = Σ0 if µ = µ0; also, the solution for Σ is
determined by the solution for µ.

Ultimately we must solve for µ, but first it is useful to solve for the intermediate quantity g⊤Σg > 0.
From eq. (28), we obtain

g⊤Σg = g⊤Σ0g +
[
(µ0 − θ)⊤g

]2 − [(µ− θ)⊤g
]2
, (29)

and from eq. (23), we obtain

g⊤Σg = g⊤Σ0g +
[
(µ0 − θ)⊤g

]2 − (g⊤Σg
)2

. (30)

As shorthand, let ρ = g⊤Σg. Then from eq. (30) we see that ρ satisfies the quadratic equation

ρ(1+ρ) = g⊤Σ0g +
[
(µ0−θ)⊤g

]2
.

Note that there are no unknowns on the right side of this equation. The correct solution is given by
the positive root since ρ = g⊤Σg > 0. Also note that ρ = (µ− θ)⊤g from eq. (23).

It is useful to define one final intermediate quantity before solving for µ. Let

ε0 = Σ0g − µ0 + θ.

Note that ε0 simply measures the degree to which the parameters of q0(θ) violate the desired
constraint ∇w log q(θ) = ∇w log p(θ,y). Put another way, if ε0 = 0, then we have the trivial
solution µ = µ0 and Σ = Σ0.

Now we have everything to express the solution for µ in a highly intuitive form; in particular, it will
be immediately evident that µ→ µ0 as ε0 → 0. Starting from eqs. (23) and (28), we find

µ− µ0 = θ − µ0 +Σg, (31)
= θ − µ0 +

[
Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤

]
g, (32)

= ε0 + (µ0 − θ)(µ0 − θ)⊤g − (µ− θ)(µ− θ)⊤g, (33)

= ε0 + (µ0 − θ)(µ0 − θ)⊤g − (µ− µ0 + µ0 − θ)(µ− θ)⊤g, (34)

= ε0 − ρ(µ− µ0) + (µ0 − θ)[(µ0 − θ)− (µ− θ)⊤]g, (35)

= ε0 − ρ(µ− µ0) + (µ0 − θ)(µ0 − µ)⊤g, (36)

= ε0 − (ρI+ (µ0 − θ)g⊤)(µ0 − µ). (37)

14



Note what has happened here: eq. (32) is a system of nonlinear equations for µ, but in eq. (37), all
the nonlinearity has been expressed in terms of ρ. Since ρ can be determined via eq. (30), we arrive
effectively at a system of linear equations for µ. Collecting terms, we obtain[

(1 + ρ)I+ (µ0 − θ)g⊤] (µ− µ0) = ε0. (38)

We thus arrive at the closed-form update

µ = µ0 +
[
(1 + ρ)I+ (µ0 − θ)g⊤]−1

ε0 (39)

It is evident from this update that µ→ µ0 as ε0 → 0. The matrix inverse in this update can also be
computed efficiently from the Woodbury matrix identity.

In sum, the joint update for µ and Σ can be efficiently computed as follows:
1. Set g = ∇w log p(θ,y) and ε0 = Σ0g − µ0 + θ.
2. Solve ρ(1+ρ) = g⊤Σ0g +

[
(µ0−θ)⊤g

]2
for ρ > 0.

3. Compute µ = µ0 +
[
(1 + ρ)I+ (µ0 − θ)g⊤]−1

ε0.
4. Compute Σ = Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤.

Note that it straightforward to solve for the value of ρ in step 2 of this procedure. In particular, from
the quadratic formula, we obtain the positive root

ρ =

√
1 + 4(g⊤Σ0g +

[
(µ0−θ)⊤g

]2
)− 1

2
.

We can solve the linear equation for µ in step 3 of this procedure most efficiently by using the
Sherman-Morrison formula[

aI+ ug⊤]−1
=

1

a

(
I− ug⊤

a+ u⊤g

)
, for every u, g, a.

Applying this formula in step 3, we find that

µ = µ0 +
1

1 + ρ

[
I− (µ0 − θ)g⊤

1 + ρ+ (µ0 − θ)⊤g

]
ε0. (40)

Next we relate this update to the difference in the scores of the target distribution and the current
estimate of the variational approximation. Since∇θ log q0(θ) = −Σ−1

0 (θ − µ0), we have that

ε0 = Σ0

(
g −Σ−1

0 (µ0 + θ)
)
= Σ0 (g −∇θ log q0(θ)) .

It follows, by substituting the above expression into Eq. 40, that

µ = µ0 +
1

1 + ρ

[
I− (µ0 − θ)g⊤

1 + ρ+ (µ0 − θ)⊤g

]
Σ0 (∇θ log p(x,θ)−∇θ log q0(θ)) ,

which gives the update in the statement of the theorem.

Finally we prove that if Σ0 is positive definite, then so is Σ. To do so, we show explicitly that all of
the eigenvalues of Σ are positive. We begin by rewriting our results for Σ in eq. (28) and ρ in eq. (30)
in a more convenient form. As shorthand, let

M0 = Σ0 + (µ0 − θ)(µ0 − θ)⊤, (41)

so that M0 captures the first two terms on the right side of eq. (28). Note that M0 is positive-definite,
a fact that we will exploit repeatedly in what follows. In addition, recall that µ − θ = Σg from
eq. (23). Thus with this notation we can rewrite eqs. (28) and (30) as

Σ = M0 − (Σg)(Σg)⊤, (42)

ρ(1 + ρ) = g⊤M0g. (43)

15



Now let e be any normalized eigenvector of Σ; we want to show that its corresponding eigenvalue λe

is positive. From eq. (42), it follows that

λe = e⊤Σe (44)
= e⊤

[
M0 − (Σg)(Σg)⊤

]
e (45)

= e⊤M0e− λ2
e(e

⊤g)2. (46)

Note that if e⊤g = 0, then it follows trivially that λe = e⊤M0e > 0. So we only need to consider
the non-trivial case e⊤g ̸= 0. To proceed, we note that

(e⊤M0g)
2 = (e⊤M

1
2
0 M

1
2
0 g)

2 ≤ (e⊤M0e)(g
⊤M0g), (47)

where we have used the Cauchy-Schwartz inequality to bound (e⊤Mog) in terms of (e⊤M0e), the
latter of which appears in eq. (46). Substituting this inequality into eq. (46), we find that

λe ≥
(e⊤M0g)

2

g⊤M0g
− λ2

e(e
⊤g)2. (48)

To prove that λe > 0 we need one more intermediate result. Focusing on the rightmost term in this
equality, we note that

λe(e
⊤g) = e⊤Σg = e⊤

[
M0 − (Σg)(Σg)⊤

]
g = e⊤M0g − λe(e

⊤g)(g⊤Σg), (49)

and rearranging the terms in this equation, we find

e⊤M0g = λe(e
⊤g)(1 + g⊤Σg). (50)

This intermediate result is useful because it relates the two terms on the right side of eq. (48). In
particular, using eq. (50) to eliminate the term e⊤M0g in eq. (48), we find:

λe ≥
[
λe(e

⊤g)(1 + g⊤Σg)
]2

g⊤M0g
− λ2

e(e
⊤g)2

= λ2
e(e

⊤g)2
[
(1 + g⊤Σg)2

g⊤M0g
− 1

]

= λ2
e(e

⊤g)2
[
(1 + ρ)2

ρ(1 + ρ)
− 1

]

=
λ2
e(e

⊤g)2

ρ
,

> 0,

where the final inequality follows because the individual terms λ2
e, (e⊤g)2, and ρ are all strictly

positive; note that λe cannot be equal to zero because this contradicts the equality in eq. (46). This
completes the proof. Perhaps it is useful that this derivation also gives upper bounds on λe, namely

1

λe
≥ (e⊤g)2

ρ
=⇒ λe ≤

ρ

(e⊤g)2
=

g⊤Σg

(e⊤g)2
. (51)
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