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In this supplementary material, Section 1 first presents the additional experimental analysis of our HQ-
SAM, including more zero-shot transfer comparisons to SAM on both image and video benchmarks.
Then, in Section 2, we describe more details of our method implementation, including the training
and inference. In Section 3, we provide further details of our constructed HQSeg-44K dataset for
training HQ-SAM. In Section 4, we show extensive visual results comparison between our HQ-SAM
and SAM on COCO [9], DIS-test [11], HR-SOD [16], NDD20 [13], DAVIS [10], and YTVIS [15].

1 Supplementary experiments

SAM vs. HQ-SAM on Various Backbones In Table 1, we provide a comprehensive comparison
between HQ-SAM and SAM using various backbones, including ViT-B, ViT-L, ViT-H and TinyViT.
The comparison not only includes the numerical results on the four HQ datasets and COCO validation
set, but also contains the model sizes/speed/memory. HQ-SAM consistently outperforms SAM using
three different backbones, with over 10 points increase in mBIoU on the four HQ datasets. Notably,
the ViT-B based HQ-SAM significantly improves the APB on COCO from 28.2 to 31.3 and AP
from 44.4 to 46.7, with only a 1.1% increase in model parameters and negligible extra memory
consumption.

Table 1: SAM vs. HQ-SAM on various ViT backbones. For the COCO dataset, we use a SOTA
detector FocalNet-DINO [17] trained on the COCO dataset as our box prompt generator.

Model Four HQ datasets COCO Model Params (MB) FPS MemorymIoU mBIoU APB AP APL APM APS Total Learnable

SAM-B 70.6 62.3 28.2 44.4 57.7 48.7 32.1 358 358 10.1 5.1G
HQ-SAM-B 86.3 78.1 31.3 46.7 62.9 50.5 32.0 362.1 4.1 9.8 5.1G

SAM-L 79.5 71.1 33.3 48.5 63.9 53.1 34.1 1191 1191 5.0 7.6G
HQ-SAM-L 89.1 81.8 34.4 49.5 66.2 53.8 33.9 1196.1 5.1 4.8 7.6G

SAM-H 75.6 68.3 34.0 48.9 64.5 53.3 34.4 2446 2446 3.5 10.3G
HQ-SAM-H 89.3 81.5 34.9 49.9 66.5 54.0 34.2 2452.1 6.1 3.4 10.3G

MobileSAM 69.0 58.8 28.6 44.3 - - - 38.6 38.6 44.8 3.7G
Light HQ-SAM 81.4 71.6 29.6 45.0 - - - 40.3 1.7 41.2 3.7G

Table 2: Results on YouTubeVIS 2019 validation set and HQ-YTVIS test set using ViT-L based SAM.
We adopt the SOTA detector Mask2Former [1] trained on the YouTubeVIS 2019 dataset as our video
boxes prompt generator while reusing its object association prediction.

Model YTVIS 2019 HQ-YTVIS
AP AP50 AP75 APL APM APS APB APM

SAM 51.8 82.1 55.4 65.5 52.0 34.2 30.2 60.7
HQ-SAM 53.2 82.9 58.3 66.4 53.3 33.7 34.0 63.6

Zero-shot Video Instance Segmentation Comparison Extending from Table 8 of the paper
(evaluation on the HQ-YTVIS benchmark [4]), we further perform a comparative analysis of zero-
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shot video instance segmentation results on the popular YTVIS 2019 [15] validation set. We take the
pre-trained Mask2Former [1] as our video box prompts and feed them into SAM and our HQ-SAM
for mask prediction. In Table 2, HQ-SAM achieves consistent gains of 1.4 points in Tube Mask AP,
increasing SAM’s performance from 51.8 to 53.2. Interestingly, we find the AP75 improvement with
a higher IoU threshold for HQ-SAM is much larger than AP50, further validating the advantages of
HQ-SAM in high-quality mask prediction.

Zero-shot Video Object Segmentation Comparison Besides video instance segmentation, in
Table 3, we further report the comparison of video object segmentation results between HQ-SAM
and SAM on DAVIS validation set in a zero-shot transfer protocol. We take the pre-trained XMem
as our video box prompts and feed the same prompts into SAM and HQ-SAM. HQ-SAM improves
SAM the J&F from 82.0 to 83.2 and the F score from 84.9 to 86.1, where F is for measuring the
contour accuracy of the video objects.

Table 3: Results on DAVIS 2017 [10] validation set using ViT-L based SAM. We adopt the SOTA
model XMem [2] as our video boxes prompt generator while reusing its object association prediction.

Model J&F J F
SAM 82.0 79.0 84.9
HQ-SAM 83.2 80.3 86.1

Robustness to Input Box Prompts In Table 4, we compare HQ-SAM to SAM by adding various
scales of noises to the input ground truth box prompts. In practice, we cannot expect the input box
prompts provided by humans in interactive modes to be identical to the ground truth (GT) boxes or
extremely accurate. We follow the data augmentation code in DN-DETR [6] to add different noise
scales and identify that our HQ-SAM is much more robust compared to SAM, where the relative
mBIoU advantage improves from 10.7 to 20.5 when gradually increasing the noise scales. Note that
our method is not trained with noised boxes. We also visualize such noised input case in Figure 4,
where SAM is more sensitive to small box location shifts that easily happened during interactive
annotation.

Table 4: Comparison of segmentation accuracy on the four HQ datasets by adding various noise
levels to the GT box prompts input.

Model No Noise Noise scale 0.2 Noise scale 0.4
mIoU mBIoU mIoU mBIoU mIoU mBIoU

SAM 79.5 71.1 65.7 57.1 46.4 39.8
HQ-SAM 89.1 81.8↑10.7 82.8 73.4↑16.3 69.9 60.3↑20.5

2 Additional Implementation details

Training Details During training HQ-SAM on the composed HQSeg-44K, we fix the model
parameters of the pre-trained SAM model while only making the proposed HQ-SAM learnable,
including HQ-Output Token, its associated three-layer MLP and three convolutions for HQ-Features
fusion. Two of them are transposed convolutions (size 2×2, stride 2) used to upscale encoder
embedding size from 64×64 to 256×256. We treat the new HQ-Output Token as the fifth mask
token compared to the original four mask tokens in SAM’s mask decoder. During training, this new
HQ-Output token of size 1×256 is concatenated with SAM’s mask tokens (size of 4×256), iou token
(size of 1×256) and prompt tokens (size of Nprompt×256) as the input to the SAM’s mask decoder.
For example, if the input image contains N box prompts (size N×2×256), the final concatenated
input and output shape for the 2-layer mask decoder of SAM is N×(1+4+1+2)×256. For experiments
using ViT-B, ViT-L, and ViT-H-based models on training, we adopt the same training setting, with
a learning rate of 1e-3 and train our HQ-SAM for 12 epochs (learning rate drops to 1e-4 after 10
epochs). We supervise mask prediction of the new HQ-Output token with a combination of both BCE
Loss and Dice Loss.

Implementation Details We follow the same inference pipeline of SAM but use the mask prediction
from HQ-Output token as high-quality mask prediction. Table 1 reports the detailed inference speed
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comparison using various backbones. For box-prompting-based evaluation, we feed SAM and our
HQ-SAM with the same image/video bounding boxes and adopt the single mask output mode of
SAM. For interactive segmentation comparison using a single point, we follow SAM and adopt the
“center” point of Ground Truth (GT) masks, which is at a maximal value location in a mask’s interior
distance transform. For multiple-point evaluation, we randomly sample the points from the GT masks
and report the averaged results with three trials.

3 More Details of HQSeg-44K

Data compostion of HQSeg-44K In Table 5, we provide more details of our composed new training
dataset HQSeg-44K which contains 44,320 extremely accurate image mask annotations, where we
show their annotation quality in Figure 1. HQSeg-44K is a collection of six existing image datasets
including DIS [11] (train set), ThinObject-5K [8] (train set), FSS [7], ECSSD [12], MSRA-10K [3],
DUT-OMRON [14] with extremely fine-grained mask labeling, where each of them contains 7.4K
mask labels on average. This composed training set has no images/annotations overlapping with the
zero-shot evaluation datasets adopted in our paper.

Effect of HQSeg-44K In Table 6, we show the advantage of using HQSeg-44K by comparing
HQ-SAM training with 44K randomly sampled images and masks from SA-1B [5]. Using the
same efficient token learning strategy, training with SA-1B (44K) decreases the averaged mBIoU
on the four datasets from 71.1 to 70.1, while ours improves it from 71.1 to 81.8. This validates
the effectiveness of our constructed HQSeg-44K benchmark in improving mask quality. Note that
the ablation experiments in Table 2, Table 3, Table 4 and Table 9 of the paper are all based on the
constructed HQSeg-44K.

Table 5: Data composition of our constructed HQ-Seg-44K.

Dataset DIS [11] Thin-Object 5k [8] FSS [7] DUTS [14] ECSSD [12] MSRA-10K [3] Total

Image Num. 3000 4748 10000 15572 1000 10000 44320

Table 6: Comparison of the training dataset. For the COCO dataset using ViT-L-based SAM, we use
a SOTA detector FocalNet-DINO [17] trained on the COCO dataset as our box prompt generator.

Model Dataset DIS COIFT HRSOD ThinObject Average
mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU

SAM SA-1B 62.0 52.8 92.1 86.5 90.2 83.1 73.6 61.8 79.5 71.1
HQ-SAM + SA-1B-44K 60.4 51.7 91.1 86.1 88.4 80.9 73.1 61.8 78.3 70.1
HQ-SAM + HQ-Seg-44K (Ours) 78.6 70.4 94.8 90.1 93.6 86.9 89.5 79.9 89.1 81.8

Zero-shot results on DIS and ThinObject-5K We also report zero-shot results in Table 7 on DIS
and ThinObject-5K by removing the training splits of either or both datasets from the training of
HQ-SAM. The improvement of HQ-SAM over SAM is still substantial on DIS or ThinObject (over
10.0 points on DIS-mIoU and 9.0 points on ThinObject-mIoU), even when the corresponding training
splits are removed from training.

Table 7: Zero-shot results on DIS and ThinObject-5K by removing the training splits of either or both
datasets from the training of HQ-SAM. Results not obtained in a zero-shot manner (i.e. the training
split was used), are shown in parenthesis to easily compare zero-shot results.

Training Setting DIS-mIoU DIS-mBIoU ThinObject-mIoU ThinObject-mBIoU

SAM (baseline) 62.0 52.8 73.6 61.8

HQ-SAM (remove both DIS and ThinObject) 72.9 63.1 82.7 70.7
HQ-SAM (remove DIS) 74.7 66.2 (90.1) (80.4)
HQ-SAM (remove ThinObject) (78.4) (70.3) 83.3 72.1
HQ-SAM (default HQSeg-44K) (78.6) (70.4) (89.5) (79.9)
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Figure 1: Visualization of annotated mask quality for randomly selected cases from the six dataset
components of the HQ-Seg-44K. Zoom in for better viewing the fine-grained mask details.

4 More Visual Results Comparison

We provide more extensive visual results comparison in Figure 2 (DIS [11] test set), Figure 3 (zero-
shot setting in COCO), Figure 4 (noised box input) and Figure 5 (zero-shot setting in HRSOD [16],
NDD20 [13] and web images which cover objects with various structure complexities in diverse
environments. In Figure 6 and Figure 7, we provide the zero-shot video segmentation results
comparison on DAVIS 2017 and YTVIS 2019 benchmarks respectively. Besides, we include the dark
underwater environment in NDD20 [13] and randomly selected web images in Figure 5, showing
that the zero-shot segmentation power in SAM is well preserved by HQ-SAM. In Figure 5, we also
include two failure cases in the rightmost two columns of the third row and bottom row, where
HQ-SAM improves over SAM, but still cannot achieve fully correct mask prediction.
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Figure 2: Visual results comparison between SAM (top row) vs. HQ-SAM (bottom row) on DIS test
set, given the same red box prompt. HQ-SAM produces significantly more accurate boundaries.
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Figure 3: Visual results comparison between SAM (top row) vs. HQ-SAM (bottom row) on COCO
val set in zero-shot setting, using a SOTA detector FocalNet-DINO [17] trained on the COCO dataset
as our box prompt generator. HQ-SAM predicts masks with higher quality than SAM with less mask
artifacts.
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SAM + GT Box SAM + Noised Box HQ-SAM + GT Box HQ-SAM + Noised Box

Figure 4: Visual results comparison between SAM (top row) vs. HQ-SAM (bottom row) with both the
GT and noised green box prompt. HQ-SAM produces much more consistent and robust segmentation
results regarding to the noises in the input boxes.
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Figure 5: Visual results comparison between SAM (top row and third row) vs. HQ-SAM (second
row and bottom row) in zero-shot setting, given the same yellow box or point prompt. HQ-SAM
produces significantly more detailed preserving masks while fixing mask errors with broken holes.
The rightmost two columns in the third row and bottom row show two failure cases of HQ-SAM in
extremely dark environments or very tiny metal rods.
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Figure 6: Visual results comparison between SAM vs. HQ-SAM on video object segmentation
benchmark DAVIS 2017 in zero-shot setting, given the same video boxes prompts generated by the
pre-trained XMem [2].
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Figure 7: Visual results comparison between SAM vs. HQ-SAM on video instance segmentation
benchmark YTVIS 2019 in zero-shot setting, given the same video boxes prompts generated by the
pre-trained Mask2Former [1].
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