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Abstract

Combining gradient-based trajectory optimization with differentiable physics sim-
ulation is an accurate and efficient technique for solving soft-body manipulation
problems. Using a well-crafted optimization objective, the solver can quickly con-
verge onto a valid trajectory. However, writing the appropriate objective functions
requires expert knowledge, making it difficult to collect a large set of naturalistic
problems from non-expert users. We introduce DiffVL, a framework that integrates
the process from task collection to trajectory generation leveraging a combination
of visual and linguistic task descriptions. A DiffVL task represents a long horizon
soft-body manipulation problem as a sequence of 3D scenes (key frames) and
natural language instructions connecting adjacent key frames. We built GUI tools
and tasked non-expert users to transcribe 100 soft-body manipulation tasks inspired
by real-life scenarios from online videos. We also developed a novel method
that leverages large language models to translate task language descriptions into
machine-interpretable optimization objectives, which can then help differentiable
physics solvers to solve these long-horizon multistage tasks that are challenging
for previous baselines. Experiments show that existing baselines cannot complete
complex tasks, while our method can solve them well. Videos can be found on the
anonymous website https://sites.google.com/view/diffvl/home.

1 Introduction

This paper focuses on soft body manipulation, a research topic with a wide set of applications
such as folding cloth[52, 90, 34], untangling cables [88, 87], and cooking foods[77, 72]. Due
to their complicated physics and high degree of freedom, soft body manipulations raise unique
opportunities and challenges. Recent works such as [32] and [99] have heavily leveraged various
differentiable physics simulators to make these tasks tractable. Towards generalizable manipulation
skill learning, such approaches have the potential to generate data for learning from demonstration
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algorithms [51, 43]. However, to enable differentiable physics solvers to generate a large scale
of meaningful trajectories, we must provide them with suitable tasks containing the scene and
the optimization objectives to guide the solver. Previous tasks are mostly hand-designed [32] or
procedure-generated [51], resulting in a lack of diverse and realistic soft-body manipulation tasks for
researchers.

This paper takes another perspective by viewing tasks as data, or more precisely, task specifications
as data. Each data point contains a pair of an initial scene and an optimization objective depicting
the goal of the task. Taking this perspective, we can annotate meaningful tasks like annotating data
of other modalities, like texts, images, videos, or each action trajectory, by leveraging non-expert
human labor, providing possibilities for scaling up the task space of differentiable physics solvers.

A core problem in building a task collection framework with trajectory generation is finding a suitable
representation of the tasks. The representation should be intuitive for non-expert annotators while
being accurate enough to describe the complex shapes and motions of the soft bodies that appear
in various soft body manipulation processes. Last but not least, it should be reliably interpreted by
differentiable physics solvers to yield a valid trajectory.

sample("RollingPin", 
    y(    ) > y(max(  ))
)
optimize(
    keep(touch(  )),
    require(simiar(  ,   ))
)

scene 1

D) Optimization Programs

Large
Language
Model

NL2: Put the rolling pin above the white dough on the

right and deform it into the target shape

scene 2

B) Task Annotation

E) Sample and Optimize

C) DiffVL Task

scene 3

A) Dumpling Video

NL2NL1

NL1: ...

Figure 1: (A) A dumpling making video; (B) The annotator interacts with our GUI tool to create
DiffVL tasks; (C) A DiffVL task contains a sequence of 3D scenes along with natural language
instructions to guide the solver; (D) DiffVL leverages a large language model to compile instructions
into optimization programs consisting of vision elements; (E) The optimization program guides the
solver to solve the task in the end.

Studies such as [3, 1, 60, 89] have shown that humans are proficient at defining goal-driven, spatial
object manipulation tasks using either sketches, natural languages, or both. Figure 1(A), for instance,
depicts the complete process of dumpling creation, supplemented by textual instructions. Taking this
as an inspiration, we present DiffVL, a framework that enables non-expert users to specify soft-body
manipulation tasks to a differentiable solver using a combination of vision and language. Specifically,
each DiffVL task consists of a sequence of 3D scenes (keyframes), with natural language instruction
connecting adjacent keyframes. The sequence of key frames specifies the sequence of subgoals of
the manipulation task, and the natural language instructions provides suggestions on how to use the
actuators to manipulate the objects through this sequence of subgoals. See Figure 1.

We develop tools to ease the annotation for non-expert users. With our interactive simulator equipped
with a GUI, the user can edit, manipulate, draw, or carve shapes easily like other 3D editing tools and
observe the consequence through simulation in an intuitive manner. Meanwhile, when it is tedious for
users to edit all the intermediate steps of a complex motion, they can use natural language to describe
the goal instead of drawing them step by step. This enables us to build SoftVL100, a vision-language
dataset with 100 diverse tasks. DiffVL uses LLM to compile the natural language instructions to an
optimization program – which enforces a set of constraints during the soft-body manipulations from
one keyframe to the next. This optimization program is then used by a differentiable physics solver
to generate a working trajectory.
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To summarize, our work makes the following contributions:

• We propose a new multi-stage vision-language representation for defining soft-body manipulation
tasks that is suitable for non-expert user annotations.

• We developed a corresponding GUI, and curated SoftVL100, consisting of 100 realistic soft-body
manipulation tasks from online videos3.

• We develop a method, DiffVL, which marries the power of a large-language model and differentiable
physics to solve a large variety of challenging long-horizon tasks in SoftVL100.

2 Related Work

Differentiable simulation for soft bodies Differentiable physics [30, 93, 69, 19, 29] has brought
unique opportunities in manipulating deformable objects of various types [58, 28, 53, 33, 92, 49, 95,
83, 63, 100, 95, 56, 27, 47, 74, 23], including plasticine [32], cloth [45], ropes [54] and fluids [96]
simulated with mass-spring models [30], Position-based Dynamics [65], Projective Dynamics [69,
16], MPM [36] or Finite Element Method [26], which could be differentiable through various
techniques [30, 16, 57, 7]. It has been shown that soft bodies have smoother gradients compared
to rigid bodies [32, 30, 93, 6, 82], enabling better optimization. However, the solver may still
suffer from non-convexity [44] and discontinuities [82], motivating approaches to combine either
stochastic sampling [44], demonstrations [43, 6] or reinforcement learning [98, 64] to overcome the
aforementioned issues. DiffVL capitalizes on an off-the-shelf differentiable physics solver to annotate
tasks. It incorporates human priors through a novel vision-language task representation. This allows
users to employ natural language and GUI to guide the differentiable solver to solve long-horizon
tasks, distinguishing DiffVL from previous methods.

Task representation for soft body manipulation There are various ways of defining tasks for soft
body manipulation. To capture the complex shape variations of soft bodies, it is natural to use either
RGB images [95, 51, 73] or 3D point cloud [78, 47] to represent goals. However, given only the
final goal images, it may be hard for the solver to find a good solution without further guidance.
Besides, generating diverse images or point clouds that adhere to physical constraints like gravity and
collision avoidance in varied scenes can be challenging without appropriate annotation tools. Our
GUI tools are designed to address these issues, simplifying the process. Other works use hand-defined
features [10, 88] or formalized languages [41]. These methods necessitate specialist knowledge
and require tasks to be defined on a case-by-case basis. Learning from demonstrations [43, 73]
avoids defining the task explicitly but requires agents to follow demonstration trajectories and learn
to condition on various goal representations through supervised learning or offline reinforcement
learning [20, 18, 79, 24, 55, 35, 11, 2, 5]. However, collecting demonstrations step-by-step [70, 101,
43] requires non-trivial human efforts, is limited to robots with human-like morphologies, and may be
challenging for collecting tasks that are non-trivial for humans (e.g., involving complex dynamics or
tool manipulation). Our annotation tool emphasizes the description of tasks over the identification of
solutions. Annotators are merely required to define the task, not execute the trajectories themselves,
thereby simplifying the annotation process. Our method is also related to [46], but we consider a
broader type of tasks and manipulation skills.

Language-driven robot learning Many works treat language as subgoals and learn language-
conditioned policies from data [80, 21, 66, 42, 8, 62, 61] or reinforcement learning [37, 17, 84, 12].
It has been shown that conditioning policies on languages lead to improved generalization and
transferability [80, 37]. [76] turns languages into constraints to correct trajectories. Our method
distinguishes itself by integrating language with differentiable physics through machine-interpretable
optimization programs. Recent works aim at leveraging large language models [4, 15, 94, 50, 13]
to facilitate robot learning. Most use language or code [48] to represent policies rather than goals
and focus on high-level planning while relying on pre-defined primitive actions or pre-trained
policies for low-level control. In contrast, our language focuses on low-level physics by compiling
language instructions to optimization objectives rather than immediate commands. It’s noteworthy
that VIMA [38] also introduces multimodal prompts, embodying a similar ethos to our vision-
language task representation. Their approach views multimodal representation as the task prompts to
guide the policy. However, it still requires pre-programmed oracles to generate offline datasets for
learning, which is hard to generalize to soft-body tasks with complex dynamics. Contrastingly, we

3both the GUI and dataset will be made public
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adopt a data annotation perspective, providing a comprehensive framework for task collection, natural
language compiling, and trajectory optimization, enabling us to harness the potential of differentiable
physics effectively.

Task and motion planning Our optimization program compiled from natural language is closely
connected to the field of Task and Motion Planning (TAMP) [22], particularly Logic Geometric
Programming (LGP) [85, 86]. We draw inspiration from LGP’s multiple logical states in designing
our DiffVL task representation. However, unlike LGP, our approach asks human annotators to
assign “logic states” and facilitates the manipulation of soft bodies through our novel vision-language
representation. Some recent works have explored the intersection of TAMP and language models [14,
81, 59] while primarily focusing on generating high-level plans.

3 SoftVL100: Vision-Language Driven Soft-body Manipulation Dataset

Grasp the back end of rope. Then Wind the rope and place the salmon ball.
Grasp the front end of rope. Then Wind the rope and place the black ball.

Grasp the front end of top yellow by gripper and place it on the bottom.
Then grasp the ropes by gripper to wind and place them into theirs goal shape.

Finally, grasp the red by gripper to place it on the top.

(A)Multistage Tasks (B) Scene examples

Put the rolling pin above the white and manipulate the white into goal.
Then grasp the yellow by gripper and place them into goal places.

Finally grasp the white and wrap it as well as the yellow in it.

Figure 2: (A) Example of multi-stage tasks and their text annotations; (B) Snapshots of scenes in
SoftVL100 dataset.

In this representation, the original tasks are divided into a sequence of 3D scenes, or key frames, along
with text descriptions that detail the steps for progressing to the next scene. Figure 2(A) illustrates
our representation. Each key frame consists of multiple soft bodies with different positions and
shapes. By grouping two consecutive key frames together, we form a manipulation stage. Natural
language instructions may guide the selection of an actuator and provide guidance on how to control
it to reach the subsequent key frames. In Section 3.1, we develop annotation tools to facilitate the
task representation annotation process. These tools make it easy to construct a diverse set of tasks,
referred to as SoftVL100, as discussed in Section 3.2.

3.1 Vision-Language Task Annotator

Our annotation tool is based on PlasticineLab [32], a simulation platform that utilizes the Material
Point Method (MPM) [31] for elastoplastic material simulation. To enhance the user experience and
support scene creation, we integrate it into SAPIEN [97], a framework that enables the development
of customized graphical user interfaces.

Select the object to edit. Add a new sphere Lift it upPress it into a cylinderCut it into two objects

Annotator

The chosen sub-goal

Figure 3: Example operations in GUI tools

Our simulation runs on
GPU servers and the inter-
face is accessible as a web
service through VNC, al-
lowing users to interact with
the simulator directly from
their web browser. When
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starting a new task annota-
tion, users can open the simulator, perform actions, and save the current scene. Our GUI tools provide
comprehensive support for creating, editing, managing, and simulating objects, as illustrated in
Figure 3. Scene creation: The GUI offers a variety of primitive shapes, such as ropes, spheres, cubes,
and cylinders, that users can add to the scene. Before adding a soft-body shape, users can adjust
its size, color, and materials (e.g., rubber, fiber, dough, iron) if needed. Shape editing: Users have
the ability to select, edit, or delete shapes within the scene. The GUI tool includes a range of shape
operators, including moving, rotating, carving, and drawing. We provide a complete list of supported
operations in the appendix. Simulation: Since the interface is built on a soft body simulator, users
can simulate and interact with the soft body using rigid actuators or magic forces. They can also run
simulations to check for stability and collision-free states. Object management: Users can merge
connected shapes to create a single object or divide an object into two separate ones with distinct
names. The annotation tool keeps tracking the identities of objects across scenes.

Once users have finished editing the scene and creating a new key frame, they can save the scene into
the key frame sequence. The key frames are displayed below the simulator, visualizing the current
task annotation progress. Users have the option to open any of these saved scenes in the simulator,
delete a specific scene if needed, and add text annotations for each scene. Please refer to the appendix
for detailed information on the functionalities and usage of the GUI tool.

3.2 The SoftVL100 Dataset

Our annotation tool simplifies the task creation process, enabling us to hire non-expert users to collect
new tasks to form a new task set, SoftVL100. The task collection involves several stages, starting
with crawling relevant videos from websites like YouTube that showcase soft body manipulation,
particularly clay-making and dough manipulation. We developed tools to segment these videos and
extract key frames to aid in task creation.

We hired students to annotate tasks, providing them with a comprehensive tutorial and step-by-step
guidelines for using our annotation tools. It took approximately two hours for each annotator to
become proficient in using the annotation tool. Subsequently, they were assigned a set of real-world
videos to create similar tasks within the simulator. After collecting the keyframes, we proceed
to relabel the scenes with text descriptions. Annotators are provided with a set of example text
descriptions. We encourage users to include detailed descriptions of the actuators, their locations,
moving directions, and any specific requirements, such as avoiding shape breakage for fragile
materials. The annotation process for each task typically takes around 30 minutes. Using our task
annotation tool, we have created a dataset called SoftVL100, which consists of 100 tasks, and there
are more than 4 stages on average. The tasks cover a wide range of skills as illustrated in Figure 2
(A). Sample tasks from the dataset can be seen in Figure 2 (B).

4 Optimization with Vision-Language Task Description

We propose DiffVL to tackle the challenging tasks in SoftVL100. Given a stage of a task depicted
in Figure 4(A), DiffVL utilizes large language models to compile the natural language instructions
into a machine-interpretable optimization program in Figure 4(B). The program comprises of the
names of visible elements and Python functions, effectively capturing the essence of the language
instructions. We introduce the design of our DSL in Section 4.1 and outline the DiffVL compiler
based on large language models (LLM) in Section 4.2. The resulting optimization program includes
crucial information for selecting and locating actuators and can facilitate a differentiable physics
solver to generate valid trajectories, as discussed in Section 4.3.

4.1 Optimization Program

The optimization program is formulated using a specialized domain-specific language (DSL) that
incorporates several notable features. Firstly, it includes functions that extract the names of visible
elements from the 3D scenes and support operations on these elements, represented as 3D point
clouds. This enables manipulation and analysis of the visual information within the optimization
program. Secondly, the DSL provides various functions to express geometric and temporal relations,
encompassing common geometric and motion constraints. These functions facilitate the represen-
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RollingPin = "RollingPin"
Dough      = get("white right dough")
Goal       = goal("white right dough")

sample(RollingPin,                      // use the rolling pin
    y(RollingPin) > y(max(pcd(Dough)))  // above the dough
)
optimize(
    keep(touch(Dough)),                 // deform the dough
    require(similar(Dough, Goal))       // into the target shape
)

require(similar(Dough, Goal))

y(RollingPin) > y(max(Dough))

Put the rolling pin above the white
dough on the right. Roll the pin to
deform it into the target shape.

keep(touch(Dough))

Current Frame Next Frame

A) One Stage of A Task

Large
Language
Model

RollingPin

B) Optimization Program

Dough

Goal

Extracted Visual
Elements

C) Smapling and Optimiation

Sampling Actuators Rollout Trajectory Ending states

y(RollingPin)

y(max(Dough))

>

dist(RollingPin, Dough)

Dough Goal

Earth Mover's Distance

Figure 4: (A) One stage of the DiffVL task of two keyframes and a natural language instruction. (B)
The compiled optimization program. (C) The sampling and optimization process.

tation and handling of natural language instructions. Furthermore, the DSL clauses are interpreted
into PyTorch [68], making the constraints automatically differentiable and directly applicable for
differentiable physics solvers.

The example in Figure 4 already exposes multiple components of our DSL. In the program, we can re-
fer to the names of visible elements through get and goal functions, which can look for and extract
the 3D objects that satisfy the description, identified by their color, shapes, and locations (we ensured
that these attributes are sufficient to identify objects in our tasks). The program will then start with a
sample statement, which is used to specify the actuators and their associated constraints over initial

positions. Actuators refer to the entities utilized for manipulation, such as a robot gripper, a knife,
or the rolling pin depicted in Figure 4. The constraint y(RollingPin) > y(max(pcd(Dough)))

within the sample statement represents a specific constraint. It ensures that the height of the
actuator (RollingPin) is greater than the highest y coordinate of the white dough in the scene, re-
flecting the meaning of “put bove” of the language instructions. Following the sample statement,

an optimize statement is included. This statement plays a vital role in defining the constraints
and objectives for the manipulation trajectories. These constraints and objectives serve as the dif-
ferentiable optimization objectives that the differentiable physics solver aims to maximize. In an
optimization program, two special functions, namely require and keep , can be used to specify

the temporal relationship of the optimization objectives. By default, the require function evaluates

the specified condition at the end of the trajectories. On the other hand, the keep function is applied
to each frame of the trajectories, ensuring that the specified conditions are maintained throughout
the trajectory. In the example program shown in Figure 4(B), the optimization program instructs the
actuator to continuously make contact with the white dough. The function similar computes the
Earth Mover distance [71] between two objects’ point clouds, which aims to shape the dough into a
thin pie, the goal shape extracted from the next key frame. We illustrate more example optimization
programs in Figure 5.

4.2 Compiling Natural Languages with LLM

We utilize the power of the Large Language Model (LLM) to compile text instructions into opti-
mization programs. This approach capitalizes on the few-shot capabilities of the LLM and employs
various few-shot prompts [91, 9]. The prompts begin by defining the “types” and functions within our
DSL. Each function is accompanied by a language explanation to clarify its purpose. Additionally,
examples are given to demonstrate how primitive functions can be combined to form complex clauses.
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A) Grasp the front of the rope and the grasp the back  of
the rope. Deform the rope into its target shape.

sample("gripper", grasp(backend(get("rope"))))
optimize(require(emd(get("rope"), goal("rope"))))
sample("gripper", grasp(frontend(get("rope"))))
optimize(require(similar(get("rope"), goal("rope"))))

B) Use the gripper to first lift up the white cube above the
black wall and then move it to the target location

sample("gripper", grasp(get("white")))
optimize(
  require(y(com('white'))>y(max(pcd('black'))), 0.5),
  require(l2(com(get("white")), com(goal("white")))),
)

C) Put the knife above the white object. Cut the knife
down to match the target shape of the white object.
Ensure that the knife does not rotate.
sample("knife", roll(0.),
       y('knife') > y(max(pcd('white'))))
optimize(
    keep(touch(leftpart('white'))),
    keep(roll() < 0.1), keep(pitch() < 0.1),
    require(similar('white', goal('white'))),
)

D) Pick up the front part of object 'top left mat' and place
it into the goal without breaking it. 

sample("gripper", touch(frontpart('top left mat'))
optimize(
  keep(touch(leftpart('top left mat'))),
  require(similar('top left mat', 
  goal('top left mat'))),
  keep(no_break('top left mat')),
)

Figure 5: A) Decomposing a stage into sub-stages: manipulating a rope into a circle using a single
gripper requires the agent to first grasp the upper part of the rope and then manipulate the other side to
form the circle. The program counterpart contains two pairs of sampler and optimize , reflecting

the two sub-stages in the language instruction. backend extracts the back end of 3D objects; B)
Guiding the motion of the objects to avoid local optima: we use com to compute the center of the
mass of objects and pcd to get the clouds; relation operators compare two objects’ coordinate. The

first require takes an additional argument 0.5, meaning the inner clause, which asks the white
object above the black one, should be evaluated halfway through the trajectory to represent meanings
of ’first do A and then do B.’ C) Selecting a suitable tool to split the objects; D) The program can
include additional constraints like not breaking the shape, which is critical for manipulating fragile
materials.

To facilitate the translation, we provide the language model with both the scene description of the
objects that it contains and the natural language instructions that we wish to compile. We then prompt
the model with the instruction, “Please translate the instructions into a program.” This step is repeated
for all frames, resulting in their respective optimization programs. Through our experimentation, we
have observed that GPT-4 [67] surpasses other models in terms of performance. Please refer to the
appendix for a more comprehensive understanding of the translation process.

4.3 Solving the Optimization through Differentiable Physics

We leverage the differentiable physics solver in [32], which has been proven accurate and efficient in
solving the generated optimization programs. The process is illustrated in Figure 4(C). The sample
function is employed within a sampling-based motion planner. Initially, it samples the pose of
the specified actuator type to fulfill the provided constraints. Subsequently, an RRT planner [40]
determines a path toward the target location, and a PD controller ensures that the actuators adhere to
the planned trajectory. With the actuator suitably initialized, the optimize clause is then passed to
a gradient-based optimizer to optimize the action sequence for solving the task. The solver performs
rollouts, as depicted in Figure 4(C), where the conditions enclosed by keep operators are evaluated

at each time step. Conversely, conditions enclosed by require are evaluated only at specified time
frames. The resulting differentiable values are accumulated to calculate a loss, which is utilized to
compute gradients for optimizing the original trajectories. For handling multistage tasks involving
vision-language representation, we can solve them incrementally, stage by stage.

5 Experiments

In this section, we aim to justify the effectiveness of our vision-language task representation in
guiding the differentiable physics solver. For a detailed analysis of the ablation study on the language
translator, we direct readers to the appendix. To better understand the performance of different
solvers, we evaluate the tasks of two tracks. The first track focuses on tasks that only require agents to
transition from one key frame to another. Tasks in this track are often short-horizon. This setup allows
us to evaluate the efficiency and effectiveness of the differentiable physics solver in solving short-
horizon soft body manipulation tasks, as described in Section 5.3. In the second track, we validate the
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agent’s capability to compose multiple key frames in order to solve long-horizon manipulation tasks.
These tasks involve complex scenarios where agents need to switch between different actuators and
manipulate different objects. The evaluation of this composition is discussed in Section 5.4.

5.1 simulation and training time for different tasks

For a single-stage task, it takes 10 minutes for 300 training steps on a machine with NVIDIA GeForce
RTX 2080 Super, which contains 80 steps in the simulation. For most tasks, 300 steps in training are
sufficient.

5.2 Initialization for tasks

We clarify that our approach does not use a gradient-based optimizer to optimize trajectories generated
by the RRT planner. Motion planning and optimization occur in separate temporal phases. Initially,
we plan and execute a trajectory to position the actuator at the specified initial pose. Subsequently,
we initialize a new trajectory starting from this pose, and the actuator remains fixed in this trajectory
as we initialize the policy with zero actions to maintain its position. The sample function generates
poses in line with the annotators’ guidance.

5.3 Mastering Short Horizon Skills using Differentiable Physics

Before evaluating the full task set, we first study how our vision-language representation can create
short-horizon tasks that are solvable by differentiable physics solvers. We picked 20 representative
task stages as our test bed from the SoftVL100. We classify these tasks into 5 categories, with 4 tasks
in each category. The categories are as follows: Deformation involves the deformation of a large
single 3D shape, achieved through pinching and carving; Move asks the movement of an object or
stacking one object onto another; Winding involves the manipulation of a rope-like object to achieve
different configurations. Fold focuses on folding a thin mat to wrap other objects. Cut involves
splitting an object into multiple pieces. The selected tasks encompass a wide spectrum of soft body
manipulation skills, ranging from merging and splitting to shaping. We evaluate different methods’
ability to manipulate the soft bodies toward their goal configuration. The agents are given the goal
configuration in the next frame, and we measure the 3D IoU of the ending state as in [32]. We set a
threshold for each scene’s target IoU score to measure successful task completion, accommodating
variations in IoU scores across different scenes.

We compare our method against previous baselines, including two representative reinforcement
learning algorithms, Soft Actor-Critic (SAC) [25] and Proximal Policy Gradient (PPO) [75]. The
RL agents perceive a colored 3D point cloud as the scene representation and undergo 106 steps to
minimize the shape distance towards the goal configuration while contacting objects. Additionally, we
compare our approach with CPDeform [44], which employs a differentiable physics solver. However,
CPDeform uses the gradient of the Earth mover’s distance as a heuristic for selecting the initial
actuator position. It differs from DiffVL which utilizes the text description to determine ways to
initialize the actuators and the optimization objectives. For differentiable physics solvers, we run
Adam [39] optimization for 500 gradient steps using a learning rate of 0.02.

Table 1 presents the success rates and mean IoU of various approaches. It is evident that, except
for specific deformation and cutting tasks where SAC shows success, the RL baselines struggle to
solve most tasks. Although RL agents demonstrate an understanding of how to manipulate the soft
bodies correctly, they lack the precision required to match the target shape accurately. Additional
experimental results can be found in the appendix. CPDeform achieves partial success in each task
category. It surpasses the RL baselines by utilizing a differentiable physics solver and employing
a heuristic that helps identify contact points to minimize shape differences. However, CPDeform’s
heuristic lacks awareness of physics principles and knowledge about yielding objects to navigate
around obstacles. Consequently, CPDeform fails to perform effectively in other tasks due to these
limitations.
Integrating language into RL baselines may entail non-trivial challenges. For example, many
reward functions in our optimization program have temporal aspects, making the original state
non-Markovian. As we focus on enhancing the optimization baseline through language-based
experiments, we’ve chosen to defer tackling the complexities of language-conditioned RL to future
research.
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previous baselines DiffVL
SAC PPO CPDeform - Sample - Optimize Ours

SR/IOU SR/IOU SR/IOU SR/IOU SR/IOU SR/IOU
Deform 0.25 (0.504) 0.00/0.392 0.25/0.532 0.11/0.489 0.44/0.524 1.00/0.564
Move 0.00/0.541 0.00 /0.527 0.08 /0.570 0.00/0.533 0.33/0.618 1.00/0.641
Wind 0.00/0.308 0.00/0.289 0.21/0.362 0.25 /0.351 0.08 /0.408 0.59/0.446
Fold 0.00/0.572 0.00 /0.457 0.33/0.612 0.00/0.550 1.00 /0.650 0.94/0.643
Cut 0.33/0.449 0.00/0.408 0.89/0.482 0.33/0.357 0.56/0.447 0.87/0.490
Total 0.12/0.475 0.00/0.415 0.35/0.512 0.14/0.456 0.48/0.529 0.88/0.557

Table 1: Single stage experiment results. The metrics we use are Success Rate (SR) and 3D
Intersection Over Union (IOU).

-OptimizeStart -Sample

(a) Move a single object to another side

Ours Goal

(b) Pick up the front end of top left mat and use it to cover the brown core

(c) First pick up the back end of the yellow rope and move it across the orange one 

(d) Use knife to cut out the left part of the white mat

(a)Multistage Task

(b) Our solution

(d) No actuator sample (e) Single stage

(c) final only

(1) (2)

Figure 6: (1) Performance on single stage tasks. (2)Performance on a multistage task that includes
moving, packing, and pressing.

Our approach surpasses all other methods, achieving the highest overall success rate. To examine
the impact of different components and illustrate their effects, we conduct ablation studies. First,
we remove the constraints in sample named “- Sample” in the table and ask the agent to sample
random tools without using hints from the language instructions. As a result, the performance drops
significantly, either getting stuck at the local optima or failing to select suitable tools to finish the
task. For example, in the cutting task, it failed to select knives and split the white material into
two pieces. On the other hand, the variant “- Optimize” replaces the statement in optimize by
an objective focusing solely on optimizing shape distance, removing additional guidance for the
physical process. The effects are lesser compared to the previous variant, demonstrating that with
a suitable tool initialization method, a differentiable physics solver is already able to solve many
tasks. However, as illustrated in Figure 6(A), it does not lift the white cube to avoid the black wall
in a moving task and breaks the mat shown in the second row. In the winding task, it fails to find
the relatively complex lifting-then-winding plan directly from shape minimization. In contrast, our
method can successfully solve these tasks after leveraging the trajectory guidance compiled from the
natural language instructions.

5.4 Driving Multi-Stage Solver using Vision-Language

Having evaluated short-horizon tasks, we apply our method to long-horizon tasks in SoftVL100. We
leverage the natural language instructions to generate the evaluation metrics for each task, which
might measure the relationships between objects, check if soft materials rupture, or if two shapes are
similar. We refer readers to the appendix for more details.
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Figure 7: Success rate of multi-stage
tasks of different ablations

Our multistage vision-language task representation decom-
poses the long-horizon manipulation process into multiple
short-horizon stages, allowing our method to solve them
in a stagewise manner. As baseline algorithms fail to make
notable progress, we apply ablation to our method: We
first compare our method with a single-stage approach
(single), which refers to solving long-horizon tasks like
short-horizon tasks, by dropping the key frames and di-
rectly optimizing for the final goal. We then dropped the
actuator sampling process in the middle (no actuator sample). The solver is still told to optimize
for key frames (sub-goals) at each stage but was not informed to switch actuators and objects to
manipulate. As expected, dropping the stage information and the language instructions in our vision
task representation significantly degrades the performance, making solvers unable to complete most
tasks. After leveraging the language instructions, the FinalOnly solver removes the vision subgoals in
each sub-stage but provides the agent’s actuators to choose the objects to manipulate. In this case,
similar to the “- Sample” variant, the differentiable physics solver can solve certain tasks by only
minimizing shape distance. However, it may have troubles for tasks that require objects to deform
into multiple shapes. For example, as illustrated in Figure 6(B), the solver needs to first compress the
purple shape into a thin mat to warp the yellow dough. The solver fails to discover the compression
process after removing the subgoals but directly moves the purple toward its final configurations,
resulting in the failure in the end. This showcases the importance of the introduction of the key
frames in our vision-language task annotation.

6 Limitations and Conclusion

We introduce DiffVL, a method that enables non-expert users to design specifications of soft-body
manipulation tasks through a combination of vision and natural language. By leveraging large
language models, task descriptions are translated into machine-interpretable optimization objectives,
allowing differentiable physics solvers to efficiently solve complex and long-horizon multi-stage
tasks. The availability of user-friendly GUI tools enables a collection of 100 tasks inspired by real-life
manipulations. However, it is important to acknowledge some limitations. Firstly, the approach relies
on human labor for dataset creation. Additionally, the utilization of large language models incurs
high computational costs. Nevertheless, We anticipate being able to gather a larger set of tasks in the
future. Furthermore, leveraging the generated trajectories to guide learning methods holds significant
potential as a promising avenue for future exploration.

7 Future Works

We believe that crowdsourcing is vital in achieving this goal. We have taken the first step to
demonstrate how non-experts can contribute to scaling up robot learning, which may inspire the field
to explore ways of involving individuals from various backgrounds in expanding robot manipulation
capabilities. It would be out of the capabilities of our group but can be readily adopted by other
groups with better resources eventually.

Transferring the policies found by the differentiable simulator to the real world is important. We
believe that various components of our framework can offer valuable contributions to real-world
scenarios: one such contribution lies in our vision language representation, which naturally represents
tasks in the real world; leveraging large language models aids in generating rewards for evaluating
real-world results; our GUI tool can effectively manipulate real-world materials, particularly in
constrained tasks, serving as a direct interface between humans and robot controllers.
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Supplementary files

We provide a video illustrating our GUI tools, example task, and solutions. We also provide a tutorial
for helping users to use our annotation system as a supplementary file.

A How to choose keyframes

The selection of keyframes is determined by the annotators, as we believe humans can naturally
decompose complex tasks into simpler ones for communication. When annotators manipulate a scene
within the GUI, they can save the current scene as a key frame within the task representation. They
can also add, modify, or delete key frames using the editors within the web server interface.

The annotators were instructed on what kind of decomposition would likely result in a working
trajectory, i.e., segmenting the manipulation processes at contact point changes., which is a simple and
effective way for the annotator to provide high-quality labels, without having any expert understanding
of the physics and the solver. If the agent is required to manipulate a new object or the actuator needs
to establish contact on a different face of the object, annotators would introduce a new keyframe.
Additionally, we employ heuristic methods to segment YouTube videos. This segmentation occurs
when there is a significant disparity between two frames, aiming to simplify the keyframe selection
for annotators.

B DSL for Optimization Programs

Table 2 lists the functions and primitives in our domain-specific language.

We rely on the large language model’s few-shot ability to compile the natural language description
like “lift up the white cube above the black wall” into an executable optimization program. The
prompt start with the introduction to the DSL, listing the functions as well as the explanations,
followed by several examples illustrating how to compose those functions to implement complex
functions, e.g., by checking the x coordinates of two objects to decide if one is on the left of the other.
Then we provide several pairs of natural language inputs and corresponding programs. In the end, we
provide the natural language input to compile. Below is an example prompt.

Here are the functions for obtaining objects and target objects. Their
return types are all one single point -cloud object. A desc can

only include strings that contain shape ["rope", "sphere", "box",
"mat"], colors like [" white", "gray", "green", "red", "blue", "
black"], and position like ["left", "right", "top", "bottom "]:

- get(desc) # Get the point cloud of the objects with the description ,
for example , get("left white mat"). If the desc is ’all ’, then

get all the objects.
- goal(desc) # Get the point cloud of the goal for the objects with

the given name. The name can also be ’all ’.
- others(desc) # Get all other point clouds except the object with the

given name.
- others_goals(desc) # Get all other point clouds of the goals except

the object with the given name.

Here are the functions that use constraints. Note that the obj , and
goal can only be one single point -cloud:

- keep(cond , start=s, end=t) # Minimize the reward from time s to time
t. It only takes one cond as an argument.

- require(cond , end=t) # Reach the condition at time t. By default end
=1.

- similar(obj , goal) # Compare the shape earth mover distance of the
objects to the given goal shapes.

- touch(obj) # Minimize the distance between the tool and the object.
- fix_place(obj) # Ensure that the shape of the given object(s) and

its positions do not change. It only takes one argument.
- no_break(obj) # Do not break the objects.
- away() # check if the actuator is away from all objects
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Category FuncName Explanation
Objects get(desc) Get the point cloud of the objects

with the description, for example,
get(“left white mat”). If the desc is
’all’, then get all the objects.

goal(descr) Get the point cloud of the goal for
the objects with the given name.
The name can also be ’all’.

Temporal conditions
keep(cond, start=0, end=1) Minimize the cond from time s to

time t. It only takes one cond as an
argument.

require(cond, end=1) Reach the condition at time t. By
default end is 1.

and(cond1, cond2, . . . ) Needs to satisfy all constraints

Shape operators

com(shape) Compute the center of the mass of
the point cloud

similar(A, B) Compare the shape distance using
EMD distance

pcd(shape) Get the PyTorch tensor that repre-
sents the point cloud of the shape

leftpart, rightend, etc. Get a part of the point cloud based
on the description.

Actuator touch(ShapeA) Minimize the signed distance func-
tion of the actuators and the shape

away Check if the actuator is far away
from the shape

roll, vertical, etc. Get the rotation angle of the actua-
tor

Tensor operators Relation >,<,≥,≤ Compare relationships of two vec-
tors or scalar

Algebra +,− Add values to something.
l2(A, B) Compare the l2 distance
min, max Get the min max of a tensor

Soft Body Constraints fix_shape Do not change the shape of the ob-
jects for too much

fix_place Keep the object not moving
no_break Do not break the objects

Special stage(sample_fn, optimize_fn) An optimization stage that may in-
volve a motion planning procedure
and an optimization procedure. It
is only used for compiling.

sample(tool_name, *conds) Select the tool of tool_name. We
provide “knife”, “board”, “rolling
pin” and “gripper”. The conds are
list of conditions that we hope the
tool satisfy

optimize(*conds) Optimize the trajectory to satisfy
the conditions.

Table 2: Elements in the optimization program
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- roll() # actuators ’ rotation about x
- pitch () # actuator ’s rotation about y
- yaw() # actuator ’s rotation about y
- vertical () # actuator is vertical
- horizontal () # actuator is horizontal

Here are the example functions to obtain additional information:
- com(obj) # Center of the objects.
- pcd(obj) # point clouds of the objects.
- max(pcd(obj)) # max of the point cloud of the objects.
- min(pcd(obj)) # min of the point cloud of the objects.
- x(com(obj0)) # X coordinate of the points.
- x(min(pcd(obj0))) # smallest X coordinate of the boundary of the

points.

We can compose those functions to implement various functions. Below
are examples:

# The x coordinate of the objects
x(com(obj0))

# Obj0 is on the left of obj1.
lt(x(com(obj0)), x(com(obj1)))

# the front end of the Obj0 is above obj1.
gt(y(com(frontend(obj0))), y(max(pcd(obj1))))

# Obj0 is in front of obj1.
lt(z(com(obj0)), z(min(pcd(obj1))))

# deform the rope named by ’blue ’ into its goal shape
require(similar(’blue ’, goal(’blue ’)))

# deform object ’blue ’ into its goal shape while fixing others
require(similar(’blue ’, goal(’blue ’))), keep(fix_place(others(’blue ’)

))

# first do A then do B
require(A, end =0.5), require(B, end =1.0)

# not rotate the actuator aboux x axis
keep(roll() < 0.1)

Here are special function for
- stage(sample_clause , optimize_clause) # Each program may have

multiple stage and each stage must have a ’sample ’ function and an
’optimize ’ function. There are at most three stages. Start a new

stage if and only if we need to change the actuators or manipulate
different objects or parts.

- sample(actuator_name , *args) # sample the actuator with the given
name in the beginning , args denotes for the conditions or
requirements of the actuator ’s pose.

- optimize (*args) # conditions needs to satiesfied during the
manipulation.

Below are examples of the scenes and the program to solve the scenes.

Input: grasp the front end of the blue rope vertically and then deform
into its goal pose and please do not break it. Then grasp the
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back of the mat and then pick up the mat and move it into its goal
position.

Program:
blue_rope = get("blue rope")
stage(

sample (" gripper", grasp(frontend(blue rope)), vertical ()),
optimize(

require(similar(blue_rope , goal(’blue rope ’))),
keep(touch(blue_rope)),
keep(no_break(blue_rope))

)
)
mat = get("mat")
stage(

sample (" gripper", grasp(backpart(mat))),
optimize(

require(l2(com(get(mat)), com(goal("mat")))),
keep(touch(backpart(mat)))

)
)

Input: cut the mat into its goal shapes and then move the knife away.
Program:
mat = get("mat")
stage(

sample ("knife", touch(mat)),
optimize(

require(similar(mat , goal(’mat ’))),
keep(touch(mat), end =0.5) ,
requre(away())

)
)

Input: move the object ’A’ to the left of ’B’ then move it to the
right.

Program:
A = get(’A’)
B = get(’B’)
stage(

sample (" gripper", grasp(A)),
optimize(

require(lt(x(com(A)), x(com(B))), end =0.5) ,
require(gt(x(com(A)), x(com(B))), end =1),
keep(touch(A))

)
)

Input: Put the board above all objects and deform them into their goal
shapes and keep them not broken

Program:
stage(

sample ("board", gt(y("board "), y(max(pcd(’all ’))))),
optimize(

require(similar(’all ’, goal(’all ’))),
keep(touch(’all ’)),
keep(no_break(’all ’)),

)
)

Input: Use the gripper to grasp the right part of the object on the
right and deform it into its target shape while fixing others.

Program:

21



left = get(’left ’)
stage(

sample (" gripper", rightpart(left)),
optimize(

require(similar(left , goal(’left ’))),
keep(fix_place(others(’left ’))),
keep(touch(rightpart(left))),

)
)

Input: There are two objects of different colors "red", "green ". Use
the board to touch them one by one. Deform them into their target
shape.

Program:
stage(

sample ("board", touch ("red")),
optimize(

keep(touch(’red ’)),
require(similar ("red", goal("red")))

)
)
stage(

sample ("board", touch ("green ")),
optimize(

keep(touch(’green ’)),
require(similar (" green", goal("green")))

)
)

Please compile the input into a program. The generated programs
satisfy several requirements: Do not use functions not mentioned
before; the program should be concise; only use ’touch ’ at most
once within a single ’optimize ’ and if we need to manipulate
multiple objects , please use touch(’all ’).

Please include an ’optimize ’ for each stage. Do not use more than one
stage if it does not need to manipulate different objects or parts
. Here is the input to compile:

B.1 Comparing GPT3.5 and GPT4

We notice that GPT4 has a better performance compared with GPT3.5. Below we provide the results
of GPT3.5 and GPT4 of example tasks shown in the main text. Generally, we have found that it
is common for GPT3.5 to misinterpret the instructions, add/ignore constraints, and write incorrect
commands with incorrect grammar. In contrast, GPT4 can generate pretty good results.

Although GPT4 already outperforms GPT3.5 in the translation task, we observed several failure
cases in the translation process. For example, the output of GPT4 will contain objects that do
not exist. In a task that lifts a sphere above a box, the output may contain an invalid sentence
like require(similar(’sphere’, goal(’sphere above box’))) where ’sphere above box’ which doesn’t
correspond to a proper object. It may also generate a statement with a type error. For example,
sometimes it may output require(similar(’sphere’, y(max(pcd(’box’))))), which would trigger a
compilation error as we can not compute the shape distance between an object and a coordinate.
Fortunately, those compilation errors could be detected during the compilation and can be resolved
by resampling. However, there are also rare cases where LLM removes or adds more constraints to
the instructions. For example, it may ask the solver to fix the position of an object that needs to move.
In these cases, our solver may fail to find a suitable solution. Restricting the output to fit a particular
syntax, for instance, using context-free grammars would resolve such problems.

Test Case 1 Grasp the front of the rope and then grasp the back of the rope. Deform the rope into
its target shape.
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GPT3.5: added constraints not mentioned in the language
rope = get("rope")
stage(

sample("gripper", grasp(frontend(rope))),
optimize(

keep(touch(rope)),
require(similar(rope , goal(’rope’))),
keep(no_break(rope))

)
)
stage(

sample("gripper", grasp(backpart(rope))),
optimize(

keep(touch(rope)),
require(similar(rope , goal(’rope’))),
keep(no_break(rope))

)
)

rope = get("rope")
stage(

sample("gripper", grasp(frontend(rope))),
optimize(

keep(touch(frontend(rope))),
require(similar(rope , goal("rope")), end =0.5)

)
)
stage(

sample("gripper", grasp(backend(rope))),
optimize(

keep(touch(backend(rope))),
require(similar(rope , goal("rope")), end =1.0)

)
)

Test case 2 Use the gripper to first lift up the white cube above the black wall and then move it to
the target location.

GPT3.5: it creates two stages for single a stage task (not need to regrasp the object).
white_cube = get("white cube")
black_wall = get("black wall")
stage(

sample("gripper", lift(white_cube)),
optimize(

require(gt(y(com(white_cube)), y(max(pcd(black_wall))))),
keep(touch(white_cube)),
keep(no_break(white_cube))

)
)
stage(

sample("gripper", gt(x(com(white_cube)), x(com(black_wall)))),
optimize(

require(l2(com(white_cube), com(goal("white cube")))),
keep(touch(white_cube)),
keep(no_break(white_cube))

)
)
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GPT4
white_cube = get("white cube")
black_wall = get("black wall")

stage(
sample("gripper", grasp(white_cube)),
optimize(

require(gt(y(com(white_cube)), y(max(pcd(black_wall)))), end
=0.5),

require(l2(com(white_cube), com(goal("white cube"))), end =1),
keep(touch(white_cube))

)
)

Test case 3 Put the knife above the white object. Cut the knife down to match the target shape of
the white object. Ensure that the knife does not rotate.

GPT3.5: It uses z instead y to extract the objectsh́eight while the latter is true. It also misinterprets
the meaning to deform the knife into the goal.
white_obj = get("white")
stage(

sample("knife", gt(z(com(“knife”)), z(max(pcd(white_obj))))),
optimize(

require(l2(com("knife"), com(white_obj))),
require(similar(“knife”, goal(“white”))),
keep(pitch() < 0.1, yaw() < 0.1)

)
)

GPT4
stage(

sample("knife", above(get("white"))),
optimize(

require(similar(get("white"), goal("white"))),
keep(touch("white")),
keep(roll() < 0.1),
keep(pitch () < 0.1),
keep(yaw() < 0.1)

)
)

Test case 4 Pick up the front part of object ’top left mat’ and place it into the goal without breaking
it.

GPT3.5: It adds an incorrect command to let the gripper to move away from the object in the
beginning.
mat = get("top left mat")
stage(

sample("gripper", grasp(frontpart(mat)), away()),
optimize(

require(similar(mat , goal(’top left mat’))),
keep(touch(mat)),
keep(no_break(mat))

)
)
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GPT4
stage(

sample("gripper", grasp(frontpart(get("top left mat")))),
optimize(

require(l2(com(get("top left mat")), com(goal("top left mat"))
)),

keep(touch(frontpart(get("top left mat")))),
keep(no_break(get("top left mat")))

)
)

C Reinforcement learning baseline

We use the SAC and PPO implementation from stable-baselines3 with hyperparameters in Table 3.
Figure 8 compares the optimization performance of RL algorithms and the Adam optimizer with
respect to the IOU score of the ending state with different numbers of sampled episodes for the 20
single-stage tasks of five categories.

Table 3: Parameters for Reinforcement Learning

Table 4: SAC
gamma 0.95
learning rate 3× 10−4

buffer size 106

target update coef 0.005
batch size 256

Table 5: PPO Parameters
update steps 2048
learning rate 3× 10−4

entropy coef 0
value loss coef 0.5
batch size 64

Figure 8: Comparison between RL and differentiable physics solver

D Evaluation metrics

We notice that in some tasks, a simple Intersection Over Union (IOU) score comparing shapes does
not effectively explain the human intuition of task completion. For example, a solver might “cut” two
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objects similar to the target shape without truly separating them, as the space between the two parts
might only contain a minimal amount of space. In other circumstances, the solver may violate the
requirements of no_break and break a rope into two or destroy a mat. To this end, we add checkers to
check if two shapes are split and if a shape is not broken for success evaluation. For no-breaking
constraint, we track particles and ensure their distance to their initial nearest neighbor does not change
too much. On the other hand, we can check if two shapes are separated from each other by finding
the connected components of particles.

26


	Introduction
	Related Work
	SoftVL100: Vision-Language Driven Soft-body Manipulation Dataset
	Vision-Language Task Annotator
	The SoftVL100 Dataset

	Optimization with Vision-Language Task Description
	Optimization Program
	Compiling Natural Languages with LLM
	Solving the Optimization through Differentiable Physics

	Experiments
	simulation and training time for different tasks
	Initialization for tasks
	Mastering Short Horizon Skills using Differentiable Physics
	Driving Multi-Stage Solver using Vision-Language

	Limitations and Conclusion
	Future Works
	Acknowledgements
	How to choose keyframes
	DSL for Optimization Programs
	Comparing GPT3.5 and GPT4

	Reinforcement learning baseline
	Evaluation metrics

