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A Overview of Dataset Contents

The StressID dataset contains high-resolution synchronized data from a suite of wearable sensors
and global sensors. The dataset provides answers to 4 self-assessment questions in terms of perceived
stress, relaxation, arousal, and valence, for each task. These annotations can be used to create robust
labels for supervised learning. Fig. 1 presents a summary of the dataset contents and size. The
remainder of the supplementary materials provide all additional information about the StressID
project.

A.1 Dataset Size

StressID contains recordings of 65 subjects. Among the 65 participants, 62 agreed to the public
release of all their data and 3 opted for the release of non-identifying data only, i.e. physiological
and audio. During the acquisitions, due to anomalous camera malfunction, the video and/or audio
recordings of 9 participants – including 1 participant who chose to not share the video data, were
damaged. Consequently, the StressID dataset contains physiological recordings for 65 participants,
video recordings for 54 participants, and audio for 55 participants.

Following data collection, each recorded session is split into individual tasks: one 3-minutes breathing
recording, 2 recordings corresponding to the watching of the emotional video clips of respectively
3 and 2 minutes, 7 separate 1-minute recordings of interactive tasks, and a relaxation recording of
2 minutes and 30 seconds, resulting to up to 11 tasks per subject for the physiological and video
modalities, and 7 tasks per subject for the audio component composed of verbal-tasks only. Besides
the 9 recordings that do not have video or audio, 6 individual task recordings are removed from the
public dataset due to technical issues during the execution of the task.

Ultimately, the entire StressID dataset consists of 711 tasks for the physiological data, 587 tasks
for video data, and 385 tasks for audio data. In total, it represents approximately 1119 minutes
of physiological signals recordings, 918 minutes of video recordings, and 385 minutes of audio.
Table 1 summarizes the number of instances and total duration of the annotated tasks across the
65 participants, in each modality. More information about missing modalities or missing tasks is
provided on the technical file available on the StressID webpage*.

Table 1: Counts and durations of each tasks, in each modality.

Task/Stressor Count physiological (min) Count video (min) Count Audio (min)
Breathing 65 (195) 52 (156) 0 (0)

Video1 64 (185) 52 (150) 0 (0)
Video2 64 (126) 53 (104) 0 (0)

Counting1 65 (65) 54 (54) 55 (55)
Counting2 65 (65) 54 (54) 55 (55)

Stroop 65 (65) 54 (54) 55 (55)
Speaking 65 (65) 54 (54) 55 (55)

Math 65 (65) 54 (54) 55 (55)
Reading 65 (65) 54 (54) 55 (55)

Counting3 65 (65) 54 (54) 55 (55)
Relax 63 (158) 52 (130) 0 (0)
Total 711 (1119) 587 (918) 385 (385)

*https://project.inria.fr/stressid/dataset-composition-details/
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StressID Dataset Facts
Dataset StressID

Motivation

Summary A multimodal dataset for stress identification from video, speech
and physiological data from wearable sensors.
Example Use Cases Stress identification, emotion recognition, task
classification
Original Authors H. Chaptoukaev, V. Strizhkova, M. Panariello,
B. D’Alpaos, A. Reka, V. Manera, S. Thümmler, E. Ismailova, N. Evans, F.
Bremond, M. Todisco, M. A. Zuluaga, L. M. Ferrari

Metadata

URL https://project.inria.fr/stressid/
Keywords Stress recognition, multimodal, wearable sensors
Format .csv, .txt, .mp4, .wav
Ethical review Approved by CER/CERNI
Licence Proprietary
First release 2023

Sensors

ECG BioSignalsPlux ECG sensor
EDA BioSignalsPlux EDA sensor
Respiration BioSignalsPlux Piezoelectric chest-belt
RGB Camera Logitech QuickCam Pro 9000 RGB
Audio QuickCam Pro 9000 integrated microphone

Data Annotations

Self-assessments Stress, relax, arousal, valence
Labels for supervised learning Binary stress, 3-class stress

Annotated Tasks

Relaxing Guided breathing, relaxation
Audiovisual Video clips
Interactive stressors Cognitive tasks, public speaking, multi-tasking

Participants

Count 65
Gender 72%Male, 28%Female
Age 29 ± 7 years
Background 32%Master students, 20%PhD students, 48%Tertiary

Dataset Size

Total size 5.29GB
Physiological total duration across subjects and across tasks 1119 min
Video total duration across subjects and across tasks 918 min
Audio total duration across subjects and across tasks 385 min

Figure 1: A dataset summary card for StressID, constructed based on [2, 5].
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Figure 2: Organisation of the StressID Dataset repository. The dataset is grouped by modality. In
each modality repository, the tasks are grouped by subject in separate repositories.

A.2 Data Formats and Organization

The organization of the dataset at download is illustrated in Fig. 2. Each individual task is identified
in the dataset by subjectname_task. For each modality, all tasks are grouped by subject into
separate repositories. Additionally, we provide 3 .csv files containing self-assessments and labels;
the self_assessments.csv file gathers perceived levels of relaxation, stress, arousal and valence
for each subject and each task, labels.txt corresponds to the labels used to compute the StressID
baselines, and labels_supplementary.txt provides additional labels used in supplementary
experiments described in F.

For each task, data from all wearable sensors is organized into a single .txt file, making it easily
usable with any programming language including Python, Matlab, or C++. Each file contains 3
synchronized entries corresponding to the ECG, EDA, and respiration data respectively. All the
physiological signals are sampled at 500Hz with a resolution of 16 bits per sample.

In a similar fashion, for each task, the video data from the Logitech QuickCam Pro 9000 RGB camera
is contained in a .mp4 generated video file. All videos are acquired at a 720p resolution and sampled
at 5 frames per second. Audio data is recorded at 32kHz with 16 bits per sample. After cutting and
processing, the signals are downsampled to 16kHz. The audio for each task is included in the dataset
as an uncompressed .wav file.

B Dataset Publishing and Usage

B.1 Dataset Hosting and Licensing

The dataset and code are available for researchers. The dataset uses a custom non-commercial
proprietary license for research purposes only. It is made accessible through credentialized access.
Users are required to sign an end-user license agreement to request the data. Once validated, a
link to the repository with a username and a password will be given to grant access. TheStressID
dataset represents 5.29 GB of data. It is hosted on Inria servers, using storage intended for long-term
availability, and ensuring sufficient space to hold all collected data. This space is maintained by the
INRIA infrastructure team. It is also easily accessible to the research team, allowing new data to
be added as it is collected, or withdrawn if needed. This storage thus, allows the dataset to be both
dynamic and persistent. The front-end website* describes the StressID project, access instructions for
downloading the data, the adopted sensors, the recording framework, dataset composition details,
and the baseline models. It is hosted on Inria servers intended for long-term persistent websites
and also maintained by the infrastructure team. The website acts as a portal pointing to all relevant
visualizations, data, code, and instructions. The code for the baselines and analyses uses an open-
source 3-Clause BSD License [6], and is available on GitHub*. It includes ReadMe files describing the

*https://project.inria.fr/stressid/
*https://github.com/robustml-eurecom/stressID

4

https://project.inria.fr/stressid/
https://github.com/robustml-eurecom/stressID


code structure, installation, and usage. In addition, third-party services for archival code repositories
will be explored.

B.2 Intended Uses and Ethical Considerations

StressID is conceived to further develop research on automated stress recognition. The dataset
is a resource of annotated synchronized physiological signals, videos, and audio data, captured
while subjects are involved in tasks specifically designed to elicit stress reactions. Various use cases
include extracting characteristics of stress from each modality, analyzing correlations between various
modalities, analyzing how the modalities relate to specific tasks, training learning pipelines for the
identification of stress in diverse verbal and non-verbal tasks, and training pipelines to discriminate
between audiovisual stimuli, stressors designed to increase the cognitive load or stressors based on
public speaking.

The dataset is made available for research purposes. All personal information about the participants
including, sex, age, and background of participants, although not published, is pseudonymized.
The acquired physiological and audio signals are also pseudonymized, while video data can not be
anonymized. Although the participants explicitly consent to the recording of their session, the dataset
creation, and its public release for research purposes, no attempts should be made to actively identify
the subjects included in the dataset. The data should also not be modified or augmented in a way that
further exposes the subjects’ identities.

In general, recording and usage of human activity data is associated with high ethical implications,
including privacy, bias, and impact on society. If new projects use the StressID experimental
protocol to replicate the study, using similar sensors and identifying modalities, the privacy of
any new subjects should be protected, and the implications of the project clearly described to the
participants. In addition, future applications that use the StressID protocol and/or dataset for
building and training new learning pipelines, should consider the societal implications of their work.
StressID is designed as a resource for improving the monitoring, modeling, and understanding of the
mechanisms of human stress conditions. All intended applications have the potential to improve the
quality of life of the population by helping prevent stress-related issues. However, researchers need to
be aware of potential representation bias in their analyses. Indeed, StressID and subsequent analysis
may present an imbalance in gender, race, age, or background of the participants – which could lead to
unanticipated consequences. Additional information is provided about the participants’ demographics
along with the dataset and should be taken into account when developing new applications based on
the StressID dataset.

We are aware that despite all the precautions, the dataset can be misused by bad-intentioned users.
The authors declare that they bear all responsibility in case of any violation of rights during the
collection of the data or other work, and will take appropriate action when needed, e.g., by removing
data with such issues.

C Human Subjects Considerations

The StressID project was approved by the Institutional Review Board (IRB) of Université Côte
d’Azur, namely the Committee on Ethics for Non-Interventional Research (CERNI/CER). The
project has been conducted under agreement n° 2021-033 for data collection, and n° 2023-016
for the publication of the dataset. Subjects were recruited by email, and word of mouth primarily.
They are composed of 32% Master students, 20% PhD students. The other 48% represent tertiary
professions. Before the start of the experiment, they were introduced to the purpose and contents of
the project, and public release modalities and privacy concerns were described. Participants signed
a recording consent form and a media release form. Each subject participated on a voluntary basis.
Each experiment lasted approximately 50 minutes including preparing sensors, calibration, and the
35 minutes long experiment.

Safety risks include those associated with the wearable sensors used in StressID. Notably, the
use of Ag/AgCl electrodes can cause discomfort or cutaneous irritations in subjects – however,
using clinical grade electrodes during the data collection campaign, we did not encounter any issue
of this type. In addition, the wearable devices used in StressID should not be used in patients
with implanted electronic devices of any kind, including pacemakers, electronic infusion pumps,
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stimulators, defibrillators, or similar. All subjects are made aware of this fact, and cannot participate
in the experiment if they fall in any of the mentioned categories. The experiment presented no safety
risks associated with tasks. Participants were informed they could stop the experiment at any time.

Given the identifying nature of the videos, privacy is a primary concern in this project. Therefore,
the data collection protocol of StressID considered the privacy risks for the participants as much
as possible. The goals and implications of publishing personally identifiable facial videos were
clearly described to each participant, and a dedicated media release consent form was signed to
acknowledge participants’ willingness for their video to be part of the public release of the data.
Ultimately, participants could select between two options: Option A: research use and public release
of all their recorded data, including identifying data (i.e. facial videos), and Option B: research use
of all their recorded data, but no public release of identifying data. The videos of the participants
who selected option B are removed from the public version of the dataset.

The subjects are also informed that they can withdraw their consent at any time. In that case, the data
collected prior to the creation of the database will be destroyed. If the database has already been
created and the subjects have given consent to the use of physiological data or audio, as these are
pseudo-anonymous, they cannot be deleted. Video data will not be shared with other people after
the withdrawal request. However, data that has already been shared cannot be modified. Once the
database has been shared with other authorized researchers, the subjects will no longer be able to
exercise their right of withdrawal on that copy of the database.

D Experimental Protocol

D.1 Preparation and Synchronisation of Sensors

Calibration and synchronization of the devices are done using the Event Annotation functionality
of the OpenSignals (R)evolution platform. Before starting, the subjects are instructed to take a
comfortable sitting position.

First, the wearable sensors are prepared. The BioSignalsPlux* acquisition system is mounted with the
ECG sensor, the EDA sensor, and the piezoelectric respiration belt. The experimenter starts by placing
3 Ag/AgCl electrodes on the ribcage of the subjects to capture the ECG signal. The BioSignalsPlux
ECG sensor is designed to record single lead ECG signals using 3 derivation configurations. Then,
2 Ag/AgCl electrodes are attached to the palm of the non-dominant hand of the subject to acquire
the EDA signal. Finally, the experimenter helps the subjects put on the respiration chest-belt, and
adjust it to their morphology – making sure the participants are as comfortable as possible wearing
the sensors.

After setting up the electrodes, the device is connected to the OpenSignals (R)evolution platform for
recording and streaming the physiological data, thus allowing the experimenter to observe a real-time
reading of the signals. The wearable sensors start recording during this procedure, but no video or
audio is recorded since the camera is not set up yet. The wearables are installed first to enable good
electrodes/skin interfacing, as the gel of the Ag/AgCl electrodes can take some minutes to correctly
hydrate the skin. To ensure accurate and low-noise data, the experimenter checks the sensors’ wires
placement, as well as the posture and position of the subject before the start of the experiment. He
adjusts and fixes the wires of the sensors using medical tape so that the presence of motion artifacts
in the data during the collection is minimized.

Next, the Logitech QuickCam Pro 9000 RGB with integrated microphone is prepared. The camera is
adjusted such that each subject is recorded in the middle of the frame with a neutral background. The
participants sit approximately 50cm from the microphone. The start of the video/audio recording is
marked on the OpenSignals (R)evolution platform using the event annotation plug-in.

Finally, once all devices are set up and the participants are installed, the experiment starts. The
experiment instructions are displayed on a screen placed in front of the participants. The whole
experiment is timed, i.e. each task and instruction are shown for a predetermined time, that is
identical for all subjects. The beginning of the experiment is indicated by a beep sound. Another
event annotation is added at the beep. This ensures the synchronization of the video, audio, and
physiological signals for each task of the experiment.

*biosignalsplux, PLUX wireless biosignals S.A. (Lisbon, Portugal)
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D.2 Task Order and Instructions

The experimental protocol of StressID was designed to have a total duration of 35 minutes while
spanning a wide variety of tasks. It includes a 3-minute guided breathing task used as a non-verbal
baseline, followed by a neutral verbal baseline, 2 emotional video clips, 7 interactive 1-minute tasks,
and a 2-minute and 30-second relaxation task. The choice and design of stressors is based on several
considerations described hereafter:

All stressors have been selected to elicit 3 different categories of responses; 1) stimulate the audiovi-
sual cortex of the participants, 2) increase the cognitive load by soliciting attention, comprehension,
mental arithmetic or multi-tasking abilities, and 3) elicit psycho-social stress leveraging on public
speaking as a stressor.

Overall, the tasks of the experiment are short – which allows the participants to perform several tasks
in a row without tiring or losing acuity by the end of the experiment.

All interactive tasks are designed to leverage time restriction as a stressor by having a strict require-
ment for a response in 1 minute – thus, after receiving instructions on the screen, the subjects see a
ticking 1-minute clock during the execution of each task.

The order of the stressors is designed to be unexpected to the participants. Therefore the experiment
alternates between subgroups of tasks (e.g. Counting3 does not come after Counting2).

The level of detail provided in the instructions as well as the duration of the instruction was also
carefully thought to maximize levels of stress in the experiment, by preventing participants from
preparing for the coming task. The exact text of instructions received by the subjects for each task is
given below:

• Breathing: "Now breathe deeply and relax."

• Baseline: "Start counting forward from 1 for 1 minute out loud".

• Video1: "Watch the video"

• Video2: "Watch the video"

• Counting1: "Start counting backward from 100 subtracting 3 for 1 minute (as fast as you
can)"

• Counting2: "Start counting backward from 1011 subtracting 7 for 1 minute (as fast as you
can)"

• Stroop: "Say out lout as many font colors as you can in one minute"

• Speaking: "Explain what are your strengths and weaknesses in 1 minute"

• Math: "Answer to the following mental arithmetic questions in 1 minute"

• Reading: "Read the following text in 1 minute (you can read silently)", followed by;
"Explain the text in details to us in 1 minute"

• Counting3: "Start counting backward from 1152 subtracting 3 for 1 minute while touching
your thumb with your other fingers"

• Relax: "Watch the relaxing video"

Each of the 11 tasks is followed by self-assessment questions. The counting forward baseline section
is not defined as a task, but is designed to keep the participants in a neutral affective state, therefore it
is not coupled with any self-assessment. Additionally, participants answer a survey question at the
end of the experiment and indicate the task they considered most stressful.

D.3 Self-assessments

Each task is annotated using answers to 4 self-assessment questions. The first 2 questions establish
the participant’s perceived stress and relaxation levels on a 0-10 scale. The following 2 questions
are based on the SAM [3], and establish the participants’ valence and arousal on a 0-10 scale. Fig. 3
shows the self-assessment questions as presented to the participants during the experiment.
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How relaxed were you?

0
Not relaxed

10
Very relaxed

1         2         3         4         5         6         7         8         9  

Please answer out loud

How stressed were you?

0
Not stressed

10
Very stressed

1         2         3         4         5         6         7         8         9  

How did you feel during the task ?

0
Unhappy

10
Happy

1         2         3         4         5         6         7         8         9  

Neutral

How involved were you in the task?

0
Calm/
Not involved

10
Excited/
Very involved

1         2         3         4         5         6         7         8         9  

Attentive/
Involved

Figure 3: Illustration of the four self-assessment questions used in StressID.

Figure 4: Most stressful tasks as designated by participants of StressID.

E Annotation Contents Analysis

E.1 Survey: Most Stressful Task

We analyze the contents of the annotations of StressID. Fig. 4 shows the distribution of the answers
to the question survey at the end of the experiment i.e. which task was perceived as most stressful for
each subject. Approximately 30% of the participants of StressID designated the task Counting2 as
most stressful, 20% designated the task of public Speaking, 15% designated the task Counting3,
while the remainder 35% chose between Stroop, Math, Reading, and Counting1. Although a
majority of participants agreed on Counting2 as the strongest stressor, this analysis highlights the
advantages of relying on multiple and diverse stressors in an experimental protocol designed for
stress identification. Perception of stress and relaxation can vary a lot from one participant to another
– and more so, the effectiveness of a stressor can vary from one subject to another; while an arithmetic
task can be a strong stressor for one individual, it can be an uneventful task for another.

E.2 Participant-specific Distributions of StressID Annotations

We analyze the distributions of the stress, relaxation, arousal, and valence self-assessments for each
participant of StressID. To have a global vision of the dataset, for each self-assessment question we
represent on a single figure all subject-specific Kernel Density Estimate (KDE) plots in Fig. 5. The
KDE plot, analogous to a histogram, represents the distribution of self-assessment data – only using a
continuous probability density curve.
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Several observations can be drawn from Fig. 5. First, for all 4 self-assessment questions, the
participant-specific distributions are rather heavy-tailed, with the exception of a few subjects. This
suggests that each participant of StressID gave a broad range of self-assessed scores across the
experiment, highlighting the ability of the StressID protocol to elicit varied responses. Second, the
perceived stress and relaxation levels of the participants across the experiment are well balanced,
suggesting the experimental protocol enabled the creation of a dataset with proportional instances
of stress and relaxation. Finally, we observe that the distribution of arousal scores is significantly
skewed towards higher ratings across the dataset, highlighting the protocol’s ability to create a high
involvement in the participants and elicit strong responses – whether stress or amusement.

Figure 5: Participant-specific KDE plots for each of the self-assessment questions.

E.3 Joint Distributions of StressID Annotations

We analyze the pair-wise joint distributions of the StressID annotations in Fig. 6. The analysis
highlights a linear relation between stress and relaxation levels. In our experimental protocol, the
participants’ perceived levels of relaxation and stress associated with each task are mutually exclusive
– globally, a subject cannot be both relaxed and stressed during a task. In addition, Fig. 6 highlights a
positive correlation between stress and arousal, and a negative correlation between stress and valence
– suggesting that across subjects and tasks, high arousal and low valence are associated with a higher
level of stress. Similarly, relaxation is positively correlated to valence, and negatively correlated
to arousal – suggesting low arousal and positive valence corresponds to higher levels of relaxation.
These last observations are consistent with psychological studies [4, 10] describing stress on the
circumplex model of affect [11], thus once again affirming the coherence of the StressID dataset.

F Stress and Emotion Identification

We train modality-specific pipelines to perform various classification tasks, e.g. discriminate between
stressed and not stressed. In all the experiments, we generate 8 random splits, using 90% of the
subjects for training, and 10% for testing for each split. The reported results are averaged over the 8
repetitions. The performances of the models are assessed using the f1-score on the test data.
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Figure 6: Joint distributions of pairs of self-assessment answers.

F.1 Pre-Processing, Feature Extraction, and Classification

Physiological Features. In the first step, the ECG, EDA, and respiration signals are pre-processed
to reduce high-frequency noise and baseline wander in the signals. Precisely, we use a 0.5 Hz
high-pass Butterworth filter of order 5 for the ECG, a 5Hz low-pass Butterworth filter of order 4 for
the EDA, and a 0.1-0.35 Hz bandpass Butterworth filter of order 2, followed by a constant detrending
for the respiration signal. We use the neurokit2 python package for all pre-processing. Then,
35 ECG features, 23 EDA, and 40 respiration features are extracted. These features include HRV
measures, frequency features, and non-linear features. An exhaustive list of the features used in our
baselines is provided in Table 2. Additionally, Fig. 7 illustrates an example of basic ECG, EDA, and
respiration features visualized using neurokit2.
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Figure 7: Example of features extracted from the ECG, EDA and respiration signals of StressID.
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Table 2: Exhaustive list of physiological features extracted.

Domain Features Total
ECG

Time
MeanHR, minHR, maxHR, stdHR, modeHR, nNN, meanNN, SDSD, CVNN,
SDNN, pNN50, pNN20, RMSSD, medianNN, q20NN, q80NN, minNN, maxNN,
triHRV

19

Frequency Total power of the signal, LF, HF, LF/HF, ULF, VLF, VHF, rLF, rHF, peakLF,
peakHF 11

Non-linear SD1, SD2, SD1SD2, ApEn, SampEn 5

EDA

Statistical
MinEDA, maxEDA, meanEDA, std, skeweness, kurtosis, median, dynamical
range, minSCR, maxSCR, meanSCR, stdSCR, minSCL, maxSCL, stdSCL,
slopeSCL

15

Time nSCRpeaks, area under SCR, mean amplitude SCR (meanAmp), maxAmp, mean
response SCR (meanResp), sumAmp, sumResp 8

Respiration

Time

MeanRR, minRR, maxRR, stdRR, nBB (breath to breath), meanBB, SDSD, SVNN,
SDNN, RMSSD, minBB, maxBB, meanTT (trhough to through), SDTT, minTT,
maxTT, meanBA (breath amplitude), SDBA, minBA, maxBA, meanBW (breath
width), SDBW, minBW, maxBW

25

Frequency Total power, LF, HF, VLF, VHF, LF/HF, rLF, rHF, peakLF, peakHF 10
Non-linear SD1, SD2, SD1SD2, ApEn, SampEn 5

Video Features. We extract Action Units (AU) and eye gaze from each video frame using the
OpenFace library [1]. The feature extraction from 587 videos is done in 3 hours 42 minutes using
two Dual CPU Intel Xeon E5-2630 v4 processors. Fig. 8 is an example of AUs extracted on a subject
of StressID.

AU12
+

AU25

Lips corners are pulled obliquely
with mouth opening

AU6 Cheeks are raised and eye opening is narrowed

Figure 8: Example of AUs extracted from a video extract of StressID.

Audio Features. In the first step, amplitude-based voice activity detection (VAD) [8] is applied
to the audio signals prior to feature extraction to eliminate non-speech segments. We first extract
handcrafted (HC) features, such as MFCCs, using the libROSA python package [9]. Fig. 9 is an
example of MFCCs extracted on a subject of StressID. Additionally, DNN-based feature extraction
is performed using a large pre-trained Wav2Vec (W2V) model [12]. Features are extracted every
20 ms and are averaged over time to obtain a single 513-component embedding per utterance. The
extraction is done using a GeForce RTX 3090 graphic card.
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Figure 9: Example of MFCCs features extracted from an audio data of StressID.

Classification. For all baselines, we have evaluated several combinations of feature selection
algorithms and classifiers and selected the best-performing ones for our baseline results.

For feature selection, we evaluated a Recursive Feature Elimination (RFE) algorithm, an L1 regu-
larisation, and Principal-Component Analysis (PCA) for dimension reduction, as well as no feature
selection. For the classification models, we have considered a large range of classical classifiers with
different hyper-parameterizations. The exhaustive list is reported in Table. 3

F.2 Additional Experiments

F.2.1 Emotion Recognition.

We report here additional experiments performed with binary labels extracted from the 4 self-
assessments. We evaluate our learning pipeline on 4 binary classification tasks; namely discriminate
between stressed (1) vs not stressed (0), relaxed (1) vs not relaxed (0), high valence (1) vs low valence
(0), and high arousal (1) vs low arousal (0).

Labels. Each continuous value of the self-assessment is split as follows; if value is less than 5 then
the label is 0, and if value is equal or greater than 5, then the label is 1. The created stress label is
balanced and composed of 48% and 52% of class 0 and 1 respectively. Similarly, the relax label is
composed of 54% and 46% of 0 and 1 respectively, and the valence label consists of 50% of each
class. On the other hand, the arousal label is severely imbalanced and consists of 71% of high arousal
(1) and 29% of low arousal (0).

Results and Discussion. The classification performances for all modalities and each label are
reported in Table 4. Our analysis confirms that the labels and the acquired data are coherent and
meaningful, and the labels are predicted from the data with f1-scores well above the random.

Despite the different number of trials for each modality, some general observations can be highlighted.
The valence appears here as the most difficult label to predict. This is especially true for audio and
video, while physiological data seems to carry more useful information to discriminate between
positive and negative valence. For the video, this can be related to the fact that a positive or negative
valence in this set-up can be expressed with similar expressions. A person can smile because they are
amused by the task or they can smile nervously. Recognizing a positive smile from a negative one is
still a challenging task to this day in the field of emotion recognition.

On the other hand, the arousal is better predicted by the audio. This can be due to the fact that when
people are more engaged in the task their tone of voice is incremented.
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Table 3: List of tested classifiers and corresponding grid search of hyper-parameters.

Model Hyper-parameters Grid search values
Support Vector Machines kernel ’linear’, ’rbf’, ’sigmoid’

C 0.1, 1.0, 10.0
gamma ’scale’, ’auto’

K-Nearest Neighbors n_neighbors 3, 5, 10, 20
weights ’uniform’, ’distance’

algorithm ’auto’, ’ball_tree’,’kd_tree’, ’brute’
Random Forests n_estimators 100, 150, 200

criterion ’gini’,’entropy’
max_depth 3, 5, 7

min_samples_split 2, 4, 6
min_samples_leaf 1, 2, 3

max_features ’auto’, ’sqrt’, ’log2’
class_weight None, ’balanced’, ’balanced_subsample’

Multi Layer Perceptron activation ’logistic’, ’tanh’, ’relu’
trained using a cross-entropy loss alpha 0.0001, 0.001, 0.01
in combination with an Adam [7] solver ’lbfgs’, ’adam’
optimizer and number of hidden learning_rate ’constant’, ’invscaling’, ’adaptive
layers in [2,3,4], layer width shuffle True, False

in [64, 128, 256] momentum 0.7, 0.8, 0.9
early_stopping True, False

Logistic Regression penalty l1, l2
C 0.1, 1, 10

solver ’liblinear’, ’saga
Gradient Boosting Classifier loss ’deviance’, ’exponential

n_estimators 100, 150, 200
learning_rate 0.1, 0.5, 1.0

max_depth 3, 5, 7
min_samples_split 2, 4, 6

max_features ’sqrt’, ’log2
LGBM boosting_type ’gbdt’, ’dart

importance_type ’split’, ’gain’
num_leaves 20, 30, 40
max_depth 5, 10, -1

learning_rate 0.1, 0.01
n_estimators 100, 200
objective ’binary’, ’multiclass’
metric ’binary_logloss’, ’multi_logloss’

colsample_bytree 0.8, 1.0
reg_lambda 0.5, 1.
reg_alpha 0.0, 0.5

Ridge Classifier alpha 0.1, 1.0, 10.0
Decision Tree Classifier criterion ’gini’, ’entropy’

max_depth None, 3, 5, 7
min_samples_split 2, 4, 6
min_samples_leaf 1, 2, 3

max_features ’auto’, ’sqrt’, ’log2’

For the tasks of identifying stress and relaxation, the physiological signals appear as the most
meaningful modality. Nonetheless, the results highlight good performances for all modalities,
highlighting the strong correlations between the recorded data and the labels.

F.2.2 Multimodal Learning on Other Multimodal Combinations

To further highlight the advantages of multimodal learning, we have evaluated multimodal baselines
on all the possible modality combinations of the available data, i.e. physiological/video only,
video/audio only, and physiological/audio only. Each baseline that combines the features extracted
from different modalities is evaluated on all the data available in the subset of tasks featuring the said
modalities. When the subset presents a strong imbalance in the labels, we use Minority Over-sampling
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Table 4: Baseline f1-scores for different classification tasks. Each unimodal baseline is trained and
tested on all available tasks of the corresponding modality (#tasks).

Data subset (#tasks) Binary stress Binary relax Binary arousal Binary valence
Physiological (711) 0.73 ± 0.04 0.67 ± 0.06 0.66 ± 0.06 0.64 ± 0.07

Video (587) 0.62 ± 0.04 0.62 ± 0.06 0.67 ± 0.10 0.54 ± 0.07
Audio-HC (385) 0.67 ± 0.04 0.62 ± 0.1 0.79 ± 0.09 0.55 ± 0.09

Table 5: Performances of multimodal baselines for the classification of stress, compared to unimodal
models.

2-class 3-class
Modalities (subset size) F1-score Accuracy F1-score Accuracy

Physiological (711) 0.73 ± 0.02 0.72 ± 0.03 0.55 ± 0.04 0.56 ± 0.03
Video (587) 0.70 ± 0.03 0.70 ± 0.03 0.55 ± 0.03 0.55 ± 0.03
Audio (385) 0.70 ± 0.02 0.66 ± 0.03 0.56 ± 0.04 0.52 ± 0.04

Physiological + Video (587) 0.72 ± 0.04 0.72 ± 0.04 0.62 ± 0.05 0.52 ± 0.07
Video + Audio (370) 0.76 ± 0.05 0.68 ± 0.05 0.52 ± 0.06 0.45 ± 0.05

Physiological + Audio (385) 0.68 ± 0.08 0.62 ± 0.07 0.50 ± 0.07 0.41 ± 0.07
All modalities (370) 0.72 ± 0.05 0.65 ± 0.05 0.63 ± 0.05 0.58 ± 0.07

Techniques (SMOTE) to balance the training set in each of the 10 repetitions, and leave the test sets
untouched.

The multimodal baselines are compared with the best-performing unimodal baselines, trained on all
the available data of each modality. The results for all multimodal baselines for the 2-class and 3-class
classification are reported in Table 5. As observed in the results of Section 4, multimodal models
using decision-level fusion show considerable improvement over the performances of unimodal
models. We, therefore, evaluate models based on SVMs merged with different decision rules (i.e.
sum, product, average, or maximum rule) and report the best-performing ones here.

Despite the different subset sizes for each baseline, some conclusions can be drawn. First, the
performances of unimodal baselines highlight that the physiological modality carries more informa-
tion for the classification of 2-class stress. However, all 3 unimodal baselines achieve comparable
results for the classification of 3-class stress. It can be noted that the baseline on the physiological
modality shows slightly better performances in terms of accuracy, suggesting physiological data is
more susceptible to carrying information allowing to discriminate between different emotional states.

Second, the multimodal baselines show that combining multiple modalities by merging the results
of unimodal models using late voting on each modality (decision fusion), considerably improves
classification performances. For 2-class prediction, the best performance is shown by the combination
of video and audio features. However, for 3-class classification the best performance is achieved
when combining all available modalities, highlighting the predictive potential of combining multiple
complementary sources of data, and showing once more the importance of physiological data in the
discrimination between a relaxed state and acute stress.

F.2.3 Investigating the Effect of Gender Imbalance

A balanced dataset is crucial for performing bias-free analyses and minimizing the risk of bias in
algorithm development. Potential imbalances in gender, race, age, or background of the participants
can limit the development of fair and equitable applications, and researchers need to be aware of this
aspect. To sensitize users to this issue, we have evaluated the predictive potential of our dataset on a
subset of StressID presenting a balanced ratio of female and male subjects – using the previously
introduced unimodal and multimodal baseline models. To create this subset, the recordings from the
18 female participants are kept untouched, and only 18 male participants are randomly selected, thus
resulting in a subset composed of 36 subjects. The classification performances for unimodal and
multimodal baselines for the 2-class classification are reported in Table 6. The results are averaged
over 5 random balanced subsets built this way. All baselines are performed on tasks available for all
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Table 6: Performances of unimodal and multimodal baselines for the 2-class classification of stress,
using a gender balanced subset. The high variability in the results is explained by the use of different
random subsets of the data across repetitions.

Modalities F1-score Accuracy
Physiological 0.69 ± 0.1 0.62 ± 0.1

Video 0.73 ± 0.07 0.65 ± 0.08
Audio 0.69 ± 0.07 0.64 ± 0.07

All modalities (370) 0.73 ± 0.07 0.64 ± 0.07

3 modalities. When the subset presents an imbalance in the labels, we use SMOTE to balance the
training set, and leave the test sets untouched.

Two important conclusions can be drawn from the results observed in Table 6. First, several baselines
built on balanced subsets outperform (or compare to) the baselines using all available data. This
suggests more balanced datasets can improve the performances of subsequent models, and thus
highlights potential bias induced by imbalanced representation in data. This is to be expected, as
training on well-balanced data decreases the risk for a model to overfit – which in the case of gender
imbalance can be translated as learning on male subjects mainly during the training phase and
performing poorly during the testing phase on female subjects, less seen during training. With this
experiment, we aim to increase the awareness of users to the effect of gender imbalance in particular,
and we invite them to account for this possibility in their analyses.

Second, these results illustrate the possibility of developing algorithms achieving good classification
performances on restricted parts of StressID. Indeed, our dataset offers the possibility to focus on
particular subsets of the data while still ensuring good prediction scores, thanks to its large total
population. For instance, the gender-balanced subset of our dataset represents 36 participants, while
similar multimodal datasets collect data from less than 30 participants in total, without eliminating
the limitation of gender imbalance – thus highlighting once more the advantages of StressID.

We strongly encourage users of StressID to anticipate possible consequences by taking the appro-
priate steps to build equitable systems before their use in real-life applications – this experiment
provides a good starting point and example of how to proceed.
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