
Supplementary Material
This appendix is organized as follows: in Appendix A we derive the multi-weight KRR outlined in
Section 4.3 in the main paper. In Appendix B we show times for training the algorithms and discuss
this. In Appendix C we provide details on the algorithms and hyperparameters used in the paper, and
conduct additional experiments to those in Section 5.

Code The code repository necessary to run the experiments are provided at the link https:

//github.com/IsakFalk/atomistic_transfer_mekrr.

A Multi-weight KRR

In this section, we show that solving KRR with the chemically-informed mean embedding (5) is
equivalent to optimize the objective function

TX

t=1

✓
Et �

SX

s=1

hws + w0,�(Hs(xt))i

◆2

+ �

✓
1

↵

SX

s=1

kwsk
2 +

1

1� ↵
kw0k

2
◆
. (6)

Our reasoning follows that in [57, 58] for the multi-task learning setting. Notably here, we work with
embedding kernels and a different loss function, hence the final results is conceptually different.

We begin by defining the change of variable us
wsp
↵
, s 2 [S], and u0

w0p
1�↵

. Then let

u =
�
u0, u1, . . . , uS

�
, and (H(xt)) =

⇣p
1� ↵�(H(xt)),

p
↵�(H1(xt)), . . . ,

p
↵�(HS(xt))

⌘
.

For any u = (u0, u1, . . . , uS) and u0 = (u0

0, u
0

1, . . . , u
0

S
) we also define the inner product hu,u0

i =P
S

s=0hus, u
0

s
i. With this notation the objective function (6) can be rewritten as

TX

t=1

�
Et � hu, (H(xt))i

�2
+ �kuk2

which we recognize as the usual KRR objective with RKHS given by the kernel in (5). Notice that
this reasoning applies whenever ↵ 2 (0, 1). The cases ↵ = 0 or ↵ = 1 can be treated following a
similar reasoning. For instance, if ↵ = 1, since we aim to minimize the objective (6), we can drop
the variable w0 as at the optimum w0 = 0.

B Timings

Table 3: Timings (mean ± std) in seconds for training all algorithms using the same algorithmic
settings as for Table 1 for D1, D4 and the Cu/formate datasets. MEKRR is much faster than the
competitors despite being the most competitive in terms of performance (as seen in Table 1). The
timings were aggregated over three independent runs. For each dataset, we specify the number of
configurations T , atoms n and species S using a tuple (T, n, S). The best performance given by bold
number in gray cell.

Algorithm D1 (720, 47, 2) D4 (600, 74, 2) Cu/formate (1000, 52, 4)

SchNet 483± 2 512± 5 585± 4
GAP-SOAP 52± 1 69± 1 282± 2
SchNet-FT 442± 1 627± 2 708± 1
MEKRR 20± 0.5 38.5± 0.5 43± 1

As can be seen from Table 3, MEKRR is the fastest to train by a wide margin. While train time is
dependent on both the size of the problem in terms of number of configurations T , number of atoms
n and number of chemical species S and the specific hyperparameter used, this shows that for these
settings, MEKRR performs well without sacrificing speed. A thing of note is that the train time of
MEKRR is not drastically impacted by the number of chemical species S compared to GAP-SOAP.

16

https://github.com/IsakFalk/atomistic_transfer_mekrr
https://github.com/IsakFalk/atomistic_transfer_mekrr

C Experiments

C.1 Hardware Specification

OS Ubuntu 20.04.6 LTS
RAM 128GB
CPU AMD Ryzen Threadripper PRO 5965WX 24-Cores
GPU NVIDIA GeForce RTX 3090

C.2 Algorithm specification

We specify in more detail the algorithms and hyperparameter choices. For an exact specification,
please inspect the supplied code base. All of the algorithms use periodic boundary conditions in
all directions. For the same-system predictions for SchNet, SchNet-FT, SCN, and MEKRR we
standardize the data, while for the transfer-system predictions, for all algorithms, we remove the
mean using a precomputed dictionary ✏ 2 RS of the energies of each species s, so that the energy
becomes E 7! E �

P
n

i
✏zi and at test time we predict this residual and add back the correct sum.

SchNet We use the implementation of the OCP20 code base with the number of hidden channels
being 256, number of filters being 64, number of interactions being 3 and number of Gaussians
in the basis expansion being 200 and a cutoff for generating the graphs being 6.0Å. We perform
optimization using the MSE objective with no regularization and use the AdamW optimizer with the
amsgrad option and no weight decay with a learning rate of 10�4. We use a batch size of 16 and
optimize for 800 epochs, saving the weights with the best validation error on the validation set using
RMSE as the validation objective.

SchNet-FT We use the implementation of the OCP20 code base where we use the pretrained
weights of https://dl.fbaipublicfiles.com/opencatalystproject/models/2020_11/

s2ef/schnet_all_large.pt and config https://github.com/Open-Catalyst-Project/

ocp/blob/main/configs/s2ef/all/schnet/schnet.yml (SchNet, trained on the split All in
the OCP20 models table). This model has the hyperparameters of number of hidden channels being
1024, the number of filters being 256, the number of interactions being 5, number of Gaussians in
the basis expansion being 200 and a cutoff for generating the graphs being 6.0Å. We freeze layers
up to layer 3. We fit the remaining parameters by optimization using the MSE objective with no
regularization and use the AdamW optimizer with the amsgrad option and no weight decay with a
learning rate of 10�4. We use a batch size of 16 and optimize for 400 epochs, saving the weights
with the best validation error on the validation set using RMSE as the validation objective.

SCN We use the implementation of the OCP20 code base with the number of interactions being 3,
hidden channels being 64, sphere channels being 32, number of sphere samples being 128, l_max
being 6 and number of bands being 2, the number of basis functions for SCN being 32 and a cutoff
for generating the graphs being 6.0Å. We perform optimization using the MSE objective with no
regularization and use the AdamW optimizer with the amsgrad option and no weight decay with a
learning rate of 4 · 10�4. We use a batch size of 16 and optimize for 800 epochs, saving the weights
with the best validation error on the validation set using RMSE as the validation objective.

GAP As specified in the main body, we use the quippy python interface of the QUIP
implementation of GAP. We set the following parameters in the command line interface
gap_fit where we use the SOAP parameters atom_sigma = 0.5, l_max = 6, n_max =
12, cutoff = 6.0, cutoff_transition_width = 1.0, delta = 0.2, covariance_type =
dot_product, n_sparse = 1000, zeta = 4, energy_scale = 1.0, atom_gaussian_width =
1.0 and additional parameters of default_sigma = [0.001, 0., 0., 0.], e0_method = average, ex-
cept for the transfer learning experiments where we instead remove the average using precomputed
atom-specific energies as specified in the top paragraph of this section.

MEKRR For MEKRR-(SchNet) we use the same pretrained weights and configuration as those of
SchNet-FT above, and we extract the representation as the output of the second layer.

17

https://github.com/Open-Catalyst-Project/ocp
https://github.com/Open-Catalyst-Project/ocp
https://dl.fbaipublicfiles.com/opencatalystproject/models/2020_11/s2ef/schnet_all_large.pt
https://dl.fbaipublicfiles.com/opencatalystproject/models/2020_11/s2ef/schnet_all_large.pt
https://github.com/Open-Catalyst-Project/ocp/blob/main/configs/s2ef/all/schnet/schnet.yml
https://github.com/Open-Catalyst-Project/ocp/blob/main/configs/s2ef/all/schnet/schnet.yml
https://github.com/Open-Catalyst-Project/ocp/blob/main/MODELS.md
https://github.com/Open-Catalyst-Project/ocp
https://github.com/libAtoms/QUIP/issues/397

For MEKRR-(SCN), we use the implementation of the OCP20 code base where we use the pretrained
weights of https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_03/

s2ef/scn_all_md_s2ef.pt and config https://github.com/Open-Catalyst-Project/

ocp/blob/main/configs/s2ef/all/scn/scn-all-md.yml (SCN, trained on the split All+MD
in the OCP20 models table). This model has the hyperparameters of number of hidden channels being
1024, number of sphere channels being 128, the number of interactions being 16, number of Gaussians
in the basis expansion being 200 and a cutoff for generating the graphs being 6.0Å. For additional
hyperparameters, see the configuration file at https://github.com/Open-Catalyst-Project/
ocp/blob/main/configs/s2ef/all/scn/scn-all-md.yml. The GNN feature map is obtained
as the output of the 8th layer of SCN. Furthermore, in order to get invariant feature vectors from the
C channels of spherical harmonics functions of the L’th layer, (sL,c)Cc=1 we perform a reduction
sL,c 7! hL,c =

R
sL,c(r)dr and stack them into a feature vector hL = (hL,c)Cc=1.

For the datasets in Table 1 we use � = 10�7 and ↵ = 1.0, 10�2 for the Fe/N2 and Cu/Formate
datasets, respectively with C = 1/n. For the datasets in Table 2 we use � = 10�4 and ↵ = 0.0.

In order to transfer between different system sizes (as in Table 2) we note that, if the model has been
trained with data (H(xt))Tt=1 from a system of given size, and one wants to estimate the energy
E(H) of a configuration H belonging to a system of different size nH whose node embeddings are
(hi)

nH

i=1, one has

E(H) ⇡ f(H) =
nHX

i=1

TX

t=1

cth�(hi),�(H(xt))i

where (ct)Tt=1 are the fitted coefficients for MEKRR. For this reason, in this setting we use C equal
to 1.

C.3 Additional experiments

All of the below experiments are done with the pre-trained SchNet feature map.

Necessity of non-linear kernel in MEKRR To show that averaging the node-features from the
pre-trained SchNet GNN fails to learn we apply MEKRR with a linear kernel to the output of the
second layer to the pretrained SchNet. The results are shown in Table 4. We can clearly see that
Linear-KRR (MEKRR with a linear kernel applied to SchNet) fails to perform well highlighting the
need for a non-linear kernel for MEKRR to work.

Representation layer In all experiments of MEKRR-(SchNet) we construct the feature vector as
the output of the second layer of the pre-trained model. This is motivated by the tradeoff between
memory, computation and performance. In this section we report the results when varying the number
of layers on the same-energy prediction on dataset D2 (Table 5) for the two limiting case (↵ = 0 and
↵ = 1). In both cases, there is only a slight increase in performance. Furthermore, we report the
visualizations of the kernel matrix in Fig. 4. For both tasks, we observe an improvement when using
the chemical species-informed MEKRR variant.

Evaluation tables In Table 6 and Table 7 we report additional metrics for the same-dataset and
across-datasets energy predictions. We also distinguish the general multispecies formulation from
that which uses shared weights (↵ = 0). Note that for the Fe/N2 datasets, the value of ↵ is not
cross-validated on every dataset but only on D2 (see Section 5.3).

18

https://github.com/Open-Catalyst-Project/ocp
https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_03/s2ef/scn_all_md_s2ef.pt
https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_03/s2ef/scn_all_md_s2ef.pt
https://github.com/Open-Catalyst-Project/ocp/blob/main/configs/s2ef/all/scn/scn-all-md.yml
https://github.com/Open-Catalyst-Project/ocp/blob/main/configs/s2ef/all/scn/scn-all-md.yml
https://github.com/Open-Catalyst-Project/ocp/blob/main/MODELS.md
https://github.com/Open-Catalyst-Project/ocp/blob/main/configs/s2ef/all/scn/scn-all-md.yml
https://github.com/Open-Catalyst-Project/ocp/blob/main/configs/s2ef/all/scn/scn-all-md.yml

(a) ↵ = 0

(b) ↵ = 1.0

Figure 4: Heatmaps of the K↵ kernel applied when k is Gaussian (lengthscale fit with median
heuristic) and the node-features are given by the L’th layer L = 1, . . . 5 of the pretrained SchNet
GNN going from the leftmost to rightmost column, to a part of the trajectory of D2 (where a reactive
event occurs) and time series of the distance between nitrogen atoms over time t. The cases with
↵ = 0 and ↵ = 1 are reported above and below, respectively. Using spectral clustering with the
two kernels as inputs we label each time-index with one of two classes, with the background color
showing the class. The color has been normalized to be between 0 and 1 which does not affect
the clustering or visualization. We can see that output representation from later layers yield more
patterned kernel matrices with more erratic clustering. Using the multi-weight kernel K↵ where
↵ = 1 gives better results across the board.

Table 4: Comparison between linear and Gaussian kernel, same-dataset energy prediction for the
Fe/N2 datasets Di. The errors are in units of meV/atom. Best performance given by bold number in
gray cell.

Algorithm D1 D2 D3 D4

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Linear-KRR-(↵ = 0) 72 69 198 166 66 53 146 118
Linear-KRR-(↵ = 1) 21 18 155 125 161 128 55 40
MEKRR-(↵ = 0) 0.3 0.3 1.5 1.2 2.2 1.7 2.2 1.8
MEKRR-(↵ = 1) 0.1 0.1 1.3 0.9 2.4 1.7 3.3 2.3

Table 5: Comparison of MEKRR using different representation layers for the feature map, tested on
the same-dataset energy prediction task for the Fe/N2 dataset D2. The errors are in units of meV/atom.
Best performance given by bold number in gray cell.

Layer ↵ = 0 ↵ = 1

RMSE MAE RMSE MAE

1 1.9 1.4 1.7 1.2
2 1.5 1.1 1.3 0.9
3 1.4 1.0 1.0 0.7
4 1.4 1.0 1.0 0.7
5 1.4 1.0 0.9 0.6

19

Table 6: Same-dataset energy prediction. The errors are in units of meV/atom. Best performance
given by bold number in gray cell. With respect to Table 1, we also report the Mean Absolute Error
(MAE) metric and we also add the case with ↵ = 0.

Fe/N2 Cu/formate

Algorithm D1 D2 D3 D4

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

GAP 0.4 0.4 2.1 1.5 3.9 2.9 4.9 3.0 2.8 1.4
SchNet 0.5 0.4 4.1 3.2 5.1 3.8 6.2 4.7 6.0 4.7
SCN 0.3 0.2 5.1 3.8 7.5 5.9 7.3 5.8 2.5 2.0

SchNet-FT 0.1 0.1 2.0 1.5 2.5 3.2 3.2 2.6 1.9 1.5

MEKRR-(SchNet)-0 0.3 0.3 1.5 1.2 2.2 1.7 2.2 1.8 1.7 0.9
MEKRR-(SCN)-0 0.2 0.2 1.8 1.4 3.6 2.9 6.8 5.2 1.8 0.6
MEKRR-(SchNet) 0.1 0.1 1.3 0.9 2.4 1.7 3.3 2.3 1.2 0.6
MEKRR-(SCN) 0.2 0.1 0.9 0.7 1.9 1.5 2.7 2.1 1.7 0.6

Table 7: Transfer evaluation of algorithms on source to target: Dsource ! Dtarget. The errors are in
units of meV/atom. Best performance given by bold number in gray cell. With respect to Table 2, we
also report the Mean Absolute Error (MAE) metric.

Algorithm D1 ! D2 D1 ! D3 D2 ! D3 D2 ! D4 D3 ! D4

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

GAP 24.9 14.6 59.1 34.1 5.8 4.2 830 829 888 888
SchNet 13.2 10.1 15.4 12.3 6.2 4.9 93 90 107 105
SCN 22.1 18.3 29.3 23.1 9.7 7.7 139 136 131 129

SchNet-FT 17.6 13.6 27.3 19.4 3.7 2.8 121 119 116 114

MEKRR-(SchNet) 8.0 5.6 9.3 6.9 2.9 2.2 27 20 55 51

MEKRR-(SCN) 7.0 4.8 6.3 5.1 2.0 1.6 40 32 42 34

20

	Introduction
	Learning the potential energy surface from atomistic simulations
	Setting
	Objective function

	Kernel ridge regression and kernel mean embeddings
	Method
	GNN representations of chemical environments
	Our method: mean embeddings of GNN representations
	Chemically-informed kernel mean embeddings

	Experiments
	Baselines and MEKRR
	Datasets
	Interpolating between shared and independent weights
	Potential energy regression
	Leveraging MEKRR beyond supervised learning

	Conclusion and future work
	Multi-weight KRR
	Timings
	Experiments
	Hardware Specification
	Algorithm specification
	Additional experiments

