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Abstract

With a long history of traditional Graph Anomaly Detection (GAD) algorithms and
recently popular Graph Neural Networks (GNNs), it is still not clear (1) how they
perform under a standard comprehensive setting, (2) whether GNNs can outperform
traditional algorithms such as tree ensembles, and (3) how about their efficiency
on large-scale graphs. In response, we introduce GADBench—a benchmark tool
dedicated to supervised anomalous node detection in static graphs. GADBench
facilitates a detailed comparison across 29 distinct models on ten real-world GAD
datasets, encompassing thousands to millions (∼6M) nodes. Our main finding
is that tree ensembles with simple neighborhood aggregation can outperform the
latest GNNs tailored for the GAD task. We shed light on the current progress of
GAD, setting a robust groundwork for subsequent investigations in this domain.
GADBench is open-sourced at https://github.com/squareRoot3/GADBench.

1 Introduction

Graph Anomaly Detection (GAD) is the process of identifying uncommon graph objects, such as
nodes, edges, or substructures, that significantly deviate from the majority of reference objects within
a graph database [4, 55]. With a notable history spanning over two decades, GAD has proven its
effectiveness across a variety of applications. These include, but are not limited to, the prevention
of financial fraud [36] and money-laundering [83], the prediction of network intrusions [57, 64]
and device failures [46], the identification of spam reviews [56] and fake news [8]. Unlike outlier
detection in tabular data, GAD considers the inter-dependencies among a group of objects, which can
often yield additional insights for identifying fraudulent patterns. Meanwhile, GAD also presents
unique challenges in terms of modeling efficiency and necessitates strategies to address issues such
as label imbalance [50], feature heterophily [26], and relation camouflage [22].

The definitions of GAD can be multifaceted, depending on the specific objectives and applications. In
this paper, we focus on the most prevalent GAD scenario—the detection of anomalous nodes within
a static attributed graph. Despite the plenty of methods proposed for this task, including traditional
structural pattern mining algorithms [57, 4] and advanced deep learning techniques [21, 55], several
limitations exist in the current model development and evaluation scheme:

• Absence of a comprehensive supervised GAD benchmark. We summarize the exiting GAD
benchmarks and toolboxes in Table 1. The latest benchmark available for GAD, BOND [49],
exclusively evaluates unsupervised methods. This overlooks the fact that many GAD models rely
on labeled data to boost their performance. In comparison, there have been a variety of supervised
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Table 1: Comparison of existing GAD benchmarks in terms of datasets, models, and scenarios.

Benchmark #Datasets Max. Nodes #Models Model Type Supervision Scenario&Toolbox (Organic) /Edges

UGFraud [23] 1 (1) 45K/3M 6 GNN Unsupervised
DGFraud [22] 3 (1) 45K/3M 9 GNN Supervised
BOND [49] 9 (6) 3M/4M 14 GNN, Classic Unsupervised

GADBench 10 (10) 5M/73M 29 GNN, Classic, Trees Fully- and Semi-Supervised

anomaly detection benchmarks for time series [59, 61], images [68], videos [1], and tabular data
[31, 77]. Semi-supervised approach is another setting that calls for attention because it can strike a
balance between label annotation budgets and model performance.

• Insufficient comparative studies between tree ensembles and GNNs. Tree ensemble methods,
including Random Forest [12], XGBoost [16], and Isolation Forest [48], have long been favored in
the industry. They also showcase impressive results in a recent benchmark for anomaly detection
within tabular datasets [31]. These models are also applicable to GAD datasets [83] with appropri-
ate feature engineering. However, a systematic comparison between tree ensembles and GNNs in
the context of GAD is still absent.

• Limited exploration on large-scale graphs. While many GNN models tailored for GAD have
shown promising results on small-scale datasets, their efficacy on large graphs remains unexplored.
On the other hand, although several large-scale GAD datasets have been proposed [36, 83, 74], they
mainly focus on the comparisons of GNN variants, making it unclear how they perform compared
with traditional GAD algorithms.

To redress these gaps and foster academia-industry synergy in GAD evaluation, we propose GAD-
Bench, which serves as the first comprehensive benchmark for supervised GAD. Our evaluation
encompasses 7 non-graph models, 10 standard GNNs, and 10 state-of-the-art GNNs specifically
designed for GAD. Recognizing the proven success of tree ensembles in the anomaly detection of
tabular data, we additionally employ two tree ensemble models with simple neighborhood aggrega-
tions. All models are evaluated on 10 real-world GAD datasets ranging from thousands to millions
of nodes. They are tested in both semi-supervised and fully-supervised settings, with and without
hyperparameter tuning.

Through extensive experiments, we discover that (1) surprisingly, tree ensembles with neighbor
aggregation have the superior performance among all models; (2) most standard GNNs are not
suitable for the GAD task; (3) GNNs specifically designed for GAD require hyperparameter tuning
to achieve satisfactory performance. We highlight that our findings can offer the research community
a clearer insight into the current progress in GAD. In summary, our contributions can be organized
into three main aspects:

• We introduce GADBench, the first comprehensive benchmark for supervised anomalous node
detection on static attributed graphs. This includes a comparison of 29 well-known GAD methods
across a collection of 10 real-world datasets in both semi-supervised and fully-supervised settings.

• To ensure a rigorous and fair comparison, we identify the limitations inherent in the existing
evaluation scheme for GAD, instituting enhancements from dataset selection, metric utilization,
model training, and hyperparameter tuning.

• We integrate all models, datasets, and evaluation protocols mentioned in this paper into an open-
source repository. Users can reproduce the results and evaluate their own datasets/models with
minimal effort.

2 Preliminaries and Related Work

Task definition. We focus on the detection of anomalous nodes within a static attributed graph.
Formally, consider a graph G = {V,A,X}, where V = {v1, v2, · · · , vN} denotes a set of N nodes.
The non-negative adjacency matrix A ∈ RN×N is defined such that Aij > 0 if and only if there is
an edge between vi and vj . X ∈ RN×d is a feature matrix, of which the i-th row vector xi = X(i, :)
is the d-dimensional feature vector of node vi. Given a subset of labeled nodes V∗ ⊂ V , the task
is to classify the remaining nodes into either normal or anomalous categories. In the context of
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a heterogeneous graph, multiple adjacency matrices {A1,A2, · · · } might exist, each representing
different types of relationships among nodes.

Although the GAD task can be regarded as a binary node classification problem, it introduces several
additional challenges. Firstly, anomalous nodes typically constitute a small portion of the total
nodes, resulting in a significant data imbalance [50, 74]. Secondly, graphs with anomalies often
exhibit strong heterophily, where connected nodes possess varying features and labels [27, 26]. This
necessitates strategies to handle neighborhood feature disparities during message passing. Lastly,
anomalous nodes have a tendency to camouflage their features and connections, blending seamlessly
by mimicking the normal patterns in the graph [22, 51]. This demands attention to intentionally
manipulated edges and node features. Before presenting our benchmark, we provide a brief overview
of both classic methods and deep learning based GAD models. For a more thorough review of GAD
models, please refer to these relevant surveys [55, 4, 38].

Classical methods. Classical methods primarily detect graph anomalies by leveraging graph statistical
patterns [57, 34], community and clustering structures [14, 43, 86], egonet information [3], spectral
analysis [25], random walk-based techniques [81, 29], etc. Other than these heuristic approaches and
handcraft feature engineering, another research line leverages learning methods for a more flexible
encoding of graph information to identify anomalies. Examples include residual learning [45, 63],
relational learning [40, 66], and Bayesian models [33]. Despite their advantages, most methods
are primarily designed for plain graphs and struggle to handle attributed graphs. Additionally, they
predominantly emphasize unsupervised settings and are generally inefficient in utilizing node labels.

GNNs for GAD. With superb ability to encode both structure and attribute information simultaneously,
GNNs have recently gained popularity in mining graph data [76, 39, 85, 30]. To tackle the unique
challenges of graph anomalies, such as imbalance, heterophily, and camouflage, several adaptations
of standard GNNs have been proposed [20, 96, 24, 53, 52, 21, 79, 54, 90]. On one hand, spatial
GNNs have primarily been redesigned at the level of their inherent mechanisms, such as message
passing and aggregation [99]. For instance, GAS [44] employs a structure-enhanced pre-processing
strategy to establish implicit connections between anomalies. CARE-GNN [22] and GraphConsis [51]
combat the camouflage behavior by designing camouflage-resistant message passing and aggregation
processes. H2-FDetector [72] introduces a novel information aggregation strategy that enables
homophilic connections to propagate similar information, while heterophilic connections disseminate
differing information. With the consideration of label imbalance, solutions like PC-GNN [50] and
DAGAD [47] use imbalance-aware data sampling and graph augmentation to highlight the importance
of anomalies during training. On the other hand, spectral GNNs provide a fresh viewpoint that
associates graph anomalies with high frequency spectral distributions [26]. For example, BWGNN
[74] applies Beta kernel to manage higher frequency anomalies via flexible and localized band-pass
filters. AMNet [13] captures both low-frequency and high-frequency signals, adaptively integrating
signals of varying frequencies.

Ensemble models. Tree ensembles, such as Random Forest [12, 9, 6, 5] and XGBoost [16, 78, 97, 58],
have shown superior performance in anomaly detection tasks related to tabular data [93, 10, 2, 100].
For example, XGBOD [93], an extension of the XGBoost algorithm specifically designed for anomaly
detection, incorporates scores from other models such as Isolation Forest [48] as additional feature
and achieves superior performance. Despite their potential, few research has explored the application
of tree ensembles in leveraging both structural and feature information simultaneously for GAD.
Beyond trees, various base models can be integrated into ensembles for anomaly detection, as
suggested by [89]. The use of neighborhood aggregation has been demonstrated to enhance anomaly
detection performance, which can be utilized during various stages such as pre-processing [87],
model-training [17], and post-processing [88] phases. In this work, we revisit tree ensemble models
and demonstrate their potential to outperform GNNs after combining a straightforward structural
neighborhood aggregation.

3 The Setup of GADBench

In this section, we present a comprehensive overview of the setup for GADBench. We provide the
general selection criteria and considerations for models (Section 3.1), datasets (Section 3.2), and
other details (Section 3.3).
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Table 2: Categorization of all models used in our evaluation.

Classic Methods MLP [67] , KNN [18], SVM [15], RF [12], XGBoost [16], XGBOD [93], NA [88]

Standard GNNs GCN [39], SGC [84], GIN [85], GraphSAGE [30], GAT [76], GT [73], PNA [17]
BGNN [37], RGCN [70], HGT [35]

Specialized GNNs GAS [44], DCI [82], PC-GNN [50], GAT-sep [99], BernNet [32], AMNet [13],
BWGNN [74], GHRN [26], CARE-GNN [22], H2-FDetector [72]

Tree Ensembles with RF-Graph, XGB-GraphNeighbor Aggregate

3.1 Benchmark Models

Table 2 provides an overview of the 29 models assessed in GADBench. We briefly introduce each
model in the following, and provide a more detailed description in Appendix A.

Classical methods. We select three basic algorithms for supervised classification: Multi-Layer
Perceptron (MLP), k-Nearest Neighbors (KNN), and Support Vector Machine (SVM). Additionally,
we incorporate three representative decision tree ensembles, including a bagging-based model,
Random Forest (RF); a boosting-based model, Extreme Gradient Boosting Tree (XGBoost); and an
advanced XGBoost model named Extreme Boosting Based Outlier Detection (XGBOD). We also
assess a recent anomaly detection technique, Neighborhood Averaging (NA), which enhances the
outlier scores of existing anomaly detectors by averaging them with the scores of neighboring objects.

Standard GNNs. We evaluate several standard GNNs that have proven to be effective across
diverse graph learning tasks, including Graph Convolutional Network (GCN), Chebyshev Spectral
Convolution Network (ChebNet), Graph Isomorphism Network (GIN), Graph Sample and Aggregate
(GraphSAGE), Graph Attentional Network (GAT), Graph Transformer (GT), Principle Neighbor
Aggregation (PNA), Boosted Graph Neural Network (BGNN). We also consider two widely used
heterogeneous GNNs, including Relational Graph Convolution Network (RGCN) and Heterogeneous
Graph Transformer (HGT).

Specialized GNNs. This group contains GNNs specifically designed for anomaly detection. We
evaluate five spatial GNNs including the Graph-based Anti-Spam Model (GAS), Deep Cluster In-
fomax (DCI), Pick and Choose GNN (PC-GNN), and the GAT with ego- and neighbor-embedding
separation (GAT-sep). For spectral GNNs, we evaluate the graph spectral filter via Bernstein Approx-
imation (BernNet), Adaptive Multi-frequency GNN (AMNet), Beta Wavelet GNN (BWGNN), and
the Graph Heterophily Reduction Network (GHRN). Additionally, we assess two GNNs optimized
for heterogeneous graphs: the CAmouflage-REsistant GNN (CARE-GNN) and the Fraud Detector
with Homophilic and Heterophilic Interactions (H2-FDetector).

Tree ensembles with neighbor aggregation. Decision tree ensembles have shown their effectiveness
in anomaly detection with tabular data [31], prompting us to adapt them for GAD. To incorporate
graph structure information, we follow the idea from a subclass of GNNs that independently man-
age message passing and node feature transformation [84, 98, 91]. Consequently, we devise tree
ensembles with Neighbor aggregation that adhere to the following computational paradigm:

h(l)
vi = Aggregate{h(l−1)

vj |vi ∈ Neighbor(vj)}

Score(vi) = TreeEnsemble([h0
vi ||h

1
vi || · · · ||h

L
vi ]).

In this scheme, h(0)
vi = xi denotes the initial node attributes, and h

(l)
vi represents the feature of node

vi after l-layers of neighbor aggregation. Aggregate(·) can take on any aggregation function such
as mean, max, or sum pooling. Same as [84, 98, 91], the aggregation process is parameter-free.
TreeEnsemble(·) can be any tree ensembles that takes the aggregated features as input to predict the
anomaly score of node vi. In GADBench, we utilize Random Forest and XGBoost to instantiate two
new tree ensemble baselines with neighbor aggregation, referred to as RF-Graph and XGB-Graph.

3.2 Benchmark Datasets

In GADBench, we have gathered 10 diverse and representative datasets, as detailed in table 3, which
are chosen based on the following criteria:
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Table 3: Statistics of all datasets in GADBench including the number of nodes and edges, the node
feature dimension, the ratio of anomalous labels, the training ratio in the fully-supervised setting,
the concept of relations, and the type of node features. Misc. indicates the node features are a
combination of heterogeneous attributes, possibly including categorical, numerical, and temporal
information, More details are shown in Appendix B.

#Nodes #Edges #Feat. Anomaly Train Relation Concept Feature Type

Reddit[42, 49] 10,984 168,016 64 3.3% 40% Under Same Post Text Embedding
Weibo[92, 49] 8,405 407,963 400 10.3% 40% Under Same Hashtag Text Embedding
Amazon[56, 22] 11,944 4,398,392 25 9.5% 70% Review Correlation Misc. Information
YelpChi[66, 22] 45,954 3,846,979 32 14.5% 70% Reviewer Interaction Misc. Information
Tolokers[65] 11,758 519,000 10 21.8% 40% Work Collaboration Misc. Information
Questions[65] 48,921 153,540 301 3.0% 52% Question Answering Text Embedding
T-Finance[74] 39,357 21,222,543 10 4.6% 50% Transaction Record Misc. Information
Elliptic[83] 203,769 234,355 166 9.8% 50% Payment Flow Misc. Information
DGraph-Fin[36] 3,700,550 4,300,999 17 1.3% 70% Loan Guarantor Misc. Information
T-Social[74] 5,781,065 73,105,508 10 3.0% 40% Social Friendship Misc. Information

• Organic anomalies. Datasets in GADBench exclusively contain anomalies that naturally emerge in
real-world scenarios, a distinction from previous studies that employ synthetic anomalies for GAD
evaluations [21, 49]. These earlier works typically inject artificial node attributes and structures
into normal graphs like Cora [71], resulting in anomalies that are relatively straightforward to be
identified and obviously different from real-world anomalies.

• Various domains. Datasets in GADBench span multiple domains, including social media, e-
commerce, e-finance, and crowd-sourcing. As presented in Table 3, the graph edge in each dataset
embodies unique relation concepts, which shows a diverse distribution of applications.

• Diverse scale. GADBench datasets cover a wide scale, from thousands to millions of nodes. We
have consciously excluded datasets with fewer than 5,000 nodes, such as Bitcoin-Alpha [41],
Disney, and Books [69].

• Imbalance ratio. We have ensured that the number and ratio of anomalies within the datasets meet
a specific criteria: each dataset contains more than 100 anomalies, to ensure stable experimental
results, and no more than a 25% anomaly ratio, preserving the inherent imbalance nature of GAD.
This criterion leads to the exclusion of the Enron dataset [69].

Among the datasets in GADBench, Weibo, Reddit, Questions, and T-Social are designed to identify
anomalous accounts on social media platforms. Tolokers, Amazon and YelpChi datasets aim to detect
fraudulent workers, reviews and reviewers on crowd-sourcing or e-commerce platforms. T-Finance,
Elliptic, and DGraph-Fin concentrate on identifying fraudulent users, illicit entities and overdue loans
in financial networks, respectively. For a more comprehensive description of each dataset, please
refer to Appendix B.

3.3 Other Details

Data split. We employ both fully-supervised and semi-supervised settings for model evaluation. In a
fully-supervised setting, we preserve pre-existing data splits when available. If such divisions are not
provided, we follow the approach suggested by [74], randomly partitioning nodes into three subsets:
40% for training, 20% for validation, and the remaining 40% for testing. For each dataset, the specific
training ratio is reported in table 3. The semi-supervised setting typically involves a smaller training
ratio, e.g., 1% or 5% in previous studies [22, 74]. However, due to the variance in graph sizes present
in GADBench, a fixed training ratio might lead to substantial discrepancies in the scale of training
sets. To more accurately mimic real-world semi-supervised scenarios, we standardize the training
set across all datasets to include a total of 100 labels—20 positive labels (anomalous nodes) and 80
negative labels (normal nodes). To ensure robustness in our findings, we execute ten random splits
on each dataset and analyze the average performance of the model.

Metrics. According to existing anomaly detection benchmarks [31, 49], we select Area Under
the Receiver Operating Characteristic Curve (AUROC), Area Under the Prevision Recall Curve
(AUPRC) calculated by average precision, and the Recall score within top-k predictions (Rec@K) as
performance metrics for the GAD task. We set k as the number of anomalies within the test set. For
all metrics, anomalies are considered as the positive class, and higher scores indicate better model
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performance. Among these metrics, AUROC primarily focuses on overall performance and is not
sensitive to top-k predictions, Rec@K only cares top-k performance, and AUPRC strikes a balance
between the two. Suppose the test set includes 10 anomalies within 1000 data points and a model
ranks them from positions 11th to 20th, it would attain an AUROC of 0.99, an AUPRC of 0.33, and
a Rec@10 of 0. We also document the running time and memory consumption of each model.

Hyperparameter Optimization. To control the effect of hyperparameter selection and ensure fairness
[11], we standardize the evaluation process with and without hyperparameter tuning. Initially, we
employ default hyperparameters as stated in the original papers. To ensure fairness in hyperparameter
tuning, we then utilize random search [7] to optimize hyperparameters. During one trial on each
dataset, we randomly select a set of hyperparameters from the predefined search space for each
model. For more information about metrics, default hyperparameters, search spaces, and other
implementation details, please refer to Appendix C.

4 Experimental Results

In this section, we study the experimental results of all the benchmarked models. We first provide
a comprehensive comparison of all models, taking into account both default and optimally tuned
hyperparameters. Following that, we aim to conduct an in-depth comparison between tree ensembles
with neighbor aggregation and GNN-based methods.

4.1 Overall Comparison

In Figure 1, we present an overview of model performance across 10 datasets for all metrics,
excluding four GNNs that are specific to heterogeneous graphs. In Table 4, we take a close look at
the model performance regarding the AUPRC score after hyper-parameter tuning on each dataset.
For comprehensive experimental results, please refer to Appendix D. Our key findings include:

Ensemble trees with neighbor aggregation have superior performance. As highlighted in Figure
1, XGB-Graph and RF-Graph consistently surpass other compared models across all metrics using
default hyperparameters. The performance gap becomes particularly significant in the fully-supervised
setting, i.e., XGB-Graph surpasses BWGNN—the best GNN model in this setting—by an absolute
average improvement of 2.0% on AUROC, 12.9% on AUPRC, and 9.8% on Rec@K. In the semi-
supervised context, RF-Graph presents an absolute average improvement of 2.8% on AUROC, 8.0%
on AUPRC, and 3.1% on Rec@K, as compared to GHRN, the best GNN model in this setting. It
is important to highlight that the improvement in AUPRC and Rec@K is more pronounced than
that in AUROC due to the imbalanced issue, suggesting that RF-Graph and XGB-Graph are more
proficient in predicting top-k high-confidence anomalies. Further, as shown in the bottom of Figure
1, tree ensembles with neighbor aggregation not only outperform GNNs in terms of efficiency but
also exhibit lower memory consumption. Although the performance gap of different models narrow
after hyperparameter tuning as in Table 4, RF-Graph and XGB-Graph still prevail among 6 out of 10
datasets. Accordingly, our observations show the superior effectiveness and efficiency of RF-Graph
and XGB-Graph across diverse GAD datasets and scenarios.

Most standard GNNs prove unsuitable for GAD. As shown in Figure 1, it becomes clear that
the majority of standard GNNs encounter difficulties when dealing with GAD tasks. To illustrate,
the performance of GCN and GIN is on par with that of MLP—a method that does not take graph
structure information into account. This indicates that standard GNNs often struggle to effectively
handle structure camouflage or feature heterophily problems induced by anomalies. In Table 4,
while hyperparameter tuning does improve the results of all standard GNNs, they remain subpar
compared to methods in other categories. An exception is GraphSAGE, which displays an average
absolute improvement of 10.4% on average AUPRC when optimal hyperparameters are used, making
it competitive with specialized GNNs. BGNN, while impressive on specific datasets such as T-
Social, exhibits poor performance on other datasets. This inconsistency may result from the inherent
instability of its joint training scheme, especially when compared to the more stable two-step approach
in XGB-Graph and RF-Graph.

Specialized GNNs require hyperparameter tuning to achieve satisfactory performance. Gen-
erally, specialized GNNs outperform standard GNNs in Figure 1, indicating that GNNs tailored
for GAD can indeed enhance anomaly detection capabilities. However, the performance of these
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Figure 1: Comparison of the anomaly detection performance, wall-clock time (on all datasets), and
peak CPU/GPU memory utilization (on DGraph-Fin) among all models with default hyperparameters.
Top three lines are in semi-supervised settings and the others are in fully-supervised settings. The
color of the box plot represents the average score for each metric, while the central line within the
box indicates the median score.

specialized GNNs strongly depends on hyperparameter tuning. As indicated in the last column
of Table 4, all these methods witness a performance improvement after a hyperparameter search.
For instance, when optimized hyperparameters are employed, BWGNN can surpass RF-Graph and
XGB-Graph on the Reddit dataset. This demonstrates that under certain conditions, some specialized
GNNs can deliver commendable performance. However, as illustrated at the bottom of Figure 1, these
GNNs often demand more training time and memory. The inherent limitations of hyperparameter
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Table 4: Comparison of the AUPRC score of each model with optimal hyperparameters through
random search. Best results are highlighted in bold. In the last two columns, Ave. signifies the
average score across the first 9 datasets without T-Social, while Imp. denotes the absolute increase in
this average score when compared to the default hyperparameters. OOT means the model could not
complete training within a day. Results for other metrics can be found in Appendix D and Table 13.

Model Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Ave. Imp.
MLP 5.91 84.88 87.34 47.68 74.21 43.77 38.29 15.34 2.69 9.69 44.46 2.67
KNN 6.12 81.12 84.41 54.39 74.97 60.98 35.30 15.37 1.67 36.32 46.04 9.13
SVM 6.88 84.91 85.80 41.01 78.10 20.98 37.90 15.37 2.65 OOT 41.51 4.53
RF 4.63 93.52 91.18 77.77 81.99 78.42 38.64 14.37 2.57 41.56 53.68 0.81
XGBoost 5.56 94.49 91.88 84.00 82.64 76.93 40.05 16.24 2.75 16.60 54.95 0.73
XGBOD 8.27 95.70 92.15 79.46 82.32 74.86 40.65 16.08 1.95 OOT 54.61 1.62
NA 9.70 94.09 91.56 63.93 88.78 29.14 51.06 14.32 4.13 79.21 49.64 3.38

GCN 4.63 94.64 45.65 20.88 78.22 25.37 40.57 14.06 3.80 76.35 36.42 1.54
SGC 6.04 91.16 42.69 19.87 68.68 17.82 39.59 10.53 2.49 16.28 33.21 5.66
GIN 6.41 91.67 84.61 33.63 78.35 26.21 40.36 13.68 3.47 60.79 42.04 2.57
GraphSAGE 5.56 94.02 82.45 46.64 84.71 57.82 51.41 17.50 3.77 75.32 49.32 10.44
GAT 7.20 92.91 87.94 43.62 82.72 27.53 45.25 15.51 3.85 32.07 45.17 2.80
GT 7.68 89.85 84.90 44.60 83.14 25.90 45.71 17.08 3.83 36.14 44.74 5.42
PNA 7.75 96.04 35.24 29.95 76.67 27.81 41.74 11.38 3.22 21.24 36.64 4.93
BGNN 6.87 95.99 67.92 29.71 83.72 62.03 45.35 9.43 4.24 99.09 45.03 0.95

GAS 4.43 96.76 81.43 35.11 85.95 29.80 47.21 15.48 3.65 62.36 44.42 6.62
DCI 7.74 91.77 85.17 39.88 63.68 27.39 37.73 14.59 3.31 12.97 41.25 1.01
PCGNN 7.73 89.07 89.33 44.51 83.31 42.66 44.85 15.59 3.42 80.29 46.72 4.69
BernNet 7.82 92.38 84.89 51.92 89.17 38.25 43.69 17.25 3.27 44.30 47.63 2.90
AMNet 7.87 94.99 88.36 46.86 88.87 25.18 40.74 15.63 2.81 37.70 45.70 2.49
GAT-sep 7.19 93.40 84.72 45.49 84.01 26.35 46.66 17.90 3.84 33.39 45.50 2.98
BWGNN 8.32 94.01 91.48 61.53 89.38 29.31 49.58 18.57 3.97 78.93 49.57 2.12
GHRN 4.66 95.27 89.52 55.42 87.60 43.90 47.45 18.31 3.80 86.78 49.55 1.77

RF-Graph 5.13 96.95 90.53 83.92 89.23 78.86 52.34 14.44 2.15 97.63 57.06 1.21
XGB-Graph 5.29 97.06 93.33 91.11 90.12 77.78 53.92 18.19 3.79 97.34 58.95 1.34

search also pose significant challenges, especially in real-world applications where there might be a
scarcity of annotated labels or computational resources. Given these constraints, tree ensembles with
neighborhood aggregation might still be the preferred choice.

NA is a versatile technique adaptable to any model in GADBench. We apply it to XGBoost and
observe a remarkable enhancement in the semi-supervised setting, where the average AUPRC
across 10 datasets increases from 37.5% to 38.9%. However, the boost is not significant in the
fully-supervised setting. These findings highlight NA’s potential as an effective strategy to address
challenges associated with label scarcity. For additional results related to the application of NA on
other models, please refer to Appendix D.

Finally, we observe that all methods perform poorly on the DGraph-Fin dataset. This can be attributed
to the highly imbalanced and sparse graph structure, with an average degree of 1.16. Furthermore,
we find that node features in this dataset are highly indistinguishable, as nearly all anomalous nodes
share identical features with normal nodes. Indeed, the AUROC scores of all models on this dataset
align with those reported in the original paper, as demonstrated in Appendix D.

4.2 Specialized Experiments in Heterogeneous and Inductive Settings

Table 5: Comparison of heterogeneous and homogeneous GAD methods on Amazon and Yelp
datasets under both fully-supervised and semi-supervised settings. Results are averaged over 10 runs.

Amazon (Semi-Supervised) Amazon (Fully-Supervised) Yelp (Semi-Supervised) Yelp (Fully-Supervised)
Model AUROC AUPRC Rec@K AUROC AUPRC Rec@K AUROC AUPRC Rec@K AUROC AUPRC Rec@K

GAT 92.44 81.57 77.07 96.66 86.67 83.10 65.56 25.03 28.08 79.50 43.41 43.65
BWGNN 91.83 81.68 77.71 97.95 89.09 85.00 64.30 23.66 26.44 84.89 55.06 52.18

RGCN 84.17 41.07 45.57 92.03 67.97 65.49 72.20 26.46 28.54 78.34 34.57 34.98
HGT 79.75 38.13 45.07 89.64 71.46 70.22 72.83 28.49 31.59 89.62 62.63 57.75
CARE-GNN 86.00 58.95 59.12 90.84 72.64 67.72 91.19 68.69 65.35 95.23 81.06 74.85
H2Detector 71.00 29.27 32.61 78.66 39.95 44.35 67.28 22.23 24.08 89.07 59.40 57.54

XGB-Graph 94.68 84.38 78.17 98.69 92.61 85.87 64.03 24.84 26.81 96.22 87.03 78.76
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Table 6: Performance comparison on the Elliptic and DGraph-Fin datasets under inductive and
transductive settings, with all results being averaged over 10 runs.

Elliptic (Inductive) Elliptic (Transductive) DGraph-Fin (Inductive) DGraph-Fin (Transductive)
Model AUROC AUPRC Rec@K AUROC AUPRC Rec@K AUROC AUPRC Rec@K AUROC AUPRC Rec@K

GCN 75.79 14.97 16.73 92.40 73.87 69.99 73.99 3.35 5.61 75.85 3.99 7.05
GraphSAGE 79.51 19.64 20.59 82.85 34.76 45.95 72.66 3.06 5.43 75.63 3.76 6.97
BWGNN 82.29 22.49 28.26 96.12 86.58 81.14 73.85 3.24 5.83 76.26 4.01 7.52
GHRN 84.74 25.42 28.54 96.05 86.57 81.11 76.20 4.03 7.48 76.14 3.99 7.54
XGB-Graph 90.36 76.20 70.64 96.80 89.58 84.59 71.23 2.81 5.33 74.64 3.66 6.75

Dealing with heterogeneous graphs. We evaluated the performance of four GAD methods that
consider heterogeneity—RGCN, HGT, CARE-GNN, and H2-FDetector—using the Amazon and Yelp
datasets, each comprising three different types of edges as detailed in Appendix B. For comparison,
we also tested three other methods—GAT, BWGNN, and XGB-Graph—that treat all edge types
equivalently. As shown in table 5, considering heterogeneity does not enhance performance on
the Amazon dataset, but it leads to improvements on the Yelp dataset. Specifically, CARE-GNN
outperforms all other methods under label-scarce conditions.

Performance in the inductive setting. Our primary experiments focus on the transductive setting,
characterized by the assumption that all nodes are visible in the training process. To offer a holistic
evaluation, we also conduct experiments in the inductive setting using DGraph-Fin and Elliptic
datasets which have temporal features. In this setting, features and structures associated with test
nodes are not accessible during the training phase. As presented in table 6, the model performance is
generally impacted in the inductive setting of two datasets. Specifically, XGB-Graph outperforms
other models across all metrics on Elliptic, while GHRN stands out as the most robust model on
DGraph-Fin.
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Figure 2: The impact of different number of neigh-
bor aggregation layers on the performance of XGB-
Graph and RF-Graph.

The impact of different number of neighbor
aggregation layers. Figure 2 illustrates the
performance change in XGB-Graph and RF-
Graph with varying numbers of neighbor ag-
gregation layers. Observably, the performance
on most datasets improves when the number of
neighbor aggregation layers increases from 0 to
2, confirming the effectiveness of the neighbor
aggregation process. However, further incre-
ments in the number of layers do not contribute
to any significant improvement in the model
performance. Consequently, in most instances,
two layers are adequate for XGB-Graph and RF-
Graph, and utilizing more layers could lead to
unnecessary computational overhead and mem-
ory usage.

4.3 Why and When Do Tree Ensembles with Neighbor Aggregation Outperform GNNs?

An initial study on decision boundaries. Inspired by a recent benchmark about ensemble trees and
neural networks on the tabular data [28], we explore the possible reasons for the superior performance
of ensemble trees with neighborhood aggregation. Specifically, our primary investigation focuses on
the models’ decision boundaries.

In the left panel of Figure 3, we visualize the decision boundaries of GIN and RF-Graph on Amazon
dataset. For detailed implementations, please see Appendix E. It is observed that the normal and
anomalous nodes are closely intertwined, making them hard to separate. Unfortunately, GIN tends to
produce simple and smooth decision boundaries, leading to frequent misclassification of normal nodes
in the right bottom corners. Differently, RF-Graph can produce more intricate decision boundaries,
demonstrating greater proficiency in distinguishing anomalous data. In the right panel of Figure 3,
we visualize the decision boundaries of BWGNN and XGB-Graph on Weibo dataset. As can be seen,
the anomalous nodes are grouped into several dispersed clusters. With this dispersed distributions,
BWGNN is hard to achieve accurate classification due to simple and continuous decision boundaries.
In contrast, XGB-Graph successfully classifies anomalies within each cluster.
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Figure 3: Decision boundaries comparison of different approaches. Blue points represent anomalies
while red points are normal nodes. Similarly, the blue/red regions correspond to model predictions
for anomalous/normal classes.

In summary, anomaly instances tend to form multiple dispersed clusters and are coupled with normal
instances, which fall in the categories of the inductive bias of RF-Graph and XGB-Graph that favor
complex and disjoint decision boundaries. In contrast, as GNNs typically employ MLP as the
final layer, they tend to generate simple and continuous decision boundaries, which makes GNNs
sub-optimal on some challenging GAD datasets.

The impact of dataset feature types on model performance. As indicated in Table 3, out of the 10
datasets in GADBench, 3 datasets purely use text embeddings as node features, while in the remaining
7 datasets, node features contain miscellaneous information such as the combination of numerical,
categorical, and temporal features. Notably, for datasets that rely on text-based features—namely
Reddit, Weibo, and Questions—GNNs showcase competitive performance in comparison to other
methods including tree ensembles. This could be attributed to the nature of text embeddings: they
often represent low-dimensional manifolds in a high-dimensional feature space, where dimensions
tend to be highly correlated. A GNN can process all these dimensions simultaneously, whereas an
individual decision tree might only consider a limited subset of feature columns. Conversely, in the
other 7 datasets with diverse feature types that have low correlation (for instance, gender and age
information), tree ensembles with neighbor aggregation typically exhibit superior performance.

In conclusion, in common GAD scenarios such as fraud detection, node features mainly originate
from user profiles, which may encompass varied feature types. Thus, tree ensembles with neighbor
aggregation often emerge as the preferred choice. However, for specific tasks like fake news and
rumor detection, where text data is pivotal, GNNs still present a compelling option.

5 Conclusion and Future Plan

In this paper, we introduce GADBench, the first comprehensive benchmark for supervised anomalous
node detection on static attributed graphs. Our evaluation of 29 models on 10 real-world datasets
shows that tree ensembles with simple neighborhood aggregation generally outperform other models,
including GNNs specifically designed for the GAD task. The rationale behind this finding is initially
examined from the standpoints of decision boundary and node feature type. Our results challenge the
prevailing belief about the superiority of GNNs in GAD and underline the importance of a fair and
comprehensive comparison in accurately understanding the capabilities of various models. By making
GADBench open-source, we aim to foster further research and refinement of GAD algorithms, as
well as their more informed evaluations and comparisons.

We regard GADBench as a long-term evolving project and are dedicated to its continuous development.
Our roadmap for the future includes expanding its scope to include a broader spectrum of GAD
scenarios, incorporating more cutting-edge models, and integrating newer datasets. At present, we
primarily focus on treating datasets as static graphs to ensure compatibility with most baselines. We
have only embarked on preliminary studies concerning heterogeneous and inductive settings. Looking
ahead, we envision extending our evaluations to more complex types of graphs and anomalies. Our
ultimate goal is to transform GADBench into a more robust, scalable GAD toolbox, with advanced
features like automated model selection [95].

Acknowledgement This research was supported by NSFC Grant No. 62206067, Tencent AI
Lab Rhino-Bird Focused Research Program and Guangzhou-HKUST(GZ) Joint Funding Scheme
2023A03J0673.

10



References
[1] Andra Acsintoae, Andrei Florescu, Mariana-Iuliana Georgescu, Tudor Mare, Paul Sumedrea, Radu Tudor

Ionescu, Fahad Shahbaz Khan, and Mubarak Shah. Ubnormal: New benchmark for supervised open-set
video anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 20143–20153, June 2022.

[2] Charu C Aggarwal. Outlier ensembles: position paper. ACM SIGKDD Explorations Newsletter, 14(2):49–
58, 2013.

[3] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. Oddball: Spotting anomalies in weighted
graphs. In Advances in Knowledge Discovery and Data Mining: 14th Pacific-Asia Conference, PAKDD
2010, Hyderabad, India, June 21-24, 2010. Proceedings. Part II 14, pages 410–421. Springer, 2010.

[4] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and description: a
survey. Data mining and knowledge discovery, 29(3):626–688, 2015.

[5] Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. The Annals of Statistics,
47(2):1148–1178, 2019.
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A Detailed Description of Models in GADBench

Classic Methods

• MLP (Multi-Layer Perceptron [67]: A type of feedforward neural network composed of multiple
layers of interconnected artificial neurons that can learn and make predictions by adjusting the
weights and biases of the connections between the neurons.

• KNN (k-Nearest Neighbors [18]): A non-parametric classification algorithm that assigns labels
to data points based on the labels of their k nearest neighbors within the feature space.

• SVM (Support Vector Machine [15]): A supervised learning algorithm that classifies data by
identifying an optimal hyperplane that maximally separates different classes in a high-dimensional
feature space.

• RF (Random Forest [12]): An ensemble learning algorithm that utilizes bagging to train a
collection of individual decision tree models on subsets of the original dataset. The predictions
from these individual models are then combined through averaging or voting, resulting in a robust
and accurate prediction model.

• XGBoost (eXtreme Gradient Boosting [16]): A gradient boosting decision tree framework that
uses a gradient descent algorithm to minimize the loss function and iteratively adds new trees into
the model to correct the errors made by the previous trees.

• XGBOD (Extreme Boosting Based Outlier Detection [93]): An enhanced XGBoost model that
integrates unsupervised outlier detectors to generate abnormality scores as additional features for
the original data. These generated features are concatenated to the original feature set and used in
an XGBoost classifier for outlier detection.

• Neighborhood Averaging [88]: A method that post-processes the outlier scores provided by any
existing outlier detector by averaging it with the scores of its neighbors in the feature space. In
GADBench, we integrated this technique into BWGNN as a case study for in-depth analysis.

Standard GNN Architectures

• GCN (Graph Convolutional Network [39]): A method that utilizes convolution operation on
the graph to propagate information from a node to its neighboring nodes, enabling the network to
learn a representation for each node based on its local neighborhood.

• ChebNet ( Chebyshev Spectral Convolution Network [19]): A variant of GCN that applies
Chebyshev polynomials to approximate the spectral graph convolution operator. This approach
allows the model to capture both local and global graph structures, making it scalable for larger
graphs.

• GIN (Graph Isomorphism Network [85]): A type of GNN that learns to capture the structure of
a graph while respecting graph isomorphism. This means it generates identical embeddings for
graphs that are structurally identical, regardless of permutations in their node labels.

• GraphSAGE (Graph Sample and AggregatE [30]:) A general inductive learning framework
that generates node embeddings by sampling and aggregating features from a node’s local neigh-
borhood.

• GAT (Graph Attention Networks [76]): A GNN framework that incorporates the attention
mechanism. It assigns varying levels of importance to different nodes during the neighborhood
information aggregation process, allowing the model to focus on the most informative parts.

• GT (Graph Transformer [73]): An adaptation of the neural network architecture that applies the
principles of the Transformer model to graph-structured data. It uses masks in the self-attention
process to leverage the graph structure and enhance model efficiency

• PNA (Principle Neighbor Aggregation)[17]: A novel graph neural network architecture combin-
ing multiple aggregators with degree-scalers in the neighborhood aggregation process.

• BGNN (Gradient Boosting Meets Graph Neural Networks) [37]: An end-to-end framework
that trains GBDT and GNN jointly by allowing new trees to fit the gradient updates of GNN.

• RGCN (Relational Graph Convolution Network) [70]: A specialized framework derived from
Graph Convolutional Networks, tailored for handling relational data.

• HGT (Heterogeneous Graph Transformer) [35]: A GNN framework to model Web-scale het-
erogeneous graphs by designing node- and edge-type dependent parameters for characterizing
heterogeneous attention over each edge, thus facilitating the maintenance of dedicated representa-
tions for different types of nodes and edges.
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GNNs Specialized for Graph Anomaly Detection

• GAS (GCN-based Anti-Spam [44]): A highly scalable method for detecting spam reviews. It
extends GCN to handle heterogeneous and heterophilic graphs and adapts to the graph structure of
specific GAD applications using the KNN algorithm.

• DCI (Deep Cluster Infomax[82]): A self-supervised learning scheme that decouples node
representation learning from classification for anomaly detection. It mitigates inconsistencies
between node behavior patterns and label semantics, and captures intrinsic graph properties in
concentrated feature spaces by clustering the entire graph into multiple parts.

• PC-GNN (Pick and Choose Graph Neural Network [50]): A framework designed for imbalanced
GNN learning in fraud detection. It uses a label-balanced sampler to select nodes and edges for
training, resulting in a balanced label distribution in the induced sub-graph. Furthermore, it
employs a learnable parameterized distance function to select neighbors, filtering out redundant
links and adding beneficial ones for fraud prediction.

• BernNet [32]: A GNN variant that offers a robust scheme for designing and learning arbitrary
graph spectral filters. It uses an order-K Bernstein polynomial approximation to estimate any filter
over the normalized Laplacian spectrum of a graph.

• GAT-sep [99]: A GNN designed to enhance learning from graph structures under high het-
erophily. It combines key designs such as ego- and neighbor-embedding separation, higher-order
neighborhoods, and intermediate representation combinations.

• AMNet (Adaptive Multi-frequency Graph Neural Network [13]): A method designed to
capture both low-frequency and high-frequency signals through stacking multiple BernNets, and
adaptively combine signals of different frequencies.

• BWGNN (Beta Wavelet Graph Neural Network [74]): A method proposed to tackle the ’right-
shift’ phenomenon of graph anomalies, i.e., the spectral energy distribution concentrates less
on low frequencies and more on high frequencies. It employs the Beta kernel to address higher
frequency anomalies through multiple flexible, spatial/spectral-localized, and band-pass filters

• GHRN (Graph Heterophily Reduction Network [26]): A method that addresses the heterophily
issue in the spectral domain of graph anomaly detection. The approach prune inter-class edges to
emphasize and delineate the graph’s high-frequency components.

• CARE-GNN (CAmouflage-REsistant GNN) [22]: A GNN-based fraud detector designed for
multi-relation graphs, which is equipped with three modules that enhance its performance against
camouflaged fraudsters.

• H2-FDetector (Fraud Detector with Homophilic and Heterophilic Interactions) [72] A het-
erogeneous GNN framework for fraud detection that facilitates the propagation of analogous
information through homophilic connections and varied information via heterophilic connection.

B Detailed Description of Datasets in GADBench

Reddit [42]: This dataset contains a user-subreddit graph, capturing one month’s worth of posts
shared across various subreddits. Verified labels of banned users are included. The dataset focuses on
the 1,000 most active subreddits and the 10,000 most engaged users, leading to a total of 672,447
interactions. Posts were transformed into feature vectors, each representing the Linguistic Inquiry
and Word Count (LIWC) categories of the text.

Weibo [42]: This dataset features a graph of users and their associated hashtags from the Tencent-
Weibo platform, consisting of 8,405 users and 61,964 hashtags. Suspicious activities are defined as
two posts made within specific timeframes, such as 60 seconds. Users that engaged in at least five
such activities are labeled as “suspicious”, while the rest are categorized as “benign”. This process
yielded 868 suspicious and 7,537 benign users. The raw feature vector is composed of the location of
a micro-blog post and bag-of-words features.

YelpChi [66]: This dataset is designed to identify anomalous reviews that unfairly promote or demote
products or businesses on Yelp.com. The graph includes three types of edges: R-U-R (reviews posted
by the same user), R-S-R (reviews for the same product with the same star rating), and R-T-R (reviews
for the same product posted in the same month).

Amazon [56]: The goal of this dataset is to identify users paid to write fake reviews for products
in the Musical Instrument category on Amazon.com. The graph includes three types of relations:

18



Table 7: Overview of datasets in GADBench with their corresponding node feature types, feature
dimension, and detailed descriptions.

Dataset Node Feature Type #Dim. Detailed Feature Description

Reddit Text Embedding 64 LIWC text embedding for posts
Weibo Text Embedding 400 Bag-of-words features from posts
Amazon Misc. Information 25 Hand-crafted user features and statistics
YelpChi Misc. Information 32 Hand-crafted review features and statistics
Tolokers Misc. Information 10 User profile with task performance statistics
Questions Text Embedding 301 FastText embeddings for user descriptions
T-Finance Misc. Information 10 User profile details such as registration days
Elliptic Misc. Information 166 Timestamps and transaction information
DGraph-Fin Misc. Information 17 Timestamps and user profiles details
T-Social Misc. Information 10 User profile details such as logging activities

U-P-U (users reviewing at least one same product), U-S-U (users giving at least one same star rating
within one week), and U-V-U (users with top-5% mutual review similarities).

T-Finance [74]: This dataset aims to find the anomaly accounts in transaction networks. The
nodes are unique anonymized accounts with 10-dimension features related to registration days,
logging activities and interaction frequency. The edges in the graph represent two accounts that have
transaction records. Human experts annotate nodes as anomalies if they fall into categories like fraud,
money laundering and online gambling.

Tolokers [65]: This dataset is derived from the Toloka crowd-sourcing platform. Nodes represent
workers who have participated in at least one of 13 selected projects, and an edge connects two
workers if they worked on the same task. The task is to predict which worker has been banned in one
of the projects. Node features are based on worker’s profile and task performance statistics.

Questions [65]: This dataset is collected from the question-answering website Yandex Q. Nodes
are users, and an edge connects two users if one user answered the other user’s question during a
one-year period (September 2021 to August 2022). The dataset focuses on users interested in the
topic “medicine”. The task is to predict which users remained active on the website at the end of the
period. Node features are the mean of FastText embeddings for words in the user description, with an
additional binary feature indicating users without descriptions.

Elliptic [83]: This dataset includes a graph of over 200,000 Bitcoin transactions (nodes), 234,000
directed payment flows (edges), and 166 node features. The dataset maps Bitcoin transactions to
real-world entities associated with licit categories, such as exchanges, wallet providers, miners, and
legal services, as well as illicit categories like scams, malware, terrorist organizations, ransomware,
and Ponzi schemes.

DGraph-Fin [36]: This dataset is a real-world, large-scale dynamic graph provided by the Finvolution
Group, representing a social network within the financial industry. In DGraph-Fin, a node represents
a Finvolution user, and an edge between two users indicates that one user lists the other as their
emergency contact. Anomalous nodes in DGraph-Fin represent users who exhibit overdue behaviors.
The dataset comprises over 3 million nodes, 4 million dynamic edges, and more than 1 million
extremely unbalanced ground-truth nodes.

T-Social [74]: This dataset aims to find the anomaly accounts in social networks. It has the same
node annotations and features as T-Finance, while two nodes are connected if they maintain the
friend relationship for more than three months. Same as T-Finance, human experts annotate nodes as
anomalies if they fall into categories like fraud, money laundering and online gambling.

C Other Information in GADBench

C.1 Metrics

AUPRC (Area Under the Precision-Recall Curve). AUPRC is a metric that evaluates the perfor-
mance of classification models by computing the area beneath the Precision-Recall curve. This curve
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illustrates the relationship between precision (i.e., the ratio of true positive predictions to all positive
predictions) and recall (i.e., the ratio of true positive predictions to all positive labels) at different
threshold levels. AUPRC can be calculated by the weighted mean of precisions at each threshold,
where the increase in recall from the previous threshold serves as the weight.

AUROC (Area Under the Receiver Operating Characteristic Curve). It evaluates a model’s
ability to discriminate between positive and negative classes by measuring the area under the ROC
curve. The ROC curve plots the true positive rate against the false positive rate for varying decision
thresholds. An AUROC of 1 indicates perfect discrimination, while an AUROC of 0.5 suggests that
the model is no better than random guessing.

Rec@K (Recall at k). It is determined by calculating the recall of the true anomalies among the
top-k predictions that the model ranks with the highest confidence. We set the value of k as the
number of actual outliers in the test dataset. It is noteworthy that in this specific scenario, Rec@K is
equivalent to both precision at k and the F1 score at k.

Runtime. To assess the efficiency of the various models, including both traditional algorithms and
neural networks, we measure the runtime as the duration from the beginning to the completion of the
experiments. This measurement does not distinguish between computation times on CPUs and GPUs.

Memory. We record the peak utilization of both CPU and GPU memory during the entire supervised
training phase for each algorithm on the DGraph-Fin dataset. This metric is crucial for assessing the
computational resource requirements of each model in practical implementations.

C.2 Additional Experimental Details

Implementation Details. To ensure a comprehensive evaluation and maintain fairness across a
broad spectrum of models, we develop an open-source toolkit named GADBench3. This toolkit is
built on top of Pytorch 1.12 [60] and DGL 1.0 [80]. We implement all standard and specialized
GNNs in GADBench using the DGL library. For classic models KNN, SVM, and RF, we use the
implementations provided in the Scikit-Learn library [62]. XGBoost is integrated using its official
implementation [16], and XGBOD is included via the PyOD library [94].

Hardware Specifications. All our experiments were carried out on a Linux server equipped with an
AMD EPYC 75F3 32-Core CPU processor, 64GB RAM, and an NVIDIA RTX A6000 GPU with
48G memory.

Hyperparameter Settings. Tables 8 and 9 provide a comprehensive list of all hyperparameters used
in our random search, complete with their default values and respective distributions or search spaces.
For all configurations, we retain the model that yields the best AUPRC score on the validation set and
report the corresponding test performance. Due to limited data, we did not perform hyperparameter
search for heterogeneous graph neural networks (RGCN, CARE-GNN, and H2-FDetector).

New Models and Datasets. GADBench is highly extensible due to its seamless integration with the
DGL library. Datasets structured in the dgl.graph format, accompanied by binary node labels, can
be effortlessly integrated and leveraged by all models within GADBench. In a similar vein, models
that accept dgl.graph as input and yield an anomaly score for each node can be smoothly assessed
across all datasets in GADBench. We are committed to the ongoing maintenance of GADBench and
will persist in incorporating new models and datasets.

D Additional Experimental Results

In accordance with Figure 1, Tables 11 and 12 provide the performance metrics of each model
under semi-supervised and fully-supervised settings, respectively, when default hyperparameters
are employed. Additionally, Table 13 consolidates the information in Table 4 and exhibits the
performance of the models in terms of AUROC and Rec@K scores subsequent to hyperparameter
tuning for each dataset.

In table 10, we evaluated the effect of incorporating Neighborhood Averaging (NA) on the perfor-
mance of four representative graph-based methods in GADBench, namely GIN, BWGNN, XGB-
Graph, and RF-Graph. In the semi-supervised setting, all of the techniques demonstrate an im-

3https://github.com/squareRoot3/GADBench

20

https://github.com/squareRoot3/GADBench


Figure 4: More decision boundaries comparison examples as a complement to Figure 3. Blue points
represent anomalies while red points are normal nodes. Similarly, the blue/red regions correspond to
model predictions for anomalous/normal classes.

provement in performance subsequent to the integration of NA. For example, the AUPRC score is
improved by 1.4%∼ 3.7%. In the fully-supervised setting, NA can enhance weaker baselines like
GIN. However, for stronger baselines, the performance remains similar (on BWGNN) or might even
decrease (on XGB-Graph and RF-Graph).

E More Details About Plotting Decision Boundaries

As GNNs require graph structure as the input, it is not feasible to directly illustrate their decision
boundaries. In the left panel of Figure 3, we use GIN removing the linear layer to embed nodes
into the hidden space, following which we employ t-SNE [75] to reduce node embeddings to
two dimensions. We then apply MLP and Random Forest to classify these node embeddings,
approximating a comparison between GIN and RF-Graph. It is observed that the embeddings of
normal and anomalous nodes are entwined, making them hard to separate. Unfortunately, GIN tends
to produce simple and smooth decision boundaries, leading to recurring misclassification of normal
nodes in the right bottom corners, thus compromising model performance. Conversely, XGBoost
can produce more intricate decision boundaries, demonstrating greater proficiency in distinguishing
anomalous data.

The right panel of Figure 3 showcases a trained BWGNN model on the Weibo dataset, visualizing
the node embeddings preceding the final MLP layer. Employing t-SNE again to reduce the node
embeddings, we compare the decision boundaries of MLP and XGBoost on these embeddings,
simulating a comparison between BWGNN and XGB-Graph. As shown in the right panel of Figure
3, the embeddings of anomalous nodes are grouped into several dispersed clusters after training.
However, the MLP model struggles with accurate classification due to the lack of a simple boundary
between normal and anomalous data. In contrast, XGBoost successfully classifies anomalies within
each cluster. In Figure 4, we extend our visualization to include two additional datasets, T-Finance
and Tolokers. This serves as a complement to Figure 3, and the observations remain consistent.
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Table 8: Default hyperparameters and random search space for MLP and GNN models. Elements in
‘[,]’ is randomly selected with equal probability during each trial. RandInt(a,b) returns an random
integer between a and b (both included).

Model Hyperparameter Default value Distribution / Search Space
Shared hyperparameters for all neural networks

Common learning rate 0.01 10Uniform(−3,−1)

dropout rate 0 [0,0.1,0.2,0.3]
hidden dimension 32 [16,32,64]
epochs 100 -

Specific hyperparameters for each model

MLP layers 2 [1,2,3,4]
activation ReLU [ReLU, LeakyReLU, Tanh]

GCN layers 2 [1,2,3]
activation ReLU [ReLU, LeakyReLU, Tanh]

SGC number of hops 2 [1,2,3,4]
activation ReLU [ReLU, LeakyReLU, Tanh]
MLP layers 1 [1,2]

GIN layers 2 [1,2,3]
aggregation mean [sum, mean, max]
activation ReLU [ReLU, LeakyReLU, Tanh]

GraphSAGE layers 2 [1,2,3]
aggregation mean [mean, GCN, pool]
activation ReLU [ReLU, LeakyReLU, Tanh]

GAT layers 2 [1,2,3]
attention heads 4 [1,2,4,8]

GT layers 2 [1,2,3]
attention heads 4 [1,2,4,8]

PNA layers 2 [1,2,3,4]
activation ReLU [ReLU, LeakyReLU, Tanh]

BGNN depth 6 [4,5,6,7]
iteration per epoch 10 [2,5,10,20]
GBDT learning rate 0.1 10Uniform(−2,−0.5)

normalize features False [True, False]
activation ReLU [ReLU, LeakyReLU, Tanh]

GAS layers 2 [1,2,3,4]
number of neighbors 5 RandInt(3,50)
distance function cosine [euclidean, cosine]

DCI layers 2 [1,2,3,4]
pretain epochs 100 [20,50,100]
number of clusters 2 RandInt(2,30)

PC-GNN layers 2 [1,2,3]
under-sample ratio 0.7 Uniform(0.01,0.8)
over-sample ratio 0.3 Uniform(0.01,0.8)
distance function cosine [euclidean, cosine]

GAT-sep layers 2 [1,2,3]
attention heads 4 [1,2,4,8]

BernNet MLP layers 2 [1,2]
orders 2 [2,3,4,5]

AMNet layers 3 [1,2,3]
orders 2 [2,3]
activation ReLU [ReLU, LeakyReLU, Tanh]

BWGNN layers 2 [1,2,3,4]
MLP layers 2 [1,2]
activation ReLU [ReLU, LeakyReLU, Tanh]

GHRN layers 2 [1,2,3,4]
MLP layers 2 [1,2]
deletion ratio 0.015 10Uniform(−2,−1)
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Table 9: Default hyperparameters and random search space for non-deep learning models. Elements
in ‘[,]’ is randomly selected with equal probability during each trial. RandInt(a,b) returns an random
integer between a and b (both included).

Model Hyperparameter Default value Distribution / Search Space
SVM weights uniform [uniform, distance]

L2 regularization C 1 10Uniform(−1,1)

RF number of estimators 100 RandInt(10,200)
split criterion gini [gini, entropy]
max samples 1 Uniform(0.1,1)

XGBoost number of estimators 100 RandInt(10,200)
learning rate η 0.3 0.5 ∗ 10Uniform(−1,0)

L2 regularization λ 1 [0,1,10]
subsample rate 1 [0.5,0.75,1]
booster gbtree [gbtree, dart]

XGBOD Same as XGBoost

NA Same as XGBoost, with 1 additional hyperparameter:
number of neighbors 5 RandInt(0,50)

RF-Graph Same as RF, with 2 additional hyperparameters:
aggregation layers L 2 [1,2,3,4]
aggregation function mean [sum, mean, max]

XGB-Graph Same as XGBoost, with 2 additional hyperparameters:
aggregation layers L 2 [1,2,3,4]
aggregation function mean [sum, mean, max]

Table 10: The impact of introducing neighborhood averaging (NA) on the performance of four
representative methods in GADBench.

Semi-Supervised Fully-Supervised
Model AUROC AUPRC Rec@K AUROC AUPRC Rec@K

GIN 73.61 30.26 32.14 79.97 36.54 37.52
with NA 74.78 33.91 34.18 80.43 39.03 40.01
BWGNN 76.00 35.42 37.36 84.73 48.19 48.01
with NA 76.95 36.96 37.34 84.70 47.93 48.08
XGB-Graph 77.74 42.91 41.29 86.71 61.09 57.82
with NA 78.41 44.30 42.07 86.05 59.58 57.41

RF-Graph 78.94 43.37 40.83 85.35 59.65 56.90
with NA 79.56 45.14 42.28 85.17 58.54 55.33
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Table 11: Comparison of AUPRC (top), AUROC (middle), and Rec@K (bottom) for each model
employing default hyperparameters in the semi-supervised setting. Each model is executed 10 times
with varying random seeds, and the mean scores along with standard deviations are reported. Ave.
denotes the average score across all 10 datasets.

AUPRC Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Mean

MLP 4.4±0.8 56.2±6.0 83.0±1.6 23.6±2.3 53.4±13.9 45.0±5.9 33.3±2.1 7.7±1.5 2.3±0.2 3.9±0.8 31.3
KNN 4.0±0.4 41.1±7.2 76.2±1.2 19.3±1.7 49.1±6.5 25.1±3.7 28.3±1.4 4.7±1.1 1.7±0.1 3.8±0.4 25.3
SVM 4.7±0.5 44.1±10.0 62.2±21.5 25.6±2.0 20.6±10.8 26.5±4.2 33.6±1.6 7.1±1.6 1.9±0.3 3.6±0.6 23.0
RF 4.3±0.4 61.6±10.0 81.9±4.2 27.4±3.5 74.9±1.5 85.0±1.9 33.1±2.3 11.3±3.6 2.1±0.2 7.0±1.3 38.9
XGBoost 4.1±0.4 62.1±7.6 84.0±1.8 26.4±4.2 70.9±5.0 79.5±2.3 31.0±1.9 9.1±3.4 2.0±0.2 6.1±1.3 37.5
XGBOD 4.3±0.6 64.8±6.6 85.0±3.2 26.8±3.8 70.3±4.4 78.4±1.7 30.9±2.4 9.0±3.2 2.0±0.2 4.8±1.0 37.6
NA 4.1±0.4 69.3±4.4 85.6±1.6 27.3±3.8 73.9±1.5 79.2±3.3 31.2±2.0 10.1±3.5 2.1±0.1 6.4±1.3 38.9

GCN 4.2±0.8 86.0±6.7 32.8±1.2 16.4±2.6 60.5±10.8 43.1±4.6 33.0±3.6 6.1±0.9 2.3±0.2 8.4±3.8 29.3
SGC 3.8±0.7 63.9±7.4 29.5±2.6 16.1±1.9 31.3±18.6 24.2±2.1 32.2±3.7 6.1±0.7 1.7±0.2 4.7±1.1 21.4
GIN 4.3±0.6 67.6±7.4 75.4±4.3 23.7±5.4 44.8±7.1 40.1±3.2 31.8±3.2 6.7±1.1 2.0±0.1 6.2±1.7 30.3
GraphSAGE 4.5±0.6 58.5±6.2 42.5±6.1 20.9±3.5 11.7±5.2 43.1±5.6 34.0±2.1 5.5±1.3 2.0±0.2 7.8±1.3 23.0
GAT 4.7±0.7 73.3±7.3 81.6±1.7 25.0±2.9 28.9±8.6 44.2±6.6 33.0±2.0 7.3±1.2 2.2±0.2 9.2±2.0 30.9
GT 4.3±0.7 78.2±4.7 71.6±5.5 23.7±3.0 17.2±10.9 46.4±8.0 34.5±2.0 7.2±1.6 2.2±0.3 8.6±1.5 29.4
PNA 4.0±0.5 83.4±4.0 34.6±3.8 16.8±2.7 27.4±9.7 31.3±2.9 32.6±2.3 5.7±1.2 1.8±0.2 22.8±5.5 26.0
BGNN 4.7±0.5 81.8±6.3 39.0±5.9 17.6±1.3 75.8±2.2 35.3±5.3 33.1±3.6 5.7±0.7 2.0±0.2 58.2±14.6 35.3

GAS 4.7±0.7 65.7±8.4 80.7±1.7 21.7±3.3 45.7±13.4 46.0±4.9 31.7±3.0 6.3±2.0 2.5±0.2 8.6±2.4 31.4
DCI 4.3±0.4 76.2±4.3 72.5±7.9 24.0±4.8 51.0±7.2 43.4±4.9 32.1±4.2 6.1±1.3 2.0±0.2 7.4±2.5 31.9
PCGNN 3.4±0.5 69.3±9.7 81.9±1.9 25.0±3.5 58.1±11.3 40.3±6.6 33.9±1.7 6.4±1.8 2.4±0.4 8.0±1.6 32.9
GAT-sep 4.6±0.7 76.5±5.8 80.9±2.6 24.4±3.7 34.2±10.1 46.8±8.1 33.6±2.2 7.4±1.3 2.4±0.3 10.4±1.9 32.1
BernNet 4.9±0.3 66.6±5.5 81.2±2.4 23.9±2.7 51.8±12.4 40.0±4.1 28.9±3.5 6.7±2.1 2.5±0.2 4.2±1.2 31.1
AMNet 4.9±0.4 67.1±5.1 82.4±2.2 23.9±3.5 60.2±8.2 33.3±4.8 28.6±1.5 7.4±1.4 2.2±0.3 3.1±0.3 31.3
BWGNN 4.2±0.7 80.6±4.7 81.7±2.2 23.7±2.9 60.9±13.8 43.4±5.5 35.3±2.2 6.5±1.7 2.1±0.3 15.9±6.2 35.4
GHRN 4.2±0.6 77.0±6.2 80.7±1.7 23.8±2.8 63.4±10.4 44.2±5.7 35.9±2.0 6.5±1.7 2.3±0.3 16.2±4.6 35.4

RF-Graph 4.5±0.4 73.8±9.5 70.7±5.1 23.6±2.5 81.1±2.7 80.8±3.1 35.8±2.4 10.1±2.8 2.0±0.2 51.3±6.2 43.4
XGB-Graph 4.1±0.5 75.9±6.2 84.4±1.1 24.8±3.1 78.3±3.1 77.2±3.2 34.1±2.8 7.7±2.1 1.9±0.2 40.6±7.6 42.9

AUROC Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Ave.

MLP 59.1±4.3 66.6±7.8 92.2±2.3 64.7±3.2 89.9±1.4 89.4±1.4 68.1±2.5 61.2±3.1 69.1±1.2 59.1±5.2 71.9
KNN 58.9±2.3 72.5±3.3 89.5±0.9 60.3±3.3 87.7±0.9 78.6±4.7 63.0±1.9 58.6±2.3 59.8±2.4 56.9±2.8 68.6
SVM 61.8±2.4 69.6±4.2 89.4±4.7 65.8±3.0 83.4±9.9 83.0±3.7 68.9±1.1 62.0±2.9 65.2±3.1 57.6±5.4 70.7
RF 61.0±2.6 94.1±1.3 94.9±0.8 68.0±3.8 93.0±0.9 94.4±1.9 66.5±2.1 61.5±4.0 63.3±4.5 67.3±3.6 76.4
XGBoost 58.9±2.5 93.8±0.8 94.2±1.0 67.0±5.1 92.4±1.1 91.6±1.9 65.1±1.3 59.5±5.5 66.1±2.2 65.7±2.8 75.4
XGBOD 59.1±3.1 94.3±0.5 95.2±0.8 66.8±5.2 92.5±1.0 91.6±1.7 64.1±2.3 60.6±3.9 64.2±2.1 61.0±4.6 74.9
NA 59.5±2.3 93.7±0.6 94.9±1.3 69.3±3.6 92.0±1.2 90.9±2.3 65.4±1.2 59.7±5.6 66.8±1.4 64.9±3.1 75.7

GCN 56.9±5.9 93.5±6.6 82.0±0.3 51.2±3.7 88.3±2.5 86.2±1.9 64.2±4.8 60.0±2.2 66.2±2.5 71.6±10.4 72.0
SGC 53.6±5.2 81.1±6.5 80.2±1.5 51.1±2.9 74.5±12.3 80.6±1.2 63.6±5.1 63.6±5.0 59.5±3.3 64.8±5.6 67.3
GIN 60.0±4.1 83.8±8.3 91.6±1.7 62.9±7.3 84.5±4.5 88.2±0.9 66.8±5.2 62.2±2.2 65.7±1.8 70.4±7.4 73.6
GraphSAGE 60.3±3.8 81.8±6.5 81.4±2.0 58.9±4.3 68.9±5.5 87.4±1.0 67.6±4.2 61.2±2.9 64.8±3.3 72.0±2.9 70.4
GAT 60.5±3.9 86.4±7.7 92.4±1.9 65.6±4.0 85.0±4.5 88.5±2.1 68.1±3.0 62.3±1.4 67.2±1.9 75.4±4.8 75.1
GT 59.1±4.4 94.4±4.6 88.6±2.2 64.5±4.3 73.5±7.2 88.9±1.6 69.7±2.5 60.7±3.6 67.7±2.5 71.4±2.1 73.9
PNA 58.4±4.4 93.2±1.8 79.1±2.9 53.2±5.5 78.4±9.7 83.7±1.1 65.7±3.1 62.1±2.9 60.7±3.9 84.4±3.5 71.9
BGNN 63.1±3.3 94.4±5.3 83.7±2.5 54.4±1.2 93.7±0.7 83.3±2.3 65.1±4.1 59.8±3.1 59.9±3.5 93.6±1.4 75.1

GAS 60.6±3.0 81.8±7.0 91.6±1.9 61.1±5.2 88.7±1.1 89.0±1.4 62.7±2.8 57.5±4.4 69.9±2.0 72.1±8.8 73.5
DCI 61.0±3.1 89.3±5.3 89.4±3.0 64.1±5.3 88.0±3.2 88.5±1.3 67.6±7.1 62.2±2.5 65.3±2.3 74.2±3.3 75.0
PCGNN 52.8±3.4 83.9±8.1 93.2±1.2 65.1±4.8 92.0±1.1 87.5±1.4 67.4±2.1 59.0±4.0 68.4±4.2 69.1±2.4 73.8
GAT-sep 60.3±4.4 87.8±5.7 91.4±2.4 65.0±4.5 86.3±3.9 89.3±2.1 69.1±2.5 61.9±4.2 69.0±1.9 74.5±3.7 75.5
BernNet 63.1±1.7 80.1±6.9 92.1±2.4 65.0±3.7 91.2±1.0 87.0±1.7 61.9±5.6 61.8±6.4 69.0±1.4 59.8±6.3 73.1
AMNet 62.9±1.8 82.4±4.6 92.8±2.1 64.8±5.2 92.6±0.9 85.4±1.7 61.7±4.1 63.6±2.8 67.1±3.2 53.7±3.4 72.7
BWGNN 57.7±5.0 93.6±4.0 91.8±2.3 64.3±3.4 92.1±2.7 88.7±1.3 68.5±2.7 60.2±8.6 65.5±3.1 77.5±4.3 76.0
GHRN 57.5±4.5 91.6±4.4 90.9±1.9 64.5±3.1 92.6±0.7 89.0±1.3 69.0±2.2 60.5±8.7 67.1±3.0 78.7±3.0 76.1

RF-Graph 61.4±2.4 96.3±1.1 92.5±1.3 61.6±2.7 95.0±0.7 93.9±2.1 70.4±2.3 64.7±3.6 64.9±3.2 88.6±1.6 78.9
XGB-Graph 59.2±2.7 96.4±0.7 94.7±0.9 64.0±3.5 94.8±0.6 91.9±1.3 67.5±3.4 61.4±2.9 62.4±4.1 85.2±1.8 77.8

Rec@K Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Ave.

MLP 6.5±2.0 53.2±5.2 79.3±1.0 26.5±2.7 59.9±10.2 54.5±6.2 35.5±2.6 12.0±2.1 3.4±0.9 3.2±2.1 33.4
KNN 5.7±1.6 46.4±7.8 75.1±2.0 12.0±3.1 57.9±4.4 31.8±5.4 31.4±2.1 8.3±3.4 2.2±0.7 5.7±2.2 27.6
SVM 6.4±2.2 48.0±5.5 61.8±21.4 28.5±2.6 18.1±18.0 26.6±7.0 36.1±1.6 11.2±3.0 1.6±0.5 1.6±0.4 24.0
RF 5.6±1.9 56.4±6.9 73.1±7.8 30.5±3.8 69.3±1.0 77.0±2.6 34.9±2.5 12.9±3.9 2.8±0.6 11.5±2.1 37.4
XGBoost 5.0±1.9 56.8±4.5 77.5±2.9 29.5±5.0 66.9±2.7 72.1±2.5 33.1±2.8 11.5±3.3 1.8±0.9 9.2±3.3 36.3
XGBOD 4.9±1.7 59.3±3.5 77.9±5.5 30.2±4.4 66.9±3.3 70.5±2.0 32.6±2.5 11.3±3.4 2.3±0.7 6.8±2.6 36.3
NA 4.6±1.9 61.8±2.5 79.2±1.4 31.0±4.8 67.1±1.7 72.5±3.1 33.3±2.5 12.1±3.8 2.1±0.6 10.6±2.3 37.4

GCN 6.2±2.2 79.2±4.3 36.9±2.6 16.9±3.0 60.6±7.6 49.7±4.2 33.4±3.5 9.8±1.2 3.6±0.4 10.2±8.1 30.6
SGC 5.9±2.9 64.1±7.6 33.6±2.3 16.4±2.2 35.8±19.4 26.9±4.4 32.7±3.2 10.0±1.4 2.4±0.8 4.0±1.7 23.2
GIN 4.8±1.9 66.5±7.3 70.4±5.7 26.5±6.1 54.4±5.0 47.6±3.1 33.6±3.0 10.3±1.1 2.1±0.5 5.3±2.9 32.2
GraphSAGE 5.8±0.8 63.4±6.0 48.0±5.6 22.9±3.6 18.5±9.4 48.2±5.8 35.2±2.2 8.8±2.5 2.5±0.7 9.5±2.9 26.3
GAT 6.5±2.3 70.2±4.6 77.1±1.7 28.1±3.4 36.2±10.3 51.4±5.8 35.1±1.8 10.9±0.9 3.1±0.7 11.6±3.0 33.0
GT 5.6±1.7 75.4±3.3 70.2±4.7 26.8±3.4 24.4±15.7 53.1±7.6 36.3±1.6 10.7±1.6 2.8±1.0 11.5±3.0 31.7
PNA 4.2±1.9 78.7±4.1 40.4±3.1 17.5±4.5 38.6±14.4 38.6±3.6 34.0±2.2 8.4±2.2 2.2±0.7 29.4±9.3 29.2
BGNN 5.6±2.1 79.7±5.3 43.2±6.2 17.5±1.4 72.9±1.9 43.4±6.3 34.7±2.7 9.0±1.5 3.6±0.6 58.2±12.4 36.8

GAS 6.6±2.5 62.0±6.9 77.4±1.7 24.6±4.1 54.2±9.5 51.9±5.2 33.0±3.9 9.1±2.9 3.4±0.4 11.5±4.6 33.4
DCI 4.5±1.4 68.5±3.5 68.3±7.2 26.8±5.3 58.5±6.3 50.0±3.8 33.5±5.6 9.9±1.9 2.3±0.7 6.3±6.8 32.9
PCGNN 3.0±2.1 65.1±6.6 78.0±1.5 27.8±3.8 63.9±6.3 46.5±7.3 34.3±1.6 10.1±3.9 3.7±1.0 13.5±3.1 34.6
GAT-sep 5.8±2.2 71.1±4.9 77.5±2.5 27.2±4.2 43.6±11.7 53.9±6.9 35.2±2.0 11.2±1.9 3.4±0.9 14.9±2.9 34.4
BernNet 6.4±1.5 60.9±4.6 77.2±2.1 26.8±3.1 60.5±11.1 47.0±4.5 30.1±3.8 10.3±2.7 3.8±0.6 3.3±2.8 32.6
AMNet 6.8±1.5 62.1±4.4 77.8±2.3 26.6±4.3 65.7±6.3 37.8±6.7 30.5±1.9 12.7±2.6 2.6±0.8 1.6±0.5 32.4
BWGNN 6.0±1.4 75.1±3.5 77.7±1.6 26.4±3.2 64.9±11.7 49.7±6.1 35.5±3.1 10.9±3.2 3.1±0.8 24.3±7.4 37.4
GHRN 6.3±1.5 72.4±2.6 77.7±1.3 26.9±3.1 67.7±4.3 50.8±4.8 36.1±3.1 11.1±3.4 3.4±0.7 24.6±7.0 37.7

RF-Graph 5.8±1.7 65.5±7.8 63.5±4.5 24.3±2.3 74.5±3.2 72.3±3.3 38.0±2.5 12.9±3.0 2.4±0.4 49.0±5.7 40.8
XGB-Graph 4.9±1.9 68.9±5.7 78.2±1.5 26.8±3.0 72.4±3.8 68.9±3.7 36.6±3.0 10.6±2.9 2.5±0.7 43.0±7.6 41.3
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Table 12: Comparison of AUPRC (top), AUROC (middle), and Rec@K (bottom) for each model
employing default hyperparameters in the fully-supervised setting. Each model is executed 10 times
with varying random seeds, and the mean scores along with standard deviations are reported. Ave.
denotes the average score across all 10 datasets.

AUPRC Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Ave.

MLP 6.0±1.1 84.8±1.2 88.0±2.2 47.7±1.7 70.5±2.6 22.7±4.7 38.5±1.1 15.2±1.0 2.7±0.0 14.7±7.8 39.1
KNN 4.8±0.4 72.9±1.6 78.2±0.0 31.5±0.0 66.5±1.6 30.5±0.0 31.8±0.7 14.7±1.0 1.3±0.0 24.8±0.1 35.7
SVM 6.5±0.8 72.0±4.0 80.1±6.6 40.6±0.0 58.0±17.4 19.6±0.2 37.2±0.9 16.4±1.3 2.6±0.0 3.7±0.8 33.7
RF 5.3±0.6 92.0±0.8 89.7±0.4 76.3±0.3 80.6±1.3 77.3±0.4 37.7±1.1 14.3±1.0 2.5±0.0 41.0±0.1 51.7
XGBoost 5.6±0.7 95.1±0.7 91.5±0.0 82.7±0.0 79.9±1.1 77.4±0.0 38.1±1.3 15.1±0.9 2.7±0.0 15.0±0.2 50.3
XGBOD 7.5±1.4 95.0±0.4 89.4±1.6 66.3±0.4 81.1±0.6 75.9±0.0 41.3±1.2 18.4±1.7 2.0±0.0 8.2±0.0 48.5
NA 5.7±0.7 92.9±0.9 91.1±0.0 76.2±0.0 79.2±1.3 78.6±0.0 39.1±1.3 15.6±0.9 2.7±0.0 15.5±0.2 49.7

GCN 6.5±1.4 94.5±1.0 35.1±1.3 21.1±0.6 73.9±5.2 21.9±2.9 44.5±2.2 12.5±1.4 4.0±0.1 14.7±7.8 32.9
SGC 4.6±0.8 92.3±1.6 33.4±2.9 16.9±1.5 39.5±24.5 12.8±0.7 36.0±3.7 10.0±0.8 2.4±0.1 5.2±1.6 25.3
GIN 5.7±0.9 90.6±1.3 79.2±1.5 36.5±1.5 64.2±4.6 23.5±4.9 39.6±1.8 12.7±1.2 3.3±0.1 10.1±1.6 36.5
GraphSAGE 5.5±0.8 85.4±2.3 69.0±12.5 54.0±3.0 34.8±10.9 32.9±6.0 47.9±1.7 16.6±0.8 3.8±0.1 12.7±3.3 36.3
GAT 5.9±1.0 91.3±1.3 86.7±1.4 43.4±4.6 63.1±11.0 25.2±5.6 46.1±1.8 15.7±1.3 3.9±0.1 9.2±2.0 39.0
GT 5.7±0.9 88.7±1.9 80.4±4.0 55.0±5.4 31.6±14.7 25.1±4.5 47.6±1.9 15.9±1.4 3.9±0.1 9.5±2.1 36.3
PNA 5.4±0.4 93.6±0.8 42.5±8.6 30.5±0.5 28.5±12.3 27.5±4.3 42.3±1.7 11.9±0.9 3.5±0.1 26.4±7.3 31.2
BGNN 7.7±0.6 96.2±0.8 66.4±2.0 26.9±1.7 82.6±0.9 64.2±4.6 43.8±1.0 5.8±0.4 3.1±0.1 98.7±0.2 49.5

GAS 7.1±1.7 92.9±0.9 48.9±5.0 22.3±0.4 76.9±2.4 27.9±6.6 45.7±1.6 14.8±1.9 3.8±0.1 9.3±2.4 35.0
DCI 6.1±0.9 89.6±1.8 81.5±2.2 39.5±7.5 62.6±5.7 25.4±4.7 39.9±1.5 14.1±1.5 3.6±0.1 13.8±4.0 37.6
PCGNN 4.2±0.5 81.9±1.7 87.8±1.9 43.7±2.6 69.8±8.0 35.6±10.2 38.1±2.1 14.4±0.9 2.8±0.0 8.7±2.4 38.7
GATSep 6.1±1.0 90.9±2.1 87.1±1.1 54.9±2.8 70.3±11.9 26.4±4.5 46.5±2.2 16.5±1.0 3.9±0.1 10.4±1.9 41.3
BernNet 7.1±1.2 89.7±1.9 86.4±2.7 50.1±1.5 72.4±6.9 21.6±2.9 43.5±1.3 15.2±1.1 2.9±0.0 5.4±1.0 39.4
AMNet 7.3±1.0 89.7±2.2 87.3±2.1 48.8±1.3 74.3±2.5 14.7±2.9 43.2±1.2 14.6±1.2 2.8±0.0 3.1±0.3 38.6
BWGNN 6.9±1.6 93.0±1.4 89.1±1.6 55.1±1.6 86.6±0.8 26.0±3.5 49.7±1.9 16.7±1.3 4.0±0.1 54.9±16.5 48.2
GHRN 7.2±1.7 91.8±1.2 89.5±1.2 56.6±1.7 86.6±1.5 27.7±6.6 49.9±2.1 16.7±1.2 4.0±0.1 16.3±4.5 44.6

RF-Graph 5.4±0.4 97.0±0.3 91.3±0.1 76.7±0.5 89.0±0.9 77.8±0.3 49.3±1.6 14.2±1.2 2.0±0.0 93.8±0.1 59.6
XGB-Graph 5.6±0.5 97.5±0.6 92.6±0.0 87.0±0.4 89.6±0.8 78.2±0.0 48.9±1.2 15.3±0.6 3.7±0.0 92.4±0.1 61.1

AUROC Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Ave.

MLP 65.5±2.8 90.9±1.3 97.3±1.7 82.0±0.7 91.4±1.1 84.2±2.3 73.3±0.7 69.3±2.3 72.5±0.1 80.2±7.3 80.7
KNN 56.5±1.2 88.6±1.0 90.2±0.0 73.3±0.0 86.6±1.0 83.1±0.0 67.5±0.9 61.0±1.2 51.4±0.0 73.0±0.1 73.1
SVM 67.8±1.7 84.8±3.0 94.8±1.3 77.2±0.0 91.6±1.6 84.2±0.2 72.2±0.6 66.7±1.8 72.0±0.0 58.7±5.6 77.0
RF 62.0±2.8 98.7±0.2 97.2±0.3 93.3±0.1 94.2±0.5 90.1±0.9 71.7±0.8 57.6±1.6 69.1±0.1 79.0±0.1 81.3
XGBoost 61.6±3.5 99.1±0.1 97.9±0.0 95.2±0.0 94.4±0.4 91.2±0.0 73.0±0.8 57.8±1.4 71.6±0.0 81.4±0.1 82.3
XGBOD 68.6±1.6 99.1±0.1 98.3±0.3 89.4±0.4 95.0±0.3 93.0±0.0 75.2±0.8 69.3±1.3 64.9±0.0 69.2±0.0 82.2
NA 62.4±3.2 98.4±0.3 97.5±0.0 94.0±0.0 93.9±0.3 92.8±0.0 73.5±0.9 59.3±1.6 71.8±0.0 81.4±0.1 82.5

GCN 65.2±4.8 98.0±0.5 82.4±0.4 57.8±0.6 92.4±2.3 81.4±1.8 75.6±1.2 70.9±1.3 75.9±0.2 80.2±7.3 78.0
SGC 54.5±4.2 97.9±0.4 80.3±2.0 54.1±2.4 76.6±13.8 75.4±1.2 68.3±4.6 71.0±1.1 66.1±0.3 66.1±8.7 71.0
GIN 65.5±3.2 95.5±0.8 93.8±1.3 77.0±0.9 88.2±4.2 82.7±2.0 75.1±0.9 69.4±1.3 74.0±0.2 78.4±2.2 80.0
GraphSAGE 62.8±5.1 94.9±1.3 89.6±5.4 85.2±1.0 82.8±3.9 85.3±0.7 79.3±0.9 72.1±1.7 75.6±0.2 79.2±4.0 80.7
GAT 65.3±3.1 95.3±1.4 96.7±1.0 79.5±1.9 92.8±1.5 84.9±1.9 79.1±1.0 71.1±1.6 75.9±0.2 75.4±4.8 81.6
GT 63.7±4.4 95.5±1.2 92.4±2.8 84.5±2.2 81.4±6.5 85.1±1.5 79.6±0.8 70.9±1.2 75.8±0.1 72.1±3.3 80.1
PNA 64.6±1.5 97.8±0.5 83.2±4.5 74.3±0.5 74.3±12.0 84.0±1.0 75.4±1.0 71.8±0.9 73.4±0.2 78.2±11.0 77.7
BGNN 72.2±1.8 98.8±0.3 92.3±0.5 64.6±3.5 95.6±0.4 90.1±0.5 74.4±0.9 62.5±1.2 68.5±1.3 99.9±0.0 81.9

GAS 67.5±5.3 97.5±0.5 86.1±1.5 59.1±0.5 93.3±1.3 85.6±1.6 77.4±1.0 69.4±1.5 76.0±0.2 76.9±3.6 78.9
DCI 66.5±3.3 94.2±1.7 94.6±0.9 77.8±7.8 86.8±4.5 82.8±1.5 75.5±0.9 69.2±1.3 74.7±0.1 80.8±6.0 80.3
PCGNN 53.2±2.1 90.2±1.5 97.3±0.8 79.7±1.5 93.3±1.0 85.8±1.8 72.8±2.0 69.9±1.4 72.0±0.3 69.2±4.4 78.3
GATSep 66.1±2.6 96.3±1.2 97.0±0.5 84.3±0.8 93.5±2.0 86.0±1.4 79.6±1.1 69.4±1.9 76.0±0.2 74.5±3.7 82.3
BernNet 66.8±3.7 94.9±1.5 96.2±1.4 83.0±0.6 92.8±1.7 83.1±1.4 76.9±0.6 68.8±2.9 73.2±0.1 66.8±5.8 80.2
AMNet 68.4±2.4 95.3±1.7 97.0±1.6 82.6±0.5 93.7±0.7 77.3±2.5 76.8±0.7 68.1±2.9 73.1±0.1 53.6±3.3 78.6
BWGNN 65.4±4.3 97.3±0.9 98.0±0.7 84.9±0.7 96.1±0.5 85.2±1.1 80.4±0.9 71.8±2.2 76.3±0.1 92.0±5.2 84.7
GHRN 66.0±4.5 96.7±1.1 98.1±0.3 85.3±0.6 96.0±0.8 85.4±1.9 80.4±0.8 71.8±1.9 76.1±0.1 79.0±2.4 83.5

RF-Graph 62.8±2.4 99.5±0.1 97.5±0.3 93.3±0.2 96.7±0.5 91.9±0.5 81.2±0.7 65.8±1.2 65.6±0.3 99.2±0.0 85.4
XGB-Graph 62.8±3.2 99.5±0.1 98.7±0.0 96.2±0.2 96.8±0.4 93.4±0.0 80.1±0.5 65.7±0.8 74.6±0.0 99.3±0.0 86.7

Rec@K Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Ave.

MLP 7.5±2.9 79.2±2.1 84.4±1.8 46.9±1.3 67.8±2.6 23.9±11.6 39.4±1.1 19.3±1.7 4.2±0.2 20.1±10.9 39.3
KNN 9.3±1.6 70.3±1.6 78.8±0.0 29.4±0.0 68.1±1.8 44.5±0.0 35.3±1.4 17.4±1.6 1.8±0.0 34.9±0.2 39.0
SVM 8.0±2.6 68.5±3.0 75.1±7.8 41.7±0.0 60.6±13.1 15.2±0.7 37.0±1.3 19.4±1.8 4.2±0.2 2.1±1.1 33.2
RF 5.9±1.3 82.3±2.1 85.7±0.4 69.4±0.5 74.8±1.4 72.5±0.3 39.5±1.0 17.9±1.5 4.2±0.0 45.3±0.1 49.8
XGBoost 7.5±1.4 87.0±1.1 86.4±0.0 74.8±0.0 72.9±1.5 72.0±0.0 40.1±1.5 17.9±1.1 4.1±0.0 20.0±0.2 48.3
XGBOD 10.9±3.9 88.0±0.5 83.8±2.0 61.0±0.4 74.6±0.8 69.7±0.0 42.2±1.5 18.5±1.3 1.7±0.0 14.0±0.0 46.4
NA 6.9±1.4 86.6±1.4 87.5±0.0 73.1±0.0 73.2±1.5 72.6±0.0 40.3±1.2 18.8±1.3 4.4±0.0 20.3±0.2 48.4

GCN 10.0±3.2 90.3±0.8 36.9±1.4 23.7±0.6 70.0±5.2 25.0±6.0 43.1±2.0 16.5±2.0 7.1±0.2 20.1±10.9 34.3
SGC 7.8±2.9 88.2±1.4 35.2±4.3 19.7±2.6 41.1±23.3 11.0±1.7 35.0±3.4 16.1±1.2 4.2±0.2 4.1±2.7 26.2
GIN 6.8±2.4 87.5±1.1 73.0±3.5 38.4±1.2 65.5±4.8 27.3±8.3 39.0±1.9 17.5±1.7 5.9±0.2 14.4±3.8 37.5
GraphSAGE 7.2±1.9 83.8±2.5 67.9±8.6 51.3±2.1 46.0±15.9 37.3±4.6 46.5±1.6 21.2±1.6 7.0±0.4 15.6±4.4 38.4
GAT 6.9±2.6 87.8±1.4 83.1±1.3 43.6±2.7 64.6±5.5 27.9±11.3 46.6±1.8 19.8±1.6 7.4±0.2 11.6±3.0 39.9
GT 7.7±2.8 83.9±1.9 77.8±2.8 51.1±3.2 39.8±11.9 26.3±11.1 47.4±1.8 19.7±1.7 7.5±0.2 13.2±4.1 37.4
PNA 6.1±2.2 89.3±1.1 48.8±6.8 31.4±0.6 36.5±15.8 33.5±5.8 42.4±1.2 17.0±1.8 6.6±0.3 36.5±8.3 34.8
BGNN 10.7±1.6 91.0±0.9 63.9±2.8 27.5±1.4 77.3±0.8 63.8±1.3 43.7±1.2 8.6±1.6 6.2±0.4 95.4±0.3 48.8

GAS 9.9±4.3 86.6±1.5 49.5±6.4 24.1±0.6 72.9±1.7 34.6±9.6 45.0±1.8 18.2±2.3 6.8±0.2 10.4±4.3 35.8
DCI 7.3±2.1 85.5±2.5 76.7±4.0 40.3±7.1 64.0±5.3 29.9±6.2 40.2±2.0 18.5±1.6 6.7±0.3 20.6±7.2 39.0
PCGNN 5.0±2.4 75.9±2.4 83.2±2.5 44.4±2.3 69.8±5.3 40.4±12.0 37.6±2.0 18.5±1.9 5.0±0.2 14.5±4.9 39.4
GATSep 7.6±2.9 87.9±2.8 84.0±0.8 51.1±1.4 70.3±9.0 31.3±8.8 46.6±2.0 20.0±1.8 7.5±0.3 14.9±2.9 42.1
BernNet 10.5±2.4 85.0±2.3 83.2±2.9 48.7±0.9 71.9±5.5 23.9±7.7 43.5±1.8 19.3±2.1 4.6±0.1 6.0±1.6 39.7
AMNet 10.3±2.9 85.3±2.6 83.4±1.6 47.7±1.4 73.1±3.4 8.8±6.3 42.8±1.5 19.9±2.1 4.2±0.1 1.6±0.5 37.7
BWGNN 10.7±2.8 87.4±1.7 85.0±2.7 52.2±1.3 81.1±0.7 31.7±6.2 48.7±2.1 21.4±2.0 7.5±0.3 54.3±12.4 48.0
GHRN 11.6±3.2 86.7±1.8 85.9±1.6 53.0±1.0 81.1±1.4 33.3±10.3 49.1±1.5 21.3±2.4 7.5±0.2 24.6±7.0 45.4

RF-Graph 5.8±1.4 92.2±0.7 84.4±0.5 69.6±0.6 84.0±1.1 72.5±0.3 51.3±1.6 18.4±2.4 3.2±0.1 87.6±0.1 56.9
XGB-Graph 7.6±1.1 93.1±1.1 85.9±0.0 78.8±0.6 84.6±1.1 71.2±0.0 48.8±1.3 16.5±1.3 6.7±0.0 85.2±0.1 57.8
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Table 13: Comparison of AUROC (top) and Rec@K (bottom) of each model with optimal hyperpa-
rameters through random search. The Results for AUPRC is in Table 4. Ave. signifies the average
score across the first 9 datasets without T-Social. OOT (out-of-time) means the model could not
complete random search within a day. Best results are highlighted in bold.

AUROC Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Ave.
MLP 60.71 92.89 96.94 81.64 92.24 88.32 73.78 60.15 72.34 73.06 79.89
KNN 62.53 93.57 94.91 84.60 92.69 88.03 72.09 64.00 58.50 77.64 78.99
SVM 68.18 92.52 95.80 77.21 92.59 85.02 72.59 64.77 72.03 OOT 80.08
RF 60.79 98.77 97.53 93.80 94.85 91.68 74.14 54.85 70.37 79.94 81.87
XGBoost 64.59 98.82 98.34 95.38 95.42 89.91 74.84 62.09 72.43 81.75 83.53
XGBOD 68.39 99.24 98.20 93.96 95.39 92.26 74.55 67.53 64.88 OOT 83.82
NA 63.86 99.03 98.23 94.70 94.85 91.27 74.87 66.20 71.73 81.95 83.86

GCN 62.04 98.84 85.17 58.62 94.62 81.69 73.80 68.20 75.51 96.63 77.61
SGC 66.95 98.58 87.84 57.66 87.97 79.52 72.36 68.11 68.63 83.67 76.40
GIN 61.82 98.65 95.63 73.77 92.71 83.01 74.57 68.08 74.16 94.09 80.27
GraphSAGE 63.28 97.75 90.90 82.90 95.62 87.59 80.92 73.04 75.60 95.73 83.07
GAT 64.15 98.54 97.13 79.14 95.75 86.28 78.75 68.30 75.53 90.33 82.62
GT 67.39 97.23 93.37 80.32 94.39 86.10 78.94 69.62 75.71 90.79 82.56
PNA 63.45 98.78 82.14 74.39 92.47 84.86 75.17 66.32 73.39 84.02 79.00
BGNN 68.94 98.59 90.64 63.28 96.20 87.69 76.65 68.02 76.22 99.94 80.69

KNNGCN 60.31 99.17 90.69 69.13 94.69 88.53 74.23 66.95 75.72 87.80 79.94
GAS 60.57 99.11 92.69 76.43 96.45 86.66 78.19 68.15 75.98 94.96 81.58
DCI 66.87 97.94 95.39 78.38 87.85 85.73 73.86 64.77 73.94 83.96 80.53
PCGNN 65.41 95.14 98.01 80.82 94.03 86.50 76.63 67.66 72.76 96.91 81.88
GATSep 66.17 98.22 95.11 80.49 94.40 85.94 79.52 70.08 75.78 87.69 82.85
BernNet 69.83 98.00 95.79 83.54 96.67 87.54 77.51 68.58 73.58 93.73 83.45
AMNet 69.60 98.32 96.92 81.90 96.38 83.66 75.16 66.05 72.99 92.50 82.33
BWGNN 70.82 98.13 98.27 87.13 96.93 87.03 80.41 70.87 76.30 96.88 85.10
GHRN 61.02 99.18 98.29 84.60 96.46 89.50 80.08 72.16 76.13 97.12 84.16

RFGraph 65.35 99.43 96.73 95.24 97.28 93.21 81.88 64.77 67.78 99.69 84.63
XGBGraph 64.74 99.29 98.74 97.37 97.15 91.78 82.85 71.02 75.83 99.76 86.53

Rec@K Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Ave.
MLP 9.52 78.39 83.15 46.62 68.93 57.43 39.88 16.99 4.04 16.86 44.99
KNN 10.20 73.20 79.35 51.92 70.04 56.60 37.85 19.18 1.98 44.08 44.48
SVM 8.84 77.81 82.07 41.77 72.40 19.21 39.72 18.08 4.04 OOT 40.44
RF 5.44 84.15 86.41 70.23 75.59 72.76 39.72 17.81 4.21 45.48 50.70
XGBoost 6.80 87.03 86.41 75.08 76.01 72.58 41.90 16.71 4.30 21.86 51.87
XGBOD 10.20 87.32 86.96 71.62 75.87 69.07 42.21 16.71 1.68 OOT 51.29
NA 8.84 85.59 87.50 73.38 75.31 71.74 42.21 18.36 4.04 21.70 51.89

GCN 6.12 88.47 44.02 23.85 74.90 33.52 39.41 17.81 7.05 73.23 37.24
SGC 8.84 87.32 46.20 22.46 67.41 22.99 39.72 16.99 3.87 24.93 35.09
GIN 10.88 89.63 80.98 36.15 73.37 32.13 39.41 18.36 6.32 64.47 43.03
GraphSAGE 7.48 90.78 78.26 47.15 78.09 56.69 48.75 21.37 6.84 73.74 48.38
GAT 10.88 89.63 82.61 44.23 79.75 37.86 44.24 17.26 7.14 42.07 45.95
GT 12.93 85.88 78.80 44.62 81.55 30.75 44.39 20.27 6.92 43.58 45.12
PNA 10.88 39.67 90.78 30.00 72.54 36.47 42.68 13.15 5.16 26.95 37.93
BGNN 9.52 93.37 64.67 30.77 77.25 59.56 45.33 12.60 7.70 96.89 44.53

KNNGCN 5.44 89.63 71.74 33.23 75.87 41.55 40.34 18.08 7.18 48.67 42.56
GAS 4.08 91.93 80.43 38.00 79.75 37.49 47.04 18.90 6.02 64.58 44.85
DCI 8.16 89.05 80.98 40.46 71.98 35.27 37.85 17.26 5.85 18.27 42.99
PCGNN 14.97 84.15 85.33 43.77 79.06 43.77 43.15 18.08 6.66 73.53 46.55
GATSep 9.52 88.18 80.98 44.23 81.55 30.56 47.20 21.37 7.31 40.84 45.66
BernNet 10.88 89.34 82.61 49.69 83.63 49.77 44.70 19.73 5.55 48.23 48.43
AMNet 11.56 88.76 83.15 45.38 84.05 30.56 42.52 17.53 4.21 43.21 45.31
BWGNN 11.56 87.90 85.87 56.69 84.19 42.47 50.31 21.64 7.57 75.78 49.80
GHRN 5.44 89.34 85.33 51.85 81.97 50.51 46.57 22.19 6.96 82.33 48.91

RFGraph 3.40 91.93 83.15 75.31 84.05 72.58 52.18 15.89 3.22 93.58 53.52
XGBGraph 6.12 91.93 85.87 83.15 85.02 71.93 53.43 20.55 6.96 93.53 56.11
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