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Abstract

We give sharper bounds for uniformly stable randomized algorithms in a PAC-
Bayesian framework, which improve the existing results by up to a factor of

√
n

(ignoring a log factor), where n is the sample size. The key idea is to bound
the moment generating function of the generalization gap using concentration of
weakly dependent random variables due to Bousquet et al (2020). We introduce
an assumption of sub-exponential stability parameter, which allows a general
treatment that we instantiate in two applications: stochastic gradient descent and
randomized coordinate descent. Our results eliminate the requirement of strong
convexity from previous results, and hold for non-smooth convex problems.

1 Introduction

Stochastic optimization methods are the workhorses of many modern machine learning problems. A
lot of progress has been made in reducing optimization errors with less training time in stochastic
settings [6, 21, 41, 46, 64]. One such method is stochastic gradient descent (SGD), which builds
a stochastic gradient estimator iteratively based on a randomly sampled example to approximate
the gradient for the next iteration. SGD is appealing for large-scale data analysis due to its cheap
computational cost, simplicity and efficiency.

Obtaining models that generalize well is the goal in machine learning and we undertake a theoretical
analysis of this problem. The generalization behavior of a model can be quantified by the excess
risk, which decomposes into two components: the optimization error and the generalization error (or
generalization gap). In this paper, we focus on the analysis of the generalization error of stochastic
optimization methods. We combine two useful approaches to bound the generalization error, that is
algorithmic stability [7, 16] and PAC-Bayes bounds [9, 26, 34, 53]. Our hope is to retain the benefits
of both approaches to derive powerful generalization bounds to better understand the behavior of
stochastic optimization methods.

Seminal work by Bousquet et al. [7] provided generalization bounds for uniformly stable algorithms
in the deterministic case. Sharper generalization bounds were obtained via a moment bound on the
generalization gap and a concentration inequality of weakly dependent random variables [8, 18].
Extending stability-based bounds to randomized algorithms is a challenge. In [16], where the stability-
based bounds for the randomized algorithms were considered, the results hold for fixed distributions.
To give bounds uniformly for all distributions, we need to turn to PAC-Bayes analysis. A recent
work analyzed stable algorithms in the PAC-Bayes framework and derived generalization bounds that
hold for any distribution [32]. However, a comparison between [8] and [32] reveals that the error
convergence rate in the randomized case [32] is much slower than that for the deterministic case [8].
In more detail, it was shown that β-uniformly stable (β is decreasing w.r.t. n, where n is the sample
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size) and deterministic algorithms would imply generalization bounds of order Õ(1/
√
n+β) [8, 18]2,

while PAC-Bayes bounds of order O(1/
√
n+

√
nβ) were developed for randomized algorithms [32].

In [32], the randomness comes from the sampling of hyperparameters such as the index of examples
chosen in SGD, and the PAC-Bayes bounds hold for any posterior distribution which may depend
on the dataset. It is clear that the PAC-Bayes bounds can be slower than those in [8, 18] by a factor
of

√
n, which motivates a natural question: can we develop PAC-Bayes bounds for randomized

algorithms which match the rate of deterministic algorithms?

This paper explores the above question. We provide sharper PAC-Bayes bounds that hold for
uniformly stable randomized algorithms. We adapt a moment bound [8] previously used for stable
algorithms in deterministic cases and extend it to the PAC-Bayesian framework, to give bounds that
hold for randomized predictors. The PAC-Bayes framework is based on the work of [32]. However,
we take a different analysis strategy to control the change in hyperparameters, which is based on an
assumption of sub-exponential stability parameter. This general assumption allows us to bound the
moment generating function (MGF) of the generalization gap within a high probability domain where
our assumption holds (see Appendix A.2). Furthermore, we prove that this assumption holds for both
SGD and randomized coordinate descent (RCD). We then illustrate the advantage of our results over
existing bounds.

Regarding the convergence rate, our main result improves on the existing PAC-Bayes bounds [32] by
a factor of

√
n (ignoring a log factor). This improvement holds under weaker conditions under which

convergence is not guaranteed in [32]. Our primary technical tool is a moment bound, which we
extend to randomized learning algorithms in the PAC-Bayes framework. This allows our bounds to
hold for all possible posteriors, not just fixed ones [16] or deterministic algorithms [8, 18]. We need
to introduce novel techniques to handle the randomness of the hyperparameter, which is a challenge
in the PAC-Bayes analysis (details will be given in Section 3.2).

Regarding assumptions, our result holds without the requirement of hyperparameter stability in
previous work [32]. Instead, we introduce a new assumption on the sub-exponential behavior of
uniform stability by viewing the uniform stability as a function of the random hyperparameter.
Interestingly, it suffices to study the sub-exponential behavior of uniform stability under the prior
distribution, which makes the sub-exponential assumption easy to check.

We show that the uniform stability of SGD and RCD have a mixture of sub-Gaussian and sub-
exponential tails that satisfy this assumption. Thus, we remove the strong convexity assumption in
the existing analysis of SGD [32] and extend the result to non-smooth problems. Our result also
applies to RCD, where the randomness arises from the selected coordinates.

The remainder of the paper is organized as follows. We discuss the basics on PAC-Bayes and stability
analysis in Section 2. We present our main results in Section 3, and apply it to SGD and RCD in
Section 4. We survey the related work on stability and PAC-Bayesian analysis in Section 5, and
conclude the paper in Section 6.

2 Preliminaries

We first introduce some notations. Let X and Y denote the input and output space respectively and
let Z = X × Y . We are given a set of training examples of size n, S =

{
z1 = (x1, y1), . . . , zn =

(xn, yn)
}

, drawn independently and identically distributed (i.i.d.) from an unknown distribution D on
Z . We hope to learn a predictor from a class of hypotheses H to predict unseen new data drawn from
D. Let W denote the weight space, W ⊆ Rd, and Θ denote a hyperparameter space. A deterministic
learning algorithmA : Zn×Θ → H maps the training examples to a hypothesis hw ∈H determined
by w ∈ W . The quality of a hypothesis is measured by a loss function, ℓ : H×Z → [0,M ].

The goal of any learning algorithm is to produce a predictor that generalizes well. That means that
the learned predictor applied on previously unseen input data from the marginal of D should have a
small expected loss. For any θ ∈ Θ, the risk of a predictor returned by the algorithm A is a random
variable as a function of S, defined as

R(A(S; θ)) = Ez∼D[ℓ(A(S; θ), z)]. (2.1)

2We use Õ to hide poly-logarithmic factors.
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Since D is unknown, we have no access to the true risk. Instead, the empirical risk is often used as an
approximation

RS(A(S; θ)) =
1

n

n∑

i=1

ℓ(A(S; θ), zi). (2.2)

We are interested in how well the empirical risk can estimate the risk. The difference between them
is the generalization gap G(S; θ) ≜ R(A(S; θ)) − RS(A(S; θ)). We can upper bound the risk by
bounding this difference.

2.1 PAC-Bayes basics

We are interested in randomized algorithms, such as stochastic gradient descent (SGD) and random-
ized coordinate descent (RCD). In such algorithms, there is an in-built random sampling mechanism
that we can think of as a random hyperparameter. In other words, a randomized algorithm may be
viewed as a deterministic algorithm with hyperparameters θ that follow a distribution. Therefore,
for the analysis that follows, we will explicitly define distributions on Θ. There has been a lot of
interest in SGD because it is often used to train a model and its randomness comes from independent
sampling of training instances to estimate gradient directions. In this case, the hyperparameters θ ∈ Θ
form a random sequence θ = (θ1, ..., θT ), where every θt ∈ [n], for t ∈ [T ], is an i.i.d. index of a
training point from S. Here [n] denotes {1, . . . , n}.

Any distribution over the hyperparameter space Θ induces a distribution over the predictors (or
weights since we often consider parametric models). In the PAC-Bayes methodology, the common
approach is to define a prior distribution on the domain of the weights [13, 22, 34, 53]. However, in
the context of randomized algorithms of the kind mentioned above it is more natural to exploit the
randomness already present through a distribution on the domain of the hyperparameters.

Hence, we will conduct PAC-Bayesian analysis by focusing on the randomness of the hyperparameters.
Let P be any prior distribution on the hyperparameter domain Θ, chosen before seeing the training
data. Given a randomized algorithm, we will only need to prove a condition for the prior P on Θ,
and in return our generalization guarantees will hold with high probability for all posteriors Q on
Θ. In particular, we can assume a simple uniform distribution as a prior for SGD, i.e. SGD with
uniform sampling, and derive bounds for data-dependent non-uniform sampling [49, 56, 66]. For
example, SGD with importance sampling [66] shows better results than uniform sampling, and there
are efforts to learn good sampling distributions [32] in a line of research towards self-certified learning
algorithms [13, 44].

The quality of a predictor learned by an algorithm A from the training sample S, is defined as the
expected risk w.r.t the PAC-Bayes posterior Q as

R(S,Q) = E
θ∼Q

[R(A(S; θ))]. (2.3)

Its empirical counterpart, the expected empirical risk w.r.t. Q is

RS(S,Q) = E
θ∼Q

[RS(A(S; θ))]. (2.4)

In special cases this expectation can be computed analytically; most often it is approximated either
by Monte Carlo sampling or by analytical upper bounds.

PAC-Bayes bounds aim to estimate R(S,Q) in terms of RS(S,Q) and the divergence between P and
Q. A key ingredient that PAC-Bayes bounds rest upon is a change of measure inequality, also known
as variational formula. For completeness this is given in Appendix (Lemma A.3).

2.2 Algorithmic stability basics

Another relatively recent framework for generalization analysis is based on the concept of algorithmic
stability [7]. The key concept in this framework quantifies how sensitive a learning algorithm is to
small perturbations of the training data. There are several notions of algorithmic stability, and the one
we use in our work is the following uniform stability [7]. We denote S ∼ S′ if they are neighboring
datasets, i.e., S and S′ differ by at most a single example.
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Definition 1 (Uniform Stability). For any θ, an algorithm A : S 7→ A(S; θ) is βθ-uniformly stable
w.r.t. a loss function ℓ if ∀S ∼ S′ ∈ Zn,∀z ∈ Z,

|ℓ(A(S; θ), z)− ℓ(A(S′; θ), z)| ≤ βθ. (2.5)

Recall that A is a randomized algorithm whose randomness is exclusively due to a random draw
of θ. Hence, given a fixed instance of θ, the algorithm A becomes a deterministic algorithm. This
simple observation helps us reduce the problem from randomized learning to deterministic learning.
Based on this observation, the next section presents sharper generalization bounds for randomized
algorithms in comparison to previous results [32].

3 Main Results

First we introduce a sub-exponential assumption on the stability parameter. This will allow us to
make some key innovations: 1) We will be able to remove one of the assumptions required by [32,
Theorem 2] (hyperparameter stability) and only require uniform stability. 2) we will state our result
in more general terms, and instantiate it to specific algorithms such as SGD and RCD.

Assumption 1 (Sub-exponential stability). Let P be a fixed probability distribution on Θ =
∏T

t=1 Θt.
We say that a randomized algorithm with random hyperparameters θ ∼ P satisfies sub-exponential
stability if, for any fixed instance of θ it satisfies βθ-uniform stability w.r.t. a loss function ℓ, and
there exists c ∈ R such that for any δ ∈ (0, 1/n], with probability at least 1− δ over draws of θ ∼ P:

βθ ≤ Eθ∼P[βθ] + c log(1/δ). (3.1)

In other words, this assumption says that the deviation of βθ from its mean roughly has a sub-
exponential tail. We will show that c is dominated by Eθ∼P[βθ] in typical stochastic optimization
algorithms such as SGD and RCD.

Note that in the above assumption, the probability is made w.r.t. θ ∼ P, which is a prior distribution
independent of S. We can choose P to be a uniform distribution. In this case, we will show that SGD
satisfies this assumption under mild conditions on the loss functions with very small Eθ∼P[βθ] and c.

Recall that for any fixed instance of θ, the trained model of the learning algorithm A on data set S
with hyperparameters θ is a deterministic predictor. Our proof strategy for our main result below is to
first fix θ, and apply a recent technique of obtaining sharp bounds [8] to the resulting deterministic
algorithm. After that, we deal with the randomness of θ.

In Theorem 1 we give our main result. This bound is useful when we have small Eθ∼P[βθ] and c. We
will see two examples in Section 4. We denote B ≳ B′ if there exists a universal constant c1 > 0
such that B ≥ c1B

′. We use B ≲ B′ if there exists a universal constant c2 > 0 such that B ≤ c2B
′.

We use B ≍ B′ if B ≲ B′ ≲ B. The proof is given in Appendix A.2.

Theorem 1 (Generalization of sub-exponentially stable randomized algorithms). Consider a learning
algorithm A(S; θ) that satisfies Assumption 1 w.r.t. P and c ≲ Eθ∼P[βθ]. Assume ℓ(A(S; θ), z) ∈
[0,M ]. Then for any δ1 ∈ (0, 1) the following inequality holds with probability at least 1 − δ1
uniformly for all Q

Eθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
≲

(
DKL(Q∥P)+log(1/δ1)

)
max

{
Eθ∼P[βθ] log

2 n,
M√
n

}
,

where DKL(Q∥P) means the KL divergence between P and Q, i.e., DKL(Q∥P) = Eθ∼Q
[
log Q(θ)

P(θ)

]
.

To apply Theorem 1, we only need to check the sub-exponential assumption w.r.t. the prior P. Then,
we use the PAC-Bayesian analysis to transfer this stability assumption w.r.t. the specific P to a bound
holding for all posterior distributions.

3.1 Comparison

Next, we compare our result (Theorem 1) with the previous generalization bounds on randomized
algorithms due to [32] and observe the advantages that our approach offers.
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To blend the stability into the PAC-Bayes framework, where hyperparameters θ follow a distribu-
tion, [32] defined the following new hyperparameter stability assumption for learning algorithms
(Definition 2) and obtained the stability-based PAC-Bayes bound given in Theorem 2.

Definition 2 (Hyperparameter Stability). A learning algorithm A has uniform hyperparameter
stability βΘ w.r.t. the loss function ℓ, if

sup
S∈Zn

sup
z∈Z

sup
θ,θ′∈Θ:DH(θ,θ′)=1

|ℓ(A(S; θ), z)− ℓ(A(S; θ′), z)| ≤ βΘ, (3.2)

where DH(v,v′) ≜
∑|v|

i=1 I[vi ̸= v′i] is the Hamming distance and I[·] denotes the indicator function,
i.e., I[E] = 1 if the event E holds and 0 otherwise.

Observe that, uniform stability (Definition 1) concerns the stability of an algorithm with respect to a
change in the training set. In contrast, the above Definition 2 requires stability w.r.t. a change in the
hyperparameters. Moreover, the approach in [32] requires stability w.r.t. both the loss function and
the hyperparameters to derive the following PAC-Bayes bound.

Theorem 2 (Theorem 2 of [32]). Let A be a randomized learning algorithm and ℓ(A(S; θ), z) ∈
[0,M ]. Assume A is βθ-uniformly stable w.r.t. loss functions, and βΘ-uniformly stable w.r.t. hyper-
paramters. Consider the prior P as a fixed probability distribution defined on Θ =

∏T
t=1 Θt. Then

for any n ≥ 1, T ≥ 1, and δ ∈ (0, 1), the following inequality holds with probability at least 1− δ
over draws of a data set, S ∼ Dn, for every posterior Q on Θ

Eθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
≲

√(
DKL(Q∥P)+log(1/δ)

)(
(M+nEθ∼P[βθ])2/n+Tβ2

Θ

)
.

We now compare our bound (Theorem 1) with the bound above (Theorem 2).

In terms of the rate, our bound in Theorem 1 improves the previous result of Theorem 2 by up to a
factor of

√
n (up to poly-logarithmic factors when the divergence is polylogarithmic in n [32]). To

see this, consider the case where in both Theorem 1 and Theorem 2, the term that contains the stability
parameter dominates over the KL term. Then, in Theorem 1, for βθ-uniformly stable randomized
algorithms, we have

Eθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
= max

{
Õ(Eθ∼P[βθ]), Õ(n−

1
2 )
}
DKL(Q∥P).

In contrast, Theorem 2 in [32] gives

Eθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
= Õ

(√
nEθ∼P[βθ] +

√
TβΘ

)
D

1
2

KL(Q∥P). (3.3)

It is clear that, in the case when Õ(
√
nEθ∼P[βθ]) dominates the KL divergence then having replaced

it with Õ(Eθ∼P[βθ]) we improved (3.3) by up to a factor of
√
n (ignoring a log term). The prior P can

be selected freely if it is independent of S. The posterior Q can depend on the data. Indeed, a strength
of the PAC-Bayesian analysis is that it applies to any Q, and therefore it allows to choose a distribution
Q in a data-dependent manner. The posterior Q can be optimized to control the divergence between
P and Q. Therefore, we typically have a small KL divergence.

Observe also that, in Theorem 1, when Eθ∼P[βθ] ≲ O(n−
1
2 ), our generalization bound is Õ(n−

1
2 ),

while (3.3) implies a vacuous bound O(1) so generalization is not guaranteed. Furthermore, our
bounds require Eθ∼P[βθ] ≲ 1/

√
n to get almost optimal rates Õ(1/

√
n). As a comparison, the results

in Eq. (3.3) require stronger condition Eθ∼P[βθ] ≲ 1/n and βΘ ≤ 1/T to get the rate O(1/
√
n).

In the unlikely case when the KL divergence is the dominating term, for example, DKL(Q∥P) ≳
O(n), then Theorem 2 achieves better result. But in this circumstance, both Theorems 1 and 2 require
βθ ≲ O(n−

3
2 ) to converge at a rate of O(n−

1
2 ), which we believe this to be also rather uncommon.

In terms of assumptions, we eliminate the hyperparameter stability assumption in [32] at the price of
an additional sub-exponential tail assumption on the uniform stability parameter. We will prove later
in Section 4 that this general assumption holds for more stochastic optimization methods and even
for non-smooth problems. In conclusion, we achieve better results under weaker conditions.
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3.2 Proof sketch and challenge in the analysis

We begin by noting that ℓ is applied to the output of A(S; θ), which depends on the training data and
the hyperparameters. Therefore, ℓ(A(S; θ)) could be sensitive to changes in both the dataset and the
hyperparameters. To address this issue, Theorem 2 assumes hyperparameter stability, which requires
small changes in ℓ(A(S; θ)) when the hyperparameters are perturbed.

In contrast to the previous method, we adopt a different strategy for controlling changes in θ. Our βθ
is a random variable w.r.t. θ. We assume a sub-exponential concentration behavior of βθ to control its
deviation (Assumption 1). This allows us to control βθ without necessitating hyperparameter stability.
Based on this assumption, our proof proceeds by bounding the MGF of the generalization gap. A key
challenge is to handle the randomness of βθ. More precisely, for any temporarily fixed θ it has been
shown that G(S; θ) is a mixture of sub-Gaussian and sub-exponential random variables when only
considering the randomness of S [8]. Then a bound of ES [exp(λG(S; θ))] requires an assumption
λ ≲ 1/βθ (by Eq. (A.5) on sub-exponential random variables). This constraint makes it challenging
since we need to choose an appropriate λ and control the associated ESEθ∼P[exp(λG(S; θ)] (the
random constraint makes the selection of λ difficult). Our key idea to address this problem is to
control the MGF of another function H : Zn ×Θ 7→ R defined as follows

H(S; θ) =

{
R(A(S; θ))−RS(A(S; θ)) if θ ∈ Ωδ,

0 otherwise,

where Assumption 1 holds everywhere on Ωδ, which is a subset of Θ with probability measure at
least 1− δ. This definition of H has two benefits.

• First, H(S; θ) is equal to G(S; θ) with high probability. Therefore, a high-probability bound on H
would imply a high-probability bound on G.

• Second, H is convenient to control. For any θ ∈ Θ \Ωδ , the MGF satisfies ES [exp(λH(S; θ)] ≤ 1.
For any θ ∈ Ωδ , the term ES [exp(λH(S; θ))] can be controlled under an assumption λ ≲ 1/Eθ∼P[βθ]
due to the definition of Ωδ which relates βθ with its expectation. A key difference is that the random
βθ is replaced by Eθ∼P[βθ] in the constraint of λ, which allows us to choose a deterministic λ
uniformly for all θ. A further expectation w.r.t. θ would imply a bound on ES;θ[exp(λH(S; θ))],
which is needed in the PAC-Bayes analysis.

Finally, we manipulate this MGF bound in the PAC-Bayes framework by the variational formula
(Lemma A.3), building upon the framework of [32].

3.3 Bounds in Expectation

Our previous analysis gives high-probability bounds. In this subsection, we give PAC-Bayes bounds
in expectation. In this case, we no longer need an assumption on the concentration behavior of βθ
around its expectation. The proof is given in Appendix A.3.
Theorem 3. Consider any βθ-uniformly stable algorithm A and M -bounded loss ℓ. For any
distribution Q, we have

ESEθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
≤

(
χ2(Q∥P) + 1

) 1
2

(
2M2

n
+ 16Eθ∼P[β

2
θ ]

) 1
2

. (3.4)

Remark 1. Under the same assumption, it was shown in Theorem 1 in [32] that

ESEθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
≤

(
χ2(Q∥P) + 1

) 1
2

(
2M2

n
+ 12MEθ∼P[βθ]

) 1
2

. (3.5)

Therefore, our analysis gives a bound of the order O
(
1/

√
n +

(
Eθ∼P[β2

θ ]
) 1

2
)
, while Eq. (3.5)

gives a bound O
(
1/
√
n +

(
Eθ∼P[βθ]

) 1
2
)
. It is known that Eθ∼P[β2

θ ] can be much smaller than
Eθ∼P[βθ]. For example, for SGD with t iterations and P being the uniform distribution, it was shown
Eθ∼P[βθ] = O(ηt/n) and Eθ∼P[β2

θ ] = O(η2t/n) if the loss function is convex and smooth [27]. In
the typical setting with η = O(1/

√
t) and t ≍ n (in this setting SGD achieves optimal rates), we have

Eθ∼P[βθ] = O(1/
√
n) and Eθ∼P[β2

θ ] = O(1/n). In this case, our analysis gives PAC-Bayes bounds
of the order O(1/

√
n), while Eq. (3.5) gives PAC-Bayes bounds of the order O(1/n

1
4 ). Therefore,

our analysis implies much better PAC-Bayes bounds than that in [32].
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4 Applications

We apply our general results to derive PAC-Bayes bounds for two optimization algorithms: Stochastic
Gradient Descent (SGD) and Randomized Coordinate Descent (RCD). To this aim, we introduce
some necessary definitions. Let ∥ · ∥2 denote the Euclidean norm.
Definition 3 (Lipschitz continuity). We say a loss function ℓ(·; z) is L-Lipschitz if for any w ∈ W
and z ∈ Z , we have ∥∇ℓ(w; z)∥2 ≤ L. This implies that for any w1, w2 ∈ W ,

|ℓ(w1; z)− ℓ(w2; z)| ≤ L∥w1 −w2∥2. (4.1)

Definition 4 (Convexity). Let κ ≥ 0. We say a loss function ℓ(·; z) is κ-strongly convex if for any
w1,w2 ∈ W and z ∈ Z , we have

ℓ(w1; z) ≥ ℓ(w2; z) +
〈
∇ℓ(w2; z),w1 −w2

〉
+
κ

2
∥w1 −w2∥22. (4.2)

We say the loss function ℓ is convex if the above inequality holds with κ = 0.
Definition 5 (Smoothness). Let α ≥ 0. We say a loss function ℓ(·; z) is α-smooth if for any w1, w2

∈ W and z ∈ Z , we have

∥∇ℓ(w1; z)−∇ℓ(w2; z)∥2 ≤ α∥w1 −w2∥2. (4.3)

For the applications, we only need to verify the sub-exponential stability of the algorithm w.r.t. the
prior sampling P, which is often chosen to be simple such as the uniform distribution.

4.1 Applications to Stochastic Gradient Descent

SGD is one of the most popular algorithms to solve optimization problems in machine learning due
to its simplicity and efficiency. The basic idea is to build a stochastic gradient based on a randomly
selected example, which is used to update iterates. Here we consider SGD with a general sampling
scheme, where the random index follows from a general distribution. This general SGD has already
been considered in the literature to improve the efficiency of SGD with uniform sampling, including
importance sampling [66] and Markov chain sampling [54, 58, 63].
Definition 6 (SGD with general sampling). Let w1 be an initial point. Let P be a probability measure
over [n]T and S = {z1, . . . , zn} be a training dataset. Let (i1, . . . , iT ) be drawn according to P. At
the t-th iteration, SGD with sampling scheme P updates the model by

wt+1 = wt − ηt∇ℓ(wt; zit), (4.4)

where {ηt} is a positive step-size sequence. If P is the uniform distribution, then we call it SGD with
uniform sampling (SGDU).

Now we apply Theorem 1 to develop PAC-Bayes bounds for SGD applied to convex problems,
covering both smooth and non-smooth cases. We will show that SGD enjoy sub-exponential stability.

4.1.1 Smooth case

In the following lemma to be proved in Appendix II.1.1, we give stability bounds for SGDU and
show it satisfies Assumption 1. Recall that the indicator function I[·] is defined in Definition 2.
Lemma 4 (Stability bound). Let S and S′ be neighboring datasets. Suppose for all z ∈ Z the loss
function is convex, α-smooth and L-Lipschitz. Let {wt}, {w′

t} be the sequence produced by SGDU
on S and S′ respectively with ηt ≤ 2/α. Then SGDU with t iterations and the hyperparameter θ is
βθ-uniformly stable with

βθ = 2L2 max
k∈[n]

t∑

j=1

ηjI[ij = k].

If ηt = η, then for any δ ∈ (0, 1), with probability at least 1− δ we have

βθ ≤ Eθ∼P[βθ] + 4L2η
(
1 + (t/n)

1
2

)
log(1/δ).

That is, Assumption 1 holds with c = 4L2η
(
1 + (t/n)

1
2

)
w.r.t. P.
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We can combine the above lemma with Theorem 1 to obtain PAC-Bayes bounds for SGD, whose
proof is given in Appendix II.1.1. An interesting property is that generalization bounds for SGD with
general sampling can be derived based on the stability analysis for SGD with the uniform sampling.
We always let P denote a uniform prior on Θ.
Corollary 5 (Generalization bound). Assume ℓ is M -bounded, L-Lipschitz, convex and α-smooth.
For uniform distribution P, every n ∈ N+ and δ ∈ (0, 1), with probability at least 1− δ over draws
of a data set, S ∼ Dn, for all posterior sampling distribution Q on [n]T , SGD with η ≤ 2/α satisfies

Eθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
≲

(
DKL(Q∥P) + log(1/δ)

)
max

{
L2η(T/n+ (1 + (T/n)

1
2 ) log(n)) log n,

M√
n

}
.

Based on [20, 27], which studied the trade-off between optimization and stability, the recommended
choices of parameters are T ≍ n and η ≍ 1/

√
T to get a SGD iterate with good generalization

behavior. In this setting, the above corollary implies a PAC-Bayes bound Õ(1/
√
n).

London [32] gave PAC-Bayes bounds for SGD under strong convexity and smoothness assumptions.
Corollary 6 (Corollary 1 in [32]). Suppose ℓ is M -bounded. Let the objective function be κ-strongly
convex, L-Lipschitz and α-smooth. Then, for uniform distribution P and any δ ∈ (0, 1), with
probability at least 1 − δ over draws of a data set, S ∼ Dn, SGD with ηt = (κt + α)−1 and any
posterior sampling distribution Q on [n]T satisfies

Eθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
≲

√
(
DKL(Q∥P)+log(1/δ)

)((M+L2/κ
)2

n
+
L2

κ2T

)
.

Remark 2. We now compare Corollary 5 and Corollary 6. First, Corollary 6 requires a strong
convexity assumption, which is removed in our analysis. Second, our analysis implies PAC-Bayes
bounds of the order Õ(1/

√
n), while Corollary 6 implies bounds of order O(1/(

√
nκ)). The strong

convexity parameter κ is often very small in both theoretical and empirical analysis. For example, the
existing generalization analysis of regularization schemes suggests κ = O(n−

1
2 ) to get an optimal

bound (Section 3 in [55]), for which Corollary 6 implies a vacuous bound. By contrast, our bound
Õ(1/

√
n) is optimal up to a log factor.

Remark 3. Our uniform stability (Definition 1) is slightly different from the uniform stability
βZ := supS∼S′ supz

∣∣Eθ∼P[ℓ(A(S; θ), z)−ℓ(A(S′; θ), z)]
∣∣ in [32] in the sense of taking expectation

in different places. The expectation of θ ∼ P is taken outside sup in our case and inside sup in βZ
[32]. However, we often have similar upper bounds for E[βθ] and βZ . Consider SGD for smooth,
Lipschitz and convex problems as an example. It is shown in [20] that βZ ≤ 2L2

∑t
k=1 ηk/n, while

we can show E[βθ] ≲ L2log n
∑t

k=1 ηk/n (the proof of Lemma 4) . These two upper bounds are the
same order up to a logarithmic factor. Furthermore, lower bounds were established in [65] (Theorem
1) where βZ ≥ L

2

∑t
k=1 ηk/n, which match the existing upper bounds up to a constant factor. This

shows that βZ and E[βθ] are of similar order.

4.1.2 Non-smooth case

The following lemma shows that SGDU applied to non-smooth problems enjoys the sub-exponential
stability. The proof follows the analysis in Section 4.2 in [29] and is given in Appendix II.1.2.
Lemma 7 (Stability bound). Let S and S′ be neighboring datasets. Suppose for all z ∈ Z the
loss function is convex and L-Lipschitz. Let {wt}, {w′

t} be the sequence produced by SGDU on S
and S′ respectively with fixed step sizes. Then SGDU with t iterations and the hyperparameter θ is
βθ-uniformly stable with βθ = 2

√
eL2η

(√
t+maxk∈[n]

∑t
j=1 I[ij = k]

)
. For any δ ∈ (0, 1), with

probability at least 1− δ we have

βθ ≤ Eθ∼P[βθ] + 4
√
eL2η

(
1 + (t/n)

1
2

)
log(1/δ).

That is, Assumption 1 holds with c = 4
√
eL2η

(
1 + (t/n)

1
2

)
w.r.t. P.

Based on the above lemma, we derive the following corollary for the PAC-Bayes bounds of SGD in
non-smooth problems.
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Corollary 8 (Generalization bound). Assume ℓ is M -bounded, L-Lipschitz and convex. For any
δ ∈ (0, 1), with probability at least 1−δ over draws of a data set, S ∼ Dn, for all posterior sampling
distribution Q on [n]T , SGD with T iterations and ηt = η satisfies

Eθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
≲

(
DKL(Q∥P) + log

1

δ

)
max

{
L2η(

√
T + T/n+ (1 + (T/n)

1
2 ) log n) log n,

M√
n

}
.

Remark 4. If we choose η ≍ T− 3
4 and T ≍ n2, then Corollary 8 gives the PAC-Bayes bounds

of order Õ(1/
√
n). This choice of parameters was suggested in Theorem 7 in [27]. This gives the

O(1/
√
n) optimization bounds to get optimal trade-off between stability and optimization for non-

smooth problems. The analysis in [32] cannot imply PAC-Bayes bounds for non-smooth problems.

4.2 Applications to Randomized Coordinate Descent

In this subsection, we consider RCD; this has not been studied in the PAC-Bayesian literature. RCD
is an efficient optimization algorithm that randomly chooses a coordinate to update at each iteration
[37]. Here we consider RCD with general sampling scheme, i.e. the coordinate to update follows a
general distribution. This scheme has been studied before in the optimization context [1, 66].
Definition 7 (RCD with general sampling). Let w1 be an initial point. Let P be a probability measure
over [d]T and S = {z1, . . . , zn} be a training dataset. Let (i1, . . . , iT ) be drawn according to P. At
the t-th iteration, RCD with sampling scheme P updates the model by

wt+1 = wt − ηt∇itRS(wt)eit , (4.5)

where {ηt} is a step-size sequence, ei is the i-th coordinate vector in Rd, and ∇ig is the derivative
of g w.r.t. the i-th coordinate. If P is the uniform distribution, then we call it RCD with uniform
sampling (RCDU).

Before giving the generalization bound for RCD, we first introduce coordinate-wise smoothness.
Definition 8 ([37]). A differentiable function g : W → R has coordinate-wise Lipschitz continuous
gradients with parameter α̂ > 0, if for all λ ∈ R, w ∈ W , i ∈ [d],

g(w + λei) ≤ g(w) + λ∇ig(w) + α̂λ2/2.

In Lemma 9, to be proved in Appendix B.2, we develop stability bounds for RCDU with convex and
smooth loss functions. In particular, we show the stability follows a sub-exponential distribution.
Lemma 9 (Stability bound). Let S and S′ be neighboring datasets. Suppose for all z ∈ Z the loss
function ℓ is convex, α-smooth, L-Lipschitz and has coordinate-wise Lipschitz continuous gradients
with parameter α̂ ≥ 0. Let {wt}, {w′

t} be the sequence produced by RCDU on S and S′ respectively
with ηt ≤ 2/α̂. Then RCD with t iterations is βθ-uniformly stable with

βθ =
L

n
max
k∈[n]

t∑

j=1

ηj |∇ij ℓ(wj ; zk)−∇ij ℓ(wj ; z
′
k)|, (4.6)

where ∥∇ℓ(w; z)∥1 ≤ L1. Furthermore, if ηt = η, then for any δ ∈ (0, 1) the following inequality
holds with probability at least 1−δ over θ ∼ P (the uniform distribution over {(i1, . . . , it) : ij ∈ [d]})

βθ ≤ 2L1Lηt

nd
+
ηL2 log(1/δ)

n

(8
3
+

√
32t

d

)
.

Remark 5. Stability bounds of the order O(ηt/(nd)) were developed for RCD in [62] (Theorem 2).
Their stability bounds hold in expectation. In contrast, we develop high-probability stability bounds
of the order O

(
ηt
nd + η

n

)
.

We plug the above bounds into Theorem 1, and derive the following PAC-Bayes bounds for RCD.
Corollary 10 (Generalization bound). Let the assumptions in Corollary 5 hold. We further assume
that the gradient is coordinate-wise Lipschitz continuous. When P is the uniform distribution, for
any δ ∈ (0, 1), with probability at least 1 − δ over draws of S ∼ Dn, for all posterior sampling
distributions Q on [d]T , RCD with the hyperparameter θ and fixed step sizes η ≤ 2/α̂ satisfies

Eθ∼Q
[
R(A(S; θ))−RS(A(S; θ))

]
≲

(
DKL(Q∥P) + log(1/δ)

)
max

{LL1ηT

nd
log n,

M√
n

}
.
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According to the above corollary, we can derive PAC-Bayes bounds of the order Õ(1/
√
n) if

T = O(d
√
n) and η = O(1). These choices of parameters were suggested in Theorem 7 in [62] to

balance optimization and stability for RCD.

5 Related Work

Related work on stability The analysis of the generalization error through algorithmic stability
is based on the landmark work of [7]. Generalization bounds via stability are algorithm-specific
and have been applied to regularization algorithms, such as SVM regression and classification
[7, 11, 16, 52]. Pioneering work on stability analysis of SGD was introduced in [20], which motivated
much subsequent stability analyses of randomized iterative algorithms [10, 24, 25, 31, 38, 45].
The smoothness assumption in [20] was removed in more recent stability analyses [3, 27] of SGD.
Stability bounds showing the benefit of low training errors on generalization were also developed for
convex [27, 39, 50], nonconvex [28] and overparameterized models [12, 47, 59]. In recent works,
stronger high-probability bounds via uniform stability have been developed. Some breakthroughs have
narrowed down the difference between the risk and the empirical risk, leading to faster convergence
rates with high probability [8, 17, 18].

Related work on PAC-Bayes bounds The PAC-Bayes theory of generalization dates back to works
by [53] and [34] and further improved by [9, 26] and others. PAC-Bayes bounds are upper bounds
on the generalization error of randomized learning algorithms, given in terms of data-dependent
quantities that we can compute: the empirical error, and a quantity to measure the divergence between
the PAC-Bayesian prior and posterior distributions, such as Kullback-Leibler (KL) divergence or
the Rényi divergence [4]. The framework was later extended to allow learning the prior from the
data, resulting in tighter bounds [2, 14, 15, 35, 42–44, 48]. The sensitivity of learning algorithms
to small perturbations in the weights can be analyzed through the properties of a distribution of
predictors, which may lead to regularity and improve the generalization bounds [5]. By evaluating the
algorithmic stability on all possible outputs, stability of learning algorithms and PAC-Bayes bounds
can be combined [32, 33, 35, 36, 40, 48, 57] and applied to randomized learning algorithms such as
SGD and SGLD [30, 32, 35, 36]. For PAC-Bayes bounds, usually, the randomness is induced by
a distribution on the parameters of a model. In [32], the authors isolated the randomness to view
the randomized learning algorithm as deterministic, with hyperparameters following the distribution
instead.

6 Conclusions

Under an assumption of a sub-exponential stability parameter, we derive sharper stability-based
PAC-Bayes bounds for randomized learning algorithms by utilizing a moment bound. We show
that the sub-exponential stability assumption holds for SGD and RCD, for which we develop PAC-
Bayes bounds as corollaries. Our results remove the need for the requirements of strong convexity,
hyperparameter stability, and even smoothness in previous results.

Limitations. Future work of interest includes exploring other optimization methods that meet the
sub-exponential assumption. It would also be interesting to study the quality of bounds obtainable
when placing the PAC-Bayes prior on the parameters of a model (as in the classic approach) versus
the hyperparametrs of the optimiser of the model (as in this work). Another interesting research
direction is to further improve the bound by including additional assumptions. As noted in [23],
for the deterministic case, the bounds can be

√
n-times faster under a Bernstein condition between

expectation and variance of loss functions.
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