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Abstract

Many modern machine learning applications – from online principal component1

analysis to covariance matrix identification and dictionary learning – can be formu-2

lated as minimization problems on Riemannian manifolds, typically solved with3

a Riemannian stochastic gradient method (or some variant thereof). However, in4

many cases of interest, the resulting minimization problem is not geodesically5

convex, so the convergence of the chosen solver to a desirable solution - i.e., a6

local minimizer - is by no means guaranteed. In this paper, we study precisely7

this question, that is, whether stochastic Riemannian optimization algorithms are8

guaranteed to avoid saddle points with probability 1. For generality, we study9

a family of retraction-based methods which, in addition to having a potentially10

much lower per-iteration cost relative to Riemannian gradient descent, include11

other widely used algorithms, such as natural policy gradient methods and mirror12

descent in ordinary convex spaces. In this general setting, we show that, under13

mild assumptions for the ambient manifold and the oracle providing gradient in-14

formation, the policies under study avoid strict saddle points / submanifolds with15

probability 1, from any initial condition. This result provides an important sanity16

check for the use of gradient methods on manifolds as it shows that, almost always,17

the end state of a stochastic Riemannian algorithm can only be a local minimizer.18

1 Introduction19

Modern machine learning systems have achieved remarkable success in the efficient optimization20

of highly non-convex functions using straightforward Euclidean techniques like stochastic gradient21

descent. A widely accepted hypothesis to explain this phenomenon is that, when the learning system22

under study – e.g., a neural network – possesses a high level of expressiveness, local minimizers are23

essentially as good as global ones [19, 33]; by this token, a training algorithm can attain satisfactory24

performance by simply evading saddle points of the model’s loss surface.25

This observation has sparked a far-reaching research thread examining the behavior of various26

algorithms around saddle points in non-convex functions. Informally, these studies aim to tackle two27

fundamental questions:28

Q1: When does a given scheme, like stochastic gradient descent, avoid saddle points?29

Q2: Can we augment a given scheme so that it efficiently escapes saddle points?30

In the above, Q1 focuses on explaining the empirical success of commonly used schemes, while the31

resolution of Q2 usually revolves around proposing new schemes with desirable escape guarantees.32

These complementary perspectives have been extensively studied over the past decade, leading to a33

fairly complete understanding of how and when a Euclidean (stochastic) algorithm escapes saddle34

points, see e.g., [26, 27, 39, 40, 44, 50, 51] and references therein.35
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In parallel to the above, the recent surge of interest in Riemannian optimization has prompted a closer36

examination Riemannian methods, thereby motivating an extension of Q1 and Q2 to a manifold setting37

– itself due to a wide range of breakthrough applications to machine learning and data science, from38

natural language processing, and signal processing to dictionary learning and robotics [45, 49, 61, 62].39

As a result, there is an increasing demand for a comprehensive exploration of various spaces, such as40

the 𝑑-dimensional torus, Grassmannian or Stiefel manifolds, and hyperbolic spaces.41

Unfortunately, in a proper Riemannian setting, only Q2 has received sufficient scrutiny thus far. Recent42

works by Criscitiello and Boumal [20] and Sun et al. [63] have shown that standard Riemannian43

deterministic algorithms can be augmented by the injection of an infinitesimal amount of noise44

(proportional to the method’s desired accuracy), to achieve comparable escape guarantees in terms of45

oracle complexity as the corresponding Euclidean methods [28]. To the best of our knowledge, all46

existing results for Q1 concern deterministic methods [26, 39, 40, 50] which are significantly limited47

in scopein large-scale machine learning applications, due to their prohibitively high per-iteration cost.48

Our results and techniques. In view of the above, our paper aims to provide a general answer49

to Q1 for a broad class of Riemannian stochastic optimization methods – including Riemannian50

stochastic gradient descent, its retraction-based and/or optimistic variants, etc. Concretely, we focus51

throughout on a flexible template of Riemannian Robbins–Monro (RRM) shcemes [32, 56], which52

readily includes the specific algorithms of interest mentioned above, but also a range of Euclidean53

methods that can be analyzed efficiently from a Riemannian viewpoint.54

Informally, our main result may be stated as follows:55

Under any stochastic Riemannian Robbins–Monro method, the probability of56

converging to a strict saddle point (or a submanifold thereof ) is zero.57

This statement provides firm grounds for accepting the output of a stochastic Riemannian optimization58

method as valid, as it shows that saddle points are avoided with probability 1 (we recall here that59

a strict saddle manifold is a set of critical points each of which has at least one negative Hessian60

eigenvalue). Such manifolds include ridge hypersurfaces and other connected sets of non-isolated61

saddle points that are common in the loss landscapes of high-dimensional machine learning models,62

so this result has significant cutting power in this regard.63

In the context of stochastic methods, our result builds on a series of foundational results by Pemantle64

[51] and Brandière and Duflo [18] who focused on hyperbolic traps (isolated saddle points with65

invertible Hessian). These results were subsequently extended by Benaïm and Hirsch [10] to66

a more general class of unstable sets, but this analysis remained grounded in a flat, Euclidean67

setting. The connecting tissue of our analysis with these works is the notion of an asymptotic68

pseudotrajectory (APT), which allows us to couple the long-run behavior of discrete-time RRM69

methods to that of an associated Riemannian gradient flow. [This discrete-to-continuous comparison70

is crucial for our analysis in order to apply center stable manifold techniques [60] to the RRM71

framework.] However, this comes at a significant cost, as establishing the APT property in a72

Riemannian setting is a highly challenging affair. To achieve this, we employ a set of techniques73

recently developed by [31] which allow us to make this comparison precise and establish the desired74

avoidance result.75

2 Setup and preliminaries76

We begin with a brief overview of some basic definitions from Riemmanian geometry and optimiza-77

tion, solely intended to set notation and terminology; our presentation roughly follows the masterful78

account of Lee [41, 42], to which we refer the reader for a comprehensive introduction to the topic.79

Le M be a 𝑑-dimensional, geodesically complete Riemannian manifold. Throughout the sequel, the80

tangent space to M at a point 𝑥 ∈M will be denoted by T𝑥M, and we will write ¤𝛾(𝑡) ∈ T𝛾 (𝑡 )M81

for the velocity vector to a smooth curve 𝛾 : ℝ→M at time 𝑡 ∈ ℝ. We will also write ⟨·, ·⟩𝑥 for the82

metric at 𝑥 ∈M, ∥·∥𝑥 for the associated norm, and dist(·, ·) for the induced distance function on M,83

the latter being defined via the minimization of the length functional L[𝛾] =
∫
∥ ¤𝛾(𝑡)∥𝛾 (𝑡 ) 𝑑𝑡.84

Given a point 𝑥 ∈M and a tangent vector 𝑧 ∈ T𝑥M, the (necessarily unique) geodesic emanating85

from 𝑥 along 𝑧 will be denoted by 𝛾𝑧 , and we define the exponential map at 𝑥 as exp𝑥 (𝑧) = 𝛾𝑧 (1) for86

all 𝑧 ∈ T𝑥M (recall here that M is assumed complete, so this map is well-defined for all 𝑥 ∈M and87

2



all 𝑧 ∈ T𝑥M). Whenever well-defined, the inverse of exp𝑥 will be written as log𝑥 : M→ T𝑥M, with88

the understanding that the domain of log𝑥 is actually the largest neighborhood of 𝑥 ∈M on which89

the restriction of exp𝑥 is a (global) diffeomorphism; by definition, we have log𝑥 (exp𝑥 (𝑧)) = 𝑧 for all90

𝑧 for which the relevant quantities are well-defined. Finally, given a pair of points 𝑥, 𝑥′ ∈M and a91

tangent vector 𝑧 ∈ T𝑥M, we will write Γ𝑥→𝑥′ (𝑧) for the vector obtained by parallel transporting 𝑧92

along any minimizing geodesic connecting 𝑥 and 𝑥′.93

In this general context, we will be interested in solving the Riemannian optimization problem94

minimize𝑥∈M 𝑓 (𝑥) (Opt)

for some smooth objective function 𝑓 : M→ ℝ (the degree of smoothness of 𝑓 will be assumed to95

be at least 𝐶2 throughout). We will also respectively write96

𝑣(𝑥) B −grad 𝑓 (𝑥) and 𝐻 (𝑥) B Hess( 𝑓 (𝑥)) (1)

for the negative (Riemannian) gradient and the (Riemannian) Hessian of 𝑓 at 𝑥. In terms of regularity,97

we will also assume throughout that 𝑣 is (geodesically) 𝐿-Lipschitz, i.e., for all 𝑥, 𝑥′ ∈M, we have98

∥Γ𝑥→𝑥′ (𝑣(𝑥)) − 𝑣(𝑥′)∥𝑥′ = ∥𝑣(𝑥) − Γ𝑥′→𝑥 (𝑣(𝑥′))∥𝑥 ≤ 𝐿 dist(𝑥, 𝑥′). (2)

Finally, in terms of solutions of (Opt), we will focus on the avoidance of strict saddle points of 𝑓 , i.e.,99

points 𝑥 ∈M for which100

𝑣(𝑥) = 0 and _min (𝐻 (𝑥)) < 0 (3)
where _min denotes the minimum eigenvalue of the tensor in question. We will also say that a smooth101

compact component of critical points of 𝑓 is a strict saddle manifold if there exist constants 𝑐± > 0102

such that all negative eigenvalues of 𝐻 (𝑥), 𝑥 ∈ S, are bounded from above by −𝑐− < 0, and any103

positive eigenvalues (if they exist) are bounded from below by 𝑐+ > 0.104

To differentiate the above from the Euclidean setting, when M is a real space equipped with the105

Euclidean metric, we will instead write ∇ 𝑓 and ∇2 𝑓 for the (ordinary) gradient and Hessian matrix106

of 𝑓 . In this case, as is customary, we will not distinguish between primal and dual vectors.107

3 Core algorithmic framework108

For generality, our avoidance analysis will be carried out in an abstract stochastic approximation109

framework which includes several popular Riemannian optimization algorithms – from ordinary110

Riemannian (stochastic) gradient descent, to its retraction-based variants, optimistic methods, etc.111

For concreteness, we start with the general template below, and we present a (nonexhaustive!) series112

of representative examples right after.113

3.1. The Riemannian Robbins–Monro template. The Riemannian Robbins–Monro (RRM) frame-114

work that we will consider for solving (Opt) is an iterative family of methods which directly extends115

the seminal stochastic approximation scheme of Robbins and Monro [56] to a manifold setting by116

replacing vector addition with the Riemannian exponential. Roughly following [31], we will focus117

on the abstract update rule118

𝑋𝑛+1 = exp𝑋𝑛
(𝛾𝑛 �̂�𝑛) (RRM)

where119

1. 𝑋𝑛 ∈M denotes the state of the algorithm at each iteration 𝑛 = 1, 2, . . .120

2. �̂�𝑛 ∈ T𝑋𝑛
M is a surrogate for the (negative) gradient 𝑣(𝑋𝑛) of 𝑓 at 𝑋𝑛 (defined in detail below).121

3. 𝛾𝑛 > 0 is the method’s step-size (discussed in Section 4).122

In the above, the defining element of (RRM) is the sequence of “surrogate gradients” �̂�𝑛, 𝑛 = 1, 2, . . . ,123

so this will be our first object of interest. Formally, letting F𝑛 denote the history of 𝑋𝑛 up to stage 𝑛124

(inclusive), we will write125

�̂�𝑛 = 𝑣(𝑋𝑛) +𝑈𝑛 + 𝑏𝑛 (4)
where126

𝑈𝑛 = �̂�𝑛 − 𝔼[�̂�𝑛 |F𝑛] and 𝑏𝑛 = 𝔼[�̂�𝑛 |F𝑛] − 𝑣(𝑋𝑛) (5)
respectively denote the random error and the offset of �̂�𝑛 relative to 𝑣(𝑋𝑛). It will also be convenient127

to introduce the total error 𝑊𝑛 = �̂�𝑛 − 𝑣(𝑋𝑛) = 𝑈𝑛 + 𝑏𝑛, which captures both random and systematic128

fluctuations in �̂�𝑛, and which measures the total deviation of �̂�𝑛 from 𝑣(𝑋𝑛).129
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Two points are worth noting here: First, �̂�𝑛 is not adapted to F𝑛, so 𝑈𝑛 is random relative to F𝑛;130

on the other hand, 𝑏𝑛 is F𝑛-measurable, so it is deterministic relative to F𝑛. This brings us to the131

second important point regarding �̂�𝑛: given the systematic offset term 𝑏𝑛 in �̂�𝑛, the latter should not132

be seen as the output of a gradient oracle for 𝑣(𝑋𝑛). In particular, 𝑏𝑛 is intended to capture possible133

corrective terms, deviations from the exponential mapping, different algorithmic update structures134

(such as optimism), etc. We make this distinction precise below.135

3.2. Specific algorithms and examples. In the series of examples that follow, we will assume that136

the optimizer can access 𝑓 via a stochastic first-order oracle (SFO) returning noisy gradients of 𝑓 at137

the evaluation point. Formally, following Nesterov [47], an SFO is a black-box mechanism which,138

when queried at 𝑥 ∈M, returns a (negative) stochastic gradient of the form139

𝑉 (𝑥; \) = 𝑣(𝑥) + err(𝑥; \) (SFO)

where the seed \ ∈ Θ is a random variable taking values in some measurable space Θ, and err(𝑥; \)140

is an umbrella error term capturing all sources of uncertainty in the model.141

The archetypal example of an SFO occurs when 𝑓 is itself a stochastic expectation of the form142

𝑓 (𝑥) = 𝔼[𝐹 (𝑥; \)] for some random function 𝐹 : M × Θ→ ℝ – the so-called stochastic optimiza-143

tion framework. In this case, 𝑉 is typically given by 𝑉 (𝑥; \) = −grad𝑥𝐹 (𝑥; \), so, under standard144

assumptions for exchanging differentiation and expectation, we have 𝔼[𝑉 (𝑥; \)] = 𝑣(𝑥). Extrapolat-145

ing from this basic framework, our only assumption for the moment will be that 𝔼[err(𝑥; \)] = 0; for146

a detailed discussion of the required assumptions for (SFO), see Section 4.147

In practice, (SFO) will be queried repeatedly at a sequence of states 𝑋𝑛, 𝑛 = 1, 2, . . . , with a different148

random seed \𝑛 drawn i.i.d. from Θ. In this manner, we obtain the following specific algorithms as149

special cases of (RRM):150

Algorithm 1 (Riemannian stochastic gradient descent). Following Bonnabel [15], the Riemannian151

stochastic gradient descent (RSGD) algorithm queries (SFO) at 𝑋𝑛 and proceeds as152

𝑋𝑛+1 = exp𝑋𝑛
(𝛾𝑛𝑉 (𝑋𝑛; \𝑛)) . (RSGD)

As such, (RSGD) can be seen as an RRM scheme with �̂�𝑛 = 𝑉 (𝑋𝑛; \𝑛) or, equivalently, 𝑈𝑛 =153

err(𝑋𝑛; \𝑛) and 𝑏𝑛 = 0. ♦154

A key factor limiting the applicability of (RSGD) is that the exponential map exp𝑋𝑛
(·) could be155

prohibitively expensive to compute in practice, even for relatively low-dimensional manifolds. On156

that account, a popular alternative to (RSGD) is to employ a retraction map [2, 17], that is, a smooth157

mapping R : T M→M that agrees with the exponential map up to first order, namely158

R𝑥 (0) = 𝑥 and
𝑑

𝑑𝑡

����
𝑡=0

R𝑥 (𝑡𝑧) = 𝑧 for all (𝑥, 𝑧) ∈ T M. (Rtr)

With this machinery in hand, we obtain the following retraction-based variant of (RSGD):159

Algorithm 2 (Retraction-based stochastic gradient descent). By replacing the exponential map in160

(RSGD) with a retraction, we obtain the retraction-based stochastic gradient descent scheme161

𝑋𝑛+1 = R𝑋𝑛
(𝛾𝑛𝑉 (𝑋𝑛; \𝑛)). (Rtr-SGD)

This algorithm does not seem immediately related to the RRM template – and, indeed, the whole162

point of introducing a retraction was to get rid of the exponential map in (RRM). The expressive163

power of (RRM) can be seen in the fact that, despite this apparent disconnect, (Rtr-SGD) can be164

expressed as a special case of (RRM) in a fairly straightforward fashion.165

To do so, define the “forward-backward” gradient mapping166

�̂�𝑛 B
1
𝛾𝑛

log𝑋𝑛
(R𝑋𝑛

(𝛾𝑛𝑉 (𝑋𝑛; \𝑛))) (6)

with the proviso that the Riemannian logarithm in (6) is well-defined (we discuss the conditions under167

which this holds later in the paper). Under this definition, (Rtr-SGD) can be recast as a special case168

of (RRM) by running the latter with the surrogate gradient sequence �̂�𝑛 of Eq. (6). To streamline our169

presentation, we defer the discussion about the inherent error𝑊𝑛 = �̂�𝑛 − 𝑣(𝑋𝑛) to Appendix A. ♦170
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As we mentioned before, retraction-based algorithms typically exhibit significantly lower per-iteration171

complexity compared to geodesic methods, resulting in their remarkable success in practical machine172

learning applications [2, 17]. In addition, as we show below, the use of a retraction mapping allows173

us to provide a unified perspective for several classical algorithms which, at first sight, might seem174

completely unrelated. An important example is provided by the (stochastic) mirror descent (MD)175

family of algorithms [46]:176

Algorithm 3 (Stochastic mirror descent). Let M be an open convex subset of ℝ𝑀 and let ℎ : M→ ℝ177

be a 𝐶2-smooth, strongly convex Legendre function on M, that is, ∥∇ℎ(𝑥)∥ → ∞ whenever178

𝑥 → bd(M) [cf. 57, Chap. 26]. Then, the stochastic mirror descent (SMD) algorithm iterates as179

𝑋𝑛+1 = P𝑋𝑛
(𝛾𝑛𝑉 (𝑋𝑛; \𝑛)) (SMD)

where 𝑉 (𝑋𝑛; \𝑛) is the output of an SFO query for ∇ 𝑓 (𝑋𝑛) at 𝑋𝑛, and P : M × ℝ𝑀 →M is the180

so-called prox-mapping associated to ℎ [5–7, 29], i.e.,181

P𝑥 (𝑦) = arg max𝑥′∈M{⟨∇ℎ(𝑥) + 𝑦, 𝑥′⟩ − ℎ(𝑥′)} for all 𝑥 ∈M, 𝑦 ∈ ℝ𝑀 . (7)
where ⟨·, ·⟩ stands for the ordinary Euclidean inner product in ℝ𝑀 .182

Now, even though the notation in (SMD) is reminiscent of (Rtr-SGD), the definition (7) of P does not183

bear any resemblance to a geodesic exponential or a retraction – and, indeed, its origins are starkly184

different. However, as we show below, P can indeed be seen as a retraction relative to a specific185

Riemannian structure on M, namely the Hessian Riemannian (HR) metric associated to ℎ [3, 22].186

To make this precise, the first step is to note that the basic recursive structure 𝑥+ = P𝑥 (𝑦) of (SMD)187

can be rewritten as188

𝑥+ = P𝑥 (𝑦) = ∇ℎ∗ (∇ℎ(𝑥) + 𝑦) (8)
where ℎ∗ (𝑦) = max𝑥∈M{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} denotes the convex conjugate of ℎ, and we have used189

Danskin’s theorem [59] to write arg max𝑥∈M{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} = ∇ℎ∗ (𝑦). Then, if we endow M with190

the Hessian Riemannian metric 𝑔(𝑥) = ∇2ℎ(𝑥), the Riemannian gradient of 𝑓 relative to 𝑔 becomes191

grad 𝑓 (𝑥) = [∇2ℎ(𝑥)]−1∇ 𝑓 (𝑥), and, more generally, given a cotangent (dual) vector 𝑦 to M at 𝑥,192

the corresponding tangent (primal) vector will be 𝑧 = 𝑔(𝑥)−1𝑦 = [∇2ℎ(𝑥)]−1𝑦. In view of this, by193

inverting the relation 𝑧 = 𝑔(𝑥)−1𝑦, the abstract mirror descent recursion (8) can be rewritten as194

𝑥+ = R𝑥 (𝑧) B P𝑥 (𝑔(𝑥)𝑧). (9)

To proceed, consider the curve195

𝛾(𝑡) = R𝑥 (𝑡𝑧) = P𝑥 (𝑡𝑔(𝑥)𝑧) = ∇ℎ∗ (∇ℎ(𝑥) + 𝑡𝑔(𝑥)𝑧), (10)
so, by definition, 𝛾(0) = 𝑥. In addition, by a direct differentiation, we readily obtain196

¤𝛾(0) = ∇2ℎ∗ (∇ℎ(𝑥))𝑔(𝑥)𝑧 = 𝑧 (11)
where we used the standard identity ∇2ℎ∗ (∇ℎ(𝑥)) = [∇2ℎ(𝑥)]−1 [7, 58]. This shows that the map197

R𝑥 (𝑧) = P𝑥 (𝑔(𝑥)𝑧) is, in fact, a retraction, so (SMD) can be seen as a special case of (Rtr-SGD) –198

and hence, of the general stochastic approximation template (RRM). ♦199

Remark. Even though elements of the above ideas are implicit in previous works on mirror descent200

and Hessian Riemannian metrics [3, 14, 55], to the best of our knowledge, this is the first time that201

(SMD) is formalized as a retraction-based (Hessian) Riemannian scheme. ♦202

Algorithm 4 (Riemannian optimistic gradient). Moving forward, an important algorithm for solving203

online optimization problems and games is the so-called optimistic gradient method – originally204

pioneered by Popov [53] and subsequently popularized by Rakhlin and Sridharan [54]. In the205

Euclidean case, this method introduces an interim, “optimistic” correction to gradient dynamics and206

updates as207

𝑋+𝑛 = 𝑋𝑛 + 𝛾𝑛𝑉 (𝑋+𝑛−1; \𝑛−1)
𝑋𝑛+1 = 𝑋𝑛 + 𝛾𝑛𝑉 (𝑋+𝑛 ; \𝑛)

(OG)

where, as usual, 𝑉 is an SFO for the (negative) gradient ∇ 𝑓 of 𝑓 . This idea can then be directly208

transported to a manifold setting [31], leading to the Riemannian optimistic gradient method209

𝑋+𝑛 = exp𝑋𝑛
(𝛾𝑛𝑉 (𝑋+𝑛−1; \𝑛−1)),

𝑋𝑛+1 = exp𝑋𝑛
(Γ𝑋+𝑛→𝑋𝑛

(𝛾𝑛𝑉 (𝑋+𝑛 ; \𝑛))).
(ROG)

Importantly, the recursion (ROG) may be seen as a special case of (RRM) by setting �̂�𝑛 = (1/𝛾𝑛) ·210

Γ𝑋+𝑛→𝑋𝑛
(𝛾𝑛𝑉 (𝑋+𝑛 ; \𝑛)) or, equivalently 𝑈𝑛 = Γ𝑋+𝑛→𝑋𝑛

(err(𝑋+𝑛 ; \𝑛)) and 𝑏𝑛 = Γ𝑋+𝑛→𝑋𝑛
(𝑣(𝑋+𝑛 )) −211

𝑣(𝑋𝑛). We defer the details of this calculation to the Appendix A. ♦212
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Algorithm 5 (Natural gradient descent). Our last example concerns the influential natural gradient213

descent (NGD) method of Amari [4], a stochastic optimization scheme for Euclidean spaces, but214

adapted to the local geometry defined by a strictly convex function ℎ. Specifically, NGD queries an215

SFO and proceeds as216

𝑋𝑛+1 = 𝑋𝑛 − 𝛾𝑛 (grad 𝑓 (𝑋𝑛) + err(𝑋𝑛; \𝑛)) (NGD)
where grad 𝑓 (𝑥) B [∇2ℎ(𝑥)]−1∇ 𝑓 (𝑥) denotes the Riemannian gradient of 𝑓 relative to Hessian217

Riemannian metric 𝑔(𝑥) = ∇ℎ2 (𝑥) on ℝ𝑀 . It is well known that (NGD) can be seen as a retraction-218

based Riemannian scheme [15], and may thus be integrated directly within the framework of (RRM);219

we defer the details to Appendix A. Importantly, (NGD) also includes the celebrated natural policy220

gradient [30] which plays an important role in reinforcement learning. ♦221

The above examples have been chosen to illustrate a range of different update mechanisms that can be222

integrated within the general algorithmic template provided by (RRM). Of course, it is not possible223

to be exhaustive but, for illustration purposes, we provide some more examples in the Appendix A.224

4 Analysis and results225

We are now in a position to state and discuss our main result concerning the avoidance of saddle226

points under (RRM). For concreteness, we begin by discussing the technical assumptions that we227

will need in Section 4.1; subsequently, we proceed with the formal statement of our result and some228

direct applications thereof in Section 4.2.229

4.1. Technical assumptions. Our technical assumptions concern the three main ingredients of230

(RRM), namely (i) the method’s step-size sequence 𝛾𝑛; (ii) the statistics of the surrogate gradients �̂�𝑛231

entering (RRM); and (iii) the ambient manifold M. Specifially, we will require the following:232

Assumption 1 (Step-size schedule). The step-size sequence 𝛾𝑛 of (RRM) satisfies233 ∑︁∞
𝑛=1 𝛾𝑛 = ∞ and

∑︁∞
𝑛=1 _

1/𝛾𝑛 < ∞ for all _ ∈ (0, 1). (12)

Assumption 2 (Surrogate gradients). The offset and random error components of �̂�𝑛 satisfy234

∥𝑏𝑛∥𝑋𝑛 ≤ 𝐶𝛾𝑛, ∥𝑈𝑛∥𝑋𝑛 ≤ 𝜎, 𝔼[[⟨𝑈𝑛, 𝑧⟩𝑋𝑛 ]+ |F𝑛] ≥ Z (13)

for suitable constants 𝐶, 𝜎, Z > 0 and for all 𝑧 ∈ T𝑋𝑛
M, ∥𝑧∥𝑋𝑛

= 1 (in the above, all conditions are235

to be interpreted in the almost sure sense and [𝑡]+ = max{0, 𝑧} denotes the positive part of 𝑡).236

Assumption 3 (Injectivity radius). The injectivity radius of M is bounded from below by 𝜚 > 0.237

Before proceeding, we discuss the implications and range of validity of each of the above assumptions:238

On Assumption 1. The step-size conditions typically encountered in the analysis of Rob-239

bins–Monro schemes is the 𝐿2 − 𝐿1 (“square-summabe-but-not-summable”) condition
∑
𝑛 𝛾𝑛 = ∞,240 ∑

𝑛 𝛾
2
𝑛 < ∞, cf. [8, 11, 12, 15, 37, 56] and references therein. This puts a hard threshold on the241

range of allowed step-size schedules at Ω(1/𝑛1/2): any step-size that decays at least as slow as 1/𝑛1/2242

cannot be used under the 𝐿2−𝐿1 assumption. By contrast, the step-size condition (12) is considerably243

more lax and can tolerate near-constant step-sizes of the form 𝛾𝑛 ∝ 1/(log 𝑛)1+Y for some Y > 0.244

This is enough to cover all dereasing step-size policies used in practice. [We also recall here that,245

in stochastic non-convex settings, trajectory convergence cannot be guaranteed in general without a246

vanishing step-size, cf. [8, 16, 38] and references therein.]247

On Assumption 2. Three remarks are in order for the noise and offset requirements (13). First, we248

should note that the condition 𝑏𝑛 = O(𝛾𝑛) is, a priori, implicit, because it depends on the statistics249

of the feedback sequence �̂�𝑛, and these may be difficult to estimate in general. However, in most250

practical applications, this quantity is under the explicit control of the optimizer: in particular, as we251

show later in this section, this requirement is satisfied by all the specific algorithms of Section 3.2.252

Likewise, the bounded noise requirement is satisfied in many practical cases of interest. For example,253

when the problem’s objective function admits a finite-sum decomposition of the form 𝑓 (𝑥) =254 ∑𝑁
𝑖=1 𝑓𝑖 (𝑥) for an ensemble of empirical instances 𝑓𝑖 , 𝑖 = 1, . . . , 𝑁 (the standard framework for255
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applications to data science and machine learning),𝑈𝑛 is typically generated by sampling a minibatch256

of 𝑓 , which in turn results in an error term of the form 𝑈𝑛 = 𝑞(𝑋𝑛) where 𝑞(𝑥) : M → T𝑥M is257

bounded on all compact subsets of M. Therefore, ∥𝑈𝑛∥𝑋𝑛 ≤ ∥𝑞(𝑋𝑛)∥𝑋𝑛 < 𝜎 for some constant 𝜎258

for any convergent algorithm {𝑋𝑛}𝑛.259

Finally, the “uniform excitability” condition 𝔼[[⟨𝑈𝑛, 𝑧⟩𝑋𝑛 ]+ |F𝑛] ≥ Z is also standard in the avoid-260

ance literature [8, 51], and it is substantially weaker than the isotropic condition, which, roughly261

speaking, requires the noise to have the same 𝐿2 magnitude along all directions in space [24, 28, 51].262

Instead, (12) only posits that the noise 𝑈𝑛 has a non-zero component along each direction, and263

imposes no other restrictions on the statistical profile of the noise.264

On Assumption 3. For our last assumption, recall first that the injectivity radius of M at a point265

𝑥 ∈M is the largest radius for which exp𝑥 is a diffeomorphism onto its image; the injectivity radius266

of M is then taken to be the infimum over all such radii [41]. In this regard, Assumption 3 simply267

serves to ensure that the exponential map is invertible at consecutive iterates of (RRM) so no local268

topological complications can arise. This assumption is automatically satisfied in closed manifolds269

(independent of curvature), as well as in non-positively curved manifolds – such as Cartan-Hadamard270

spaces and the like [41, 42]. This assumption (and its variants) is also standard in the literature, cf.271

[15, 32, 63] and references therein.272

4.2. Avoidance of saddle points. We are now in a position to state our main avoidance result:273

Theorem 1. Let 𝑋𝑛, 𝑛 = 1, 2, . . . , be the sequence of states generated by (RRM), and let S be a274

strict saddle manifold of 𝑓 . Then, under Assumptions 1–3, we have275

ℙ(dist(S, 𝑋𝑛) → 0 as 𝑛→∞) = 0 (14)

where dist(S, 𝑋𝑛) = inf𝑥∈S dist(𝑥, 𝑋𝑛) denotes the (Riemannian) distance of 𝑋𝑛 from S .276

Before discussing the proof of Theorem 1, it is worthwhile to compare our work with its closest277

antecedents. First, in regard to the general avoidance theory of [8, 10] in Euclidean spaces, the278

statement is similar in scope (avoidance of unstable manifolds with probability 1), but the techniques279

and challenges involved are very different. The reason for this is simple: the additive, vector space280

structure of ℝ𝑚 is ingrained at every step of the way in the Euclidean analysis of [8], and adapting281

the various constructions to a manifold setting is a very intricate affair. For a compelling illustration282

of the technical difficulties involved, see the recent stochastic approximation analysis of [31].283

By contrast, the recent results of [20, 63] paint a complementary picture: they concern Riemannian284

problems but, at their core, they are deterministic results. More precisely, the noise in [20, 63] is285

actually injected in an otherwise deterministic gradient scheme to facilitate the escape from flat286

regions in the vicinity of a saddle point; however, other than that, the magnitude of the noise must be287

proportional to the solver’s desired accuracy, and hence is typically extremely small. As a result, the288

analysis of [20, 63] cannot be extended to bona fide stochastic schemes – like (RSGD) – which also289

explains why these results involve a constant step-size (as opposed to a decreasing step-size schedule,290

which is required to guarantee trajectory convergence in settings with persistent noise). In this regard,291

Theorem 1 simultaneously complements the stochastic analysis of [8, 10] to Riemannian problems,292

and the Riemannian analysis of [20, 63] to a stochastic setting.293

Proof outline. Because the proof of Theorem 1 is highly involved, we provide below a detailed294

outline of the main steps and techniques involved therein, deferring the full proof to Appendix B. We295

begin with a high-level description of our proof strategy and then encode the main arguments in a296

series of steps right after.297

For the purposes of illustration, suppose that M is a subset of ℝ𝑚. Then, given a tangent vector298

𝑧 ∈ T𝑥M, we define the geodesic offset (see Fig. 1) from 𝑥 along 𝑧 as299

Δ(𝑥; 𝑧) = exp𝑥 (𝑧) − 𝑥 − 𝑧 (15)

i.e., as the difference between the geodesic emanating from 𝑥 along 𝑧 and its first-order approximation300

relative to 𝑥 in the ambient space ℝ𝑚 (with all differences expressed in the ordinary vector space301

structure of ℝ𝑚). The offset Δ(𝑥; 𝑧) is readily checked to be second-order in 𝑧 so, while the curve302

𝑥 + 𝑡𝑧 does not in general induce a retraction on the target manifold M (in particular, the point 𝑥 + 𝑡𝑧303
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may not even belong to M), the converse is true: the map exp𝑥 (𝑧) is always a retraction on the304

ambient, Euclidean space ℝ𝑚. In this way, the basic iteration (RRM) can be expressed as305

𝑋𝑛+1 = exp𝑋𝑛
(𝛾𝑛 �̂�𝑛) = 𝑋𝑛 + 𝛾𝑛 �̂�𝑛 + Δ(𝑋𝑛; 𝛾𝑛 �̂�𝑛) (16)

leading to the fundamental question below:306

What is the maximum offset 𝜖𝑛 B Δ(𝑋𝑛; 𝛾𝑛 �̂�𝑛) that can be tolerated by a307

Euclidean stochastic approximation algorithm to avoid saddle points?308

A key technical step in our work is to develop the means to control the offset term 𝜖𝑛 under (RRM)309

under a sufficiently broad class of assumptions that includes Algorithms 1–5. This turns out to be310

a highly intricate affair, which is only made possible thanks to the very recent – and technical –311

stochastic approximation work of [31]. To help the reader navigate our proof strategy, we outline the312

main steps below, focusing for simplicity on the case of a single saddle point.313

Step 1: From discrete to continuous time (and back). Let 𝑥 be a strict saddle point of 𝑓 . By the314

stable manifold theorem [60], the set of all initializations such that the Riemannian gradient flow315

¤𝑥 (𝑡) = −grad 𝑓 (𝑥 (𝑡)) (RGF)

converges to 𝑥 is of measure 0. Then, assuming for the moment that the geodesic offset error 𝜖𝑛 =316

Δ(𝑋𝑛; 𝛾𝑛 �̂�𝑛) in (16) is sufficiently small, the iterates of (RRM) can be seen as a noisy, approximate317

Euler discretization of (RGF); as such, it is reasonable to expect that the induced trajectories of318

(RRM) will never converge to 𝑥.319

To make this intuition precise, our first step will be to show that the iterates of (RRM) comprise an320

asymptotic pseudotrajectory of (RGF) in the sense of Benaïm [8], i.e., they asymptotically track the321

orbits of (RGF) with arbitrary precision over windows of arbitrary length. To formalize this, define322

the “effective time” variable 𝜏𝑛 =
∑𝑛−1
𝑘=1 𝛾𝑘 and the associated geodesic interpolation 𝑋 (𝑡) of 𝑋𝑛 as323

𝑋 (𝑡) = exp𝑋𝑛
((𝑡 − 𝜏𝑛) �̂�𝑛) for all 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1), 𝑛 ≥ 1 (GI)

so, by construction, (a) 𝑋 (𝜏𝑛) = 𝑋𝑛 for all 𝑛; and (b) each segment of 𝑋 (𝑡) is a geodesic. Then,324

letting Φ : ℝ+ ×M→M denote the flow of (RGF) – i.e., Φℎ (𝑥) is simply the position at time ℎ ≥ 0325

of the solution orbit of (RGF) that starts at 𝑥 ∈M – we will say that 𝑋 (𝑡) is an APT of (RGF) if, for326

all 𝑇 > 0, we have327

lim𝑡→∞ sup0≤ℎ≤𝑇 dist(𝑋 (𝑡 + ℎ),Φℎ (𝑋 (𝑡))) = 0. (APT)

This is a highly non-trivial requirement, and our first technical result is to guarantee precisely this:328

Theorem 2. Suppose that Assumptions 1–3 hold. Then, with probability 1, the geodesic interpolation329

𝑋 (𝑡) of the sequence of iterates 𝑋𝑛, 𝑛 = 1, 2, . . . , generated by (RRM) is an APT of (RGF).330

A version of Theorem 2 was very recently derived by [31] under a different set of assumptions: On331

the one hand, [31] imposes a much more restrictive step-size schedule for 𝛾𝑛 (square summability)332

but, on the other hand, it only posits that the noise increments𝑈𝑛 are bounded in 𝐿2 (as opposed to333

𝐿∞ in our case). Our proof relies on the same construction of the Picard iteration map as [31], but334

otherwise diverges significantly in the probabilistic analysis required to establish (APT).335

Step 2: From Riemannian to Euclidean schemes (and back). Albeit crucial, the APT property is336

decidedly not enough to guarantee avoidance: after all, the constant orbit 𝑋 (𝑡) = 𝑥 for all 𝑡 ≥ 0 is337

trivially an APT of (RGF) but, of course, it does not avoid 𝑥. To proceed, we will need to exploit the338

precise update structure of (RRM) in conjunction with the stable manifold theorem applied to (RGF).339

In the Euclidean case, this is achieved by means of a very intricate Lyapunov function argument,340

originally due to [9]. Extending this construction to a Riemannian setting is a highly non-trivial341

task so, instead, we devise a new geometric argument to reduce the analysis from an arbitrary342

intrinsic manifold to an isometrically embedded submanifold of ℝ𝑚. This step is carried out by a343

combination of the celebrated Nash embedding theorem and a (smooth) Tietze extension argument to344

rewrite (RRM) as a “corrected” Robbins–Monro scheme on ℝ𝑚 that actually evolves on M. This345

construction also requires a “perturbation analysis” to ensure that certain subtle topological issues do346

not arise when we invoke the stable manifold theorem; we present the details in Appendix B.347
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Δ(𝑥; 𝑧)𝑥

𝑥 + 𝑧
𝑧

𝑥+ = exp𝑥 (𝑧)

𝑥

M

T𝑥M

Figure 1: The geodesic offset Δ(𝑥; 𝑧).

Step 3: Controlling the geodesic offset. As we briefly348

described in the beginning of the proof overview, this Eu-349

clidean reframing of (RRM) introduces an intrinsic offset350

error 𝜖𝑛 = Δ(𝑋𝑛; 𝛾𝑛 �̂�𝑛), which is difficult to analyze in detail351

(the offset incurred by a retraction on M is of similar order,352

so the exponential-retraction distinction is not important at353

this stage). Our crucial observation here is that, under our354

blanket assumptions, 𝜖𝑛 is small relative to 𝛾𝑛 and, in par-355

ticular, 𝜖𝑛 = O(𝛾2
𝑛). Thanks to this bound, we are able to356

leverage a series of stochastic bounds – originally developed357

by Pemantle [51] – to show that the probability that these358

terms will have an adverse effect on exiting the center man-359

ifold of 𝑥 is zero (this is also where Assumption 2 comes in).360

We formalize this step in Appendix B; Theorem 1 then follows by putting everything together.361

Remark. A concept similar to our geodesic offset Δ(𝑥; 𝑧) has been explored in the reverse direction362

by the very recent works [13, 21], whose goal was to study of avoidance of Euclidean subgradient363

methods as an inexact Riemannian gradient scheme. They further show that this inexact Riemannian364

gradient descent can avoid saddle points if uniform noise is injected. While their core idea bears365

some similarity to ours, it remains unclear how to apply the analysis in [13, 21] to handle general366

RRM schemes, such as retraction-based methods and natural policy gradient.367

4.3. Applications. As an illustration of the generality of Theorem 1, we now instantiate it to368

the range of specific algorithms discussed in Section 3.2. Since all these algorithms are run with369

gradient input generated by (SFO), applying Theorem 1 would require mapping the requirements370

of Assumption 2 to the primitives of (SFO). A convenient way to achieve this is by means of the371

proposition below:372

Proposition 1. Suppose that Algorithms 1–5 are run with a gradient oracle 𝑉 (𝑥; \) = 𝑣(𝑥) + err(𝑥; \)373

such that374

∥err(𝑥; \)∥𝑥 ≤ 𝜎(𝑥) and 𝔼[[⟨err(𝑥; \), 𝑧⟩𝑥]+] ≥ Z (𝑥) (17)
for all 𝑧 ∈ T𝑥M, ∥𝑧∥𝑥 = 1, and for suitable functions Z, 𝜎 : M→ ℝ+ with 𝜎 bounded on bounded375

subsets of M and inf𝑥 Z (𝑥) > 0. Then, under Assumptions 1 and 3, the conclusion of Theorem 1376

holds, that is, Algorithms 1–5 avoid strict saddle manifolds of 𝑓 .377

The proof of Proposition 1 is deferred to Appendix B; we only note here that its proof mainly hinges378

on verifying the bias requirement ∥𝑏𝑛∥𝑋𝑛
= O(𝛾𝑛) of (13) by means of (i) the boundedness of the379

error function 𝜎(𝑥) on bounded subsets of M; and (ii ) controlling the maximal deviation between a380

retraction and the exponential map for input vectors bounded by 𝜚.381

5 Conclusions and future work382

In this paper, we addressed the question of when Riemannian stochastic algorithms can effectively383

evade saddle points, focusing on the broad category of Riemannian Robbins–Monro schemes. We384

introduced a novel framework for analyzing the avoidance of Riemannian saddle points within the385

RRM framework, which encompasses many commonly used Riemannian stochastic algorithms,386

including retraction-based algorithms. Our framework builds upon the notion of strict saddle points387

and provides a set of easily verifiable conditions that guarantee the avoidance of such traps.388

Our work paves the way for several promising research directions in learning with Riemannian389

methods. One intriguing avenue for exploration is the investigation of whether Riemannian zeroth-390

order methods, such as the Riemannian extension of the work by Kiefer and Wolfowitz [34], can391

effectively evade strict saddle points. We believe that combining the insights from the asymptotic392

pseudotrajectory theory with Euclidean analysis can shed light on this question and provide valuable393

insights into the behavior of these methods in the Riemannian setting.394

Furthermore, an interesting direction for future research is the extension of the avoidance of unstable395

limit cycles in Euclidean min-max optimization, as studied by Hsieh et al. [27], to the realm of Rie-396

mannian games. Investigating the avoidance of unstable limit cycles in this context has the potential397

to uncover novel phenomena specific to the manifold settings, leading to a deeper understanding on398

the intricate dynamics and strategies involved in Riemannian games.399
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A Further examples of RRM schemes538

In this section, we provide two additional algorithmic examples supplementing the range of Algo-539

rithms 1–5 to illustrate the applicability of our RRM template.540

Algorithm 6 (Riemannian proximal point methods). The (deterministic) Riemannian proximal point541

method (RPPM) [23] is an implicit (“backward”) update rule of the form542

log𝑋𝑛+1 (𝑋𝑛) = −𝛾𝑛𝑣(𝑋𝑛+1). (RPPM)

The RRM representation of (RPPM) is then obtained by taking 𝑏𝑛 = Γ𝑋𝑛+1→𝑋𝑛
(𝑣(𝑋𝑛+1)) − 𝑣(𝑋𝑛) and543

𝑈𝑛 = 0 in the decomposition (5) of the error term𝑊𝑛 of (RRM). If, in additional, the true gradient544

𝑣(𝑋𝑛+1) is replaced by an oracle 𝑉 (𝑋𝑛+1; \𝑛+1), then (RPPM) becomes the stochastic version of545

RPPM by setting546

𝑏𝑛 = 𝔼[Γ𝑋𝑛+1→𝑋𝑛
(𝑉 (𝑋𝑛+1; \𝑛+1)) − 𝑣(𝑋𝑛) |F𝑛]

and547

𝑈𝑛 = Γ𝑋𝑛+1→𝑋𝑛
(𝑉 (𝑋𝑛+1; \𝑛+1)) − 𝑣(𝑋𝑛) − 𝑏𝑛.

For a detailed discussion, see [23] and references therein. ♦548

Algorithm 7 (Riemannian stochastic extra-gradient). Inspired by the original work of Korpelevich549

[36], the Riemannian stochastic extra-gradient (RSEG) method [48, 64] proceeds as550

𝑋+𝑛 = exp𝑋𝑛
(𝛾𝑛𝑉 (𝑋𝑛; \𝑛)),

𝑋𝑛+1 = exp𝑋𝑛
(Γ𝑋+𝑛→𝑋𝑛

(𝛾𝑛𝑉 (𝑋+𝑛 ; \+𝑛)))
(RSEG)

where \𝑛 and \+𝑛 are independent seeds for (SFO). Thus, to cast (RSEG) in the RRM framework, it551

suffices to take𝑈𝑛 = Γ𝑋+𝑛→𝑋𝑛
(err(𝑋+𝑛 ; \+𝑛)) and 𝑏𝑛 = Γ𝑋+𝑛→𝑋𝑛

(𝑣(𝑋+𝑛 )) − 𝑣(𝑋𝑛). ♦552

Under the assumptions in Proposition 1, one can show that Algorithms 6–7 also avoid strict saddle553

points of 𝑓 ; we provide the relevant details in Appendix B.3.554

B Missing Proofs of Section 4555

B.1. Proof of Theorem 2. We begin by proving Theorem 2, which will play a crucial role in our556

proof of Theorem 1. For the reader’s convenience, we restate the result below:557

Theorem 2. Suppose that Assumptions 1–3 hold. Then, with probability 1, the geodesic interpolation558

𝑋 (𝑡) of the sequence of iterates 𝑋𝑛, 𝑛 = 1, 2, . . . , generated by (RRM) is an APT of (RGF).559

Proof. To begin, let {𝑒𝑖 (𝑛)}𝑑𝑖=1 be an arbitrary sequence of orthonormal bases for T𝑋𝑛
M, and let𝑈q𝑛560

be the (Euclidean) noise vector composed of components of the noise𝑈𝑛 in the basis {𝑒𝑖 (𝑛)}𝑖=1...𝑑 ,561

viz.562

𝑈q𝑖,𝑛 B ⟨𝑈𝑛, 𝑒𝑖 (𝑛)⟩𝑋𝑛
. (B.1)

It is then easy to see that 𝔼[𝑈q𝑛 |F𝑛] = 0, and, moreover563 𝑈q𝑛 = ∥𝑈𝑛∥𝑋𝑛
≤ 𝜎 (B.2)

by Assumption 2. Then, following Benaïm [8], consider the “continuous-to-discrete” counter564

𝑀 (𝑡) = sup{𝑛 ≥ 1 : 𝑡 ≥ 𝜏𝑛} (B.3)

which measures the number of iterations required for the effective time 𝜏𝑛 =
∑𝑛−1
𝑘=1 𝛾𝑘 to reach a given565

timestamp 𝑡 ≥ 0. We further denote the piecewise-constant interpolation of the noise sequence as566

�̄�q (𝑡) = 𝑈q𝑛 for all 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1), 𝑛 ≥ 1 (B.4)

and we let567

Δ(𝑡;𝑇) B sup
0≤ℎ≤𝑇

∫ 𝑡+ℎ

𝑡

�̄�q (𝑠) 𝑑𝑠
. (B.5)

Moving forward, since 𝑋𝑛 → S by assumption, we will also have568

sup𝑛 dist(𝑋𝑛, 𝑥) C 𝑅 < ∞ for all 𝑥 ∈ S (B.6)
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for some (possibly random) 𝑅 ≥ 0. Moreover, since 𝑓 is assumed to be 𝐶2, (B.6) implies that569

sup𝑛∥𝑣(𝑋𝑛)∥𝑋𝑛 C 𝐺 < ∞ (B.7)

for some (possibly random) non-negative constant 𝐺 ≥ 0. Moreover, since the manifold M is570

assumed to be smooth, the sectional curvatures at each 𝑋𝑛, 𝑛 = 1, 2, . . . , must be likewise bounded571

by some constant 𝐾max. Then, by the analysis of [32, Eq. 53], there exists a constant 𝐶 ≡ 𝐶𝐿,𝐺,𝐾max ,𝑅572

depending only on 𝐿, 𝐺, 𝐾max and 𝑅 such that573

sup
0≤ℎ≤𝑇

dist(𝑋 (𝑡 + ℎ),Φℎ (𝑋 (𝑡))) ≤ 𝐶𝐿,𝐺,𝐾max ,𝑅 ·
[

sup
𝑛≥𝑀 (𝑡 )

(∥𝑏𝑛∥𝑋𝑛 + 𝛾𝑛) + Δ(𝑡 − 1;𝑇 + 1)
]

(B.8)

By Assumption 2, we have ∥𝑏𝑛∥𝑋𝑛 = O(𝛾𝑛). Since 𝛾𝑛 → 0, it suffices to show that Δ(𝑡;𝑇) → 0574

with probability 1 under Assumptions 1 and 2. This is equivalent to showing that, for any Y > 0, we575

have576

lim
𝑡→∞

Δ(𝑡;𝑇) ≤ Y with probability 1. (B.9)

To this end, let 𝑛 = 𝑀 (𝑡) and recall that, by (B.2), we have577

𝔼
[
exp

(
⟨𝑤, �̄�q𝑛⟩

) ��F𝑛] ≤ exp
(
𝜎2

2
∥𝑤∥2

)
(B.10)

for all 𝑤 ∈ ℝ𝑑 where 𝑑 is the dimension of M. Therefore, for each 𝑤 ∈ ℝ𝑑 , the sequence 𝑌𝑛 (𝑤)578

defined by579

𝑌𝑛 (𝑤) B exp

(
𝑛∑︁
𝑘=1
⟨𝑤, 𝛾𝑘�̄�q𝑘⟩ −

𝜎2∥𝑤∥2
2

𝑛∑︁
𝑘=1

𝛾2
𝑘

)
(B.11)

is a supermartingale. Since 𝑌𝑛 is a supermartingale, we have580

ℙ

(
sup

𝑛<𝑘≤𝑀 (𝜏𝑛+𝑇 )

𝑘−1∑︁
𝑖=𝑛

⟨𝑤, 𝛾𝑖�̄�q𝑖 ⟩ ≥ 𝛿
)

≤ ℙ

(
sup

𝑛<𝑘≤𝑀 (𝜏𝑛+𝑇 )
𝑌𝑘 (𝑤) ≥ 𝑌𝑛 (𝑤) exp

(
𝛿 − 𝜎

2∥𝑤∥2
2

𝑀 (𝜏𝑛+𝑇 )−1∑︁
𝑖=𝑛

𝛾2
𝑖

))
≤ exp

(
𝜎2∥𝑤∥2

2

𝑀 (𝜏𝑛+𝑇 )−1∑︁
𝑖=𝑛

𝛾2
𝑖 − 𝛿

)
(B.12)

for any 𝛿 > 0. Now, let 𝑒𝑖 be the 𝑖-th basis vector of ℝ𝑑 . Then, by (B.12), we have581

ℙ

(
sup

𝑛<𝑘≤𝑀 (𝜏𝑛+𝑇 )

𝑘−1∑︁
𝑖=𝑛

⟨±𝑑𝑒𝑖 , 𝛾𝑘�̄�q𝑘⟩ ≥ Y
)
= ℙ

(
sup

𝑛<𝑘≤𝑀 (𝜏𝑛+𝑇 )

𝑘−1∑︁
𝑖=𝑛

⟨±Y−1𝛿𝑑𝑒𝑖 , 𝛾𝑘�̄�
q
𝑘⟩ ≥ 𝛿

)
≤ exp

(
𝜎2𝛿2𝑑2

2Y2

𝑀 (𝜏𝑛+𝑇 )−1∑︁
𝑖=𝑛

𝛾2
𝑖 − 𝛿

)
. (B.13)

Optimizing (B.13) over 𝛿, we get582

ℙ

(
sup

𝑛<𝑘≤𝑀 (𝜏𝑛+𝑇 )

𝑘−1∑︁
𝑖=𝑛

⟨±𝑑𝑒𝑖 , 𝛾𝑘�̄�q𝑘⟩ ≥ Y
)
≤ exp

(
− Y2

2𝜎2𝑑2 ∑𝑀 (𝜏𝑛+𝑇 )−1
𝑖=𝑛

𝛾2
𝑖

)
. (B.14)

Since 𝛾𝑛 → 0, with loss of generality we may assume that 𝛾𝑛 ≤ 1, and hence583

ℙ

(
sup

𝑛<𝑘≤𝑀 (𝜏𝑛+𝑇 )

𝑘−1∑︁
𝑖=𝑛

⟨±𝑑𝑒𝑖 , 𝛾𝑘�̄�q𝑘⟩ ≥ Y
)
≤ exp

(
− Y2

2𝜎2𝑑2 ∑𝑀 (𝜏𝑛+𝑇 )−1
𝑖=𝑛

𝛾𝑖

)
≤ exp©«− Y2

2𝜎2𝑑2
∫ 𝑡+𝑇
𝑡

�̄�(𝑡)
ª®¬ (B.15)
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where, analogously to (B.4), we have defined the piece-wise constant interpolated step-size sequence584

�̄�(𝑡) = 𝛾𝑛 for all 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1), 𝑛 ≥ 1. (B.16)

Since585 𝑘−1∑︁
𝑖=𝑛

𝛾𝑖�̄�
q
𝑖

 ≥ Y ⇒ ∃ 𝑖 such that
𝑘−1∑︁
𝑖=𝑛

⟨±𝑑𝑒𝑖 , 𝛾𝑖�̄�q𝑖 ⟩ ≥ Y, (B.17)

by the union bound, we have586

ℙ(Δ(𝑡, 𝑇) ≥ Y) ≤ 2𝑑 · exp©«− Y2

2𝜎2𝑑2
∫ 𝑡+𝑇
𝑡

�̄�(𝑡)
ª®¬ ≤ 2𝑑 · exp

(
− Y2

2𝜎2𝑑2𝑇�̄�(𝑠)

)
(B.18)

for some 𝑡 ≤ 𝑠 ≤ 𝑡 + 𝑇 . Therefore, by setting _ B exp
(
− Y2

2𝜎2𝑑2𝑇

)
< 1, we have587 ∑︁

𝑘

ℙ(Δ(𝑘𝑇, 𝑇) ≥ Y) ≤ 2𝑑
∑︁
𝑘

_1/𝛾𝑘 < ∞ (B.19)

by Assumption 1. The Borel-Cantelli Lemma then implies that the following event happens almost588

surely:589

lim
𝑘→∞

Δ(𝑘𝑇 ;𝑇) ≤ Y. (B.20)

The proof is finished by noting that, for 𝑘𝑇 ≤ 𝑡 < (𝑘 + 1)𝑇 ,590

Δ(𝑡;𝑇) ≤ 2Δ(𝑘𝑇 ;𝑇) + Δ(𝑘𝑇 + 𝑇 ;𝑇) (B.21)

by triangle inequality. ■591

B.2. Proof of Theorem 1. We are now in a position to present our proof of Theorem 1, which we592

restate below for convenience:593

Theorem 1. Let 𝑋𝑛, 𝑛 = 1, 2, . . . , be the sequence of states generated by (RRM), and let S be a594

strict saddle manifold of 𝑓 . Then, under Assumptions 1–3, we have595

ℙ(dist(S, 𝑋𝑛) → 0 as 𝑛→∞) = 0 (14)

where dist(S, 𝑋𝑛) = inf𝑥∈S dist(𝑥, 𝑋𝑛) denotes the (Riemannian) distance of 𝑋𝑛 from S .596

Proof. Assume that 𝑋𝑛 → S. We will show that this event has zero probability in a series of steps597

which we outline below.598

Step 1: Isometrically embedded Robbins–Monro iterates. Since M is assumed to be smooth,599

the second Nash embedding theorem [35] implies there exists a smooth and isometric embedding600

] : M→ ℝ𝑀 such that, for all 𝑥 ∈M and all 𝑧, 𝑤 ∈ T𝑥M, we have601

⟨𝑧, 𝑤⟩𝑥 = ⟨D ]𝑥 (𝑧),D ]𝑥 (𝑤)⟩. (B.22)

Since ] is an embedding, it is surjective. Since it is isometric, it preserves distance and hence must be602

one-to-one. Therefore, ] is an diffeomorphism since it is also smooth. We can therefore define the603

pushforward of the vector field 𝑣 on M to a vector field on the image M𝐸 ⊂ ℝ𝑀 in the usual way as604

𝑣𝐸0 (𝑥
𝐸) B D ]𝑥𝑣(𝑥) for all 𝑥𝐸 = ](𝑥) ∈ ℝ𝑀 . (B.23)

We also set S𝐸 B ](S).605

By the Tietze extension theorem and the smooth manifold extension lemma [42], 𝑣𝐸0 (𝑥
𝐸) can be606

extended to a Lipschitz continuous vector field on all of ℝ𝑀 , which we still denote by 𝑣𝐸0 (𝑥
𝐸). To607

avoid trivialities, we will also need to ensure that 𝑣𝐸0 (𝑥
𝐸) is not 0 in a neighborhood of S𝐸: If this is608

the case, then we set our target field 𝑣𝐸 (𝑥𝐸) B 𝑣𝐸0 (𝑥
𝐸); otherwise, let 1 denote the vector of 1’s in all609

coordinates, and define a new vector field 𝑣𝐸 on ℝ𝑀 as610

𝑣𝐸 (𝑥𝐸) B 𝑣𝐸0 (𝑥
𝐸) + dist𝐸 (𝑥𝐸 ,S𝐸)2 · 1 (B.24)

where dist𝐸 (𝑥𝐸 ,S𝐸) B inf𝑦𝐸 ∈S𝐸 ∥𝑥𝐸 − 𝑦𝐸 ∥. Obviously, this new vector field agrees with 𝑣𝐸0 (𝑥
𝐸)611

on M𝐸 and therefore is still the pushforward of 𝑣 under ]. Moreover, it is not uniformly 0 in a612

neighborhood of S𝐸 . [It is worth noting that the so-defined vector field 𝑣𝐸 is in general not the613

(Euclidean) gradient of any function, a fact which presents significant difficulty to our analysis.]614
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Step 2: S𝐸 is an unstable invariant set. Our next goal is to show that there exists an unstable615

neighborhood U𝐸 around S𝐸 in the following sense: First, for each 𝑥 ∈ S, consider its image616

𝑥𝐸 = ](𝑥) ∈ S𝐸 . Since 𝑣𝐸 agrees with the pushforward of 𝑣 ≡ grad 𝑓 under ], and since ] is an617

isometry, we have the following relation for all tangent vector 𝑧 ∈ T�̂�M:618

⟨D 𝑣𝐸
𝑥𝐸

D ]�̂� (𝑧),D ]�̂� (𝑧)⟩ = ⟨Hess 𝑓 (𝑥)𝑧, 𝑧⟩�̂� . (B.25)

Since 𝑥 is a strict saddle point, (B.25) implies that _min

(
D 𝑣𝐸

�̂�𝐸

)
< −𝑐− < 0 for all 𝑥𝐸 ∈ S𝐸 . By an619

established series of arguments [8, 10, 43], using the stable manifold theorem for a strict saddle [60]620

and the transversality of the strict saddle manifold [1], there exists a (𝑀 −𝑚)-dimensional embedded621

submanifold Q𝐸 in ℝ𝑀 that contains S𝐸 . [Here, 1 ≤ 𝑚 ≤ 𝑀 , and 𝑀 −𝑚 represents the dimension of622

the unstable manifold of 𝑣𝐸 .] Moreover, writing Φ𝐸 for the flow generated by 𝑣𝐸 , it follows that Q𝐸623

is locally invariant under Φ𝐸 . Hence, there exists a neighborhood N 𝐸 of S𝐸 in ℝ𝑀 and a positive624

time 𝑡0 such that for all |𝑡 | ≤ 𝑡0, the following inclusion holds:625

Φ𝐸

𝑡 (N 𝐸 ∩Q𝐸) ⊂ Q𝐸 . (B.26)

To proceed, note that ℝ𝑀 can be decomposed further as the direct sum of the tangent space to Q𝐸 at626

𝑥𝐸 , denoted by T𝑥𝐸Q𝐸 , and an additional complementary subspace denoted by E𝑢
𝑥𝐸

:627

ℝ𝑀 = T𝑥𝐸Q𝐸 ⊕ E𝑢
𝑥𝐸
. (B.27)

The mapping 𝑥𝐸 → E𝑢
𝑥𝐸

is continuous, where 𝑥𝐸 varies over S𝐸 and E𝑢
𝑥𝐸

belongs to the Grassmanian628

manifold 𝐺 (𝑚, 𝑀). It is important to note that E𝑢
𝑥𝐸

contains at least one direction in T𝑥𝐸M𝐸 due to629

(B.25). Then, for all 𝑡 ∈ ℝ and 𝑥 ∈ S𝐸 , the Jacobian of Φ𝐸

𝑡 evaluated at 𝑥𝐸 maps E𝑢
𝑥𝐸

to E𝑢
Φ𝐸

𝑡 (𝑥𝐸 )
, i.e.,630

DΦ𝐸

𝑡 (𝑥𝐸)E𝑢𝑥𝐸 = E𝑢
Φ𝐸

𝑡 (𝑥𝐸 )
. (B.28)

Finally, and most importantly, we have the following characterization that formalizes the idea that all631

directions in the unstable manifold should diverge under Φ𝐸

𝑡 : There exist positive constants 𝑐 and 𝐶632

such that for all 𝑥𝐸 ∈ S𝐸 , 𝑤𝐸 ∈ E𝑢
𝑥𝐸

, and 𝑡 ≥ 0, the following inequality holds:633

∥DΦ𝐸

𝑡 (𝑥𝐸)𝑤𝐸 ∥ ≥ 𝐶𝑒𝑐𝑡 ∥𝑤𝐸 ∥. (B.29)

The above verifies all the conditions for a unstable invariant set for S𝐸 in the sense of Benaïm [8]. A634

deep result by Benaïm and Hirsch [9] then asserts the existence of a local Lyapunov function near a635

neighborhood of S𝐸 , whose construction we outline below.636

Step 3: Local Lyapunov function [𝐸 . For a right-differentiable function [𝐸 : ℝ𝑀 → ℝ we define637

its right derivative D [𝐸 applied to a vector ℎ𝐸 ∈ ℝ𝑀 by638

D [𝐸 (𝑥𝐸)ℎ𝐸 = lim
𝑡→0+

[𝐸 (𝑥𝐸 + 𝑡ℎ𝐸) − [𝐸 (𝑥𝐸)
𝑡

. (B.30)

If [𝐸 is differentiable, then (B.30) is simply ⟨∇ [𝐸 (𝑥𝐸), ℎ𝐸⟩. In view of all this, Benaïm [8] provides639

the following crucial result:640

Proposition B.1 (Benaïm, 1999, Prop. 9.5). There exists a compact neighborhood U𝐸 (S𝐸) of S𝐸 ,641

positive numbers 𝑙, 𝛽 > 0, and a map [𝐸 : U𝐸 (S𝐸) → ℝ+ such that [𝐸 (𝑥𝐸) = 0 if and only if642

𝑥𝐸 ∈ Q𝐸 , and the following holds:643

(i) [𝐸 is 𝐶2 on U𝐸 (S𝐸) \Q𝐸 .644

(ii) For all 𝑥𝐸 ∈ U𝐸 (S𝐸) ∩ Q𝐸 , [𝐸 admits a right derivative D [𝐸 (𝑥𝐸) : ℝ𝑀 → ℝ𝑀 which is645

Lipschitz, convex and positively homogeneous.646

(iii) There exists 𝑘 > 0 and a neighborhood W𝐸 ⊂ ℝ𝑀 of 0 such that for all 𝑥𝐸 ∈ U𝐸 (S𝐸) and647

𝑧𝐸 ∈ W𝐸 ,648

[𝐸 (𝑥𝐸 + 𝑧𝐸) ≥ [𝐸 (𝑥𝐸) + D [𝐸 (𝑥𝐸)𝑧𝐸 − 𝑘 ∥𝑧𝐸 ∥2. (B.31)

(iv) There exists 𝑐1 > 0 such that for all 𝑥𝐸 ∈ U𝐸 (S𝐸) \Q𝐸649 ΠM𝐸

(
D [𝐸 (𝑥𝐸)

) ≥ 𝑐1 (B.32)
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where ΠM𝐸 is the projection on M𝐸 .1 In addition, for all 𝑥𝐸 ∈ U𝐸 (S𝐸) ∩Q𝐸 and 𝑧𝐸 ∈ ℝ𝑀650

⟨D [𝐸 (𝑥𝐸), 𝑧𝐸⟩ ≥ 𝑐1∥𝑧𝐸 − DΠ(𝑥𝐸)𝑧𝐸 ∥ (B.33)
where Π is the projection of a neighborhood of S𝐸 onto Q𝐸 .651

(v) For all 𝑥𝐸 ∈ U𝐸 (S𝐸) ∩Q𝐸 , 𝑤𝐸 ∈ T𝑥𝐸Q𝐸 and 𝑧𝐸 ∈ ℝ𝑀 ,652

D [𝐸 (𝑥𝐸) (𝑤𝐸 + 𝑧𝐸) = D [𝐸 (𝑥𝐸)𝑧𝐸 . (B.34)
(vi) For all 𝑥𝐸 ∈ U𝐸 (S𝐸) we have653

D [𝐸 (𝑥)𝑣𝐸 (𝑥𝐸) ≥ 𝛽[𝐸 (𝑥𝐸). (B.35)

The function [𝐸 will serve as a local “energy function” that plays an instrumental role in our analysis;654

the well-posedness of Π is guaranteed by [25, Chap 4].655

Step 4: Geodesic offset. Consider the image of an RRM scheme 𝑋𝐸

𝑛 B ](𝑋𝑛). If 𝑋𝐸

𝑛 ∉ U𝐸 (S𝐸)656

for all 𝑛, then there is nothing to prove. Otherwise, without loss of generality we may assume that657

𝑋𝐸

1 ∈ U
𝐸 (S𝐸). Accordingly, define the first exit time 𝑇 from U𝐸 (S𝐸) as658

𝑇 B inf{𝑘 ≥ 1 : 𝑋𝐸

𝑛 ∉ U𝐸 (S𝐸)}. (B.36)
Evidently, 𝑇 is a stopping time adaptive to F𝑛, so it suffices to show that2659

ℙ(𝑇 = ∞) = 0. (B.37)

To this end, a notion that plays a central role in our analysis is the geodesic offet, defined as follows.660

Define the pushforward of the respective noise and bias vectors in the RRM scheme 𝑋𝑛 by661

𝑈𝐸

𝑛 B D ]𝑋𝑛𝑈𝑛, 𝑏𝐸

𝑛 B D ]𝑋𝑛𝑏𝑛. (B.38)
It is important to remember that𝑈𝐸

𝑛 ∈ T𝑋𝐸
𝑛
M𝐸 , a fact that we will use freely in the sequel.662

We now formally define the geodesic offset Δ(𝑥; 𝑧) ∈ ℝ𝑀 as, for any 𝑥 ∈M and 𝑧 ∈ T𝑥M,663

Δ(𝑥; 𝑧) B ](exp𝑥 (𝑧)) − ](𝑥) − D ]𝑥 (𝑧). (B.39)

By Assumption 3, there exists 𝜚 > 0 such that, for all ∥𝑧∥𝑥 < 𝜚, the exponential mapping is the664

unique minimizing geodesic. Furthermore, for all such 𝑧’s, define the curve 𝛾𝐸 (𝑡) B ](𝑥) + 𝑡 D ]𝑥 (𝑧),665

then666

𝛾𝐸 (0) = ](𝑥), ¤𝛾𝐸 (0) = D ]𝑥 (𝑧) (B.40)
so that 𝛾𝐸 (𝑡) agrees with the image of the geodesics ](exp𝑥 (𝑡𝑧)). As a result, for any ∥𝑧∥𝑥 < 𝜚, we667

have Δ(𝑥; 𝑧) = O(∥𝑧∥2𝑥). Now, setting 𝑥 ← 𝑋𝑛 and 𝑧 ← 𝛾𝑛 (𝑣(𝑋𝑛) +𝑈𝑛 + 𝑏𝑛), we have668

𝑋𝐸

𝑛+1 = 𝑋𝐸

𝑛 + 𝛾𝑛
(
𝑣𝐸 (𝑋𝐸

𝑛 ) +𝑈𝐸

𝑛 + 𝑏𝐸

𝑛

)
+ 𝜖𝐸𝑛 (B.41)

where 𝜖𝐸𝑛 B Δ(𝑋𝑛; 𝛾𝑛 (𝑣(𝑋𝑛) +𝑈𝑛 + 𝑏𝑛)). By Assumption 2, we know that𝑈𝐸

𝑛 + 𝑏𝐸

𝑛 = O(1) almost669

surely. Moreover, since 𝑣 is smooth, on the event 𝑇 = ∞, 𝑋𝐸

𝑛 ∈ U𝐸 (S𝐸) for all 𝑛 and therefore670

sup𝑛≥1∥𝑣𝐸 (𝑋𝐸

𝑛 )∥ < ∞. Since 𝛾𝑛 → 0, for any 𝑛 large enough, we get671

𝜖𝐸𝑛 = O(𝛾2
𝑛). (B.42)

Now, define two sequences of random variables {𝑌𝑛}𝑛≥1 and {𝑆𝑛}𝑛≥1 as672

𝑌𝑛+1 =
(
[𝐸 (𝑋𝐸

𝑛+1) − [
𝐸 (𝑋𝐸

𝑛 )
)
1{𝑛≤𝑇 } +𝛾𝑛 1{𝑛>𝑇 } , (B.43a)

𝑆0 = [𝐸 (𝑋𝐸

0 ), 𝑆𝑛 = 𝑆0 +
𝑛∑︁
𝑘=1

𝑌𝑘 . (B.43b)

The importance of these sequences is that the event {𝑇 = ∞} is contained in the event {𝑆𝑛 → 0}. To673

see this, assume 𝑇 = ∞. Then we have 𝑌𝑛+1 = [𝐸 (𝑋𝐸

𝑛+1) − [
𝐸 (𝑋𝐸

𝑛 ) and 𝑆𝑛 = [𝐸 (𝑋𝑛) by Eqs. (B.43a)674

and (B.43b). In addition, since {𝑋𝐸

𝑛 } remains in U𝐸 (S𝐸) by definition of the stopping time 𝑇 ,675

Theorem 2 combined with [8, Theorem 5.7] asserts that the limit set 𝐿 ({𝑋𝐸

𝑛 }) of {𝑋𝐸

𝑛 } is a nonempty676

compact invariant subset of U𝐸 (S𝐸), so that for all 𝑦𝐸 ∈ 𝐿 ({𝑋𝐸

𝑛 }) and 𝑡 ∈ ℝ, Φ𝐸

𝑡 (𝑦𝐸) ∈ U𝐸 (S𝐸).677

But then Proposition B.1(vi) implies that [𝐸 (Φ𝐸

𝑡 (𝑦𝐸)) ≥ 𝑒𝛽𝑡[𝐸 (𝑦𝐸) for all 𝑡 > 0, forcing [𝐸 (𝑦𝐸)678

to be zero. Since [𝐸 (𝑥𝐸) = 0 if and only if 𝑥𝐸 ∈ Q𝐸 , we have 𝐿 ({𝑋𝐸

𝑛 }) ⊂ Q𝐸 , which implies679

𝑆𝑛 = [
𝐸 (𝑋𝐸

𝑛 ) → 0.680

Therefore, the rest of the proof is devoted to showing that ℙ(lim𝑛→∞ 𝑆𝑛 = 0) = 0.681

1The original statement in [8] is
D [𝐸 (𝑥𝐸)

 ≥ 𝑐1. The inequality in (B.32) is obtained via the same proof
and noting that E𝑢

𝑥𝐸
contains at least one direction in T𝑥𝐸M𝐸 .

2Theorem 1 follows from (B.37) because the event {dist(𝑋𝑛,S) → 0} is contained in {𝑇 = ∞}.
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Step 5: Probabilistic estimates. To this end, we will need two technical lemmas, originally due to682

Pemantle [52], and extended to their current form by Benaïm and Hirsch [10].683

Lemma B.1. Let 𝑆𝑛 be a nonnegative stochastic process, 𝑆𝑛 = 𝑆0 +
∑𝑛
𝑘=1𝑌𝑘 where 𝑌𝑛 is F𝑛-684

measurable. Let 𝛼𝑛 B
∑∞
𝑘=𝑛

𝛾2
𝑘
. Assume there exist a sequence 0 ≤ Y𝑛 = 𝑜(√𝛼𝑛), constants685

𝑎1, 𝑎2 > 0 and an integer 𝑁0 such that for all 𝑛 ≥ 𝑁0,686

(i) |𝑌𝑛 | = 𝑜(
√
𝛼𝑛).687

(ii) 1{𝑆𝑛>Y𝑛 } 𝔼[𝑌𝑛+1 |F𝑛] ≥ 0.688

(iii) 𝔼[𝑆2
𝑛+1 − 𝑆

2
𝑛 |F𝑛] ≥ 𝑎1𝛾

2
𝑛.689

(iv) 𝔼[𝑌2
𝑛+1 |F𝑛] ≤ 𝑎2𝛾

2
𝑛.690

Then ℙ(lim𝑛→∞ 𝑆𝑛 = 0) = 0.691

Lemma B.2. Let 𝑆𝑛 be a nonnegative stochastic process, 𝑆𝑛 = 𝑆0 +
∑𝑛
𝑘=1𝑌𝑘 where 𝑌𝑛 is F𝑛-692

measurable and |𝑌𝑛 | ≤ 𝐶 almost surely for some constant 𝐶. Assume that
∑
𝑛 𝛾

2
𝑛 = ∞, and there693

exists 𝑐 > 0, 𝑁 ′ ∈ ℕ such that for all 𝑛 ≥ 𝑁 ′,694

𝔼[𝑆2
𝑛+1 − 𝑆

2
𝑛 |F𝑛] ≥ 𝑐𝛾2

𝑛. (B.44)

Then695

ℙ

(
lim
𝑛→∞

𝑆𝑛 = 0
)
= 0. (B.45)

Our proof will be concluded by verifying all the premises of Lemmas B.1–B.2. To that end, note first696

that the sequence 𝑆𝑛 defined in (B.43b) is nonnegative by construction. We will then separate the697

analysis into two cases:698

Case 1. Square-summable step-sizes, i.e.,
∑
𝑛 𝛾

2
𝑛 < ∞. In this case, we have699

lim
𝑛→∞

𝛾𝑛√︃∑∞
𝑘=𝑛

𝛾2
𝑘

= 0 (B.46)

so 𝛾𝑛 = 𝑜
(√︃∑∞

𝑘=𝑛
𝛾2
𝑘

)
. This fact will be used in the proof when we invoke Lemma B.1 below700

with Y𝑛 = O(𝛾𝑛) and 𝛼𝑛 =
∑∞
𝑘=𝑛

𝛾2
𝑘

therein. The verification process then proceeds as follows:701

• Verifying Lemma B.1(i) and (iv): By the Lipschitz continuity of [𝐸 , we know that702

∥[𝐸𝑋𝐸

𝑛 − [𝐸𝑋𝐸

𝑛+1∥ ≤ 𝐿
′∥𝑋𝐸

𝑛 − 𝑋𝐸

𝑛+1∥
= 𝛾𝑛∥𝑣𝐸 (𝑋𝐸

𝑛 ) +𝑈𝐸

𝑛 + 𝑏𝐸

𝑛 ∥ (B.47)

where 𝐿′ is the Lipschitz constant of [𝐸 . We have seen in the analysis of (B.42) that ∥𝑣𝐸 (𝑋𝐸

𝑛 )+703

𝑈𝐸

𝑛 + 𝑏𝐸

𝑛 ∥ = O(1) almost surely by Assumption 2 on the event 𝑇 = ∞. Therefore, |𝑌𝑛+1 | =704

O(𝛾𝑛) = 𝑜(
√
𝛼𝑛) which implies both Lemma B.1(i) and (iv).705

• Verifying Lemma B.1(ii): Let 𝑘 ′ = 𝑘 ∥𝑣𝐸 ∥ + 𝜎 where 𝑘 is given by Proposition B.1(iii) and706

∥𝑣𝐸 ∥ B sup{𝑣𝐸 (𝑥𝐸) : 𝑥𝐸 ∈ U𝐸 (S𝐸)} and 𝜎 is the uniform bound of 𝑈𝑛. If 𝑛 ≤ 𝑇 , using707

Proposition B.1(ii), (iii), (v) and (vi) we have708

[𝐸 (𝑋𝐸

𝑛+1) − [
𝐸 (𝑋𝐸

𝑛 ) ≥ 𝛾𝑛 D [𝐸 (𝑋𝐸

𝑛 )
(
𝑣𝐸 (𝑋𝐸

𝑛 ) +𝑈𝐸

𝑛 + 𝑏𝐸

𝑛

)
+ D [𝐸 (𝑋𝐸

𝑛 )𝜖𝐸𝑛 − 𝑘𝛾2
𝑛

(
∥𝑣𝐸 ∥ + ∥𝑈𝐸

𝑛 ∥ + ∥𝑏𝐸

𝑛 ∥
)2

≥ 𝛾𝑛𝛽[𝐸 (𝑋𝐸

𝑛 ) + 𝛾𝑛 D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 + 𝛾𝑛 D [𝐸 (𝑋𝐸

𝑛 )𝑏𝐸

𝑛

+ D [𝐸 (𝑋𝐸

𝑛 )𝜖𝐸𝑛 − 2𝑘 ′𝛾2
𝑛 − 2𝑘𝛾2

𝑛∥𝑏𝐸

𝑛 ∥2. (B.48)

By Assumption 2, there exists a constant 𝑐′ > 0 such that −∥𝑏𝐸

𝑛 ∥ ≥ −𝑐′𝛾𝑛 (a.s.). Combining709

this with the Lipschitz continuity of [𝐸 and (B.42), we can merge the last four terms in (B.48)710

as711

[𝐸 (𝑋𝐸

𝑛+1) − [
𝐸 (𝑋𝐸

𝑛 ) ≥ 𝛾𝑛𝛽[𝐸 (𝑋𝐸

𝑛 ) + 𝛾𝑛 D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 − 2𝑘 ′′𝛾2
𝑛 (B.49)

for some constant 𝑘 ′′ > 0. We thus get712

1{𝑛≤𝑇 } 𝔼[𝑌𝑛+1 |F𝑛] ≥ 1{𝑛≤𝑇 }
[
𝛾𝑛𝛽[

𝐸 (𝑋𝐸

𝑛 ) − 2𝑘 ′′𝛾2
𝑛 + 𝛾𝑛 𝔼[D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 |F𝑛]
]
. (B.50)
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By Proposition B.1(ii) again, we have713

𝔼[D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 |F𝑛] ≥ D [𝐸 (𝑋𝐸

𝑛 ) 𝔼[𝑈𝐸

𝑛 |F𝑛] = 0
= D [𝐸 (𝑋𝐸

𝑛 ) 𝔼[D ]𝑋𝑛𝑈𝑛 |F𝑛] = 0 (B.51)

since we have assumed the noise to be zero mean. Combining (B.50) and (B.51), we then get714

1{𝑛≤𝑇 } 𝔼[𝑌𝑛+1 |F𝑛] ≥ 1{𝑛≤𝑇 }
[
𝛾𝑛𝛽[

𝐸 (𝑋𝐸

𝑛 ) − 2𝑘 ′′𝛾2
𝑛

]
. (B.52)

If 𝑛 > 𝑇 , 𝑌𝑛+1 = 𝛾𝑛 so trivially715

1{𝑛≤𝑇 } 𝔼[𝑌𝑛+1 |F𝑛] ≥ 0. (B.53)

Combining (B.52) with (B.53), we see that Lemma B.1(ii) is satisfied with Y𝑛 = 𝑘′′

𝛽
𝛾𝑛.716

• Verifying Lemma B.1(iii): We begin by observing that717

𝔼[𝑆2
𝑛+1 − 𝑆

2
𝑛 |F𝑛] = 𝔼[𝑌2

𝑛+1 |F𝑛] + 2𝑆𝑛 𝔼[𝑌𝑛+1 |F𝑛] . (B.54)

If 𝑆𝑛 ≥ Y𝑛, then the last term on the right-hand side of (B.54) is non-negative by Lemma B.1(ii)718

that we just verified above. If 𝑆𝑛 < Y𝑛, (B.52) with (B.53) imply that 𝑆𝑛 𝔼[𝑌𝑛+1 |F𝑛] ≥719

−Y𝑛𝑘 ′′𝛾2
𝑛 = −O(𝛾3

𝑛). In other words, (B.54) can be rewritten as720

𝔼[𝑆2
𝑛+1 − 𝑆

2
𝑛 |F𝑛] ≥ 𝔼[𝑌2

𝑛+1 |F𝑛] −O(𝛾
3
𝑛). (B.55)

Below, we shall prove that 𝔼[𝑌2
𝑛+1 |F𝑛] ≥ 𝑏1𝛾

2
𝑛 for some 𝑏1 > 0 and 𝑛 large enough. Combin-721

ing this with (B.55) proves Lemma B.1(iii).722

From (B.49), we deduce723

1{𝑛≤𝑇 }
[
𝔼[(𝑌𝑛+1)+ |F𝑛] −

(
𝛾𝑛 𝔼[(D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 )+ |F𝑛] − 𝑘 ′′𝛾2
𝑛

)]
≥ 0. (B.56)

We now claim that724

1{𝑛≤𝑇 }∩{𝑋𝐸
𝑛 ∉Q𝐸 }

(
𝔼[(D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 )+ |F𝑛]
)
≥ 𝑐1Z . (B.57)

where 𝑐1 is given by Proposition B.1(iv) and Z is defined in Assumption 2. To see this, recall725

that ∥𝑈𝑛∥𝑋𝑛 < 𝜎 by Assumption 2. Moreover, we have 𝑋𝐸

𝑛 ∈ U𝐸 (S𝐸) on the event 𝑇 = ∞.726

Proposition B.1(i) then implies [𝐸 is differentiable on U𝐸 (S𝐸) \Q𝐸 , and Proposition B.1(iv)727

further shows that728

1{𝑛≤𝑇 }∩{𝑋𝐸
𝑛 ∉Q𝐸 }

(
𝔼[(D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 )+ |F𝑛]
)

= 1{𝑛≤𝑇 }∩{𝑋𝐸
𝑛 ∉Q𝐸 }

(
𝔼[[⟨[𝐸 (𝑋𝐸

𝑛 ),𝑈𝐸

𝑛 ⟩]+ |F𝑛]
)

= 1{𝑛≤𝑇 }∩{𝑋𝐸
𝑛 ∉Q𝐸 }

(
𝔼

[
[⟨ΠT

𝑋𝐸
𝑛
M𝐸

(
[𝐸 (𝑋𝐸

𝑛 )
)
,𝑈𝐸

𝑛 ⟩]+ |F𝑛
] )

≥ 𝑐1Z (B.58)

where we have used the fact that𝑈𝐸

𝑛 ∈ T𝑋𝑛
M𝐸 and Assumption 2.729

If 𝑋𝐸

𝑛 ∈ Q𝐸 , we can choose a unit vector 𝑣𝐸𝑛 ∈ ker(𝐼 −DΠ(𝑋𝐸

𝑛 ))⊥∩T𝑋𝐸
𝑛
M𝐸 where Π denotes730

the projection operator onto Q𝐸; note that 𝑣𝐸𝑛 ∈ ker(𝐼 − DΠ(𝑋𝐸

𝑛 ))⊥ ∩ T𝑋𝐸
𝑛
M𝐸 ≠ ∅ since731

E𝑢
𝑥𝐸

contains at least one direction in T𝑥𝐸M𝐸 for all 𝑥𝐸 ∈ U𝐸 (S𝐸) ∩M𝐸 . By the definition732

of 𝑣𝐸𝑛 , we have ⟨𝑈𝐸

𝑛 , 𝑣
𝐸

𝑛 ⟩ = ⟨𝑈𝐸

𝑛 − DΠ(𝑋𝐸

𝑛 )𝑈𝐸

𝑛 , 𝑣
𝐸

𝑛 ⟩. Let H = {𝑛 ≤ 𝑇} ∩ {𝑋𝐸

𝑛 ∈ Q𝐸}. By733

Proposition B.1(iv), Cauchy-Schwartz, and Assumption 2, we get734

1H 𝔼
[
[D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 ]+ |F𝑛
]
≥ 𝑐1 1H 𝔼

[
∥𝑈𝐸

𝑛 − DΠ(𝑋𝐸

𝑛 )𝑈𝐸

𝑛 ∥|F𝑛
]

≥ 𝑐1 1H 𝔼
[
[⟨𝑈𝐸

𝑛 − DΠ(𝑋𝐸

𝑛 )𝑈𝐸

𝑛 , 𝑣
𝐸

𝑛 ⟩]+ |F𝑛
]

= 𝑐1 1H 𝔼
[
[⟨𝑈𝐸

𝑛 , 𝑣
𝐸

𝑛 ⟩]+ |F𝑛
]

= 𝑐1 1H 𝔼[[⟨𝑈𝑛, 𝑣𝑛⟩𝑋𝑛 ]+ |F𝑛] (B.59)

where 𝑣𝑛 is the pullback of 𝑣𝐸𝑛 under ]. Since ] is an isometry, the pullback preserves the inner735

product, and therefore736

1H 𝔼
[
[D [𝐸 (𝑋𝐸

𝑛 )𝑈𝐸

𝑛 ]+ |F𝑛
]
≥ 𝑐1Z 1H (B.60)
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by Assumption 2. Combining Eqs. (B.53), (B.56) and (B.60) and Item Case 1. then gives737

𝔼[[𝑌𝑛+1]+ |F𝑛] ≥ 𝑐1Z𝛾𝑛 − 𝑘 ′′𝛾2
𝑛. (B.61)

On the other hand, we always have 𝔼[𝑌2
𝑛+1 |F𝑛] ≥ 𝔼[[𝑌𝑛+1]+ |F𝑛]2 by Jensen. It then follows738

that 𝔼[𝑌2
𝑛+1 |F𝑛] ≥ 𝑏1𝛾

2
𝑛 for some 𝑏1 > 0 and large enough 𝑛 as desired.739

We have now verified conditions (i)–(iv) in Lemma B.1. Thus, Lemma B.1 concludes that740

ℙ(lim𝑛→∞ 𝑆𝑛 = 0) = 0 (B.62)

which finishes the proof for the case of
∑
𝑛 𝛾

2
𝑛 < ∞.741

Case 2. When
∑
𝑛 𝛾

2
𝑛 = ∞, the same proof above shows that 𝔼[𝑌2

𝑛+1 |F𝑛] ≥ 𝑏1𝛾
2
𝑛 for some 𝑏1 > 0742

and large enough 𝑛. Combining this with (B.55) yields743

𝔼[𝑆2
𝑛+1 − 𝑆

2
𝑛 |F𝑛] ≥ 𝑐𝛾2

𝑛 (B.63)

for some 𝑐 > 0. Lemma B.2 then concludes:744

ℙ(lim𝑛→∞ 𝑆𝑛 = 0) = 0

as claimed. ■745

B.3. Proof of Proposition 1. We conclude this appendix with the application of Theorem 1 to746

Algorithms 1–5 under the explicit oracle assumptions of Proposition 1. For convenience, we restate747

the relevant result below:748

Proposition 1. Suppose that Algorithms 1–5 are run with a gradient oracle 𝑉 (𝑥; \) = 𝑣(𝑥) + err(𝑥; \)749

such that750

∥err(𝑥; \)∥𝑥 ≤ 𝜎(𝑥) and 𝔼[[⟨err(𝑥; \), 𝑧⟩𝑥]+] ≥ Z (𝑥) (17)
for all 𝑧 ∈ T𝑥M, ∥𝑧∥𝑥 = 1, and for suitable functions Z, 𝜎 : M→ ℝ+ with 𝜎 bounded on bounded751

subsets of M and inf𝑥 Z (𝑥) > 0. Then, under Assumptions 1 and 3, the conclusion of Theorem 1752

holds, that is, Algorithms 1–5 avoid strict saddle manifolds of 𝑓 .753

Remark. In additional to the claimed Algorithms 1–5, we will further prove the same conclusion for754

the two algorithms considered in Appendix A.755

Proof. By Theorem 1, it suffices to verify Assumption 2 under (17) and the event dist(𝑋𝑛,S) → 0.756

We proceed method by method.757

Algorithm 1. Since 𝑏𝑛 = 0 in Algorithm 1, Assumption 2 holds trivially by (17).758

Algorithms 2, 3 and 5. By definition, R𝑥 (𝑧) is a smooth map and hence satisfies lim𝑧→0 R𝑥 (𝑧) = 𝑥.759

On the event dist(𝑋𝑛,S) → 0, we have 𝑣(𝑋𝑛) + 𝑈𝑛 + 𝑏𝑛 = O(1), and therefore 𝑋𝑛+1 lies in the760

injectivity radius of 𝑋𝑛 with probability 1 for 𝑛 large enough. As a result, the mapping log𝑋𝑛
(𝑋𝑛+1)761

is well-define for all 𝑛 large enough.762

We first consider Algorithms 2 and 5 whose proofs are identical since they are both are the form:763

𝑋𝑛+1 = R𝑋𝑛
(𝛾𝑛𝑉 (𝑋𝑛; \𝑛)). (B.64)

Let �̃�𝑛 ∈ T𝑋𝑛
M be the vector such that exp

𝑋𝑛
(𝛾𝑛 �̃�𝑛) = 𝑋𝑛+1, i.e.,764

𝛾𝑛 �̃�𝑛 = log
𝑋𝑛

(
R𝑋𝑛
(𝛾𝑛𝑉 (𝑋𝑛; \𝑛))

)
. (B.65)

Then (B.64) is an RRM scheme with𝑊𝑛 = �̃�𝑛 − 𝑣(𝑋𝑛) where �̃�𝑛 is defined in (B.65). Consider the765

curve 𝑐(𝑡) B R𝑋𝑛
(𝑡𝑉 (𝑋𝑛; \𝑛)). By (17), on the event dist(𝑋𝑛,S) → 0, the curve 𝑐(𝑡) lies in the766

injectivity radius of 𝑋𝑛 almost surely for all 𝑡 ∈ [0, 𝛾𝑛] and all 𝑛 large enough. Let 𝑐(𝑡) be the smooth767

curve of 𝑐(𝑡) in the normal coordinate with base 𝑋𝑛 and an arbitrary orthonormal frame, and let �̂�𝑛+1768

be the normal coordinate of 𝑋𝑛+1. Also, let �̃�N
𝑛 be the (Euclidean) vector of �̃�𝑛 expanded in the chosen769

orthonormal basis, and define 𝑉N (𝑋𝑛; \𝑛) and errN (𝑋𝑛; \𝑛) similarly. By definition, �̂�𝑛+1 is nothing770

but 𝛾𝑛 �̃�N
𝑛 . In addition, by (17), we have771

∥errN (𝑋𝑛; \𝑛)∥ = ∥err(𝑋𝑛; \𝑛)∥𝑋𝑛 ≤ 𝜎 (B.66)
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for some 𝜎 < ∞.772

Since 𝑋𝑛 = 𝑐(0) and 𝑋𝑛+1 = 𝑐(𝛾𝑛), by properties of a retraction map we must have773

𝛾𝑛 �̃�
N
𝑛 = 𝑐(𝛾𝑛)

= 𝑐(0) + 𝛾𝑛 ¤̂𝑐(0) +O
(
𝛾2
𝑛∥ ¤̂𝑐(0)∥22

)
= 𝛾𝑛𝑉

N (𝑋𝑛; \𝑛) +O
(
𝛾2
𝑛∥𝑉 (𝑋𝑛; \𝑛)∥2𝑋𝑛

)
C 𝛾𝑛𝑉

N (𝑋𝑛; \𝑛) + 𝛾𝑛 �̃�𝑛 (B.67)

where �̃�𝑛 = O
(
𝛾𝑛∥𝑉 (𝑋𝑛; \𝑛)∥2𝑋𝑛

)
= O(𝛾𝑛). Therefore,774

∥𝑏𝑛∥𝑋𝑛
= ∥𝔼[𝑊𝑛 |F𝑛] ∥𝑋𝑛

=
𝔼[

�̃�𝑛
��F𝑛] = O(𝛾𝑛) (B.68)

which proves the condition for 𝑏𝑛 in Assumption 2. On the other hand, (B.67) shows that775

∥𝑈𝑛∥𝑋𝑛 ≤ ∥𝑉N (𝑋𝑛; \𝑛) + �̃�𝑛∥ + ∥𝔼
[
𝑉N (𝑋𝑛; \𝑛) + �̃�𝑛

]
∥

= O(1)

since ∥𝑉N (𝑋𝑛; \𝑛)∥ = O(1) by (17) and �̃�𝑛 = O(𝛾𝑛). Finally, for any unit vector 𝑧 ∈ T𝑋𝑛
M, (B.67)776

implies777

𝔼[[⟨𝑧,𝑈𝑛⟩𝑋𝑛 ]+] ≥ 𝔼[[⟨𝑧, err(𝑋𝑛; \𝑛)⟩𝑋𝑛 ]+] − ∥�̃�𝑛∥
= 𝔼[[⟨𝑧, err(𝑋𝑛; \𝑛)⟩𝑋𝑛 ]+] −O(𝛾𝑛). (B.69)

Since 𝛾𝑛 → 0, this finishes the proof of Algorithms 2 and 5. For Algorithm 3, an Euclidean oracle of778

the form (17) translates to a Riemannian oracle with err′ (𝑥; \) B ∇2ℎ(𝑥)−1 err(𝑥; \). It then suffices779

to note that, on the event dist(𝑋𝑛,S) → 0, ∇2ℎ(𝑋𝑛) is both upper and lower bounded.780

Algorithms 4, 6 and 7. For (RSEG),𝑈𝑛 = Γ𝑋+𝑛→𝑋𝑛 (err(𝑋+𝑛 ; \+𝑛)) so781

∥𝑈𝑛∥𝑋𝑛
=

err(𝑋+𝑛 ; \+𝑛)

𝑋+𝑛
≤ 𝜎 (B.70)

by (17) and the fact that the parallel transport map is a linear isometry. For the bias term, the definition782

of (RSEG) yields783

∥𝑏𝑛∥ = ∥Γ𝑋+𝑛→𝑋𝑛 (𝑣(𝑋+𝑛 )) − 𝑣(𝑋𝑛)∥𝑋𝑛 ≤ 𝐿 dist
(
𝑋+𝑛 , 𝑋𝑛

)
= 𝛾𝑛𝐿∥𝑉 (𝑋𝑛; \𝑛)∥𝑋𝑛 = O(1) (B.71)

by the same argument as for Algorithms 2, 3 and 5.784

For (ROG), we have𝑈𝑛 = Γ𝑋+𝑛→𝑋𝑛 (err(𝑋𝑛; \+𝑛)) and 𝑏𝑛 = Γ𝑋+𝑛→𝑋𝑛 (𝑣(𝑋+𝑛 )) − 𝑣(𝑋𝑛), so Assumption 2785

can be checked exactly as in the case of Algorithm 7 above. The analysis for Algorithm 6 is similar786

so we omit the details. ■787
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