
A More Examples of the Semantic Inconsistency Problem1

Original
Behavior
Sequence

Mask

Crop

Mask-and-Fill

Substitute

Coronavirus Politics Noisy behavior

[MASK] [MASK] [MASK] [MASK] [MASK]

(a) User A

Original
Behavior
Sequence

Mask

Crop

Mask-and-Fill

Substitute

Basketball
FoodEntertainment

[MASK] [MASK][MASK][MASK] [MASK]

Coronavirus Politics
Noisy behavior

(b) User B

Figure 1: Illustrations of the impact of diverse data augmentation methods on different user behavior
sequences. Each picture represents a news article clicked by the user. Pictures with the same color
border reflect similar interests. Dash borders indicate behaviors replaced by the augmentation method.

We randomly sample two more anonymous users from the online news platform to illustrate the2

impact of various data augmentation methods on different user behavior sequences and the consequent3

semantic inconsistency problem. The users’ recent eight behaviors and the results of several data4

augmentation methods are shown in Fig. 1. The data augmentation proportion is set as 0.6. From the5

original behavior sequence of user A, we may infer that the user is quite concerned about coronavirus6

and politics. We also find that the behavior sequence augmented by masking well preserves the user’s7

interests. However, the two sequences augmented by cropping contain completely different interests8

of the user over time. Meanwhile, some behaviors replaced by mask-and-fill and substitute are noisy,9

which the user may not be interested in. Similarly, the original behavior sequence of user B shows10

the user’s potential interests in coronavirus, politics, basketball, entertainment, and food. As a result,11

augmentation methods such as mask and crop are likely to lose certain interests of the user, while12

augmentation methods such as mask-and-fill and substitute tend to bring in noisy behaviors. In fact,13

it is hard to determine what are the real interests of user B from such a diverse behavior sequence14

1



since some behaviors may be the result of misclicking or click-baiting, thus making it even harder to15

provide a semantically consistent augmentation. From these examples, we can find that existing data16

augmentation methods may fail to preserve the characteristics or interests in the behavior sequence17

and cannot guarantee semantic consistency between the augmented views. Thus, directly forcing the18

user model to maximize the agreement between the augmented sequences may result in a negative19

transfer for downstream tasks.20

B The Algorithm of AdaptSSR21

The pseudo-codes of the pre-training procedure with our AdaptSSR are shown in Algorithm 1.22

Algorithm 1 Pre-training Procedure with AdaptSSR

Input: A corpus of user behavior sequences S and a set of data augmentation operators A.
Output: The pre-trained user modelM.

1: Randomly initialize the parameter of the user modelM.
2: while not converged do
3: Randomly sample a batch of user behavior sequences {Si}Bi=1 from S.
4: for each Si do
5: Randomly select two augmentation operators f and g from A.
6: ûi, û

+
i ←M(f(Si)),M(f(Si)). ▷ With independently sampled dropout masks.

7: ũi, ũ
+
i ←M(g(Si)),M(g(Si)). ▷ With independently sampled dropout masks.

8: U−
i ← {ûj , û

+
j , ũj , ũ

+
j }Bj=1,j ̸=i.

9: λi ← 1− 1
4

∑
ŝ∈{ûi,û

+
i }

∑
s̃∈{ũi,ũ

+
i } sim(ŝ, s̃).

10: L̂i ← − log σ

[
λi

(
sim

(
ûi, û

+
i

)
−maxv∈{ũi,ũ

+
i } sim (ûi,v)

)
+(1− λi)

(
minv∈{ũi,ũ

+
i } sim (ûi,v)−maxw∈U−

i
sim (ûi,w)

)]
.

11: L̃i ← − log σ

[
λi

(
sim

(
ũi, ũ

+
i

)
−maxv∈{ûi,û

+
i } sim (ũi,v)

)
+(1− λi)

(
minv∈{ûi,û

+
i } sim (ũi,v)−maxw∈U−

i
sim (ũi,w)

)]
.

12: end for
13: L ←

∑B
i=1

(L̂i+L̃i)/2B.
14: Update the parameters of the user modelM with L by backpropagation.
15: end while

C Implementation Details23

In our experiments, the embedding dimension d is set as 64. In the Transformer Encoder, the number24

of attention heads and layers are both set as 2. We only utilize the standard dropout mask, which is25

applied to both the attention probabilities and the output of each sub-layer, and the dropout probability26

is set as 0.1. The maximum sequence length is set to 100 and 256 for the TTL dataset and the App27

dataset, respectively. For each downstream task, a two-layer MLP is added to the pre-trained user28

model, and the dimension of the intermediate layer is also set as 64.29

For existing pre-training methods, the data augmentation proportion ρ is either searched from30

{0.1, 0.2, . . . , 0.9} or copied from previous works if provided. In our AdaptSSR, we adopt three31

random augmentation operators by default: mask, crop, and reorder. The augmentation proportion is32

set to 0.6, 0.4, and 0.6 respectively while our experimental results have shown that our method is33

robust to various data augmentation methods with different strengths.34

We use the Adam optimizer for model training. The batch size and learning rate are set as 128 and35

2e-4 for both pre-training and fine-tuning. The test results for all the models are reported at their best36

validation epoch. We repeat each experiment five times with different random seeds and report the37

average results. We implement all experiments with Python 3.8.13 and Pytorch 1.12.1 on an NVIDIA38

Tesla V100 GPU. Our code is available at https://anonymous.4open.science/r/AdaptSSR/.39

2

https://anonymous.4open.science/r/AdaptSSR/


0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Data Augmentation Proportion 

0.024

0.027

0.030

0.033

0.036

0.039

N
D

C
G

@
10

CL4SRec
CoSeRec
CCL

No Pre-train
w/ CL
w/ AdaptSSR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Data Augmentation Proportion 

0.71

0.73

0.75

0.77

0.79

0.81

A
U

C

CL4SRec
CoSeRec
CCL

No Pre-train
w/ CL
w/ AdaptSSR

Figure 2: The effectiveness of AdaptSSR when combined with existing pre-training methods on the
downstream thumb-up recommendation task (left) and CVR prediction task (right).

D More Experimental Results40

Fig. 2 shows the performance of AdaptSSR when combined with several existing pre-training41

methods: CL4SRec, CoSeRec, and CCL, on the downstream thumb-up recommendation task (T4)42

and CVR prediction task (T6) with the data augmentation proportion ρ varying from 0.1 to 0.9.43

Similar to the results on the age prediction task (T1), we find that these contrastive learning-based44

methods are highly sensitive to the data augmentation proportion. A too-small or too-large value45

of ρ will lead to limited performance gain or even negative transfer for the downstream task. In46

contrast, our AdaptSSR consistently boosts the effectiveness of these pre-training methods by a large47

margin. This is because our self-supervised ranking task avoids directly maximizing the similarity48

between the augmented views. Moreover, our AdaptSSR also substantially improves the robustness49

of these pre-training methods to the augmentation proportion, which verifies the effectiveness of50

our augmentation-adaptive fusion mechanism. The dynamic coefficient λi enables the user model51

to automatically combine the learned pairwise ranking orders based on the similarity between the52

augmented views for each training sample, thus empowering the pre-training methods to adapt to53

divse data augmentation methods with varying strengths.54

E Limitations55

In this work, after pre-training the user model with our AdaptSSR, the entire model is fine-tuned with56

the downstream labeled data. However, fine-tuning such a large model for each downstream task can57

be time- and space-consuming. A potential solution for this problem is Parameter-Efficient Fine-58

Tuning (PEFT). Several methods such as Adapter and LoRA have been demonstrated to be effective59

for adapting the large language model to various downstream tasks by only updating a small fraction60

of parameters. However, we empirically find that these methods perform poorly when applied to the61

pre-trained user model. A possible reason is that the currently widely used Transformer-based user62

model is much shallower and thinner than the large language model. Most of the model parameters63

belong to the bottom behavior embedding table, while the upper Transformer blocks only contain64

very few parameters. Since existing PEFT methods mainly focus on tuning parts of parameters in65

each Transformer block, only a very small fraction of parameters in total will be updated, which66

may not be enough to effectively adapt the user model to the downstream task. We will investigate67

how to transfer the pre-trained user model to various downstream tasks parameter-efficiently while68

maintaining the performance gain brought by AdaptSSR in our future work.69

3


	More Examples of the Semantic Inconsistency Problem
	The Algorithm of AdaptSSR
	Implementation Details
	More Experimental Results
	Limitations

