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Abstract

We define an optimal preconditioning for the Langevin diffusion by analytically
optimizing the expected squared jumped distance. This yields as the optimal pre-
conditioning an inverse Fisher information covariance matrix, where the covariance
matrix is computed as the outer product of log target gradients averaged under the
target. We apply this result to the Metropolis adjusted Langevin algorithm (MALA)
and derive a computationally efficient adaptive MCMC scheme that learns the
preconditioning from the history of gradients produced as the algorithm runs. We
show in several experiments that the proposed algorithm is very robust in high
dimensions and significantly outperforms other methods, including a closely related
adaptive MALA scheme that learns the preconditioning with standard adaptive
MCMC as well as the position-dependent Riemannian manifold MALA sampler.

1 Introduction

Markov chain Monte Carlo (MCMC) is a general framework for simulating from arbitrarily complex
distributions, and it has shown to be useful for statistical inference in a wide range of problems
[18, 11]. The main idea of an MCMC algorithm is quite simple. Given a complex target π(x), a
Markov chain is constructed using a π-invariant transition kernel that allows to simulate dependent
realizations x1, x2, . . . that eventually converge to samples from π. These samples can be used for
Monte Carlo integration by forming ergodic averages. A general way to define π-invariant transition
kernels is the Metropolis-Hastings accept-reject mechanism in which the chain moves from state xn

to the next state xn+1 by first generating a candidate state yn from a proposal distribution q(yn|xn)
and then it sets xn+1 = yn with probability α(xn, yn):

α(xn, yn) = min(1, an), an =
π(yn)

π(xn)

q(xn|yn)
q(yn|xn)

, (1)

or otherwise rejects yn and sets xn+1 = xn. The choice of the proposal distribution q(yn|xn) is
crucial because it determines the mixing of the chain, i.e. the dependence of samples across time.
For example, a "slowly mixing" chain even after convergence may not be useful for Monte Carlo
integration since it will output a highly dependent set of samples producing ergodic estimates of very
high variance. Different ways of defining q(yn|xn) lead to common algorithms such as random walk
Metropolis (RWM), Metropolis-adjusted Langevin algorithm (MALA) [40, 35] and Hamiltonian
Monte Carlo (HMC) [15, 28]. Within each class of these algorithms adaptation of parameters of
the proposal distribution, such as a step size, is also important and this has been widely studied in
the literature by producing optimal scaling results [34, 35, 36, 22, 6, 8, 38, 7, 39, 9], and also by
developing adaptive MCMC algorithms [21, 5, 37, 19, 2, 1, 4, 24]. The standard adaptive MCMC
procedure in [21] uses the history of the chain to recursively compute an empirical covariance of the
target π and build a multivariate Gaussian proposal distribution. However, this type of covariance
adaptation can be too slow and not so robust in high dimensional settings [38, 3].
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In this paper, we derive a fast and very robust adaptive MCMC technique in high dimensions that
learns a preconditioning matrix for the MALA method, which is the standard gradient-based MCMC
algorithm obtained by a first-order discretization of the continuous-time Langevin diffusion. Our
first contribution is to define an optimal preconditioning by analytically optimizing a criterion on the
Langevin diffusion. The criterion is the well-known expected squared jumped distance [30] which
at optimum yields as a preconditioner the inverse matrix I−1 of the following Fisher information
covariance matrix I = Eπ(x)

[
∇ log π(x)∇ log π(x)⊤

]
. This contradicts the common belief in

adaptive MCMC that the covariance of π is the best preconditioner. While this is a surprising result
we show that I−1 connects with a certain quantity appearing in optimal scaling of RWM [34, 36].

Having recognized I−1 as the optimal preconditioning we derive an easy to implement and com-
putationally efficient adaptive MCMC algorithm that learns from the history of gradients produced
as MALA runs. This method sequentially updates an empirical inverse Fisher estimate Î−1

n using
a recursion having quadratic cost O(d2) (d is the dimension of x) per iteration. In practice, since
for sampling we need a square root matrix of Î−1

n we implement the recursions over a square root
matrix by adopting classical results from Kalman filtering [31, 10]. We compare our method against
MALA that learns the preconditioning with standard adaptive MCMC [21], a position-dependent
Riemannian manifold MALA [20] as well as simple MALA (without preconditioning) and HMC. In
several experiments we show that the proposed algorithm significantly outperforms all other methods.

2 Background

We consider an intractable target distribution π(x) with x ∈ Rd, known up to some normalizing
constant, and we assume that ∇ log π(x) := ∇x log π(x) is well defined. A continuous time process
with stationary distribution π is the overdamped Langevin diffusion

dxt =
1

2
A∇ log π(xt)dt+

√
AdBt, (2)

where Bt denotes d-dimensional Brownian motion. This is a stochastic differential equation (SDE)
that generates sample paths such that for large t, xt ∼ π. We also incorporate a preconditioning matrix
A, which is a symmetric positive definite covariance matrix, while

√
A is such that

√
A
√
A

⊤
= A.

Simulating from the SDE in (2) is intractable and the standard approach is to use a first-order Euler-
Maruyama discretization combined with a Metropolis-Hastings adjustment. This leads to the so
called preconditioned Metropolis-adjusted Langevin algorithm (MALA) where at each iteration given
the current state xn (where n = 1, 2, . . .) we sample yn from the proposal distribution

q(yn|xn) = N (yn|xn +
σ2

2
A∇ log π(xn), σ

2A), (3)

where the step size σ2 > 0 appears due to time discretization. We accept yn with probability
α(xn, yn) = min (1, an) where an follows the form in (1). The obvious way to compute an is

an =
π(yn)

π(xn)

q(xn|yn)
q(yn|xn)

=
π(yn)

π(xn)

exp{− 1
2σ2 ||xn − yn − σ2

2 A∇ log π(yn)||2A−1}
exp{− 1

2σ2 ||yn − xn − σ2

2 A∇ log π(xn)||2A−1}
,

where ||z||2A−1 = z⊤A−1z. However, in some cases that involve high dimensional targets, this can
be costly since in the ratio of proposal densities both the preconditioning matrix A and its inverse
A−1 appear. In turns out that we can avoid A−1 and simplify the computation as stated below.
Proposition 1. For preconditioned MALA with proposal density given by (3) the ratio of proposals
in the M-H acceptance probability can be written as

q(xn|yn)
q(yn|xn)

= exp{h(xn, yn)− h(yn, xn)}, h(z, v) =
1

2

(
z−v − σ2

4
A∇ log π(v)

)⊤

∇ log π(v).

This expression does not depend on the inverse A−1, and this leads to computational gains and
simplified implementation that we exploit in the adaptive MCMC algorithm presented in Section 4.

The motivation behind the use of preconditioned MALA is that with a suitable preconditioner A the
mixing of the chain can be drastically improved, especially for very anisotropic target distributions.
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A very general way to specify A is by applying an adaptive MCMC algorithm, which learns A online.
To design such an algorithm it is useful to first specify a notion of optimality. A common argument in
the literature, that is used for both RWM and MALA, is that a suitable A is the unknown covariance
matrix Σ [21, 38, 24] of the target π. This means that we should learn A so that to approximate Σ.
However, this argument is rather heuristic since it is not based on an optimality criterion. One of our
contributions is to specify an optimal A∗ based on an optimization procedure, that we describe in
Section 3. This A∗ will turn out to be not the covariance matrix of the target but an inverse Fisher
information matrix.

3 Optimal preconditioning using expected squared jumped distance

Preconditioning aims to improve sampling when different directions (or individual variables xi) in the
state space can have different scalings under the target π. Here, we develop a method for selecting the
preconditioning through the optimization of an objective function. This method uses the observation
that an effective preconditioning correlates with large values of the global step size σ2 in MALA, i.e.
σ2 is allowed to increase when preconditioning becomes effective as shown in the sampling efficiency
scores in Table 1 and the corresponding estimated step sizes reported in Appendix E.1.

In our analysis we consider the rejection-free or unadjusted Langevin sampler where we discretize
the time continuous Langevin diffusion in (2) with a small finite δ := σ2 > 0 so that

xt+δ − xt =
δ

2
A∇ log π(xt) +

√
A(Bt+δ −Bt), where Bt+δ −Bt ∼ N (0, δI). (4)

We will use the expected squared jumped distance J(δ, A) = E[||xt+δ − xt||2] computed as follows.
Proposition 2. If xt ∼ π(xt) the vector xt+δ − xt defined by (4) has zero mean and covariance

E[(xt+δ − xt)(xt+δ − xt)
⊤] =

δ2

4
AEπ(xt)

[
∇ log π(xt)∇ log π(xt)

⊤]A+ δA. (5)

Further, tr
(
E[(xt+δ − xt)(xt+δ − xt)

⊤]
)
= E[tr

(
(xt+δ − xt)(xt+δ − xt)

⊤)] = E[||xt+δ − xt||2],
which shows that J(δ, A) is the trace of the covariance matrix in (5).

To control discretization error we impose an upper bound constraint J(δ, A) ≤ ϵ for a small ϵ > 0.
A preconditioning that "symmetrizes" the target can be obtained by maximizing the discretization
step size δ subject to J(δ, A) ≤ ϵ. Since J(δ, A) monotonically increases with δ, the maximum
δ∗ satisfies minA J(δ∗, A) = ϵ. This means that the optimal preconditioning A∗ is obtained by
minimizing J(δ, A) under some global scale constraint on A, as stated next.
Proposition 3. Suppose A is a symmetric positive definite matrix satisfying tr(A) = c, with c > 0 a
constant. Then the objective J(δ, A), for any δ > 0, is miminized for A∗ given by

A∗ = kI−1, k =
c∑d

i=1
1
µi

, I = Eπ(x)

[
∇ log π(x)∇ log π(x)⊤

]
, (6)

where µis are the eigenvalues of I assumed to satisfy 0 < µi <∞.

The positive multiplicative scalar k in (6) is not important since the specific value c > 0 is arbitrary,
e.g. if we choose c =

∑d
i=1

1
µi

then k = 1 and A∗ = I−1. In other words, what matters is that
the optimal A∗ is proportional to the inverse matrix I−1, so it follows the curvature of I−1. For a
multivariate Gaussian π(x) = N (x|µ,Σ) it holds I−1 = Σ, so the optimal preconditioner coincides
with the covariance matrix of x. More generally though, for non-Gaussian targets this will not hold.

Connection with classical Fisher information matrix. The matrix I is positive definite since it
is the covariance of the gradient ∇ log π(x) := ∇x log π(x) where Eπ(x)[∇ log π(x)] = 0. Also, I
is similar to the classical Fisher information matrix. To illustrate some differences suppose that the
target π(x) is a Bayesian posterior π(θ|Y ) ∝ p(Y |θ)p(θ) = p(Y, θ) where Y are the observations
and θ := x are the random parameters. The classical Fisher information is a frequentist quantity
where we fix some parameters θ and compute G(θ) = Ep(Y |θ)[∇θ log p(Y |θ)∇θ log p(Y |θ)⊤] by
averaging over data. In contrast, I = Ep(θ|Y )[∇θ log p(Y, θ)∇θ log p(Y, θ)

⊤] is more like a Bayesian
quantity where we fix the data Y and average over the parameters θ. Importantly, I is not a function of
θ while G(θ) is. Similarly to the classical Fisher information, I also satisfies the following standard
property: Given that log π(x) is twice differentiable and ∇2

x log π(x) is the Hessian matrix, I from
(6) is also written as I = −Eπ(x)[∇2

x log π(x)]. Next, we refer to I as the Fisher matrix.

3



Connection with optimal scaling. The Fisher matrix I connects also with the optimal scaling
result for the RWM algorithm [34, 36]. Specifically, for targets of the form π(x) =

∏d
i=1 f(xi),

the RWM proposal q(yn|xn) = N (yn|xn, (σ
2/d)Id) and as d → ∞ the optimal parameter σ2 is

σ2 = 2.38
J where J = Ef(x)[(

d log f(x)
dx )2] is the (univariate) Fisher information for the univariate

density f(x), and the preconditioning involves as in our case the inverse Fisher I−1 = 1
J Id. This

result has been generalized also for heterogeneous targets in [36] where again the inverse Fisher
information matrix (having now a more general diagonal form) appears as the optimal preconditioner.

4 Fisher information adaptive MALA

Armed with the previous optimality result, we wish to develop an adaptive MCMC algorithm to
optimize the proposal in (3) by learning online the global variance σ2 and the preconditioner A. For
σ2 we follow the standard practice to tune this parameter in order to reach an average acceptance
rate around 0.574 as suggested by optimal scaling results [35, 36]. For the matrix A we want to
adapt it so that approximately it becomes proportional to the inverse Fisher I−1 from (6). We also
incorporate a parametrization that helps the adaptation of σ2 to be more independent from the one of
A. Specifically, we remove the global scale from A by defining the overall proposal as

q(yn|xn) = N
(
yn|xn +

σ2

2
d tr(A)

A∇ log π(xn),
σ2

1
d tr(A)

A

)
, (7)

where σ2 is normalized by 1
d tr(A), i.e. the average eigenvalue of A. Another way to view this is

that the effective preconditioner is A/( 1d tr(A)) which has an average eigenvalue equal to one. The
proposal in (7) is invariant to any scaling of A, i.e. if A is replaced by kA (with k > 0) the proposal
remains the same. Also, note that when A is the identity matrix Id (or a multiple of identity) then
1
d tr(Id) = 1 and the above proposal reduces to standard MALA with isotropic step size σ2.

It is straightforward to adapt σ2 towards an average acceptance rate 0.574; see pseudocode in
Algorithm 1. Thus our main focus next is to describe the learning update for A, in fact eventually not
for A itself but for a square root matrix

√
A which is what we need to sample from the proposal in (7).

To start with, let us simplify notation by writing the score function at the n-th MCMC iteration as
sn := ∇xn

log π(xn). We introduce the n-sample empirical Fisher estimate

În =
1

n

n∑
i=1

sis
⊤
i +

λ

n
Id, (8)

where λ > 0 is a fixed damping parameter. Given that certain conditions apply [21, 38] so that the
chain converges and ergodic averages converge to exact expected values, În is a consistent estimator
satisfying limn→∞ În = I since as n→∞ the damping part λ

nId vanishes. Including the damping
is very important since it offers a Tikhonov-like regularization, similar to ridge regression, and it
ensures that for any finite n the eigenvalues of În are strictly positive. An estimate then for the
preconditioner An can be set to be proportional to the inverse of the empirical Fisher În, i.e.

An ∝

(
1

n

n∑
i=1

sis
⊤
i +

λ

n
Id

)−1

= n

(
n∑

i=1

sis
⊤
i + λId

)−1

. (9)

Since any positive multiplicative scalar in front of An plays no role, we can ignore the scalar n and
define An = (

∑n
i=1 sis

⊤
i + λId)

−1. Then, as MCMC iterates we can adapt An in O(d2) cost per
iteration based on the recursion

Initialization: A1 =
(
s1s

⊤
1 + λId

)−1
=

1

λ

(
Id −

s1s
⊤
1

λ+ s⊤1 s1

)
, (10)

Iteration: An =
(
A−1

n−1 + sns
⊤
n

)−1
= An−1 −

An−1sns
⊤
nAn−1

1 + s⊤nAn−1sn
, (11)

where we applied Woodbury matrix identity. This estimation in the limit can give the optimal
preconditioning in the sense that under the ergodicity assumption, limn→∞

An

tr(An)
= I−1

tr(I−1) . In
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practice we do not need to compute directly the matrix An but a square root matrix Rn :=
√
An,

such that RnR
⊤
n = An, since we need a square root matrix to draw samples from the proposal in

(7). To express the corresponding recursion for Rn we will rely on a technique that dates back to the
early days of Kalman filtering [31, 10], which applied to our case gives the following result.

Proposition 4. A square root matrix Rn, such that RnR
⊤
n = An, can be computed recursively in

O(d2) time per iteration as follows:

Initialization: R1 =
1√
λ

(
Id − r1

s1s
⊤
1

λ+ s⊤1 s1

)
, r1 =

1

1 +
√

λ
λ+s⊤1 s1

(12)

Iteration: Rn = Rn−1 − rn
(Rn−1ϕn)ϕ

⊤
n

1 + ϕ⊤
n ϕn

, ϕn = R⊤
n−1sn, rn =

1

1 +
√

1
1+ϕ⊤

n ϕn

. (13)

A way to generalize the above recursive estimation of a square root for the inverse Fisher matrix is
to consider the stochastic approximation framework [33]. This requires to write an online learning
update for the empirical Fisher of the form

În = În−1 + γn(sns
⊤
n − În−1), initialized at Î1 = s1s

⊤
1 + λId, (14)

where the learning rates γn satisfy the standard conditions
∑∞

n=1 γn =∞,
∑∞

n=1 γ
2
n <∞. Then, it

is straightforward to generalize the recursion for the square root matrix in Proposition 4 to account
for this more general case; see Appendix B. The recursion in Proposition 4 is a special case when
γn = 1

n . In our simulations we did not observe significant improvement by using more general
learning rate sequences, and therefore in all our experiments in Section 5 we use the standard learning
rate γn = 1

n . Note that this learning rate is also used by other adaptive MCMC methods [21].

An adaptive algorithm that learns online from the score function vectors sn can work well in some
cases, but still it can be unstable in general. One reason is that sn = ∇ log π(xn) will not have zero
expectation when the chain is transient and states xn are not yet draws from the stationary distribution
π. To analyze this, note that the learning signal sn enters in the empirical Fisher estimator Īn through
the outer product sns⊤n as shown by Eqs. (8) and (14). However, in the transient phase sns

⊤
n will be

biased since the expectation E[sns⊤n ] = E[(sn − E[sn])(sn − E[sn])⊤] + E[sn]E[sn]⊤ ̸= I, where
the expectations are taken under the marginal distribution of the chain at time n. In practice the mean
vector E[sn] can take large absolute values, which can introduce significant bias through the additive
term E[sn]E[sn]⊤. Thus, to reduce some bias we could track the empirical mean s̄n = 1

n

∑n
i=1 si

and center the signal sn − s̄n so that the Fisher matrix is estimated by the empirical covariance
1

n−1

∑n
i=1(si − s̄n)(si − s̄n)

⊤. The recursive estimation becomes similar to standard adaptive
MCMC [21] where we recursively propagate an online empirical estimate for the mean of sn and
incorporate it into the online empirical estimate of the covariance matrix (in our case the inverse Fisher
matrix); see Eq. (17) in Section 5 for the standard adaptive MCMC recursion [21] and Appendix C
for our Fisher method. While this can make learning quite stable we experimentally discovered that
there is another scheme, presented next in Section 4.1, that is significantly better and stable especially
for very anisotropic high dimensional targets; see detailed results in Appendix E.3.

4.1 Adapting to score function increments

An MCMC algorithm updates at each iteration its state according to xn+1 = xn + I(un <
α(xn, yn))(yn − xn) where α(xn, yn) is the M-H probability, un ∼ U(0, 1) is an uniform ran-
dom number and I(·) is the indicator function. This sets xn+1 to either the proposal yn or the
previous state xn based on the binary value I(un < α(xn, yn)). Similarly, we can consider the
update of the score function s(x) = ∇ log π(x) and conveniently re-arrange it as an increment,

sδn = s(xn+1)− s(xn) = I(un < α(xn, yn))(s(yn)− s(xn)). (15)

While both sn and sδn have zero expectation when xn is from stationarity, i.e. xn ∼ π, the increment
sδn (unlike sn) tends in practice to be more centered and close to zero even when the chain is transient,
e.g. note that sδn is zero when yn is rejected. Further, since the difference sδn = s(xn+1) − s(xn)
conveys information about the covariance of the score function we can use it in the recursion of
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Algorithm 1 Fisher adaptive MALA (blue lines are ommitted when not adapting (R, σ2))

Input: Log target log π(x); gradient∇ log π(x); λ > 0 (default λ = 10); α∗ = 0.574
Initialize x1 and σ2 by running simple MALA (i.e. withN (y|x+ (σ2/2)∇ log π(x), σ2I)) for n0

(default 500) iterations where σ2 is adapted towards acceptance rate α∗
Initialize square root matrix R = Id and compute (log π(x1),∇ log π(x1))
Initialize σ2

R = σ2 # placeholder for the normalized step size σ2/ 1
d tr(RR⊤)

for For n = 1, 2, 3, . . . , do
: Propose yn = xn + (σ2

R/2)R(R⊤∇ log π(xn)) + σRRη, η ∼ N (0, Id)
: Compute (log π(yn),∇ log π(yn))
: Compute α(xn, yn) = min

(
1, elog π(yn)+h(xn,yn)−log π(xn)−h(yn,xn)

)
by using Proposition 1

: Compute adaptation signal sδn =
√
α(xn, yn)(∇ log π(yn)−∇ log π(xn))

: Use sδn to adapt R based on Proposition 4 (if n = 1 use (12) and if n > 1 use (13))
: Adapt step size σ2 ← σ2 [1 + ρn(α(xn, yn)− α∗)] # default const learning rate ρn=0.015
: Normalize step size σ2

R = σ2/ 1
d tr(RR⊤) # tr(RR⊤) = sum(R ◦R) which is O(d2)

: Accept/reject yn with probability α(xn, yn) to obtain (xn+1, log π(xn+1),∇ log π(xn+1))
end for

Proposition 4 to learn the preconditioner A, where we simply replace sn by sδn. As shown in the
experiments this leads to a remarkably fast and effective adaptation of the inverse Fisher matrix
I−1 without observable bias, or at least no observable for Gaussian targets where the true I−1

is known. We can further apply Rao-Blackwellization to reduce some variance of sδn. Since sδn
enters into the estimation of the empirical Fisher, see Eq. (8) or (14), through the outer product
sδn(s

δ
n)

⊤ = I(un < α(xn, yn))(s(yn) − s(xn))(s(yn) − s(xn))
⊤ we can marginalize out the r.v.

un which yields Eun [s
δ
n(s

δ
n)

⊤] = α(xn, yn)(s(yn) − s(xn))(s(yn) − s(xn))
⊤. After this Rao-

Blackwellization an alternative vector to use for adaptation is

sδn =
√

α(xn, yn)(s(yn)− s(xn)), (16)

which depends on the square root
√
α(xn, yn) of the M-H probability. As long as α(xn, yn) > 0,

the learning signal in (16) depends on the proposed sample yn even when it is rejected.

Finally, we can express the full algorithm for Fisher information adaptive MALA as outlined by
Algorithm 1, which adapts by using the Rao-Blackwellized score function increments from Eq. (16).
Note that, while Algorithm 1 uses sδn from Eq. (16), the initial signal from Eq. (15) works equally
well; see Appendix E.3. Also, the algorithm includes an initialization phase where simple MALA
runs for few iterations to move away from the initial state, as discussed further in Section 5.

5 Experiments

5.1 Methods and experimental setup

We apply the Fisher information adaptive MALA algorithm (FisherMALA) to high dimensional
problems and we compare it with the following other samplers. (i) The simple MALA sampler with
proposal N (yn|xn + (σ2/2)∇ log π(xn), σ

2I) , which adapts only a step size σ2 without having
a preconditioner. (ii) A preconditioned adaptive MALA (AdaMALA) where the proposal follows
exactly the from in (7) but where the preconditioning matrix is learned using standard adaptive
MCMC based on the well-known recursion from [21]:

µn =
n− 1

n
µn−1 +

1

n
xn, Σn =

n− 2

n− 1
Σn−1 +

1

n
(xn − µn−1)(xn − µn−1)

⊤, (17)

where the recursion is initialized at µ1 = x1 and Σ2 = 1
2 (x2 − µ1)(x2 − µ1)

⊤ + λI , and λ > 0 is
the damping parameter that plays the same role as in FisherMALA. (iii) The Riemannian manifold
MALA (mMALA) [20] which uses position-dependent preconditioning matrix A(x). mMALA in
high dimensions runs slower than other schemes since the computation of A(x) may involve second
derivatives and requires matrix decomposition that costs O(d3) per iteration. (iv) Finally, we include
in the comparison the Hamiltonian Monte Carlo (HMC) sampler with a fixed number of 10 leap frog
steps and identity mass matrix. We leave the possibility to learn with our method a preconditioner in
HMC for future work since this is more involved; see discussion at Section 7.

6



For all experiments and samplers we consider 2× 104 burn-in iterations and 2× 104 iterations for
collecting samples. We set λ = 10 in FisherMALA and AdaMALA. Adaptation of the proposal
distributions, i.e. the parameter σ2, the preconditioning or the step size of HMC, occurs only during
burn-in and at collection of samples stage the proposal parameters are kept fixed. For all three MALA
schemes the global step size σ2 is adapted to achieve an acceptance rate around 0.574 (see Algorithm
1) while the corresponding parameter for HMC is adapted towards 0.651 rate [9]. In FisherMALA
from the 2 × 104 burn-in iterations the first 500 iterations are used as the initialization phase in
Algorithm 1 where samples are generated by just MALA with adaptable σ2. Thus, only the last
1.95× 104 burn-in iterations are used to adapt the preconditioner. For AdaMALA this initialization
scheme proved to be unstable and we used a more elaborate scheme, as described in Appendix D.

We compute effective sample size (ESS) scores for each method by using the 2× 104 samples from
the collection phase. We estimate ESS across each dimension of the state vector x, and we report
maximum, median and minimum values, by using the built-in method in TensorFlow Probability
Python package. Also, we show visualizations that indicate sampling efficiency or effectiveness in
estimating the preconditioner (when the ground truth preconditioner is known).

5.2 Gaussian targets

We consider three examples of multivariate Gaussian targets of the form π(x) = N (x|µ,Σ), where
the optimal preconditioner (up to any positive scaling) is the covariance matrix Σ since the inverse
Fisher is I−1 = Σ. For such case the Riemannian manifold sampler mMALA [20] is the optimal
MALA sampler since it uses precisely Σ as the preconditioning. In contrast to mMALA which
somehow has access to the ground-truth oracle, both FisherMALA and AdaMALA use adaptive
recursive estimates of the preconditioner that should converge to the optimal Σ, and thus the question
is which of them learns faster. To quantify this we compute the Frobenius norm ||Ãn − Σ̃||F
across adaptation iterations n, where B̃ denotes the matrix normalized by the average trace, i.e.
B̃ = B/( tr(B)

d ), for either An given by FisherMALA or An := Σn given by AdaMALA and where
Σ̃ is the optimal normalized preconditioner. The faster the Frobenius norm goes to zero the more
effective is the corresponding adaptive scheme. For all three Gaussian targets the mean vector µ was
taken to be the vector of ones and samplers were initialized by drawing from standard normal. The
first example is a two-dimensional Gaussian target with covariance matrix Σ = [1 0.995; 0.995 1].
Both FisherMALA and AdaMALA perform almost the same (FisherMALA has faster convergence)
in this low dimensional example as shown by Frobenius norm in Figure 1a; see also Figure 5 in the
Appendix for visualizations of the adapted preconditioners. The following two examples involve
100-dimensional targets.

Gaussian process correlated target. We consider a Gaussian process to construct a 100-
dimensional Gaussian where the covariance matrix is obtained by a non-stationary covariance
function comprising the product of linear and squared exponential kernels plus small white noise,
i.e. [Σ]i,j = sisj exp{− 1

2
(si−sj)

2

0.09 } + 0.001δi,j where the scalar inputs si form a regular grid in
the range [1, 2]. Figure 1b shows the evolution of the Frobenius norms and panels d,c depict as
100× 100 images the true covariance matrix and the preconditioner estimated by FisherMALA. For
AdaMALA see Figure 6 in the Appendix. Clearly, FisherMALA learns much faster and achieves
more accurate estimates of the optimal preconditioner. Further Table 1 shows that FisherMALA
achieves significantly better ESS than AdaMALA and reaches the same performance with mMALA.

Inhomogeneous Gaussian target. In the last example we follow [28, 39] and we consider a Gaus-
sian target with diagonal covariance matrix Σ = diag(σ2

1 , . . . , σ
2
100) where the standard deviation

values σi take values in the grid {0.01, 0.02, . . . , 1}. This target is challenging because the different
scaling across dimensions means that samplers with a single step size, i.e. without preconditioning,
will adapt to the smallest dimension x1 of the state while the chain at the higher dimensions, such as
x100, will be moving slowly exhibiting high autocorrelation. Note that FisherMALA and AdaMALA
run without knowing that the optimal preconditioner is a diagonal matrix, i.e. they learn a full
covariance matrix. Figure 2a shows the ESS scores for all 100 dimensions of x for four samplers
(except mMALA which has the same performance with FisherMALA), where we can observe that
only FisherMALA is able to achieve high ESS uniformly well across all dimensions. In contrast,
MALA and HMC that use a single step size cannot achieve high sampling efficiency and their
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(a) (b) (c) (d)

Figure 1: Panel (a) shows the Frobenius norm across burn-in iterations for the 2-D Gaussian and
(b) for the GP target. The exact GP covariance matrix is shown in (c) and the estimated one by
FisherMALA in (d).

(a) (b) (c)

Figure 2: Results in the inhomogeneous Gaussian target.

ESS for dimensions close to x100 drops significantly. The same holds for AdaMALA due to its
inability to learn fast the preconditioner, as shown by the Frobenius norm values in Figure 2c and the
estimated standard deviations in Figure 2b. AdaMALA can eventually get very close to the optimal
precondtioner but it requires hundred of thousands of adaptive steps, while FisherMALA learns it
with only few thousand steps.

5.3 Bayesian logistic regression

We consider Bayesian logistic regression distributions of the form π(θ|Y,Z) ∝ p(Y |θ, Z)p(θ) with
data (Y, Z) = {yi, zi}mi=1, where zi ∈ Rd is the input vector and yi the binary label. The likelihood is
p(Y |θ, Z) =

∏m
i=1 σ(θ

⊤zi)
yi(1−σ(θ⊤zi))

1−yi , where θ ∈ Rd are the random parameters assigned
the prior p(θ) = N (θ|0, Id). We consider six binary classification datasets (Australian Credit, Heart,
Pima Indian, Ripley, German Credit and Caravan) with a number of data ranging from n = 250
to n = 5822 and dimensionality of the θ ranging from 3 to 87. We also consider a much higher
785-dimensional example on MNIST for classifying the digits 5 and 6, that has 11339 training
examples. To make the inference problems more challenging, in the first six examples we do not
standardize the inputs zi which creates very anisotropic posteriors over θ. For the MNIST data, which
initially are grey-scale images in [0, 255], we simply divide by the maximum pixel value, i.e. 255,
to bring the images in [0, 1]. In Table 1 we report the ESS for the low 7-dimensional Pima Indians
dataset, the medium 87-dimensional Caravan dataset and the higher 785-dimensional MNIST dataset,
while the results for the remaining datasets are shown in Appendix E. Further, Figure 3 shows the
evolution of the unnormalized log target density log{p(Y |θ, Z)p(θ)} for the best four samplers in

Figure 3: The evolution of the log-target across iterations for the best four algorithms in Caravan
dataset.
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Table 1: ESS scores are averages after repeating the simulations 10 times under different random
initializations.

Max ESS Median ESS Min ESS

GP target (d = 100)
MALA 15.235± 4.246 6.326± 1.934 3.619± 0.956
AdaMALA 845.100± 80.472 662.978± 81.127 552.377± 74.441
HMC 17.625± 6.706 6.680± 2.205 4.315± 0.889
mMALA 2109.441± 101.553 2007.640± 104.867 1841.978± 114.266
FisherMALA 2096.259± 94.751 1923.753± 95.820 1784.962± 104.440

Pima Indian (d = 7)
MALA 106.668± 29.601 14.723± 3.821 4.061± 1.587
AdaMALA 211.948± 133.363 52.277± 26.566 6.401± 3.344
HMC 1624.773± 544.777 337.100± 212.158 6.052± 2.062
mMALA 6086.948± 117.241 5690.967± 118.401 5297.835± 160.084
FisherMALA 6437.419± 207.548 5981.960± 156.072 5628.541± 168.425

Caravan (d = 87)
MALA 27.247± 7.554 5.890± 0.398 2.906± 0.150
AdaMALA 41.522± 9.343 7.144± 0.663 3.144± 0.135
HMC 787.901± 173.863 37.303± 6.808 4.238± 0.532
mMALA 179.899± 61.502 121.867± 41.801 51.414± 24.995
FisherMALA 2257.737± 45.289 1920.903± 55.821 498.016± 96.692

MNIST (d = 785)
MALA 34.074± 4.977 7.589± 0.149 2.944± 0.066
AdaMALA 62.301± 9.203 8.188± 0.399 2.985± 0.089
HMC 889.386± 118.050 303.345± 10.976 114.439± 20.965
mMALA 51.589± 3.447 20.222± 1.259 5.240± 0.492
FisherMALA 1053.455± 35.680 811.522± 19.165 439.580± 52.800

Caravan dataset which visualizes chain autocorrelation. From all these results we can conclude
that FisherMALA is better than all other samplers, and remarkably it outperforms significantly the
position-dependent mMALA, especially in the high dimensional Caravan and MNIST datasets.

6 Related Work

There exist works that use some form of global preconditioning in gradient-based samplers for
specialized targets such as latent Gaussian models [13, 44], which make use of the tractable Gaussian
prior. Our method differs, since it is more agnostic to the target and learns a preconditioning from the
history of gradients, analogously to how traditional adaptive MCMC learns from states [21, 38].

Several research works use position-dependent preconditioning A(x) within gradient-based samplers,
such as MALA. This is for example the idea behind Riemannian manifold MALA [20] and extensions
[45]. Similar to Riemannian manifold methods there are approaches inspired by second order
optimization that use the Hessian matrix, or some estimate of the Hessian, for sampling in a MALA-
style manner [32, 17, 27]. Recently, such samplers and their time-continuous diffusion limits have
been theoretically analyzed by obtaining convergence guarantees [12, 26]. All such methods form a
position-dependent preconditioning and not the preconditioning we use in this paper, e.g. note that I−1

we consider here requires an expectation under the target and thus it is always a global preconditioner
rather than a position-dependent one. Another difference is that our method has quadratic cost,
while position-dependent preconditioning methods have cubic cost and they require computationally
demanding quantities like the Hessian matrix. Therefore, in order for these methods to run faster
some approximation may be needed, e.g. low rank [27] or quasi-Newton type [46, 24]. Furthermore,
the Bayesian logistic results in Table 1 (see also Figure 3) show that the proposed FisherMALA
method significantly outperforms manifold MALA [20] in Caravan and MNIST examples, despite
the fact that manifold MALA preconditions with the exact negative inverse Hessian matrix of the log
target. This could suggest that position-dependent preconditioning may be less effective in certain
type of high-dimensional and log-concave problems.
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Finally, there is recent work for learning flexible MCMC proposals by using neural networks
[42, 25, 23, 41] and by adapting parameters using differentiable objectives [25, 29, 43, 14]. Our
method differs, since it does not use objective functions (which have extra cost because they require an
optimization to run in parallel with the MCMC chain), but instead it adapts similarly to traditionally
MCMC methods by accumulating information from the observed history of the chain.

7 Conclusion

We derived an optimal preconditioning for the Langevin diffusion by optimizing the expected squared
jumped distance, and subsequently we developed an adaptive MCMC algorithm that approximates
the optimal preconditioning by applying an efficient quadratic cost recursion. Some possible topics
for future research are: Firstly, it would be useful to investigate whether the score function differences
that we use as the adaptation signal introduce any bias in the estimation of the inverse Fisher matrix.
Secondly, it would be interesting to extend our method to learn the preconditioning for other gradient-
based samplers such as Hamiltonian Monte Carlo (HMC), where such a matrix there is referred to as
the inverse mass matrix. For HMC this is more complex since both the mass matrix and its inverse are
needed in the iteration. Finally, it could be interesting to investigate adaptive schemes of the inverse
Fisher matrix by using multiple parallel and interacting chains, similarly to ensemble covariance
matrix estimation for Langevin diffusions [16].
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