
A Approximate Inference

This section provides further details on the algorithms introduced in Section 3.1.

A.1 Variational Inference

Variational inference (VI) minimizes the KL divergence [50] between the true posterior p(θ | D) and
the approximate posterior q(θ | D) [6]. While the KL divergence cannot be computed by itself, as
the true posterior is unknown, it can still be minimized by maximizing the evidence lower bound
(ELBO) given the parameter prior p(θ):

ELBO = E
θ∼q(θ|D)

[log p(D | θ)]− KL [q(θ | D) || p(θ)] (4)

Maximizing the ELBO means maximizing the likelihood of the training data, therefore fitting the
data well, while staying close to the parameter prior [6].

Bayes By Backprop (BBB). BBB [7] is an application of VI to deep neural network. BBB
approximates the parameter posterior with a diagonal Gaussian distribution that cannot model
covariances between parameters. The per-parameter means and variances are learned with standard
Stochastic Gradient Descent (SGD) [42] using the negative of the ELBO as the loss function. The
ELBO by itself is not differentiable as it depends on the randomly chosen parameters. However,
the reparameterization trick [44] applies to diagonal Gaussians and allows us to use the negative
ELBO as the loss function. Further runtime performance improvements are possible by using the
local reparameterization trick [45] or Flipout [88].

While there have been reports of BBB performing well when used on neural networks [7, 86], the
current consensus of the research community seems to be that BBB falls short when compared to
e.g. ensembles [20, 72, 89], even though it has been shown that the diagonal Gaussian posterior
is not significantly less expressive than a posterior that models covariances [18, 20]. In recent
years significant work has been done to improve the performance of VI in a deep learning setting.
To assess whether these improved algorithms can compete with SOTA Bayesian algorithms, we
also evaluate promising improvements on posterior parameterizations (Rank-1 VI, SVGD) and
optimization procedures (iVON).

Rank-1 Variational Inference (Rank-1 VI). Rank-1 VI [17] enhances the posterior approximation
of BBB by approximating a full-rank covariance matrix with a low-rank approximation. Rank-1
VI learns a diagonal Gaussian distribution over two vectors per layer, whose outer product is then
element-wise multiplied to a learned point estimate of the layer’s weights. The bias vector is kept as
a point estimate. The limited number of additional parameters allows Rank-1 VI to learn a multi-
component Gaussian distribution for the two low-rank vectors, which gives Rank-1 VI ensemble-like
properties. Rank-1 VI is both less expressive than BBB with the mean field approximation in the
sense that it has fewer variational parameters, and is more expressive as it can model covariances
between parameters within a layer and can express multi-modality in a limited way.

Improved Variational Online Newton (iVON). The usage of SGD for the optimization of varia-
tional parameters is problematic, as these parameters form a complex, non-euclidean manifold [41].
Natural gradient descent (NGD), recently formalized as the Bayesian learning rule [39], exploits
this structure to speed up training. VOGN [41, 70] applies NGD to neural networks but has scaling
problems, as it requires per-example gradients in minibatch training. iVON, based on the improved
Bayesian learning rule [53], no longer has this problem. While iVON still uses the mean-field
approximation of BBB, it is expected to converge faster, and, importantly, halves the number of
trainable parameters by implicitly learning per-parameter variances.

Stein Variational Gradient Descent (SVGD). SVGD [55] is a non-parametric VI algorithm that
does not assume the posterior to be of a particular shape but approximates it with p particles (i.e.
point estimates). The particles can be viewed as members of a Deep Ensemble [51], and the use of
VI adds a repulsive component to the loss function based on the RBF kernel distance between the
parameters of the particles. While this repulsive component can prevent the particles from converging
to the same posterior mode, it prohibits the independent training of the particles.
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A.2 Other Algorithms

Deep Ensembles. Lakshminarayanan et al. [51] introduce Deep Ensembles that combine the
predictions of multiple independently trained neural networks to improve uncertainty estimates.
Originally, Deep Ensembles have been seen as a competing approach to Bayesian algorithms [51].
However, ensembles can be considered to be a Bayesian algorithm that approximates the posterior
with a sum of delta distributions [89]. We consider all ensembles to be Bayesian: While they are
missing the principled posterior approximation approach of VI, basically hoping that the members
converge to different posterior modes, the approach results in a posterior approximation that is in
many cases better than the approximation of for example BBB (Section 5, [72, 89]).

Ensembles are usually considered SOTA in uncertainty estimation [72, 89]. However, the training
time scales linearly in the number of ensemble members. This makes them highly expensive in cases
where training a single member is already expensive, such as with large networks, and opens the
space for new, cheaper posterior approximations.

Monte Carlo Dropout (MCD). MCD [22] uses dropout [83] to form a Bernoulli distribution over
network parameters. The dropout rates are typically not learned, but the dropout units that are present
in many network architectures are simply applied during the evaluation of the model. This very cheap
posterior approximation has been criticized for not being truly Bayesian [71]. Despite this criticism,
it is still widely used, including in practical applications [10]. When the dropout rate is learned, MCD
can be considered to implicitly perform VI [21].

Stochastic Weight Averaging-Gaussian (SWAG). SWAG [59] forms its posterior approximations
from the parameter vectors that are traversed during the training of a standard neural network. During
the last epochs of SGD training, SWAG periodically stores the current parameters of the neural
network to build a low-rank Gaussian distribution over model parameters. While SWAG has only
a very small performance overhead during training, storing the additional parameters requires a
significant amount of additional memory, and sampling parameters from the low-rank Gaussian
distribution incurs a performance overhead during evaluation.

Laplace Approximation. The Laplace approximation [57] builds a local posterior approximation
from a second-order Taylor expansion around a MAP model. We always use the last-layer Laplace ap-
proximation and switch between a full-rank posterior, diagonal posterior, and a Kronecker-factorized
posterior [74] depending on the task. In this configuration, the Laplace approximation is the only
post-hoc algorithm that we consider: It can be fitted on top of an existing MAP model by performing
a single pass on the training dataset.

B Unsigned Calibration Metrics

As mentioned in the main paper (Section 4), a calibrated model makes confident predictions if and
only if they will likely be accurate. Based on this definition, we can directly derive a calibration
metric for classification models: The expected calibration error (ECE) [28, 66]. In the regression
case, neither “accuracy” nor “confidence” are well-defined properties of a prediction. The notion of
calibration must therefore be adapted for regression tasks. In addition, the log marginal likelihood
is commonly used to jointly evaluate the accuracy and the calibration in regression tasks. See
Appendix G.3.2 for details.

Calibrated Classification. In the classification case, each data point has an associated distribution
Y over the possible labels. Y represents the inherent aleatoric uncertainty of the label. Given a
prediction ŷ = argmaxy p(y | x,D) made with confidence p̂ = maxy p(y | x,D), the model is
perfectly calibrated if and only if

P (ŷ = Y | p̂ = p) = p ∀p ∈ [0, 1] (5)
holds for every data point [12, 28, 66]. Informally speaking, this means that if the model makes
100 predictions with a confidence of 0.8, 80 of these predictions should be correct. The expected
difference between the left and the right side of Equation (5) is called the expected calibration error
(ECE) of the model:

ECE = E
p∼U([0,1])

[ |P (ŷ = Y | p̂ = p)− p| ] (6)
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(a) Overconfident Quantile
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(b) Overconfident CI

Figure 6: Reliability plots of fictional, overconfident regression models when using (a) quantiles and
(b) confidence intervals (CI).

It implies two properties of a well-calibrated model: If the accuracy is low, the confidence should
also be low. This means that the model must not be overconfident in its predictions. Conversely,
if the accuracy is high, the confidence should also be high, meaning that the model must not be
underconfident in its predictions.

In practice, a model does not make enough predictions of the same confidence to calculate the
calibration error exactly. Therefore, the model’s predictions on an evaluation set D′ are commonly
grouped into M equally spaced bins Bm based on their confidence values, and the average accuracy
and confidence of each bin are used to calculate the ECE [28, 66]:

ECE ≈
M∑

m=1

|Bm|
|D′|

|acc(Bm)− conf(Bm)|, (7)

where Bm is the set of predictions in the m-th bin, and acc(Bm) and conf(Bm) are the average
accuracy and confidence of the predictions in Bm:

acc(Bm) =
1

|Bm|
∑

(x,y)∈Bm

1
(
y = argmax

y′
p(y′ | x,D)

)
(8)

conf(Bm) =
1

|Bm|
∑

(x,y)∈Bm

max
y′

p(y′ | x,D) (9)

(10)

An ECE of zero indicates perfect calibration. We always use ten bins (M = 10).

A main problem of the ECE is that bins with few predictions in them may exhibit a high variance
[69]. Therefore, Nixon et al. [69] proposed an extension of the ECE that uses bins of adaptive width.

Calibrated Regression. The confidence intervals of the predictive distribution can be used to
measure the calibration of a regression model [49]. The probability of the ground-truth output y
laying inside of the ρ-confidence interval of the predictive distribution of the model for input x should
be exactly ρ. Formally, we say a regression model is perfectly calibrated on an evaluation dataset D′

if and only if
P(Qρ′(x) ≤ y ≤ Q1−ρ′(x)) = ρ ∀(x,y) ∈ D′ (11)

holds for every q-quantile Qq(x) of the predictive distribution for input x with ρ′ = (1−ρ)/2.

Selectively evaluating Equation (11) for M confidence values ρm allows the practical computation of
a quantile calibration error (QCE) on an evaluation dataset D′

QCE =
1

M

M∑
m=1

|(ρm − pobs(ρm))| (12)

with
pobs(ρm) =

1

|D′|
∑

(x,y)∈D)

1(Qρ′(x) ≤ y ≤ Q1−ρ′(x)). (13)
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The QCE simply replaces the quantiles in the definition of the calibration error from Kuleshov
et al. [49] by confidence intervals. Using the confidence intervals allows a simpler interpretation of
the resulting reliability diagrams: With the calibration error proposed by Kuleshov et al. [49], the
reliability diagram of a perfectly calibrated regression model is a horizontally mirrored version of the
reliability diagram of a perfectly calibrated classification model, as there are too many ground-truth
values below the lower quantiles of their predictive distributions, and too few above the higher
quantiles (Figure 6a). Using confidence intervals for the reliability diagram results in a plot that can
be interpreted in the same way as a reliability diagram of a classification model (Figure 6b). We
always use ten equally-spaced confident levels between 0 and 1 (M = 10).

C Signed Calibration Metrics

As described in the main paper, our signed calibration metrics (sECE and sQCE) may be zero even
though the model is not perfectly calibrated. However, we show that this is typically not an issue
in practice, as for most models nearly all predictions are overconfident or nearly all predictions are
underconfident. The reliability diagrams in Figure 7 confirm this for a representative selection of
overconfident and underconfident models. We always report the unsigned calibration metrics in
Appendix G in addition to the signed calibration metrics mentioned in the main paper. The unsigned
metrics are in almost all cases very close to the absolute value of the signed metric, resulting in the
same relative ordering of the algorithms. On the other hand, the sECE provides valuable insights
into the underconfidence of some algorithms such as MultiSWAG on CIFAR-10 and SWAG on
AMAZON-WILDS.
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(a) MAP on the o.o.d. evaluation split of
IWILDCAM-WILDS. sECE: −0.0457, ECE:
0.0463
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(b) MultiLaplace on the o.o.d. evaluation split
of IWILDCAM-WILDS. sECE: −0.04501,
ECE: 0.0501
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(c) MAP on the group with the worst accu-
racy on CIVILCOMMENTS-WILDS. sECE:
−0.3162, ECE: 0.3162
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(d) SWAG on the o.o.d. evaluation split of
AMAZON-WILDS. sECE: −0.0405, ECE:
0.0408

Figure 7: Reliability diagrams of different models on a variety of datasets. No data point is drawn for
empty bins. The number of predictions in each bin is denoted at the top of each plot. The dashed line
corresponds to a perfectly calibrated model. In all cases, either nearly all of the model’s predictions
are overconfident, or nearly all are underconfident. Therefore, the ECE is close to the absolute value
of the sECE, indicating that the sECE is a reasonable calibration metric.

D Implementation Details

Except for Laplace, we implement all algorithms ourselves as PyTorch [24] optimizers. The
implementation of the algorithms as well as code to reproduce all experiments is available at
https://github.com/bdl-authors/beyond-ensembles, where we also provide a short tuto-
rial on the usage of our implementation.

Bayes By Backprop. We use the local reparameterization trick [45]. As it is standard today [20,
72, 89], we do not use the scale mixture prior introduced by BBB’s original authors [7], but a unit
Gaussian prior. For the experiments on CIFAR-10, we make the parameters of the Filter Response
Normalization layers variational.

Rank-1 VI. Following Dusenberry et al. [17], we keep the bias of each layer as a point estimate.
We also keep the learned parameters of batch normalization and Filter Response Normalization layers
as point estimates. We use five components in most cases which is close to the four components
recommended by Dusenberry et al. [17] and make Rank-1 VI directly comparable to other ensemble-
based models that use five members.
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iVON. We adapt the data augmentation factor that Osawa et al. [70] introduce for VOGN [40] to
iVON. We do not use the tempering parameter from VOGN.

Laplace. We use the Laplace library from Daxberger et al. [13] due to the difficulty of implementing
second-order optimization in PyTorch. In all cases except for CIVILCOMMENTS-WILDS, we use
a Kronecker-factorized last-layer Laplace approximation. On CIVILCOMMENTS-WILDS, we use
a diagonal last-layer Laplace approximation as the Kronecker-factorized approximation frequently
leads to diverging parameters. We do not use the GLM approximation as proposed by Daxberger
et al. [13] but use Monte Carlo sampling to stay consistent with the other evaluated algorithms. In all
experiments we use the Laplace library’s functions to tune the prior precision after fitting the Laplace
approximation.

SWAG. While the authors of SWAG argue that SWAG benefits from a special learning rate schedule
[59], they do not use such a schedule in most of their experiments with SWAG and MultiSWAG
[89]. Correspondingly, we use the same schedule with SWAG as with any other algorithm. We
use 30 parameter samples for building the mean and the low-rank covariance matrix of SWAG. On
CIVILCOMMENTS-WILDS, we only use 10 parameter samples due to the storage size of the samples.

E Batch Normalization, Distribution Shift, and Bayesian Deep Learning
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Figure 8: CAMELYON17-WILDS: Average accuracy vs. sECE on the o.o.d. test split. The models
that use no running statistics (static BN) are significantly more accurate and better calibrated, while
exhibiting a smaller variance.

Schneider et al. [77] find that a significant part of the accuracy loss on o.o.d. data is due to changing
batch statistics that cannot be adequately normalized by the running batch normalization statistics
that are based on the training data. The authors propose to re-initialize the running statistics on a
subset of the evaluation dataset.

We are able to reproduce the issue with o.o.d. data on the CAMELYON17-WILDS dataset from the
WILDS collection [47] (Figure 8). The o.o.d. evaluation set of CAMELYON17 has been generated
by selecting the images that were most visually distinct from the other images. In addition, the
employed ResNet-20 [32] architecture includes batch normalization layers. We find that using only
batch statistics, thereby essentially using the batch normalization layers in training mode during
evaluation, entirely alleviates the i.d. - o.o.d. performance gap on CAMELYON17, as well as the large
standard deviations on the o.o.d. dataset. Coincidentally, the WILDS leaderboard [46] shows that
models that do not include batch normalization, such as a model based on the vision transformer [15],
or that use extensive data augmentation, perform best.

The running statistics of batch normalization layers also pose problems with Bayesian neural networks
that sample parameters, as the running statistics depend on the parameters of the neural network.
Wilson and Izmailov [89] therefore propose to recalculate the batch normalization statistics for
each parameter sample. This is not necessary in our case as we never use running statistics for
normalization layers. By doing so we also avoid the aforementioned distribution-shift problem
without requiring additional o.o.d. data during evaluation, and do not add any computation overhead.
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F Computational Resources

We use single NVIDIA Tesla V100, A100, and H100 GPUs for all tasks from Wilds [47] and CIFAR-
10-(C) [33, 48]. See Table 1 for the GPUs that we use on the individual datasets as well as the
runtime of MAP. Table 2 displays the relative runtime of the BDL algorithms. In total, we estimate
that the evaluation required about 1600 h of GPU time, of which about 25% were consumed during
implementation, testing and hyperparameter optimization. Training and hyperparameter optimization
of the UCI models was performed on a single CPU in about 20 h. Table 3 shows the GPU memory
overhead of the BDL algorithms.

Dataset GPU Runtime of MAP
CIFAR-10 NVIDIA V100 50min
POVERTYMAP-WILDS NVIDIA V100 50min
IWILDCAM-WILDS NVIDIA A100 150min
FMOW-WILDS NVIDIA V100 150min
RXRX1-WILDS NVIDIA V100 140min
CIVILCOMMENTS-WILDS NVIDIA A100 60min
AMAZON-WILDS NVIDIA H100 90min

Table 1: Hardware and runtime for MAP for each dataset. The results are rounded to the next 10
minutes.

Model POVERTYMAP IWILDCAM FMOW RXRX1 CIVILCOMMENTS AMAZON CIFAR-10
MAP 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MCD 1.0 1.0 1.0 1.0 1.0 1.0 ∼ 1.0
SWAG 1.3 1.5 1.0 1.2 1.3 1.5 ∼ 1.0
Laplace 1.0 1.0 1.0 1.0 1.0 1.0 ∼ 1.0
BBB 5.7 - - - - - ∼ 5.0
LL BBB - 1.6 2.0 3.7 1.8 2.0 -
Rank-1 VI 3.9 - - - - - ∼ 4.0
LL Rank-1 VI - 2.0 2.0 3.7 1.9 2.0 -
iVON 2.8 - - - - - ∼ 3.0
LL iVON - 3.0 2.9 3.6 5.6 6.6 -
SVGD 9.2 4.9 7.3 8.9 9.2 10.0 ∼ 8.0

Table 2: Runtime of different algorithms relative to MAP. The numbers on CIFAR-10 are conser-
vative estimates as exact numbers were no longer available. Note that the runtime also depends on
whether we are able to use mixed precision training, which was not possible with the VI algorithms.
The training time of a MultiX model with n members is n times the training time of the respective
single-mode approximation. LL = Last-Layer.

Model Memory Overhead
MAP 1.0
MCD 1.0
SWAG ∼ 1.0
Laplace ∼ 1.0
BBB ∼ 2
Rank-1 VI ∼ 1 + #components · √parameter count
iVON ∼ 25

SVGD ∼ #particles

Table 3: GPU memory requirements of different algorithms relative to MAP. The numbers are
estimates are based on a theoretical analysis of the algorithms, not on measurements. The memory
consumption of MultiX is the same as for the respective single-mode approximation, since all
members can be trained indenpendently.

5No additional memory overhead due to a separate optimizer
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G Additional Experimental Results

G.1 UCI Datasets

We report results for both the standard and the gap splits [20] on the HOUSING and ENERGY datasets
from the UCI machine learning repository [16]. On ENERGY, we can reproduce the catastrophic
failure of VI both with BBB and Rank-1 VI, but not with iVON which performs still similarly to
MultiSWAG. Overall, we find that the benefit of ensembles is less clear than on the larger WILDS
datasets, which emphasizes the importance of evaluating Bayesian algorithms on large datasets.

Hyperparameters. All hyperparameters were optimized through a grid search on the validation set.
Note that for the gap splits the validation set is not part of the gap. We considered 40, 100 and 200
epochs, learning rates of 0.01 and 0.001 and (where applicable) weight decay factors of 10−4 and
10−5. For BBB, the prior standard deviations are 0.1, 1.0 and 10.0 and we scale the KL divergence
in the ELBO by 0.2, 0.5, and 1.0, with colder temperatures generally leading to better results. For
iVON, we consider prior precisions of 10, 100, and 200, with 200 being selected in most cases. BBB
and iVON use five Monte Carlo samples during training. For SWAG, we consider 60, 100, and 150
epochs, use 30 parameter samples and start sampling after 50%, 75%, or 90% of the training epochs
were completed. For Laplace, we always use a last-layer approximation with a full covariance matrix.
We use the Adam optimizer [43] to optimize the log-likelihood/ELBO and learn the output standard
deviation jointly with the parameters. We use 1000 parameter samples for each prediction.

Model LML MSE QCE sQCE
MAP −2.643± 0.054 10.707± 0.794 0.036± 0.001 −0.018± 0.012
Deep Ensemble −2.330± 0.015 6.034± 0.413 0.099± 0.006 0.099± 0.006
MCD −2.836± 0.095 13.531± 1.401 0.044± 0.008 −0.031± 0.019
MultiMCD −2.328± 0.010 5.789± 0.077 0.101± 0.002 0.101± 0.002
SWAG −2.495± 0.014 6.044± 0.214 0.128± 0.003 0.128± 0.003
MultiSWAG −2.511± 0.002 7.071± 0.011 0.139± 0.002 0.139± 0.002
LL Laplace −2.515± 0.058 9.498± 2.347 0.099± 0.020 0.099± 0.020
LL MultiLaplace −2.467± 0.031 5.850± 0.395 0.157± 0.005 0.157± 0.005
BBB −2.475± 0.096 7.716± 1.053 0.033± 0.004 −0.006± 0.012
MultiBBB −2.529± 0.003 7.212± 0.160 0.172± 0.005 0.172± 0.005
Rank-1 VI −2.531± 0.103 8.983± 1.451 0.033± 0.008 0.006± 0.016
iVON −2.793± 0.006 9.853± 0.318 0.215± 0.003 0.215± 0.003
SVGD −2.614± 0.017 8.397± 0.642 0.143± 0.010 0.143± 0.010

Table 4: UCI-HOUSING (standard splits)

Model LML MSE QCE sQCE
MAP −2.850± 0.207 14.775± 3.635 0.040± 0.013 −0.012± 0.024
Deep Ensemble −2.767± 0.183 13.012± 3.034 0.054± 0.011 0.045± 0.017
MCD −2.892± 0.210 15.488± 3.661 0.034± 0.007 −0.001± 0.018
MultiMCD −2.730± 0.132 12.760± 2.838 0.054± 0.013 0.045± 0.019
SWAG −2.743± 0.042 12.940± 1.742 0.113± 0.017 0.112± 0.017
MultiSWAG −2.694± 0.047 11.941± 1.874 0.118± 0.020 0.117± 0.020
LL Laplace −2.873± 0.117 15.294± 3.687 0.074± 0.018 0.072± 0.020
LL MultiLaplace −2.832± 0.106 13.445± 3.209 0.106± 0.020 0.104± 0.022
BBB −3.829± 1.009 17.238± 7.435 0.114± 0.024 −0.113± 0.024
MultiBBB −2.734± 0.115 14.071± 2.925 0.065± 0.018 0.054± 0.026
Rank-1 VI −2.806± 0.193 13.513± 2.930 0.067± 0.025 0.018± 0.043
iVON −2.930± 0.023 17.904± 2.300 0.152± 0.015 0.151± 0.015
SVGD −2.855± 0.184 14.848± 3.170 0.039± 0.014 −0.003± 0.025

Table 5: UCI-HOUSING (gap splits)

Model LML MSE QCE sQCE
MAP −1.702± 0.094 1.760± 0.289 0.051± 0.020 −0.020± 0.036
Deep Ensemble −1.235± 0.003 0.177± 0.007 0.270± 0.002 0.270± 0.002
MCD −1.709± 0.079 1.779± 0.252 0.049± 0.016 −0.022± 0.032
MultiMCD −1.236± 0.005 0.212± 0.015 0.260± 0.003 0.260± 0.003
SWAG −2.127± 0.029 2.198± 0.274 0.210± 0.006 0.210± 0.006
MultiSWAG −2.143± 0.002 2.454± 0.018 0.220± 0.001 0.220± 0.001
LL Laplace −1.653± 0.026 0.608± 0.110 0.245± 0.019 0.245± 0.019
LL MultiLaplace −1.606± 0.016 0.235± 0.033 0.316± 0.008 0.316± 0.008
BBB −0.976± 0.123 0.413± 0.103 0.055± 0.017 0.030± 0.032
MultiBBB −1.022± 0.021 0.309± 0.075 0.210± 0.012 0.210± 0.012
Rank-1 VI −1.029± 0.166 0.459± 0.145 0.054± 0.019 0.019± 0.036
iVON −2.463± 0.006 6.620± 0.191 0.161± 0.010 0.161± 0.010
SVGD −1.322± 0.040 0.550± 0.121 0.159± 0.027 0.159± 0.027

Table 6: UCI-ENERGY (standard splits)
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Model LML MSE QCE sQCE
MAP −7.723± 7.553 34.444± 41.620 0.247± 0.065 0.043± 0.195
Deep Ensemble −4.360± 3.066 31.419± 36.845 0.272± 0.060 0.072± 0.207
MCD −10.299± 10.685 48.491± 58.682 0.261± 0.065 0.041± 0.206
MultiMCD −6.744± 6.151 41.030± 49.269 0.272± 0.061 0.073± 0.207
SWAG −3.655± 1.469 30.372± 28.902 0.218± 0.084 0.011± 0.183
MultiSWAG −3.110± 0.815 25.362± 22.428 0.192± 0.059 0.034± 0.152
LL Laplace −7.009± 4.256 45.505± 37.787 0.247± 0.040 0.116± 0.119
LL MultiLaplace −5.549± 2.983 38.452± 31.657 0.270± 0.046 0.142± 0.127
BBB −64.268± 79.182 43.670± 52.833 0.199± 0.131 −0.101± 0.184
MultiBBB −22.150± 25.068 50.502± 58.432 0.236± 0.110 −0.073± 0.202
Rank-1 VI −72.412± 92.191 49.099± 60.606 0.191± 0.133 −0.109± 0.178
iVON −3.367± 0.903 21.546± 13.347 0.109± 0.025 0.038± 0.074
SVGD −9.945± 10.449 46.757± 56.551 0.227± 0.067 0.037± 0.182

Table 7: UCI-ENERGY (gap splits)
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G.2 CIFAR-10

Following Wilson et al. [90], we train a ResNet-20 [32] with Swish activations [73] and Filter Re-
sponse Normalization [82]. The use of Filter Response Normalization instead of batch normalization,
which only uses batch statistics, eliminates the problems mentioned in Appendix E. We train all
models except iVON with SGD and a learning rate of 0.05 and Nesterov momentum of strength
0.9 for 300 epochs. We use the learning rate schedule from Maddox et al. [59]: The learning rate
is kept at its initial value for the first 150 epochs, then linearly reduced to a learning rate of 0.005
at epoch 270 at which it is kept constant for the remaining 30 epochs. For MCD, we use a dropout
rate of 0.1 and insert dropout units after every linear and convolutional layer of the ResNet-20. For
BBB, we temper the KL divergence in the ELBO with a factor of 0.2. Rank-1 VI uses an untempered
posterior and four components. BBB and iVON use two Monte Carlo samples during training. The
Laplace approximation is based on a diagonal last-layer approximation. iVON is also trained for 300
epochs with a learning rate of 1 · 10−4, a prior precision of 50, and a data augmentation factor of 10
(see Osawa et al. [70] for details), but uses no learning rate schedule. We found these changes to be
necessary to ensure that iVON performs well, likely because iVON is much more similar to Adam
[43] than to SGD and therefore needs a smaller learning rate. Following Nado et al. [65], SNGP uses
a spectral normalization factor of 6.0 and mean field factor of 20. We did not perform any additional
tuning of the mean field factor. We always use 50 parameter samples during evaluation.

Figure 9 displays the accuracy, ECE, sECE, agreement with HMC, and TV compared to HMC.
MultiX models tend to become underconfident. Table 8 shows detailed numerical results for all
algorithms and corruption levels.
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Model Accuracy ECE sECE NLL Agreement TV
MAP 0.925± 0.001 0.045± 0.001 −0.045± 0.001 0.296± 0.006 0.906± 0.002 0.172± 0.001
Deep Ensemble 0.944± 0.001 0.010± 0.001 0.003± 0.000 0.174± 0.001 0.923± 0.001 0.144± 0.001
MCD 0.927± 0.002 0.008± 0.001 0.007± 0.001 0.216± 0.005 0.920± 0.003 0.132± 0.002
MultiMCD 0.941± 0.001 0.031± 0.001 0.031± 0.001 0.186± 0.001 0.930± 0.002 0.116± 0.001
SWAG 0.921± 0.002 0.042± 0.003 0.042± 0.003 0.250± 0.002 0.910± 0.002 0.130± 0.001
MultiSWAG 0.940± 0.001 0.099± 0.002 0.099± 0.002 0.258± 0.002 0.927± 0.001 0.107± 0.001
LL Laplace 0.924± 0.001 0.040± 0.001 −0.040± 0.001 0.282± 0.006 0.906± 0.002 0.169± 0.001
LL MultiLaplace 0.945± 0.001 0.012± 0.002 0.007± 0.001 0.174± 0.002 0.923± 0.001 0.142± 0.000
BBB 0.898± 0.003 0.046± 0.002 −0.046± 0.002 0.387± 0.011 0.900± 0.001 0.161± 0.001
MultiBBB 0.929± 0.001 0.018± 0.002 0.018± 0.002 0.228± 0.002 0.930± 0.001 0.122± 0.001
Rank1-VI 0.881± 0.003 0.041± 0.002 0.041± 0.002 0.363± 0.005 0.910± 0.003 0.116± 0.002
iVON 0.842± 0.004 0.025± 0.003 0.024± 0.003 0.464± 0.011 0.874± 0.004 0.145± 0.003
MultiiVON 0.881± 0.003 0.077± 0.003 0.077± 0.003 0.388± 0.002 0.921± 0.002 0.107± 0.001
SVGD 0.927± 0.001 0.018± 0.001 0.003± 0.001 0.255± 0.001 0.924± 0.002 0.135± 0.001
SNGP 0.917± 0.003 0.076± 0.006 0.076± 0.006 0.380± 0.013 0.903± 0.002 0.178± 0.002
HMC 0.903 0.069 0.068 0.320 1.000 0.000

(a) Standard Evaluation Split (Corruption Level 0)

Model Accuracy ECE sECE NLL Agreement TV
MAP 0.872± 0.002 0.080± 0.002 −0.080± 0.002 0.518± 0.010 0.848± 0.001 0.238± 0.001
Deep Ensemble 0.903± 0.001 0.014± 0.001 −0.003± 0.001 0.305± 0.006 0.870± 0.003 0.196± 0.001
MCD 0.872± 0.004 0.011± 0.003 −0.004± 0.006 0.400± 0.011 0.865± 0.003 0.184± 0.002
MultiMCD 0.890± 0.003 0.028± 0.002 0.026± 0.002 0.335± 0.005 0.880± 0.002 0.158± 0.001
SWAG 0.876± 0.004 0.047± 0.006 0.047± 0.005 0.388± 0.004 0.856± 0.005 0.179± 0.001
MultiSWAG 0.900± 0.001 0.117± 0.002 0.117± 0.002 0.383± 0.002 0.878± 0.001 0.147± 0.000
LL Laplace 0.873± 0.004 0.074± 0.004 −0.074± 0.004 0.499± 0.017 0.849± 0.002 0.239± 0.002
LL MultiLaplace 0.903± 0.005 0.016± 0.003 −0.001± 0.005 0.314± 0.003 0.859± 0.004 0.199± 0.001
BBB 0.839± 0.003 0.083± 0.003 −0.083± 0.003 0.682± 0.029 0.844± 0.002 0.222± 0.000
MultiBBB 0.878± 0.008 0.018± 0.005 0.006± 0.009 0.394± 0.012 0.880± 0.005 0.170± 0.004
Rank1-VI 0.843± 0.004 0.042± 0.004 0.042± 0.004 0.484± 0.015 0.860± 0.002 0.165± 0.003
iVON 0.795± 0.010 0.025± 0.006 0.010± 0.010 0.596± 0.021 0.827± 0.011 0.189± 0.008
MultiiVON 0.845± 0.004 0.083± 0.003 0.081± 0.003 0.504± 0.018 0.863± 0.008 0.145± 0.003
SVGD 0.883± 0.001 0.021± 0.003 −0.007± 0.001 0.432± 0.010 0.875± 0.001 0.192± 0.000
SNGP 0.867± 0.015 0.074± 0.009 0.069± 0.012 0.560± 0.034 0.844± 0.010 0.231± 0.004
HMC 0.834 0.066 0.064 0.508 1.000 0.000

(b) Corruption Level 1

Model Accuracy ECE sECE NLL Agreement TV
MAP 0.805± 0.005 0.128± 0.005 −0.128± 0.004 0.863± 0.019 0.778± 0.002 0.309± 0.002
Deep Ensemble 0.838± 0.004 0.027± 0.004 −0.027± 0.004 0.518± 0.020 0.805± 0.002 0.253± 0.001
MCD 0.777± 0.011 0.047± 0.004 −0.047± 0.005 0.733± 0.051 0.796± 0.010 0.232± 0.001
MultiMCD 0.805± 0.003 0.011± 0.003 0.000± 0.003 0.594± 0.012 0.823± 0.005 0.196± 0.001
SWAG 0.806± 0.004 0.032± 0.003 0.031± 0.004 0.593± 0.009 0.783± 0.005 0.228± 0.003
MultiSWAG 0.839± 0.002 0.117± 0.004 0.117± 0.004 0.556± 0.002 0.818± 0.001 0.186± 0.001
LL Laplace 0.804± 0.003 0.120± 0.002 −0.119± 0.002 0.839± 0.021 0.777± 0.005 0.308± 0.003
LL MultiLaplace 0.850± 0.012 0.026± 0.008 −0.015± 0.009 0.498± 0.035 0.800± 0.002 0.251± 0.003
BBB 0.735± 0.009 0.154± 0.008 −0.154± 0.008 1.296± 0.072 0.774± 0.004 0.286± 0.002
MultiBBB 0.786± 0.014 0.033± 0.010 −0.026± 0.014 0.741± 0.045 0.830± 0.006 0.204± 0.003
Rank1-VI 0.774± 0.008 0.024± 0.002 0.019± 0.006 0.684± 0.027 0.802± 0.006 0.210± 0.005
iVON 0.725± 0.014 0.028± 0.004 −0.022± 0.005 0.809± 0.036 0.756± 0.016 0.237± 0.008
MultiiVON 0.783± 0.008 0.069± 0.009 0.068± 0.010 0.666± 0.006 0.821± 0.002 0.179± 0.003
SVGD 0.804± 0.004 0.038± 0.002 −0.038± 0.002 0.821± 0.024 0.818± 0.001 0.238± 0.001
SNGP 0.785± 0.015 0.067± 0.007 0.044± 0.010 0.837± 0.042 0.767± 0.008 0.295± 0.004
HMC 0.724 0.020 0.017 0.833 1.000 0.000

(c) Corruption Level 3

Model Accuracy ECE sECE NLL Agreement TV
MAP 0.689± 0.006 0.217± 0.006 −0.217± 0.006 1.494± 0.019 0.683± 0.005 0.390± 0.003
Deep Ensemble 0.733± 0.006 0.075± 0.007 −0.075± 0.007 0.937± 0.036 0.718± 0.004 0.310± 0.003
MCD 0.629± 0.009 0.141± 0.011 −0.141± 0.010 1.312± 0.094 0.725± 0.012 0.277± 0.003
MultiMCD 0.666± 0.007 0.069± 0.007 −0.069± 0.007 1.063± 0.021 0.760± 0.001 0.234± 0.001
SWAG 0.696± 0.005 0.018± 0.009 −0.012± 0.008 0.927± 0.025 0.699± 0.006 0.277± 0.006
MultiSWAG 0.728± 0.004 0.082± 0.004 0.082± 0.004 0.841± 0.009 0.740± 0.004 0.228± 0.002
LL Laplace 0.690± 0.006 0.203± 0.005 −0.203± 0.005 1.430± 0.026 0.685± 0.003 0.380± 0.002
LL MultiLaplace 0.731± 0.013 0.073± 0.011 −0.072± 0.011 0.941± 0.064 0.722± 0.008 0.303± 0.002
BBB 0.584± 0.011 0.268± 0.014 −0.268± 0.014 2.413± 0.126 0.698± 0.008 0.353± 0.003
MultiBBB 0.621± 0.014 0.114± 0.016 −0.114± 0.016 1.411± 0.105 0.757± 0.010 0.247± 0.009
Rank1-VI 0.673± 0.016 0.028± 0.010 −0.024± 0.014 1.010± 0.056 0.719± 0.013 0.262± 0.010
iVON 0.617± 0.011 0.086± 0.006 −0.086± 0.006 1.201± 0.061 0.678± 0.008 0.290± 0.007
MultiiVON 0.657± 0.012 0.025± 0.005 0.000± 0.009 0.998± 0.047 0.752± 0.012 0.224± 0.006
SVGD 0.666± 0.004 0.117± 0.009 −0.117± 0.009 1.557± 0.043 0.742± 0.007 0.286± 0.002
SNGP 0.657± 0.006 0.084± 0.007 −0.017± 0.008 1.256± 0.022 0.681± 0.008 0.353± 0.005
HMC 0.592 0.055 −0.054 1.225 1.000 0.000

(d) Corruption Level 5

Table 8: CIFAR-10: Detailed results on the standard evaluation split and the corruption levels 1, 3,
and 5 of CIFAR-10-C.
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Figure 9: CIFAR-10-(C): All results for the corruption intensities 0, 1, 3, and 5. The corruption
intensities are denoted on the y-axis. A negative sECE indicates overconfidence, a positive sECE
indicates underconfidence. The plot for the TV is repeated from Figure 5.

G.3 WILDS

We strictly follow the training and evaluation protocol of Koh et al. [47] by reusing their data folds
for training, validation, and testing. We use the hyperparameters proposed by Koh et al. [47] where
applicable, and set the other hyperparameters to standard values as suggested by the developers
of the respective algorithms. If the standard values lead to unexpectedly bad results, we tune the
hyperparameters through a grid search. Hyperparameter tuning was performed on the i.d. validation
and, where available, o.o.d. validation splits, but never on testing splits. In particular, we select
the prior precision of iVON through a grid search over the values 1, 10, 100, and 500 per model
architecture. We find the prior precision of iVON to be hard to tune, as iVON frequently diverges for
comparatively small prior precisions such as 1 and 10. BBB works always well with the standard
unit prior. We also experiment with other priors but find no difference in performance except on
RXRX1-WILDS (see Figure 14). BBB and iVON use two Monte Carlo samples during training. See
the sections below for the hyperparameters that were chosen on the individual datasets. We use mixed
precision training whenever possible. The VI algorithms as well as the Laplace approximations are
mostly trained without mixed precision, as this leads to unstable training.

SNGP uses the same learning rate, weight decay, and number of epochs as the other algorithms.
Following the recommendations by Liu et al. [54] and the tuning done by Nado et al. [65], we use a
spectral normalization factor of 6.0 for the computer vision tasks and 0.95 for the text classification
tasks. On the image classification tasks, SNGP performs significantly better when limiting the input
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dimension of the Gaussian Process to 128 or 256 instead of using the output dimension of the previous
network layer.

We use 10 posterior samples per prediction during evaluation to constrain the computational overhead
of the Bayesian algorithms, which is generally sufficient to capture the predictive distribution [72].
Note that our results are not directly comparable to the results of Daxberger et al. [13], as they build
their Deep Ensembles and Laplace approximations from the pretrained models provided by Koh et al.
[47]. When comparing our results with the best performing algorithms on the WILDS leaderboard,
we only consider the algorithms on the “overall leaderboard", i.e. the algorithms that conform to the
official submission guidelines of Koh et al. [47].

G.3.1 Camelyon17-WILDS

Following Koh et al. [47], we train a DenseNet-121 [35] with SGD for 5 epochs with a learning rate
of 0.001, weight decay 0.01 and momentum 0.9. SWAG collects 30 parameter samples during the
last epoch.

G.3.2 PovertyMAP-WILDS

We train a ResNet-18 [32] using the same hyperparameters as Koh et al. [47] where applicable:
A learning rate of 10−3 and no weight decay. We only train for 100 epochs as all models were
converged after that. SWAG collects 30 parameter samples starting at epoch 50. For BBB, we scale
the KL divergence down with a factor of 0.2, as this significantly improves the MSE. Rank-1 VI uses
an unscaled KL divergence. The ensembles, Rank-1 VI and SVGD use five members/components.
We optimize the log likelihood of the training data and represent the aleatoric uncertainty with a fixed
standard deviation of 0.1, as this is the value MAP converges to when jointly optimizing the standard
deviation and the model’s parameters. For the final evaluations, we do not optimize the standard
deviation, as this leads to unstable training with the VI algorithms. Following Koh et al. [47], we
aggregate all results over the five folds of POVERTYMAP, with one seed per fold.

As mentioned in the main paper, iVON performs significantly worse than the other algorithms. We
conducted a grid search over prior precisions 1, 10, 100 and 500 with a single seed per value, and
found that for 1 and 10 iVON diverges, for 100 iVON achieves an o.o.d. Pearson coefficient on the “A”
split of 0.21 and for 500 it achieves a Pearson coefficient of 0.25. Most likely due to their underfitting
the non-diverged models are comparatively well calibrated with sECEs of −0.21 for a prior precision
of 100 and −0.24 for a prior precision of 500.

Log Marginal Likelihood. The log marginal likelihood is commonly used to jointly evaluate
the accuracy and calibration of a regression model. On an evaluation dataset D′, the log marginal
likelihood (LML) is given by

LML = log p(D′ | D) = log

∫
p(D′ | θ)p(θ | D) dθ ≈ log

∑
n

p(D′ | θn), (14)

where the θn are samples from the parameter posterior. When only few predictions are available
because sampling parameters θn or evaluating the likelihood p(D′ | θn) is expensive, the LML may
become very noisy. We therefore also report the per-sample log marginal likelihood

psLML =
∑

(xi,yi)∈D′

log p(yi | xi,D)

=
∑

(xi,yi)∈D′

log

∫
p(yi | xi,θ)p(θ | D) dθ

≈
∑

(xi,yi)∈D′

log
∑
n

p(yi | xi,θn),

(15)

which has a lower variance than the LML. We present the results for the LML, the psLML, the
urban/rural Pearson coefficient (see Section 5.1), and the sQCE in Figure 10 and Figure 11. Table 9
shows detailed numerical results.
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Model Worst U/R Pearson psLML LML MSE QCE sQCE
MAP 0.487± 0.074 −11.945± 2.042 −11.945± 2.042 0.267± 0.041 0.382± 0.012 −0.382± 0.012
Deep Ensemble 0.520± 0.075 −6.126± 1.422 −12.113± 2.074 0.249± 0.043 0.283± 0.027 −0.283± 0.027
MCD 0.491± 0.079 −6.868± 1.720 −12.175± 2.398 0.259± 0.049 0.316± 0.023 −0.316± 0.023
MultiMCD 0.516± 0.078 −5.053± 1.518 −12.290± 2.409 0.253± 0.052 0.271± 0.035 −0.271± 0.035
SWAG 0.473± 0.078 −12.551± 1.994 −12.621± 2.000 0.280± 0.040 0.386± 0.012 −0.386± 0.012
MultiSWAG 0.512± 0.078 −6.010± 1.373 −12.167± 1.989 0.250± 0.042 0.280± 0.026 −0.280± 0.026
LL Laplace 0.473± 0.072 −12.599± 2.191 −12.599± 2.191 0.280± 0.044 0.387± 0.012 −0.387± 0.012
LL MultiLaplace 0.516± 0.080 −5.614± 1.271 −12.324± 2.141 0.251± 0.044 0.265± 0.026 −0.265± 0.026
BBB 0.500± 0.072 −7.881± 2.290 −12.075± 2.470 0.264± 0.054 0.333± 0.036 −0.333± 0.036
MultiBBB 0.518± 0.074 −6.257± 1.462 −11.498± 2.299 0.252± 0.048 0.309± 0.027 −0.309± 0.027
Rank-1 VI 0.509± 0.069 −3.568± 1.053 −13.276± 1.978 0.246± 0.043 0.212± 0.028 −0.212± 0.028
iVON 0.249±− −4.657±− −19.787±− 0.347±− 0.236±− −0.236±−
SVGD 0.497± 0.070 −5.416± 1.270 −12.524± 2.224 0.254± 0.041 0.255± 0.026 −0.255± 0.026
SNGP 0.456± 0.072 −12.688± 1.556 −12.688± 1.556 0.281± 0.031 0.357± 0.009 −0.357± 0.009

(a) O.o.d. Evaluation Split

Model Worst U/R Pearson psLML LML MSE QCE sQCE
MAP 0.673± 0.019 −7.445± 0.761 −7.445± 0.761 0.177± 0.015 0.348± 0.008 −0.348± 0.008
Deep Ensemble 0.703± 0.022 −3.438± 0.569 −7.093± 0.744 0.155± 0.014 0.228± 0.010 −0.228± 0.010
MCD 0.695± 0.010 −3.604± 0.483 −7.237± 0.673 0.162± 0.012 0.267± 0.014 −0.267± 0.014
MultiMCD 0.711± 0.024 −2.680± 0.358 −7.383± 0.615 0.156± 0.012 0.220± 0.014 −0.220± 0.014
SWAG 0.664± 0.021 −7.719± 0.716 −7.752± 0.723 0.183± 0.014 0.355± 0.003 −0.355± 0.003
MultiSWAG 0.705± 0.023 −3.331± 0.439 −7.221± 0.625 0.155± 0.012 0.223± 0.008 −0.223± 0.008
LL Laplace 0.664± 0.018 −7.823± 0.737 −7.823± 0.737 0.184± 0.015 0.357± 0.006 −0.357± 0.006
LL MultiLaplace 0.702± 0.023 −3.234± 0.539 −7.474± 0.828 0.157± 0.014 0.206± 0.004 −0.206± 0.004
BBB 0.680± 0.019 −4.508± 0.269 −7.224± 0.754 0.169± 0.014 0.286± 0.014 −0.286± 0.014
MultiBBB 0.694± 0.014 −3.619± 0.344 −7.159± 0.586 0.161± 0.011 0.256± 0.012 −0.256± 0.012
Rank-1 VI 0.669± 0.011 −2.077± 0.323 −9.630± 1.166 0.173± 0.016 0.162± 0.016 −0.162± 0.016
iVON 0.571±− −3.888±− −15.832±− 0.284±− 0.201±− −0.201±−
SVGD 0.694± 0.026 −3.057± 0.611 −7.564± 1.017 0.159± 0.018 0.200± 0.008 −0.200± 0.008
SNGP 0.692± 0.013 −7.135± 0.639 −7.135± 0.639 0.170± 0.013 0.300± 0.008 −0.300± 0.008

(b) I.d. Evaluation Split

Table 9: POVERTYMAP-WILDS: Detailed results on the evaluation splits. iVON underperforms, with
a Pearson coefficient of 0.249 on the o.o.d. split and a Pearson coefficient of 0.571 on the i.d. split.
All models achieve the same LML and MSE within a 95% confidence interval.
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Figure 10: POVERTYMAP-WILDS: Worst urban/rural Pearson coefficient vs. sQCE, LML, and
psLML on the o.o.d. evaluation split. Ensemble-based models consistently outperform single-mode
models (note that Rank-1 VI’s components and SVGD’s particles give them ensemble-like properties).
The psLML is less noisy than the LML and results in a ranking of the algorithms that is more consistent
with the sQCE and the Pearson coefficient. Laplace and SWAG perform nearly equivalently, therefore
the data points of SWAG are hidden behind the data points of Laplace. iVON performs significantly
worse than the other algorithms and is therefore excluded.
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Figure 11: POVERTYMAP-WILDS: Worst urban/rural pearson coefficient vs. sQCE, LML and psLML
on the i.d. evaluation split. The WILDS leaderboard [46] does not report the i.d. pearson coefficient.

G.3.3 IWILDCAM-WILDS

Following Koh et al. [47], we finetune a ResNet-50 [32], pretrained on ImageNet [14], for 12 epochs
with the Adam optimizer [43]. For each model, we replace the linear classification layer of the ResNet-
50 by a randomly initialized one of the appropriate output dimension. We use the hyperparameters
that Koh et al. [47] found to work best based on their grid search: A learning rate of 3 · 10−5 and no
weight decay. For MCD, we try dropout rates of 0.1 and 0.2 and select 0.1 due to a slightly better
macro F1 score on the evaluation split. iVON uses a prior precision of 100, as optimized by a grid
search. We use three seeds per model and build all ensembles by training six models independently
and leaving out a different model for each of the three evaluation runs. Figure 12 shows the results
on the o.o.d. evaluation split that are not presented in the main paper. Table 10 displays detailed
numerical results on the o.o.d. evaluation split and on the i.d. validation split.
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Figure 12: IWILDCAM-WILDS: Macro F1 score, accuracy, sECE and ECE on the o.o.d. evaluation
split and the i.d. validation split (see Figure 2a for Macro F1 vs. sECE on the o.o.d. evaluation split).
MultiX is less accurate than single-mode approximations on the i.d. split, but better calibrated.
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Model Macro F1 Score Accuracy ECE sECE NLL
MAP 0.280± 0.020 0.708± 0.016 0.140± 0.015 −0.140± 0.015 1.514± 0.094
Deep Ensemble 0.312± 0.007 0.752± 0.007 0.019± 0.002 −0.015± 0.005 1.068± 0.016
MCD 0.274± 0.024 0.710± 0.021 0.138± 0.013 −0.138± 0.013 1.461± 0.074
MultiMCD 0.316± 0.012 0.763± 0.006 0.014± 0.004 −0.008± 0.007 1.026± 0.012
SWAG 0.302± 0.009 0.733± 0.005 0.117± 0.006 −0.117± 0.006 1.317± 0.032
MultiSWAG 0.337± 0.005 0.762± 0.001 0.033± 0.001 −0.033± 0.001 1.009± 0.001
LL SWAG 0.294± 0.033 0.721± 0.023 0.104± 0.019 −0.104± 0.020 1.295± 0.091
LL Laplace 0.270± 0.010 0.694± 0.015 0.053± 0.015 −0.052± 0.017 1.567± 0.083
LL MultiLaplace 0.304± 0.007 0.739± 0.004 0.046± 0.005 0.046± 0.005 1.197± 0.012
LL BBB 0.282± 0.011 0.718± 0.009 0.097± 0.006 −0.093± 0.005 1.543± 0.054
LL MultiBBB 0.312± 0.008 0.748± 0.002 0.015± 0.003 −0.012± 0.002 1.164± 0.011
Rank-1 VI 0.265± 0.009 0.750± 0.006 0.078± 0.018 −0.076± 0.017 1.198± 0.043
LL iVON 0.265± 0.009 0.725± 0.010 0.088± 0.015 −0.084± 0.014 1.331± 0.049
LL MultiiVON 0.299± 0.006 0.763± 0.003 0.019± 0.001 0.011± 0.003 1.036± 0.006
SVGD 0.260± 0.022 0.723± 0.008 0.146± 0.004 −0.146± 0.004 1.619± 0.017
LL SVGD 0.265± 0.018 0.737± 0.014 0.118± 0.003 −0.117± 0.003 1.447± 0.045
SNGP 0.275± 0.010 0.707± 0.013 0.160± 0.015 −0.160± 0.015 1.459± 0.095

(a) O.o.d. Test Split

Model Macro F1 Score Accuracy ECE sECE NLL
MAP 0.460± 0.017 0.813± 0.007 0.104± 0.007 −0.104± 0.007 1.121± 0.087
Deep Ensemble 0.308± 0.005 0.752± 0.007 0.020± 0.001 −0.015± 0.005 1.067± 0.012
MCD 0.457± 0.010 0.814± 0.002 0.100± 0.011 −0.100± 0.011 1.105± 0.041
MultiMCD 0.311± 0.001 0.762± 0.006 0.013± 0.003 −0.008± 0.006 1.024± 0.016
SWAG 0.491± 0.011 0.832± 0.003 0.087± 0.002 −0.087± 0.002 0.987± 0.015
MultiSWAG 0.333± 0.011 0.761± 0.002 0.033± 0.002 −0.033± 0.002 1.008± 0.002
LL SWAG 0.465± 0.043 0.819± 0.016 0.088± 0.012 −0.088± 0.012 1.012± 0.060
LL Laplace 0.456± 0.017 0.810± 0.005 0.028± 0.009 −0.026± 0.010 1.045± 0.058
LL MultiLaplace 0.489± 0.012 0.836± 0.001 0.027± 0.003 0.027± 0.003 0.839± 0.012
LL BBB 0.442± 0.011 0.816± 0.005 0.075± 0.003 −0.075± 0.003 1.143± 0.030
LL MultiBBB 0.316± 0.006 0.749± 0.002 0.015± 0.003 −0.011± 0.003 1.165± 0.009
Rank-1 VI 0.442± 0.005 0.819± 0.001 0.082± 0.011 −0.082± 0.011 0.960± 0.052
LL iVON 0.447± 0.015 0.812± 0.005 0.076± 0.008 −0.076± 0.008 1.002± 0.028
LL MultiiVON 0.294± 0.004 0.763± 0.003 0.019± 0.003 0.010± 0.003 1.035± 0.005
SVGD 0.439± 0.024 0.813± 0.009 0.106± 0.008 −0.105± 0.008 1.303± 0.136
LL SVGD 0.453± 0.018 0.822± 0.012 0.094± 0.010 −0.094± 0.009 1.135± 0.234
SNGP 0.459± 0.007 0.820± 0.004 0.106± 0.006 −0.106± 0.006 1.081± 0.048

(b) I.d. Validation Split

Table 10: IWILDCAM-WILDS: Detailed results on the evaluation splits. LL = Last-Layer. For the
MultiX models, the entire model is ensembled.

G.3.4 FMOW-WILDS

Following Koh et al. [47], we finetune a DenseNet-121 [35], pretrained on ImageNet [14], for 50
epochs with the Adam optimizer [43] with a batch size of 64 and a learning rate of 10−4 that decays
by a factor of 0.96 per epoch. For each model, we replace the linear classification layer of the
DenseNet-121 by a randomly initialized one of the appropriate output dimension. iVON uses a
prior precision of 100. We use five seeds per model and build all ensembles by training six models
independently and leaving out a different model for each of the five evaluation runs.

We report in the main paper that the Laplace approximation underfits, with a worst-region accuracy
of 0.217± 0.012 and sECE of −0.583± 0.015 on the o.o.d. test split. Similarly, MultiLaplace only
achieves a worst-region accuracy of 0.301± 0.004 and sECE of 0.123± 0.004 on the o.o.d. evalu-
ation split. The accuracy doesn’t change when using 100 posterior samples during evaluation, but
increases to 0.243 for 1000 posterior samples. However, using so many samples incurs a significant
computational overhead. Note that the better results of Daxberger et al. [13] are most likely due to
their usage of models pretrained with ERM. Figure 13 shows additional results for the other models
across all regions on the o.o.d. evaluation split, as well as the ECE on the worst region.
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Figure 13: FMOW-WILDS: Accuracy, sECE and ECE on the o.o.d. evaluation split for the region with
the lowest accuracy and across all regions (see Figure 2b for accuracy vs. sECE on the worst region).
All models are underconfident when evaluated across all regions, but MultiX is less underconfident.

Model WR Accuracy WR ECE WR sECE WR NLL Avg Accuracy Avg ECE Avg sECE Avg NLL
MAP 0.310± 0.008 0.526± 0.009 −0.526± 0.009 5.439± 0.117 0.518± 0.003 0.353± 0.002 −0.353± 0.002 3.503± 0.025
Deep Ensemble 0.342± 0.003 0.271± 0.004 −0.271± 0.004 3.446± 0.007 0.569± 0.001 0.128± 0.001 −0.128± 0.001 2.141± 0.006
MCD 0.307± 0.009 0.520± 0.011 −0.520± 0.011 5.400± 0.118 0.515± 0.002 0.349± 0.004 −0.349± 0.004 3.489± 0.036
MultiMCD 0.353± 0.005 0.253± 0.005 −0.253± 0.005 3.477± 0.030 0.571± 0.000 0.122± 0.001 −0.122± 0.001 2.150± 0.007
SWAG 0.308± 0.009 0.501± 0.007 −0.500± 0.007 4.913± 0.074 0.520± 0.003 0.327± 0.003 −0.327± 0.003 3.150± 0.035
MultiSWAG 0.338± 0.003 0.270± 0.003 −0.270± 0.003 3.243± 0.016 0.570± 0.001 0.124± 0.001 −0.124± 0.001 2.016± 0.008
LL SWAG 0.305± 0.005 0.516± 0.003 −0.516± 0.003 5.085± 0.036 0.516± 0.003 0.343± 0.003 −0.343± 0.003 3.271± 0.028
LL Laplace 0.212± 0.008 0.590± 0.009 −0.590± 0.009 8.249± 0.435 0.371± 0.014 0.449± 0.012 −0.449± 0.012 5.947± 0.320
LL Laplace (100 Samples) 0.213± 0.006 0.588± 0.008 −0.588± 0.008 8.246± 0.355 0.369± 0.012 0.449± 0.010 −0.449± 0.010 5.953± 0.262
LL MultiLaplace 0.301± 0.004 0.123± 0.004 −0.123± 0.004 4.086± 0.047 0.517± 0.002 0.059± 0.002 0.020± 0.002 2.744± 0.017
LL MultiLaplace (100 Samples) 0.301± 0.003 0.123± 0.003 −0.123± 0.003 4.088± 0.039 0.517± 0.002 0.059± 0.002 0.020± 0.002 2.748± 0.016
LL BBB 0.306± 0.008 0.448± 0.010 −0.448± 0.010 6.674± 0.343 0.509± 0.003 0.293± 0.003 −0.293± 0.003 4.251± 0.053
LL MultiBBB 0.339± 0.006 0.233± 0.008 −0.233± 0.008 4.174± 0.085 0.561± 0.001 0.102± 0.001 −0.102± 0.001 2.617± 0.008
Rank-1 VI 0.296± 0.007 0.497± 0.004 −0.497± 0.004 4.645± 0.147 0.512± 0.003 0.328± 0.003 −0.328± 0.003 2.995± 0.037
LL iVON 0.300± 0.009 0.514± 0.009 −0.514± 0.009 4.557± 0.112 0.505± 0.003 0.348± 0.002 −0.348± 0.002 3.107± 0.023
LL MultiiVON 0.341± 0.004 0.241± 0.004 −0.241± 0.004 3.177± 0.023 0.560± 0.001 0.112± 0.002 −0.112± 0.002 2.060± 0.009
SVGD 0.310± 0.007 0.526± 0.009 −0.526± 0.009 5.542± 0.083 0.517± 0.004 0.354± 0.003 −0.354± 0.003 3.559± 0.041
SNGP 0.234± 0.013 0.294± 0.033 −0.294± 0.033 3.419± 0.201 0.412± 0.012 0.179± 0.028 −0.179± 0.028 2.473± 0.126

Table 11: FMOW-WILDS: Detailed results on the o.o.d. evaluation split on the worst region as
measured by the accuracy on each region and across all regions. For the MultiX models, the entire
model is ensembled, but the single-mode approximation is only applied to the classification head.
WR = Worst Region, LL = Last-Layer.

G.3.5 RXRX1-WILDS

Following Koh et al. [47], we finetune a ResNet-50 [32], pretrained on ImageNet [14], for 90 epochs
with the Adam optimizer [43]. For each model, we replace the linear classification layer of the
ResNet-50 by a randomly initialized one of the appropriate output dimension. Following Koh et al.
[47], we use a learning rate of 10−4 and weight decay 10−5. For MCD, we try dropout rates of 0.1
and 0.2 and select 0.1 due to a slightly better accuracy on the evaluation split. iVON uses a prior
precision of 100 as optimized by a grid search. We use five seeds per model and build all ensembles
by training six models independently and leaving out a different model for each of the five evaluation
runs.

Similar to FMOW, Laplace underperforms accuracy-wise compared to the non-VI algorithms. While
we do find a significant increase in accuracy to 0.061 ± 0.002 when using 100 posterior samples,
Laplace still performs worse than even MAP. However, Laplace is better calibrated with an sECE of
−0.028± 0.001.
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Figure 14: RXRX1-WILDS: BBB and Rank-1 VI under different prior variances σ and posterior
temperatures λ. We multiply λ to the KL divergence in the ELBO during training to reduce the
regularization strength. However, neither small prior variances nor colder posteriors make BBB
competitive with the non-VI algorithms.

Model i.d. Accuracy i.d. ECE i.d. sECE i.d. NLL o.o.d. Accuracy o.o.d. ECE o.o.d. sECE o.o.d. NLL
MAP 0.105± 0.002 0.232± 0.015 −0.232± 0.015 6.669± 0.121 0.083± 0.001 0.262± 0.015 −0.262± 0.015 7.197± 0.149
Deep Ensemble 0.156± 0.001 0.066± 0.001 −0.026± 0.002 5.211± 0.012 0.122± 0.000 0.071± 0.001 −0.061± 0.002 5.677± 0.019
MCD 0.106± 0.001 0.257± 0.003 −0.257± 0.003 6.924± 0.035 0.083± 0.001 0.288± 0.004 −0.288± 0.004 7.503± 0.043
MultiMCD 0.158± 0.001 0.069± 0.001 −0.035± 0.001 5.327± 0.003 0.121± 0.000 0.081± 0.001 −0.073± 0.000 5.836± 0.008
SWAG 0.110± 0.001 0.269± 0.009 −0.269± 0.009 6.947± 0.088 0.086± 0.001 0.301± 0.010 −0.301± 0.010 7.549± 0.109
MultiSWAG 0.161± 0.001 0.075± 0.002 −0.042± 0.001 5.299± 0.009 0.126± 0.001 0.085± 0.001 −0.078± 0.001 5.824± 0.017
LL Laplace 0.012± 0.001 0.097± 0.001 −0.097± 0.001 15.280± 0.546 0.010± 0.001 0.099± 0.001 −0.099± 0.001 15.890± 0.579
LL Laplace (100 Samples) 0.077± 0.000 0.034± 0.004 −0.011± 0.009 6.624± 0.206 0.061± 0.002 0.037± 0.007 −0.028± 0.007 6.909± 0.271
LL BBB (σ = 1.0, λ = 1.0) 0.046± 0.001 0.032± 0.002 −0.032± 0.002 6.657± 0.019 0.038± 0.000 0.045± 0.002 −0.045± 0.002 6.837± 0.012
LL BBB (σ = 0.5, λ = 1.0) 0.040± 0.001 0.007± 0.002 −0.006± 0.003 6.632± 0.017 0.035± 0.001 0.015± 0.003 −0.015± 0.003 6.737± 0.015
LL BBB (σ = 0.1, λ = 1.0) 0.036± 0.002 0.010± 0.001 0.003± 0.004 6.618± 0.017 0.031± 0.001 0.008± 0.002 −0.006± 0.004 6.681± 0.020
LL BBB (σ = 1.0, λ = 0.2) 0.054± 0.001 0.102± 0.002 −0.102± 0.002 7.598± 0.044 0.046± 0.001 0.117± 0.002 −0.117± 0.002 7.957± 0.050
Rank-1 VI 0.053± 0.001 0.068± 0.001 −0.068± 0.001 7.389± 0.023 0.043± 0.001 0.078± 0.000 −0.078± 0.000 7.577± 0.014
LL iVON 0.003± 0.000 0.008± 0.000 −0.008± 0.000 7.176± 0.012 0.003± 0.000 0.009± 0.001 −0.009± 0.001 7.213± 0.013
SVGD 0.102± 0.001 0.354± 0.005 −0.354± 0.005 8.254± 0.080 0.081± 0.002 0.382± 0.005 −0.382± 0.005 8.936± 0.088
SNGP 0.089± 0.006 0.245± 0.023 −0.245± 0.023 6.588± 0.272 0.067± 0.005 0.273± 0.019 −0.273± 0.019 7.070± 0.221

Table 12: RXRX1-WILDS: Detailed results on the i.d. and the o.o.d. evaluation split. LL = Last-Layer.
For the MultiX models, the entire model is ensembled, but the single-mode approximation is only
applied to the classification head. We evaluate multiple hyperparameter combinations for LL BBB,
as the standard parameters do not perform well. The failure of VI is equally present with LL BBB,
LL Rank-1 VI, and LL iVON.

G.3.6 CIVILCOMMENTS-WILDS

We use the pretrained DistilBERT [76] model from HuggingFace transformers [91] with a classifica-
tion head consisting of two linear layers with a ReLU nonlinearity and a Dropout unit with a drop
rate of 0.2 between them. Following Koh et al. [47], we finetune the pretrained checkpoint with a
learning rate of 1 · 10−5 and, where applicable, a weight decay factor of 1 · 10−2 for three epochs
using the Adam optimizer [43]. SWAG collects ten parameter samples during the last two epochs of
training. iVON uses a prior precision of 500, as optimized by a grid search. We use five seeds for all
non-ensembled models. The ensembles are build from four of the five single-model versions, leaving
out a different member per model to create five different ensembled models of four members each.

We note in the main paper that MCD results in less accurate and more overconfident models. We
investigate this further by experimenting with different dropout rates in Figure 15. While a dropout
rate of 0.1 had no impact, dropout rates of 0.05 and 0.01 lead to progressively better accuracy and
calibration, coming close to MAP. However, there is still no accuracy or calibration benefit to be
gained from using MCD.

G.3.7 AMAZON-WILDS

We use the pretrained DistilBERT [76] model from HuggingFace transformers [91] with a classifica-
tion head consisting of two linear layers with a ReLU nonlinearity and a Dropout unit with a drop
rate of 0.2 between them. Following Koh et al. [47], we finetune the pretrained checkpoint with a
learning rate of 10−5 and, where applicable, a weight decay factor of 10−2 using the Adam optimizer
[43]. Contrary to Koh et al. [47], we finetune for five epochs, as we find that the validation accuracy
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Figure 15: CIVILCOMMENTS-WILDS: Accuracy and sECE for different MCD dropout rates p. While
smaller dropout rates improve the accuracy, the models are still less accurate and more overconfident
than MAP.

Model WG Accuracy WG ECE WG sECE WG NLL Avg Accuracy Avg ECE Avg sECE Avg NLL
MAP 0.420± 0.021 0.353± 0.025 −0.353± 0.025 1.455± 0.086 0.916± 0.001 0.012± 0.003 −0.012± 0.003 0.207± 0.001
Deep Ensemble 0.419± 0.008 0.349± 0.010 −0.349± 0.010 1.416± 0.032 0.916± 0.000 0.010± 0.001 −0.010± 0.001 0.204± 0.000
MCD (p = 0.2) 0.326± 0.023 0.417± 0.030 −0.417± 0.030 1.391± 0.074 0.918± 0.000 0.007± 0.005 0.006± 0.006 0.204± 0.001
MCD (p = 0.1) 0.325± 0.021 0.418± 0.027 −0.418± 0.027 1.390± 0.070 0.918± 0.000 0.007± 0.005 0.006± 0.005 0.204± 0.001
MCD (p = 0.05) 0.364± 0.018 0.393± 0.024 −0.393± 0.024 1.430± 0.065 0.918± 0.000 0.005± 0.002 −0.003± 0.004 0.203± 0.001
MCD (p = 0.01) 0.396± 0.015 0.374± 0.023 −0.374± 0.023 1.452± 0.114 0.917± 0.000 0.011± 0.003 −0.011± 0.003 0.206± 0.001
MultiMCD (p = 0.2) 0.326± 0.005 0.412± 0.007 −0.412± 0.007 1.363± 0.022 0.919± 0.000 0.009± 0.002 0.009± 0.002 0.203± 0.000
SWAG 0.448± 0.021 0.197± 0.041 −0.184± 0.027 0.872± 0.050 0.877± 0.024 0.152± 0.024 0.152± 0.024 0.396± 0.019
MultiSWAG 0.429± 0.016 0.183± 0.018 −0.183± 0.018 0.819± 0.011 0.901± 0.002 0.184± 0.002 0.184± 0.002 0.388± 0.004
LL Laplace 0.424± 0.016 0.348± 0.018 −0.347± 0.018 1.438± 0.065 0.916± 0.001 0.011± 0.002 −0.011± 0.002 0.207± 0.001
LL MultiLaplace 0.420± 0.008 0.348± 0.010 −0.348± 0.010 1.411± 0.032 0.916± 0.000 0.010± 0.001 −0.009± 0.001 0.204± 0.000
LL BBB 0.537± 0.032 0.362± 0.032 −0.361± 0.033 2.192± 0.278 0.918± 0.002 0.056± 0.002 −0.056± 0.002 0.333± 0.017
LL MultiBBB 0.525± 0.012 0.338± 0.012 −0.338± 0.012 1.801± 0.078 0.922± 0.000 0.041± 0.001 −0.041± 0.001 0.265± 0.003
Rank-1 VI 0.540± 0.028 0.373± 0.030 −0.373± 0.030 2.065± 0.179 0.917± 0.002 0.060± 0.002 −0.060± 0.002 0.319± 0.007
LL iVON 0.480± 0.045 0.421± 0.048 −0.421± 0.048 2.198± 0.263 0.919± 0.003 0.054± 0.002 −0.054± 0.002 0.299± 0.014
LL MultiiVON 0.465± 0.011 0.396± 0.015 −0.396± 0.015 1.752± 0.073 0.924± 0.001 0.039± 0.001 −0.039± 0.001 0.240± 0.002
SVGD 0.384± 0.068 0.380± 0.079 −0.379± 0.079 1.393± 0.154 0.915± 0.003 0.011± 0.005 −0.008± 0.008 0.208± 0.002
SNGP 0.394± 0.039 0.388± 0.036 −0.388± 0.036 1.341± 0.078 0.919± 0.001 0.014± 0.006 −0.014± 0.006 0.206± 0.004

Figure 16: CIVILCOMMENTS-WILDS: Detailed results on the o.o.d. evaluation split for the worst
group (WG, determined by the accuracy on each group) and averaged over all groups. LL = Last-
Layer.

is still increasing after three epochs. SWAG collects 30 parameter samples during the last two epochs
of training. We also experiment with last-layer versions of SWAG and MCD, but find both to perform
very similar to MAP (see Table 13). iVON uses a prior precision of 500, as optimized by a grid
search. We use six seeds for all non-ensembled models. The ensembles are build from five of the six
single-model versions, leaving out a different member per model to create five different ensembled
models of five members each.

Model o.o.d. 10 Accuracy o.o.d. Accuracy o.o.d. ECE o.o.d. sECE o.o.d. NLL i.d. 10 Accuracy i.d. Avg Accuracy i.d. ECE i.d. sECE i.d. NLL
MAP 0.453± 0.010 0.655± 0.003 0.067± 0.006 −0.067± 0.006 0.815± 0.007 0.477± 0.008 0.678± 0.002 0.049± 0.007 −0.049± 0.007 0.755± 0.005
Deep Ensemble 0.453± 0.000 0.659± 0.001 0.058± 0.002 −0.058± 0.002 0.800± 0.001 0.480± 0.000 0.682± 0.000 0.040± 0.002 −0.040± 0.002 0.742± 0.001
MCD 0.447± 0.013 0.657± 0.002 0.020± 0.011 −0.019± 0.012 0.789± 0.004 0.472± 0.012 0.678± 0.001 0.015± 0.006 −0.002± 0.013 0.741± 0.003
MultiMCD 0.451± 0.005 0.660± 0.001 0.012± 0.003 −0.012± 0.003 0.780± 0.001 0.475± 0.007 0.682± 0.000 0.007± 0.002 0.005± 0.003 0.733± 0.000
LL MCD 0.451± 0.008 0.656± 0.003 0.069± 0.008 −0.069± 0.008 0.816± 0.011 0.478± 0.011 0.679± 0.002 0.051± 0.009 −0.051± 0.009 0.756± 0.009
SWAG 0.436± 0.011 0.639± 0.006 0.032± 0.003 0.031± 0.004 0.840± 0.014 0.460± 0.010 0.658± 0.006 0.047± 0.004 0.047± 0.004 0.807± 0.015
MultiSWAG 0.443± 0.005 0.646± 0.001 0.040± 0.001 0.040± 0.001 0.828± 0.002 0.469± 0.005 0.667± 0.001 0.057± 0.001 0.057± 0.001 0.796± 0.003
LL SWAG 0.452± 0.012 0.656± 0.003 0.048± 0.009 −0.048± 0.009 0.802± 0.006 0.474± 0.010 0.679± 0.002 0.031± 0.008 −0.030± 0.009 0.747± 0.005
LL Laplace 0.455± 0.009 0.654± 0.003 0.067± 0.006 −0.067± 0.006 0.816± 0.006 0.482± 0.009 0.678± 0.002 0.048± 0.007 −0.048± 0.007 0.756± 0.004
LL MultiLaplace 0.453± 0.000 0.659± 0.001 0.058± 0.001 −0.058± 0.001 0.800± 0.001 0.480± 0.000 0.682± 0.000 0.040± 0.002 −0.040± 0.002 0.742± 0.001
LL BBB 0.527± 0.006 0.695± 0.007 0.154± 0.005 −0.154± 0.005 0.898± 0.019 0.560± 0.000 0.730± 0.006 0.128± 0.004 −0.128± 0.004 0.778± 0.015
LL MultiBBB 0.533± 0.000 0.709± 0.002 0.105± 0.001 −0.105± 0.001 0.748± 0.001 0.573± 0.000 0.746± 0.001 0.079± 0.002 −0.079± 0.002 0.648± 0.002
Rank-1 VI 0.527± 0.005 0.695± 0.003 0.173± 0.004 −0.173± 0.004 0.923± 0.015 0.558± 0.004 0.729± 0.003 0.147± 0.004 −0.147± 0.004 0.801± 0.010
LL iVON 0.458± 0.010 0.661± 0.002 0.053± 0.010 −0.053± 0.010 0.794± 0.008 0.484± 0.009 0.684± 0.002 0.037± 0.010 −0.037± 0.010 0.737± 0.006
LL MultiiVON 0.459± 0.007 0.665± 0.001 0.045± 0.002 −0.045± 0.002 0.779± 0.001 0.484± 0.005 0.687± 0.001 0.029± 0.003 −0.029± 0.002 0.724± 0.001
SVGD 0.456± 0.010 0.661± 0.003 0.049± 0.005 −0.049± 0.005 0.793± 0.011 0.477± 0.010 0.682± 0.002 0.035± 0.005 −0.034± 0.005 0.740± 0.008
SNGP 0.451± 0.013 0.661± 0.001 0.053± 0.008 −0.053± 0.008 0.800± 0.002 0.487± 0.013 0.685± 0.001 0.036± 0.008 −0.035± 0.008 0.737± 0.001

Table 13: AMAZON-WILDS: Detailed results on the i.d. and the o.o.d. evaluation splits. LL =
Last-Layer.
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