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Abstract

Neural network based computer vision systems are typically built on a backbone, a
pretrained or randomly initialized feature extractor. Several years ago, the default
option was an ImageNet-trained convolutional neural network. However, the re-
cent past has seen the emergence of countless backbones pretrained using various
algorithms and datasets. While this abundance of choice has led to performance
increases for a range of systems, it is difficult for practitioners to make informed
decisions about which backbone to choose. Battle of the Backbones (BoB) makes
this choice easier by benchmarking a diverse suite of pretrained models, including
vision-language models, those trained via self-supervised learning, and the Stable
Diffusion backbone, across a diverse set of computer vision tasks ranging from clas-
sification to object detection to OOD generalization and more. Furthermore, BoB
sheds light on promising directions for the research community to advance com-
puter vision by illuminating strengths and weakness of existing approaches through
a comprehensive analysis conducted on more than 1500 training runs. While vision
transformers (ViTs) and self-supervised learning (SSL) are increasingly popular, we
find that convolutional neural networks pretrained in a supervised fashion on large
training sets still perform best on most tasks among the models we consider. More-
over, in apples-to-apples comparisons on the same architectures and similarly sized
pretraining datasets, we find that SSL backbones are highly competitive, indicating
that future works should perform SSL pretraining with advanced architectures and
larger pretraining datasets. We release the raw results of our experiments along
with code that allows researchers to put their own backbones through the gauntlet
here: https://github.com/hsouri/Battle-of-the-Backbones.

1 Introduction

The dominant paradigm for building machine vision systems involves a feature extractor network,
also known as a backbone, which feeds into a task-specific head. The backbone might output a dense
array of features for object detection and localization, or a single feature vector for classification or
image retrieval. While backbones can be trained from scratch on task-specific data, many off-the-shelf
backbones are pretrained on large benchmark datasets and then fine-tuned for the task at hand. This
transfer learning approach has several advantages. First, it dramatically reduces the application-
specific data requirements of deep learning and has led to improved performance on a wide range of
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applications. Second, it can speed up training and reduce compute costs even when large amounts of
task-specific data are available [29]. Finally, pretraining datasets often contain images from many
disparate domains, resulting in model robustness that can be transferred to downstream tasks.

Early deep learning based vision systems relied heavily on ImageNet pretraining [23, 59]. In contrast,
today’s practitioners have access to a cornucopia of choices, with different pretrained models resulting
in significant performance differences. There are three primary factors that influence the performance
of such a model: its architecture, the pretraining algorithm, and the pretraining dataset. Each of these
design dimensions presents many options, resulting in a dizzying array of choices for practitioners
building a computer vision system. Despite this wide variety of choices, practitioners have no
resource to turn to and instead are left piecing together results from method papers or testing out the
backbones themselves.

We pit these backbones against each other in a Battle of the Backbones (BoB). BoB compares many
popular publicly available pretrained checkpoints, as well as randomly initialized baselines, on a wide
variety of downstream tasks including image classification on natural, medical, and satellite images
(Section 3.1), object detection and segmentation (Section 3.2), out-of-distribution generalization
(Section 3.3), and image retrieval (Section 3.4).

Aside from assisting practitioners building computer vision systems, another central goal of this
benchmark is to help guide the research community towards fruitful research directions in their quest
for designing better backbones. BoB sheds light on the strengths and weaknesses of pretraining
routines and architectures, revealing popular misconceptions and fundamental limitations, as well as
promising directions for improvement. Below, we summarize several of our primary findings and
discuss previous efforts for comparing backbones.

1.1 Battle of the Backbones: The TLDR

The subsequent sections in this paper contain numerous experimental details. Therefore, we distill
several key findings below:

▷ Across the suite of comprehensive evaluations in BoB, spanning tasks, datasets, and settings (includ-
ing ID and OOD), supervised ConvNeXt-Base, supervised SwinV2-Base trained using ImageNet-21k,
and CLIP ViT-Base come out on top. The same winners also win at smaller scales. Among smaller
backbones, ConvNeXt-Tiny and SwinV2-Tiny emerge victorious, followed by DINO ViT-Small.
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Figure 1: Performance is correlated across tasks. Performance for each model is reported in terms
of standard deviations above/below the mean averages across datasets. Left: Comparison between
classification and detection. Right: Comparison between classification and OOD classification.
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▷ Despite the recent attention paid to transformer-based architectures and self-supervised learning,
high-performance convolutional networks pretrained via supervised learning outperform transformers
on the majority of tasks we consider.

▷ The observed superiority of supervised pretraining occurs because such models are often trained on
larger datasets. In apples-to-apples comparisons on the same dataset scale, SSL models outperform
their supervised counterparts.

▷ ViTs are more sensitive to the amount of pretraining data and the number of parameters than CNNs.

▷ Performance across tasks is strongly correlated – the top-performing backbones in BoB tend to be
universally good across tasks and settings. See Figure 1.

1.2 Previous Benchmarks

Throughout much of the last decade, the most popular backbones were pretrained on ImageNet [17].
Since 2020, SimCLR [10] and CLIP [73] have popularized self-supervised backbones and spawned
much new research. While method papers that propose a new pretraining routine typically compare to
similar competitors on several downstream tasks, we focus in this section on works that specifically
benchmark large collections of backbones on diverse tasks.

In 2019, Goyal et al. [25] compared AlexNet [47] and ResNet-50 [28] models pretrained using
colorization and jigsaw pretext tasks to supervised learning models, finding that supervised
learning massively outperformed SSL at the time. Kolesnikov et al. [44] similarly compared several
pretext tasks and convolutional neural network architectures, showing that architectural advances
on supervised learning do not always translate to improved self-supervised learning. Kornblith et al.
[45] instead benchmarked the transferability of ImageNet-trained supervised learning models on
downstream classification tasks, varying the architecture and finding that the correlation between
downstream performance and ImageNet test accuracy is nearly perfect across architectures. In
the same year, Zhai et al. [107] built the Visual Task Adaptation Benchmark (VTAB) and tested
various self-supervised learning methods including VAEs and GAN discriminators, also exhibiting
the dominant performance of supervised learning models. In 2020, Ericsson et al. [21] evaluated
ResNet-50 models trained on ImageNet using various SSL algorithms, finding that the performance
of then-existing SSL algorithms on a richer set of downstream tasks were strongly correlated with
their ImageNet-1k test accuracy and finding improved performance of the newer SSL algorithms
compared to previous studies.

Since the above works, pretraining algorithms along with their training sets and architectures have
made tremendous progress, and whereas supervised learning was previously the default approach
to pretraining, the options now are endless. Therefore, benchmarking backbones deserves renewed
attention. See Appendix A for an additional survey of task-specific benchmarks.

2 A Guide to BoB

Among the distinguishing features of the diverse backbones competing in our battle are their archi-
tectures, pretraining routines, and the datasets on which they were pretrained. Table 1 contains an
overview of the backbones we benchmark including their pretraining algorithms, pretraining datasets,
and architectures. We also provide a more detailed description of these features and the precise
pretrained checkpoints we use in Appendix B.
A Note on Scale and Apples-to-Apples Comparison. Many practitioners have limited compute
and moreover will need to tune hyperparameters on their own datasets without exceeding their
compute budget. To simulate this scenario, we perform moderate hyperparameter sweeps, we
preclude particularly long training schedules, and we do not consider architectures bigger than
ConvNeXt-Base, except for the Stable Diffusion backbone which does not come in a smaller size.
Specific hyperparameter grids are detailed in subsequent sections. Moreover, we only use publicly
available checkpoints that would also be accessible to practitioners. Available checkpoints were
pretrained with varying amounts of hyperparameter tuning, and different pretraining algorithms
were trained on different datasets and architectures making a precise apples-to-apples comparison
infeasible. Nevertheless, this comparison of existing checkpoints is the relevant one for practitioners,
as it represents realistic conditions, and we use identically sized hyperparameter sweeps for each
backbone on downstream tasks.
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Table 1: A synopsis of the backbones we benchmark. Columns correspond to the pretraining
algorithm, a coarse categorization, the pretraining dataset, and the architectures we include. A detailed
description of each algorithm, pretraining dataset, and architecture can be found in Appendix B.

Pretraining Style Dataset Architecture(s)

MoCo v3 [12] SSL ImageNet-1k [17] ViT [18]
VICReg [3] SSL ImageNet-1k ResNet [28]
VICRegL [4] SSL ImageNet-21k ConvNeXt [58]
DINO [8] SSL ImageNet-1k ResNet, ViT
MAE [30] SSL ImageNet-1k ViT
Stable Diffusion [77] Vision-Language LAION-2B [81] Stable Diffusion encoder
CLIP [73] Vision-Language LAION-2B, CLIP ResNet, ViT
MiDaS [75] Supervised 12 × Depth Datasets SwinV2 [57]
Image classification Supervised ImageNet-21k,-1k All above architectures
Random initialization None N/A All above architectures

2.1 The Tasks

In order to comprehensively probe the capabilities of the backbones, we evaluate their performance
both fine-tuned and frozen on a number of downstream tasks belonging to the following categories:

• Classification: We measure both fine-tuned and linear probe performance of backbones
on various downstream classification tasks including natural, medical, or satellite image
datasets in Section 3.1. Image classification tasks require that a backbone extract features
which identify the content of an image’s foreground but not necessarily how many of an
object there are or where they are located within an image.

• Object detection and segmentation: Unlike image classification, dense prediction tasks
require backbones to extract features containing the precise locations of objects, on a pixel
basis for segmentation and in enough fidelity to draw bounding boxes for object detection.
We evaluate backbones on both of these tasks in Section 3.2.

• Out-of-distribution generalization: In real-world applications, computer vision systems
are often deployed on data which does not reflect their training set distribution. Even high-
performing models are known to fail under domain shifts [71, 32]. Therefore, we evaluate
the abilities of models both to generalize to new downstream domains in Section 3.3.

• Image retrieval: Image retrieval requires a backbone to match like images via proximity in
feature space. We explore tasks that require matching the images with respect to various
criteria such as semantic content and visual similarity in Section 3.4.

3 Experimental Setup

We now describe our experimental setup for each task. Specifically, we list learning protocols, datasets,
and evaluation metrics. Find complete experimental and implementation details in Appendix C.

3.1 Classification

Learning protocols. We evaluate pretrained backbones on various datasets under two fine-tuning
protocols, following previous works [12, 30, 8, 10]: end-to-end fine-tuning (including experiments
with only a small number of labeled samples) and linear probing. In the former scenario, we
fine-tune the full model end-to-end on a given dataset or on a fraction of it, and we measure the
accuracy on the test split. In the linear probing scenario, we extract features from the frozen pretrained
backbone, and only learn a linear classifier on top of these pretrained representations. These two
protocols are widely used in previous work to evaluate the quality of pretraining methods such as in
self-supervised learning [12, 30, 8, 10] and vision-language pretraining [1, 106].

Datasets and evaluation metrics. We conduct experiments on 6 common image classification
datasets, covering multiple domains such as natural images (ImageNet-1K [17], CIFAR-100 [46],
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Flowers-102 [65], Aircraft [61]), satellite images (EuroSAT [31]), and medical X-ray data (CheX-
pert [37]) showing the generalization and transferability of the pretrained backbones. All datasets
we use are publicly available, and we list their details including size and the number of classes
in Appendix C. For experiments with only a fraction of the training set, we randomly sample 1%
and 10% of the training samples and fine-tune the pretrained backbones on these subsets. When
sampling the subsets, we maintain the original dataset’s label distribution. Note that we only consider
in-domain generalization here, where the training and testing splits are from the same source.

To evaluate, we measure classification accuracy and Area Under the ROC Curve (AUC) on the test
split as performance metrics for single-label and muti-label classification tasks, respectively. In
addition to the best score among hyperparameter vectors, we also plot the accuracy for the first several
epochs to show the convergence rate of different pretrained backbones. Moreover, we benchmark the
latency and the memory usage of each backbone on the same device.

3.2 Object Detection and Segmentation

Learning protocols. For evaluations on object detection and instance segmentation, we employ the
Cascade Mask R-CNN framework [5]. We conduct experiments with three protocols: (1) end-to-end
training from random initialization, (2) end-to-end finetuning using pretrained backbones, and (3)
finetuning with frozen backbones. Whereas finetuning with a frozen backbone is atypical in segmen-
tation and detection, this latter protocol allows us to probe localization within features extracted by
pretrained models and complements linear probing classification experiments. See Appendix C.1
for a discussion on the potential for ViTs, especially large ones, to exceed the performance of other
models under more expensive training protocols.

Datasets and evaluation metrics. We conduct object detection and instance segmentation evaluations
on the popular COCO dataset [54]. We follow the COCO-style average precision (AP) metric, which
calculates the average across various Intersection over Union (IoU) thresholds. We report the box
Average Precision (box AP), box AP@50, and AP@75 for object detection and mask Average
Precision (mask AP), mask AP@50, and mask AP@75 for instance segmentation [55].

3.3 Out-of-Distribution Generalization

While modern networks may exhibit strong performance on data distributions they are trained on,
a wide body of prior work [71, 32] has found that the performance of such models can degrade
significantly under distribution shifts. In addition to evaluating the in-distribution performance of
backbones across a diverse set of downstream tasks, we also consider how this performance translates
to out-of-distribution (OOD) settings.

Learning protocols. Several task-specific datasets and benchmarks have been proposed to evaluate
the robustness of models to deviations from their training distributions. Concretely, we study the
generalization of the trained backbones on two tasks, (1) image classification and (2) object detection,
and on two types of distribution shifts, (A) structure and style variations within ImageNet and (B)
synthetic-to-real generalization.

Datasets and evaluation metrics. We consider the following broad benchmarks for OOD evaluation:

(A) Robustness to changes in structure and style. We measure OOD generalization of ImageNet-
trained or fine-tuned models on the following benchmarks: (i) ImageNet-A [34]. ImageNet-
A(dversarial) contains a curated subset of ImageNet test images spanning 200 categories that are
especially challenging for trained deep models. (ii) ImageNet-V2 [76]. ImageNet-V2 is an additional
test set of ImageNet-like images collected a decade after the original dataset following an identical
collection protocol. (iii) ImageNet-R [33]. ImageNet-R(endition) contains artistic renditions for 200
categories from ImageNet, including cartoons, graffiti, embroidery, origami, sculptures, etc. (iv)
ImageNet-S [93]. ImageNet-S(ketch) is a web-crawled and manually cleaned collection of black and
white sketch images from ImageNet categories.

(B) Syn-to-real generalization. We also measure the performance of models trained on synthetic
data and tested on real data. Synthetic data has emerged as a popular alternative in settings where
it may be hard or expensive to curate reliably annotated real-world data. We measure syn-to-real
generalization for image classification and object detection on the two following popular benchmarks:
(i) VisDA Syn→Real. The VisDA classification benchmark consists of ∼ 152k synthetic images and
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∼ 55k real images across 12 classes. The synthetic images in VisDA are 3D renderings of objects
from multiple viewpoints and under different lighting conditions. The real counterparts are crops of
the 12 classes obtained from the COCO dataset. (2) Sim10k→Cityscapes. For object detection, we
use Sim10k as the synthetic training dataset and Cityscapes as the real evaluation dataset. Sim10k
consists of ∼ 10k street view images (drawn from GTAV). Cityscapes consists of ∼ 5k densely
annotated street view images curated from vehicular viewpoints in the real world. Following prior
work [13], we train on the entirety of Sim10k to detect instances of “car” and measure detection
performance on the validation split of Cityscapes.

We report generalization performance using classification accuracy on the OOD test set for image
classification and mean average precision or mAP@50 for object detection.

3.4 Image Retrieval

We conduct evaluations on a diverse set of retrieval datasets encompassing content-based image
retrieval and classification datasets that we repurpose for semantic retrieval tasks. For geographic
landmark retrieval, we utilize the Oxford dataset [69] and the Paris dataset [70]. To ensure accuracy,
we employ the cleaned-up versions of these datasets with corrected labels [72]. The INSTRE
dataset [95] consists of objects such as toys and irregularly-shaped products placed in different
locations and conditions. To examine fine-grained retrieval, we employ the Caltech-UCSD Birds-200
dataset (CUB-200) [91], which contains various bird classes captured under different backgrounds,
poses, and lighting conditions. For a diverse set of natural images, we use the iNaturalist dataset [88].
This dataset offers a wide range of fine-grained categories classified into 13 super-categories, including
Plant, Insect, Bird, and Mammal. To evaluate retrieval performance in real-world scenarios, we
employ the Objectnet dataset [2]. This dataset consists of 313 object classes with randomly varying
backgrounds, rotations, and imaging viewpoints. For large-scale landmark recognition, we utilize the
Google Landmarks v2 dataset [99], which includes approximately 200,000 unique landmarks. Lastly,
we employ the INRIA Copydays dataset [19], which comprises a small collection of holiday photos.
Among the datasets mentioned, iNaturalist, Objectnet, and CUB-200 can be categorized as semantic
retrieval datasets, while the remaining datasets fall under content-based retrieval datasets.

To evaluate, we measure model performance using mean-Average-Precision or mAP [68]. We first
compute the average precision for a given query image, and then compute the mean over all queries to
find the mAP. We also measure Recall@k, which measures the proportion of correct matches among
the top k, and MRR (Mean Reciprocal Rank), which records the number of results returned before the
first correct match and computes the mean of the reciprocal of these misses. Higher is better for all
metrics.

4 I’m a Practitioner. Which Backbone Should I Choose?

Practitioners today can choose from a large catalogue of backbones of varying sizes, training methods,
and pretraining data: which backbone should a practitioner select for a particular task or in general? To
answer this question, in BoB, we systematically compare publicly available backbones (see Table 1)
across multiple tasks, datasets and settings. To make these comparisons, we use the following ranking
protocol:

(1) Setting-specific Z-Scores. For a particular task and setting (e.g, top-1 classification accuracy on
ImageNet), we first compute z-scores for all the backbones being evaluated – i.e., for setting specific
performance (e.g., accuracy) values {xi}Ni=1, z-scores are computed as {xi−µ

σ }Ni=1 where µ and σ
are the mean and standard deviation of the sample. This allows us to measure how good a specific
backbone is (stds above or below) compared to “mean” performance of all backbones in that setting.

(2) Cross-setting Comparisons. To compare backbones across different tasks and settings, we
simply aggregate and compare the previously obtained z-scores to obtain a relatively (coarse) ranking
of backbones.

Using rankings, we can report not only the best performing backbones for each task but also the
best backbone in terms of overall performance across tasks, datasets and settings (see Table 2 for a
summary).
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Table 2: Which backbone should I choose? We list the top 3 most performant backbones (left to
right) for various tasks and settings. Red corresponds to OOD evaluations and Green indicates
overall comparisons.

Task Good Better Best
1 Cls ConvNeXt-B (IN-21k) CLIP ViT-B (LAION-2B) Sup. SwinV2-B (IN-21k,1k)
2 Det Sup. ConvNeXt-B (IN-1k) Sup. SwinV2-B (IN-21k,1k) Sup. ConvNeXt-B (IN-21k)
3 Seg Sup. ConvNeXt-B (IN-1k) Sup. SwinV2-B (IN-21k,1k) Sup. ConvNeXt-B (IN-21k)
4 Ret CLIP ViT-B (LAION-2B) Sup. SwinV2-B (IN-21k,1k) Sup. ConvNeXt-B (IN-21k)
5 (OOD) Cls CLIP ViT-B (LAION-2B) Sup. SwinV2-B (IN-21k,1k) Sup. ConvNeXt-B (IN-21k)
6 (OOD) Det Sup. ConvNeXt-B (IN-21k) Sup. ConvNeXt-T (IN-1k) Sup. ConvNeXt-B (IN-1k)

7 All CLIP ViT-B (LAION-2B) Sup. SwinV2-B (IN-21k,1k) Sup. ConvNeXt-B (IN-21k)

4.1 Task-Specific Backbones

Classification. For classification, across multiple datasets and experimental settings (fine-tuning,
linear probing, full and low-shot training), we find “Supervised SwinV2-Base trained on IN-21k
(finetuned on IN-1k)” to be the best performing backbone, followed by “CLIP ViT-Base” and
“Supervised ConvNeXt-Base trained on IN-21k” (see row 1, Table 2).2

Object Detection & Segmentation. For object detection and instance segmentation, we find
“Supervised ConvNeXt-Base trained on IN-21K” > “Supervised SwinV2-Base trained on IN-21k
(finetuned on IN-1k)” > “Supervised ConvNeXt-Base trained on IN-1k”.

Image Retrieval. For image retrieval, we find “Supervised ConvNeXt-Base trained on IN-21k” to be
the best choice, with “Supervised SwinV2-Base trained on IN-21k (finetuned on IN-1k)” and “CLIP
ViT-B trained on LAION-2B” being second and third.

(OOD) Classification. Across OOD evaluations for classification, we find “Supervised ConvNeXt-
Base trained on IN-21k” > “Supervised SwinV2-B trained on IN-21k (finetuned on IN-1k)” > “CLIP
ViT-Base trained on LAION-2B”.

(OOD) Object Detection. For Syn→Real object detection, we find “Supervised ConvNeXt-Base
trained on IN-1k” to be the best backbone, followed by “Supervised ConvNeXt-Tiny trained on
IN-1k” and “Supervised ConvNeXt-Base trained on IN-21k”.

4.2 Best Backbones Overall

For practitioners with no specific task in mind, the best performing models in terms of aggregate
performance are “Supervised ConvNeXt-Base trained on IN-21k” followed by “Supervised SwinV2-
Base trained on IN-21k (finetuned on IN-1k)” and “CLIP ViT-Base trained on LAION-2B”. Overall,
we note that backbones trained in a supervised fashion (SwinV2-Base, ConvNeXt-Base) or with
vision and language supervision (CLIP ViT-Base) outperform the rest. Furthermore, we find that
CLIP ViT-Base is closely followed by Supervised ViT-Base trained on IN-21k (finetuned on IN-1k).
We more precisely compare approaches and analyze trends in Section 5.

4.3 Backbones on a Tight Budget

Many computer vision applications demand efficient backbones for fast or on-device inference. In
this section, we benchmark three small backbones: RegNetX-400F [74], EfficientNet-B0 [84] and
ResNet-18 [28] all pretrained in a supervised fashion on ImageNet-1k. We rank the performance
of these small backbones on the set of tasks in Table 3. We find that EfficientNet-B0 performs best
overall and across classification, retrieval, and OOD classification, followed by RegNetX-400MF and
then ResNet-18. Interestingly, ResNets still outperform newer efficient architectures for detection
and segmentation.

2To ensure fair comparisons across backbones, we exclude MiDaS variants evaluated on ImageNet for this
comparison.
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Table 3: Which tiny backbone should I choose? We rank the most performant very lightweight
backbones (left to right) for various tasks and settings. Red correspond to OOD evaluations and
Green indicates overall comparisons.

Task Good Better Best
1 Cls ResNet-18 RegNetX-400MF EfficientNet-B0
2 Det RegNetX-400MF EfficientNet-B0 ResNet-18
3 Seg RegNetX-400MF EfficientNet-B0 ResNet-18
4 Ret ResNet-18 RegNetX-400MF EfficientNet-B0
5 (OOD) Cls ResNet-18 RegNetX-400MF EfficientNet-B0
6 (OOD) Det EfficientNet-B0 ResNet-18 RegNetX-400MF

7 All ResNet-18 RegNetX-400MF EfficientNet-B0

5 Observations and Trends

▷ A performance comparison of ViTs and CNNs. Modern architectures strongly outperform
vanilla ViTs. We see in Table 2 that the best performing backbone (ConvNeXt-Base) is convolutional,
with a hierarchical transformer (SwinV2-Base) being a close second. The latter transformer architec-
ture incorporates a strong spatial inductive bias. These findings suggest that the community should
move past vanilla ViTs which are still used frequently. As a caveat, we do not evaluate very large
models, and it is possible that ViTs might outperform their more advanced variants or convolutional
networks at larger scales.

▷ ViTs benefit more from scale than CNNs. For the suite of backbones considered in BoB, we find
that relative performance (z-scores) for both CNNs and ViTs correlates positively with parameter
count but more so for ViTs (spearman ρ = 0.58) than for CNNs (spearman ρ = 0.35). Similarly,
while overall relative performance correlates with the size of pretraining data, the correlation is again
significantly higher for ViTs (ρ = 0.72) than for CNNs (ρ = 0.33). This observation indicates that
benchmarking much larger backbones might yield different winners, possibly ones with transformer-
based architectures.

▷ Supervised or not? Supervised learning backbones dominate, but primarily because they
are available pretrained on larger datasets. SSL backbones can outperform supervised pre-
training with similar sized pre-training datasets. We obtain the average score of the top 3
backbones within different pretraining styles, namely self-supervised, supervised with ImageNet-
1K, and supervised with ImageNet-21K, for each task (see Appendix D). ConvNeXt and SwinV2
pretrained with supervision on ImageNet-21K outperform the SSL backbones on all tasks. The
results suggest that we should try using advanced architectures, either convolutional or transformers,
when applying SSL methods, and we should train on large datasets to compete with supervised
learning. In these experiments, supervised pretraining checkpoints are often available trained on
much larger datasets (ImageNet-21k). When comparing models pretrained on similarly sized datasets,
SSL or vision-language pretraining methods achieve better performance on classification (both in- and
out-of-distribution) and retrieval tasks, which heavily rely on the learned representations. However,
supervised learning backbones maintain a decisive edge for detection and segmentation. We can
also compare backbones which use the same ViT-Base architecture and find that SSL methods do
outperform ImageNet-1k supervised backbones but are worse than ImageNet-21k trained backbones.

▷ Performance across tasks is highly correlated. Across tasks examined, we find a strong positive
Spearman correlation between performance on task pairs (typically ρ > 0.8). This finding supports
the current trend of general purpose foundation models for computer vision. Moreover, this finding
also supports recent work which argues that a single inductive bias can solve a wide range of seemingly
different problems [24]. However, it is noteworthy that the retrieval task exhibited a comparatively
lower but still statistically significant correlation (ρ = 0.49) with respect to classification and retrieval
ranking. This lower correlation can be attributed to the performance limitations of the MiDaS
and MAE pretrained models in the context of retrieval. Upon removing these two backbones, the
correlation coefficient ρ increased to 0.8, reinforcing the influence of the aforementioned models on
the observed results.
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Figure 2: Transformers benefit significantly more from end-to-end fine-tuning than CNNs on
dense prediction tasks. We visualize the difference in performance between end-to-end fine-tuning
and only training the head atop a frozen feature extractor on different tasks. The x-axis is the
difference in relative performance (fine-tuning z-score minus fixed backbone z-score). Across panels,
the performance differences correlate between tasks.

▷ Transformers excel under end-to-end fine-tuning while convolutional networks excel under
linear probing. For “linear probing” experiments, we freeze a pretrained backbone and only learn
the head. Note that for detection and segmentation, the head is more than a linear layer. By inspecting
the performance difference between the two fine-tuning strategies (Figure 2), we find that ViTs
benefit significantly more from end-to-end fine-tuning compared to CNNs, both for supervised and
self-supervised pretraining. See Figure 2 for a comparison on dense prediction tasks.

▷ CLIP models and the promise of advanced architectures in vision-language modeling. For
almost all the tasks (except OOD detection), CLIP pretraining is the best among the vanilla vision
transformers, even compared to ImageNet-21k supervised trained backbones. Among all the back-
bones, CLIP is only worse than ImageNet-21k trained SwinV2 and ConvNeXt, which shows the
power of vision-language pretraining and again, suggests that we should consider more backbones
other than plain ViTs when conducting self- or weakly-supervised learning.

▷ What about generative backbones? In contrast to models trained using supervised or self-
supervised approaches with contrastive loss, backbones trained with a generative objective, such as
MAE or Stable Diffusion, had comparatively inferior performance. We recommend caution when
interpreting this result, as the evaluation of Stable Diffusion is currently limited to select tasks.
Nonetheless, Stable Diffusion is a larger backbone than others considered in this benchmark and is
trained on a very large dataset, yet it exhibits inferior performance.

▷ Battle of the “small” backbones. Keeping limited resources in mind, we also compare the “small”
subset of backbones in BoB (< 30M parameters) – with ViT-Small, ConvNeXt-Tiny, Swin-Tiny and
ResNet-50 architectures. Overall, we find Supervised ConvNeXt-T trained on IN-1k to be the best,
followed by Supervised SwinV2-T trained on IN-1k and DINO ViT-S trained on IN-1k. Interestingly,
supervised learning again dominates, and backbones pretrained on just IN-1k outperform ones trained
on a considerably more diverse and larger dataset (MiDaS).

▷ Performance vs. Speed? Our analysis reveals a strong negative correlation (ρ = −0.41) between
throughput (computed on NVIDIA RTX A5000) and average performance z-scores across all tasks
when considering each backbone. This finding aligns with our previous observation that larger models
tend to exhibit superior performance. Consequently, in order to achieve enhanced performance, one
may need to sacrifice speed.

▷ Monocular depth-estimation as a general purpose pretraining strategy. In our experiments,
MiDaS achieves performance competitive with that of top conventional supervised and SSL backbones
at classification, object detection, and segmentation, even outside of the natural image domain, for
example on satellite images. This observation suggests that depth-estimation may serve as a powerful
and generalizable primary or auxiliary pretraining task for foundation models, supporting findings of
Lao et al. [49].

▷ Calibration and test likelihood are correlated with accuracy. We measure expected calibration
error (ECE) as well as test cross-entropy loss on the ImageNet test set. Whereas test likelihood is
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strongly correlated with accuracy (r = −0.8278), ECE exhibits a weaker correlation (r = −0.4876).
In both cases, we observe p-values under 0.05. We also note that self-supervised pretraining typically
leads to inferior calibration.

▷ CNNs and SSL are more adversarially robust. We additionally measure the adversarial robustness
of each backbone on the ImageNet test set using an ℓ∞-constrained PGD attack with multiple radii
(see Appendix Table 19). For each architecture where we possess self-supervised learning versions, we
see that supervised pretraining always yields inferior robustness. Moreover, ViTs are more vulnerable
to adversarial examples than convolutional networks. Notably, ConvNeXt is more adversarially
robust even when trained in a supervised fashion.

6 Where Are Things Going From Here?

At the core of every computer vision model is a backbone. In our battle of the backbones, we compared
more than 1,500 training runs to surface insights for computer vision practitioners and researchers.
To guide practitioners, we analyzed the performance of publicly available vision backbones across
a broad range of tasks from segmentation and detection to classification and retrieval. We found
supervised ConvNext, supervised SwinV2, and CLIP models performed well across this broad range
of tasks. For computationally constrained settings, in our battle of the “small” backbones we found
smaller counterparts to the same archiectures supervised ConvNext-T and SwinV2, followed by
DINO with a small ViT performed quite well. BoB offers practitioners a guide to select sensible
backbones from the dizzying array of choices.

For researchers looking ahead, we also observed several notable trends. First, we found performance
across tasks is strongly correlated, suggesting a shift away from specialized vision backbones
to universal backbones that work well across a range of tasks. Next, we found throughput and
performance are inverse related, suggesting scaling remains a promising avenue to improve backbones.
Finally, we found that while our practical recommendations include many supervised models, in
apple-to-apples comparisons to standard supervised training, self-supervised learning holds promise.
By releasing all our experimental results along with code to put new backbones to the test, we hope
BoB serves as a useful guide to both practitioners today and researchers looking ahead at tomorrow.

Limitations. We note that insights obtained from BoB are contingent on the vocabulary of tasks,
backbones, and settings considered in this work. We intend for takeaways from this study to provide
practical considerations useful for computer vision researchers, recognizing that such insights need
to continuously evolve as more backbones are introduced and more tasks and settings are taken into
account. Lastly, we note that studies in BoB focus mostly primarily on aspects related to performance,
and exploration along other axes of importance (biases in models, etc.) remain.

Our benchmark does not include backbones larger than ConvNext-Base, aside from Stable Diffusion,
and some rankings may change at a large scale. For instance, while we find that modern convolu-
tional architectures pretrained via supervised learning perform best on most tasks, we also find that
transformers benefit more from scale, both in terms of pretraining data and architecture size. It is
possible that transformer backbones will pull ahead of convolutional backbones at very large scales.

7 Computation Cost and Carbon Footprint

The experiments in this paper took a cumulative 127k GPU hours on NVIDIA RTX A100 cards.
Assuming the GPUs were running with an average carbon efficiency of 0.37 kgCO2eq/kWh, the total
emissions are estimated to be 11792.36 kgCO2eq [48].
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A Additional Related Work

Classification benchmarks. Image classification is the most common task in computer vision,
and we have multiple benchmarks. For example, the timm library [100] benchmarks ImageNet
classification performance across loads of backbones trained with different methods and on different
datasets. In addition, we have dataset-specific benchmarks, such as “paperwithcode"3. The latter
contains multiple datasets and methods, but it lacks systematic analysis among these results. Almost
all the self-supervised learning method papers perform their own evaluation for image classification.
To accelerate the research cycle in self-supervised learning, VISSL [26] provides a library for
implementing SSL methods and evaluations. In this work, we evaluate various backbones trained in
both self-supervised and supervised fashion, and on multiple datasets on different domains (natural
images, satellite maps, and medical images). Moreover, we benchmark these backbones and datasets
with exactly the same learning setting and conduct a thorough analysis of the collected results, which
we believe is essential and helpful to practitioners.

Object detection and segmentation benchmarks. Benchmarking backbones for object detection
and segmentation has been an active area of research. Several works have focused on evaluating
and comparing the performance of various backbone architectures for these tasks [51, 52, 29, 9].
Popular backbone networks such as supervised pretrained ResNet have been extensively utilized
and compared, while modern feature extractors such as vision-language models and self-supervised
learning models have not been extensively studied. These studies either focus on a limited subset of
backbones or incorporate diverse detectors with varying backbones, thereby hindering an accurate
comparison. To the best of our knowledge, we are the first to present a comprehensive study of
the various backbones with various architectures and pretraining methods for object detection and
instance segmentation.

Out-of-distribution generalization benchmarks. Several prior works have benchmarked the out-
of-distribution performance of visual models. For image classification, these have included variants
of ImageNet [32–34, 93, 76, 63], synthetic-to-real adaptation benchmarks [66], and benchmarks with
images belonging to varied domains including paintings, clipart, etc. [50, 67, 90, 87], sometimes
even spanning multiple modalities and applications [43]. Similarly for object detection, several
OOD generalization benchmarks have been fashioned from sim-to-real, cross-weather, and cross-city
self-driving datasets [38, 15, 105, 80, 64]. Recently, [41] conducted a broad study of pretraining
strategies for domain adaptation and generalization. In this work, we perform a similar study but on a
larger scale and also include a diverse suite of backbones designed for varied tasks.

Image retrieval benchmarks. To the best of our knowledge, our study represents the first com-
prehensive examination of multiple pretrained deep learning backbones for image retrieval task.
While previous survey papers [11, 108, 20, 39] have explanations of various types of deep learning
methods, such as off-the-shelf models trained in an unsupervised or supervised fashion, single pass,
and multiple pass methods, none have quantitatively analyzed these backbones. Therefore, our work
fills this crucial gap in the existing literature.

B An Extended Guide to BoB

B.1 The Architectures

Below is a list of all architectures we compare. As different neural network architectures are believed
to have distinct properties, from invariances to a reliance on different Fourier frequencies, evaluating
a variety of architectures will allow us examine potential benefits of architectural differences. Many
of the pretraining strategies we evaluate are accompanied by multiple checkpoints with different
architectures or sizes, so we include multiple versions of each. We describe architectural modifications
to these backbones for object detection and segmentation in Section 3.2.

• ResNet [28]: These are the staple convolutional neural networks we all know and love,
complete with skip connections and batch normalization [36]. We include experiments on
ResNet-50 and ResNet-101 backbones.

3https://paperswithcode.com/
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• ConvNeXt [58]: ConvNeXt is a purely convolutional network with numerous modern
architectural improvements including depthwise convolutions, inverted bottleneck blocks,
large convolutional kernels, and a larger proportion of layers allocated to the third stage. This
architecture improves performance of convolutional architectures at scale while maintaining
their strong object detection and segmentation capabilities. We include experiments on
ConvNeXt-Tiny and ConvNeXt-Base.

• Vision Transformer [18]: Vision transformers (ViTs) were derived from transformer
language models [89] and inherit their multi-headed self-attention (MHSA) and position-
wise feed-forward network (FFN) components. Unlike ResNets, ViTs do not encode
translation equivariance, and they only encode locality by embedding images on a patch-by-
patch basis. We include experiments on ViT-Small and ViT-Base.

• Swin Transformer V2 [57]: Swin Transformer [56] is a transformer architecture which
incorporates hierarchical representations, translation invariance, and increased locality and
efficiency into ViTs by only performing attention within spatial windows and merging
these windows iteratively. SwinV2 is equipped with several modifications which improve
scalability and transferability across input resolutions. We include experiments on SwinV2-
Tiny and SwinV2-Base. For SwinV2-Base, unless otherwise stated, we use the model with
a window size of 24.

• Stable Diffusion encoder [77]: Stable Diffusion is a text-to-image generative diffusion
model which conducts diffusion in a latent space. We include experiments with a backbone
formed by the learned encoder that converts images from pixel-space into the latent space
where diffusion is performed followed by Stable Diffusion’s U-Net, and we freeze the text
encoder, using its frozen embedding. The encoder uses a convolutional architecture with
added attention mechanisms. More details can be found in Rombach et al. [77].

B.2 The Pretraining Algorithms

The primary source of diversity amongst the backbones we consider stems from their different
pretraining algorithms. We choose prototypical examples of categories including supervised learning,
self-supervised learning (SSL), and vision-language since such types of pretraining routines are
widely believed to confer their own unique properties. For instance, SSL backbones are thought to
extract more transferable features [86], while vision-language models are thought to resist domain
shifts [78].

• Classification: We include image classifiers pretrained on ImageNet-1k and -21k [17].
ImageNet pretraining has long been the de facto choice for computer vision systems.

• MiDaS [75]: MiDaS is trained in a supervised fashion for monocular depth estimation. In
this task, the model accepts a natural image and outputs a dense 2D array of depth values
representing the distance of the scene from the image plane.

• MoCo v3 [12]: Contrastive learning is a popular approach to SSL in computer vision which
encourages a model extract similar features corresponding to different augmentations of the
same image, called positive pairs and dissimilar features corresponding to different images,
called negative pairs. MoCo v3 is a high-performing variant which employs a momentum
encoder and multi-crop training as well as prediction and projection heads.

• VICReg [3]: Instead of adopting contrastive learning and negative pairs, VICReg avoids
feature vectors collapsing towards a constant during SSL by regularizing their variance and
covariance. VICRegL is a version which also applies the VICReg criterion to local features
to teach the model to extract localization information in its features for downstream dense
prediction tasks [4].

• DINO [8]: Much like MoCo v3, DINO uses a momentum encoder and multi-crop SSL, but
DINO swaps out contrastive learning for self-distillation, demonstrating strong performance
on ViTs with a small patch size.

• MAE [30]: Masked Autoencoders (MAE) use a distinct style of SSL adapted from masked
language modeling [40]. MAE models are trained to reconstruct masked out input patches,
unlike the above 3 models which instead match the features of augmented images.
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• CLIP [73]: CLIP also uses contrastive learning, but on image-caption pairs instead of
augmented image views. Language supervision endows CLIP features with information
relating to the semantic meaning of image components, compared to models trained solely
on image data [22]. We only use CLIP’s image feature extractor in our experiments.

• Stable Diffusion [77]: Text-to-image diffusion models are an entirely different type of
vision-language backbone, trained for image generation. The Stable Diffusion encoder,
which we benchmark, maps images to a highly compressed latent space where diffusion is
performed.

• Random initialization: In experiments where we fine-tune backbones on downstream
tasks, we also evaluate baselines trained on the downstream training sets from random
initialization.

B.3 The Pretraining Datasets

The backbones we benchmark are pretrained on datasets across a wide range of scales including
image classification, image-text pairs, and images with depth annotations:

• ImageNet-1k and -21k [17]: ImageNet-21k contains over 14 million training images in
21,841 classes. ImageNet-1k is a subset of the aforementioned dataset containing almost
1.3 million training images in 1000 classes. These popular web-scraped image classification
datasets are used for supervised pretraining with the labels, or self-supervised pretraining
without them, among numerous backbones we benchmark. We denote pretraining on
ImageNet-21k followed by fine-tuning on ImageNet-1k by “ImageNet-21k-1k".

• LAION-2B [81]: LAION-2B is a subset of the larger LAION-5B, which contains 5.85
billion web-scraped image-text pairs filtered by CLIP. LAION-2B specifically contains those
2.32 billion pairs with English language captions. Despite being by far the largest dataset
amongst those we consider, LAION-2B is known to contain a large number of duplicates
[97]. Stable Diffusion is further fine-tuned on LAION-Aesthetic, a subset of LAION-2B
containing 120 million images filtered by a model trained to rate images by aesthetics.

• CLIP [73]: Since there is no OpenCLIP ResNet checkpoint available, we use the orig-
inal CLIP checkpoint trained on OpenAI’s diverse proprietary captioned-image dataset
containing 400 million images scraped from publicly available internet sources.

• MiDaS [75]: MiDaS was trained on a combination of 12 image datasets with various types
of depth annotations, and objectives: ReDWeb [101], DIML [42], Movies [75], MegaDepth
[53], WSVD [92], TartanAir [96], HRWSI [102], ApolloScape [35], BlendedMVS [104],
IRS [94], KITTI [62], NYU Depth V2 [82]. These models are therefore trained with multi-
objective optimization. Collectively, the MiDaS training set contains more than 3.7 million
images. An earlier version of MiDaS was trained on a smaller collection of 5 datasets, but
we use the most recent version trained on the largest training set.

Evaluation datasets and licenses. In Table 4, Table 5, Table 6, and Table 7 we summarize
the datasets we use for evaluating classification, object detection, segmentation, out-of-domain
generalization and retrieval performance. We include the number of classes as well as the number of
test samples for each dataset. To be noticed, we only use 10% of the labeled dataset for EuroSAT
and Chexpert to distinguish the performance among all the backbones. Object detection and instance
segmentation experiments are conducted on COCO dateset [54]. COCO is released under the Creative
Commons Attribution 4.0 License4. This license permits users to share and adapt the dataset for
any purpose, as long as the original creators are appropriately credited. For OOD classification, we
use the ImageNet-Adversarial [34], ImageNet-Sketch [93], ImageNet-Renditions [33], ImageNet-
V2 [76], and VisDA [66] datasets, all of which are freely available for research use. For OOD
detection, we use the Sim10k [38] and Cityscapes [15] datasets. Densely annotated images for
Sim10k are available freely5 and can only be used for non-commercial applications. The license
agreement for the Cityscapes dataset dictates that the dataset is made freely available to academic and
non-academic entities for non-commercial purposes such as academic research, teaching, scientific
publications, or personal experimentation and that permission to use the data is granted under certain

4https://cocodataset.org/#termsofuse
5https://fcav.engin.umich.edu/projects/driving-in-the-matrix
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Table 4: Image Classification Datasets
Dataset Description Size Classes

ImageNet-1k [17] Natural images of versatile categories 1.3M 1,000
CIFAR-100 [46] Natural images of versatile categories 50K 100
EuroSAT [31] Satellite images (RGB) of land use and land cover 13.5K 10
Flowers-102 [65] Images of flowers categories 1K 102
Aircraft [61] Images of aircraft model variant, family, manufacturer 3K 100
Chexpert [37] Medical images 191K 5

Table 5: Object Detection and Instance Segmentation Datasets
Dataset Description Size Classes

COCO [54] Large-scale object detection and segmentation dataset 330K 80

conditions.6. All datasets used in benchmarking retrieval tasks (except for Objectnet) are restricted to
non-commercial research and educational purposes. Objectnet is free to use for both research and
commercial applications.7

C Experimental Details

C.1 Implementation Details

Classification. For fine-tuning, we train the backbones for 100 epochs using AdamW [60] and
weight decay {5e−2, 1e−3}. We use a cosine annealing learning rate scheduler with 5 warmup
epochs. We run grid searches for learning rates with the default grid range being {1e−3, 5e−4, 1e−4}
as we observe peaking performance on multiple models with these learning rates. We expand the
search range for learning rate when training models from scratch (i.e., fine-tuning from randomly
initialized weights) to {1e−2, 5e−3, 1e−3, 5e−4, 1e−4}. We keep the batch size of 1024 the same
for all experiments and use gradient accumulation when Out-of-Memory occurs for large models
(such as the Stable Diffusion encoder). For data augmentation, we follow He et al. [30], including
random horizontal flips and crops, mixup, CutMix, and a RandAug [16] policy with hyperparameter
(9, 0.5) corresponding to the number of transformations and magnitude. For regularization strategies,
we apply the stochastic depths with a drop rate of 0.1, layer-wise learning rate decay of 0.75, and
label smoothing with a rate of 0.1. For linear probing, again we follow He et al. [30], where we
set weight decay to zero and disable Mix-Up, Cut-Mix, stochastic depth, or color jitter. We train the
model with LARS optimizer with a batch size of 4096 for 90 epochs. For fine-tuning on low-shot
ImageNet, we follow Cai et al. [6], where we use AdamW for all the transformer-based backbones
and SGD for Convolution-only backbones. For transformer-based backbones, we use grid search
among three peak learning rates of {1e−4, 2.5e−4, 5e−4} and two layer-decay rates of 0.65, 0.75 for
AdamW. We use grid search among three peak learning rates of {1e−1, 5e−2} for SGD. We fix the

6https://www.cityscapes-dataset.com/license/
7https://objectnet.dev/download.html

Table 6: OOD Generalization Datasets
Task Train Dataset Test Dataset Test Size Classes

Image Classification ImageNet-1K [79] ImageNet-A [34] 7.5K 0.2K
Image Classification ImageNet-1K [79] ImageNet-v2 [76] 10K 1K
Image Classification ImageNet-1K [79] ImageNet-R [33] 30K 0.2K
Image Classification ImageNet-1K [79] ImageNet-S [93] 50K 1K
Image Classification VisDA-Synthetic [66] VisDA-Real [66] 55.4K 12

Object Detection Sim10K [38] Cityscapes [15] 0.5K 1
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Table 7: Image Retrieval Datasets: Kindly note that the provided numbers are approximate refer-
ences. For precise details, please consult the original research papers.

Dataset Description Size Classes

CUB-200 [91] Fine-grained bird images 12k 200
i-Naturalist [88] Fine-grained species classification 450k >1k
Object Net [2] Object recognition dataset with uncommon poses 50k 313
INSTRE [95] Fine-grained recognition data set of toys and house-hold objects 28k 200

Google Landmarks V2 [98] Landmarks across the world >1 mil >1k
Oxford [69] Specific buildings from Oxford 6400 12
Paris [70] Specific landmarks and buildings from Paris 5000 11

Copy Days [19] Copy detection dataset of landscapes, buildings etc 2,286 n/a

weight decay to be 0.05 and use the same data augmentation as the regular fine-tuning for 10% but
without strong data augmentations, such as mix-up, cut-mix, and random erasing for the 1% setup.

Object Detection and Segmentation. For the training of Cascade Mask R-CNN, we adopt the
standard training settings previously employed in ConvNext [58], Swin [56], and ViTDet [52]. For
all experiments, we utilize the AdamW optimizer [60] with weight decay of 0.05, batch size of 16,
and we conduct a grid search for the learning rate, considering values of {8e−5, 1e−4, 2e−4, 3e−4}.
Additionally, we employ a 3× schedule, spanning a total of 36 epochs, and the learning rate decayed
by a factor of 10 at epochs 27 and 33. In addition, we apply multi-scale training [7, 83], excluding
ViT-based backbones and Stable Diffusion. For ViT-based backbones, inspired by the approach
employed in VITDet along with the fact that ViT backbones perform poorly on detection without
specially tailored training strategies, we use large-scale jitter (LSJ) with the image resolution of
1024×1024 and scale range of [0.1, 2.0]. In order to maintain fair comparisons across backbones, we
minimize architecture-specific modifications. Thus, for our ViT backbones, we avoid implementing
some ViTDet modifications such as “simple feature pyramid” instead of FPN. Instead, we employ
an FPN that utilizes the final feature map, without employing stage division. It is worth noting,
as highlighted in the ViTDet paper, the performance of “FPN, last-map” is inferior to the “simple
feature pyramid”. Additionally, we use the supervised training results from DeiT [85] for supervised
ViT-S and ViT-B pretrained backbones. For Stable Diffusion, we use a single resolution of 512× 512
(resizing the image such that the longer side is 512) to overcome the significantly larger computational
cost of this backbone compared to its competitors in our benchmark.

A note on ViTDet and scale: architectural modifications and very long training schedules can benefit
ViTs in particular, as was found in Li et al. [52]. Similarly, Chen et al. [14] point out that ViTDet
achieves stronger performance than their own work due to long and expensive training routines,
behavior which stems from ViTs weak vision inductive bias. Additionally, in our analysis, we found
that ViTs benefit more from scale, so ViTs might overtake other models at larger scales. Including
large models in our benchmark, which includes many tasks and pretraining methods, would be
prohibitively expensive, yet practitioners with sufficient computational resources for larger models,
longer training routines, and architectural modifications may consider ViT backbones.

Syn-to-Real Generalization. For VisDA [66] Syn→Real, we report accuracy on the target domain
(real) using models trained on the source domain (synthetic) for 12-way classification. For training,
we use a learning rate of 1e−3 on 4 A40 GPUs with a batch size of 64 and report accuracy after 10
epochs. For object detection, we train the backbones outlined in Appendix B.1 with the Cascade-
RCNN architecture. For training and fine-tuning backbones on Sim10k [38], we use a learning rate
of 1e−4 on 4 A40 or RTX 6000 GPUs. To enable consistent evaluation across all backbones (CNNs
and ViTs), we downsample Cityscapes [15] images to 1024× 512 during evaluation. We train all
models on the entirety of Sim10k and evaluate on the validation split of Cityscapes.

Image Retrieval. We have only evaluated pretrained models for this task. Dataset and metrics are
discussed in the main body. Refer to table Table 7 for a brief summary of all the retrieval datasets.

D Results

Image Classification. We present the ImageNet Top-1 and Top-5 classification accuracy for back-
bones pretrained with different methods and on various datasets in Table 8. We adopt the ImageNet
results for supervised learning with random initialization from the timm library [100]. We omit
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ImageNet results for ImageNet-pretrained backbones since those coincide with the randomly ini-
tialized backbones on ImageNet. We also present top-1 classification accuracy for finetuning on
various datasets in Table 9, and we include ImageNet calibration and uncertainty estimation results in
Table 10.

Table 8: Classification accuracy (%) for ImageNet-related tasks. “lp” denotes linear probing, “1%”
and “10%” denote the percentage of labeled training images used during the fine-tuning.

Backbone Method Pretrain Data ImageNet (lp) ImageNet ImageNet (10%) ImageNet (1%)
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-50

Supervised ImageNet-1k - - 80.38 94.60 - - - -
VicReg ImageNet-1k 72.15 90.22 78.77 94.29 69.54 89.07 55.04 79.34
CLIP LAION-2B 65.98 87.84 80.55 95.26 69.26 89.91 43.78 70.67
DINO ImageNet-1k 74.17 91.56 79.08 94.60 68.18 89.35 51.38 77.82

ViT-Small
Supervised ImageNet-1k - - 78.84 94.29 - - - -
MoCoV3 ImageNet-1k 73.11 90.94 79.65 94.96 70.27 90.11 54.14 79.15

DINO ImageNet-1k 76.08 92.63 81.33 95.71 73.83 91.89 58.15 80.07

ViT-Base

Supervised ImageNet-1k - - 79.15 94.09 - - - -
MoCoV3 ImageNet-1k 75.96 92.69 82.85 96.31 74.80 92.54 62.88 85.31

MAE ImageNet-1k 67.67 87.49 83.41 96.50 72.87 91.54 56.02 81.07
DINO ImageNet-1k 77.31 93.43 83.40 96.42 75.92 93.30 63.92 84.52
CLIP LAION-2B 79.74 95.53 85.19 97.46 78.67 95.00 66.44 89.11

SwinV2-Tiny Supervised ImageNet-1k - - 81.82 95.99 - - - -
MiDaS MiDaS 76.44 92.66 82.55 95.92 79.92 94.57 75.44 90.83

SwinV2-Base Supervised ImageNet-21k-1k - - 87.10 98.23 - - - -
MiDaS MiDaS 81.09 95.47 86.48 98.00 84.14 96.91 79.26 93.66

Stable Diffusion Stable Diffusion LAION-2B - - 79.90 95.10 71.50 89.07 38.02 65.78

Table 9: Top-1 classification accuracy (%) for fine-tuning pretrained (and randomly initialized)
backbones with different methods on various datasets. We omit the ImageNet performance for the
backbones trained on ImageNet in a supervised fashion that setup is the same as backbones trained
from random initialization.

Backbone Method Pretrain Data ImageNet EuroSAT Flower CIFAR-100 Chexpert Aircraft

ResNet-50

Rand Init - 80.38 89.61 41.96 72.33 86.67 20.73
Supervised ImageNet-1k - 98.26 86.52 84.71 86.82 55.31

VicReg ImageNet-1k 78.77 95.11 92.68 87.56 86.55 67.51
CLIP LAION-2B 80.55 98.72 90.62 84.35 88.92 73.50
DINO ImageNet-1k 79.08 98.74 94.04 86.49 87.49 74.13

ResNet-101 Rand Init - 81.93 62.07 44.51 67.94 87.41 13.08
Supervised ImageNet-1k - 97.19 83.59 83.07 86.51 40.47

ViT-Small

Rand Init - 78.84 42.61 38.73 56.08 77.36 5.52
Supervised ImageNet-1k - 95.54 96.17 89.48 87.60 61.69
Supervised ImageNet-21k 81.39 95.30 98.73 92.51 87.39 59.89
MoCoV3 ImageNet-1k 79.65 96.02 83.59 89.38 88.10 54.68

DINO ImageNet-1k 81.33 89.09 73.73 90.00 87.75 48.20

ViT-Base

Rand Init - 79.15 48.33 40.20 54.30 79.61 6.99
Supervised ImageNet-1k - 96.22 94.04 90.62 87.27 62.02
Supervised ImageNet-21k 84.53 94.93 99.41 93.89 87.72 70.2
MoCoV3 ImageNet-1k 82.85 96.74 94.53 90.89 86.82 71.55

MAE ImageNet-1k 83.41 95.54 94.63 89.96 88.01 72.27
DINO ImageNet-1k 83.40 95.59 97.17 91.22 87.05 71.82
CLIP LAION-2B 85.19 94.37 96.78 91.29 87.74 76.38

SwinV2-Tiny
Rand Init - 81.82 89.33 29.90 66.49 87.76 5.31

Supervised ImageNet-1k - 98.91 96.58 89.50 88.39 68.71
MiDaS MiDaS 82.55 96.33 96.48 90.53 87.69 69.54

SwinV2-Base Supervised ImageNet-21k-1k 87.10 95.94 99.61 93.09 87.73 79.46
MiDaS MiDaS 86.48 96.53 99.32 93.08 88.08 79.62

ConvNeXt-Tiny Rand Init - 82.10 73.80 18.24 75.31 83.25 4.35
Supervised ImageNet-1k - 95.70 96.00 89.89 87.56 69.99

ConvNeXt-Base
Rand Init - 83.88 30.39 19.41 73.04 85.26 4.02

Supervised ImageNet-1k - 93.06 94.92 88.98 88.98 64.72
Supervised ImageNet-21k 85.87 96.19 99.61 92.84 87.80 69.39

Stable Diffusion Stable Diffusion LAION-2B 79.90 92.22 91.89 90.50 87.49 72.45

Object Detection and Segmentation. In our experiment, we utilize the train2017 and val2017 splits
of the COCO dataset for training and evaluation, respectively. We report results on bounding box
object detection (APbox) and instance segmentation (APmask). In Table 11, Table 12 and Table 13,
we present the comprehensive results of our experiment. Table 11 reflects the results obtained with
various backbone architectures when the detector is fine-tuned while the backbone remains frozen.
Table 12 contains both training from scratch with randomly initialized backbones as well as end-to-
end fine-tuning using pretrained backbones. In Table 13, we additionally present results on the harder

22



Table 10: Calibration and uncertainty estimation on ImageNet. We measure Top-1 accuracy (%),
cross-entropy test loss (CE), and expected calibration error (ECE).

Backbone Method Pretrain Data Accuracy CE ECE

ResNet-50

Supervised ImageNet-1k 80.38 0.94 0.09
VicReg ImageNet-1k 78.77 1.11 0.21
CLIP LAION-2B 80.55 1.02 0.19
DINO ImageNet-1k 79.08 1.11 0.22

ResNet-101 Supervised ImageNet-1k 81.93 0.92 0.16

ViT-Small

Supervised ImageNet-1k 78.84 0.84 0.03
Supervised ImageNet-21k 81.39 0.68 0.01
MoCoV3 ImageNet-1k 79.65 0.90 0.11

DINO ImageNet-1k 81.33 0.83 0.10

ViT-Base

Supervised ImageNet-1k 79.15 0.86 0.05
Supervised ImageNet-21k 84.53 0.56 0.01
MoCoV3 ImageNet-1k 82.85 0.77 0.08

MAE ImageNet-1k 83.41 0.75 0.09
DINO ImageNet-1k 83.40 0.76 0.07
CLIP LAION-2B 85.19 0.66 0.08

SwinV2-Tiny Supervised ImageNet-1k 81.82 0.83 0.09
MiDaS MiDaS 82.55 0.83 0.07

ConvNeXt-Tiny Supervised ImageNet-1k 82.10 0.79 0.06

ConvNeXt-Base Supervised ImageNet-1k 83.88 0.69 0.04
Supervised ImageNet-21k 85.87 0.56 0.03

LVIS dataset [27] using the best transformer-based (SwinV2) and convolutional-based (ConvNeXt)
architectures from our experiments at several sizes. We again see a benefit of scale here as well
as the slightly superior performance of modern convolutional architectures. These tables provide
a comprehensive overview of the performance achieved across various backbones and scenarios,
enabling a thorough analysis and comparison of the different backbones utilized in our study.

Table 11: Object detection and instance segmentation using Cascade Mask-RCNN on COCO
with frozen backbones.

Backbone Method Pretrain Data Params Input Size APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

ResNet-50
Supervised ImageNet-1k 82M 1333× 800 42.5 61.0 46.2 37.1 58.1 39.5

VicReg ImageNet-1k 82M 1333× 800 44.1 62.3 48.1 38.8 59.7 42.0
DINO ImageNet-1k 82M 1333× 800 44.6 62.9 48.8 39.0 60.3 42.0

ResNet-101 Supervised ImageNet-1k 101M 1333× 800 43.4 62.1 47.1 38.0 59.3 40.7

ViT-Small
Supervised ImageNet-1k 84M 1024× 1024 27.3 44.3 29.1 23.6 40.8 23.9
MoCoV3 ImageNet-1k 84M 1024× 1024 27.8 44.6 29.7 24.2 41.5 24.9

DINO ImageNet-1k 84M 1024× 1024 33.6 52.5 35.9 29.1 49.0 30.0

ViT-Base

Supervised ImageNet-1k 155M 1024× 1024 34.1 54.0 36.1 29.6 50.6 30.0
MoCoV3 ImageNet-1k 155M 1024× 1024 32.1 50.4 34.6 28.2 47.1 29.3

MAE ImageNet-1k 155M 1024× 1024 35.6 54.0 38.7 31.8 51.1 33.7
DINO ImageNet-1k 155M 1024× 1024 36.2 55.6 39.1 31.7 52.2 32.9
CLIP LAION-2B 155M 1024× 1024 21.9 36.7 22.5 18.8 33.6 18.8

SwinV2-Tiny Supervised ImageNet-1k 86M 1333× 800 36.9 55.4 39.9 32.5 52.6 34.4
MiDaS MiDaS 86M 1333× 800 34.3 51.5 37.2 30.2 48.9 32.0

SwinV2-Base-w8 Supervised ImageNet-1k 145M 1333× 800 38.6 57.4 41.7 33.5 54.4 35.3

SwinV2-Base-w24 Supervised ImageNet-21k-1k 145M 1333× 800 44.6 64.7 48.6 38.8 61.6 41.5
MiDaS MiDaS 145M 1333× 800 42.2 61.5 45.9 37.1 58.7 39.3

ConvNeXt-Tiny Supervised ImageNet-1k 86M 1333× 800 44.4 63.1 48.7 38.7 60.7 41.6

ConvNeXt-Base Supervised ImageNet-1k 146M 1333× 800 44.8 64.1 48.6 39.2 61.4 42.0
Supervised ImageNet-21k 146M 1333× 800 46.2 66.0 50.2 40.1 62.9 43.0

Stable Diffusion Stable Diffusion LAION-2B 442M 1333× 800 38.2 55.4 41.6 34.0 52.7 36.4
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Table 12: Object detection and instance segmentation results using Cascade Mask-RCNN on
COCO.

Backbone Method Pretrain Data Params Input Size APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

ResNet-50

Random Init - 82M 1333× 800 41.3 57.4 45.1 36.0 55.1 38.9
Supervised ImageNet-1k 82M 1333× 800 46.6 64.6 50.6 40.2 61.9 43.5

VicReg ImageNet-1k 82M 1333× 800 38.2 55.2 41.5 33.5 52.9 35.9
DINO ImageNet-1k 82M 1333× 800 45.4 63.5 49.2 39.4 61.1 42.4

ResNet-101 Random Init - 101M 1333× 800 45.7 63.0 50.0 39.5 60.5 43.1
Supervised ImageNet-1k 101M 1333× 800 47.7 65.6 52.0 41.3 63.2 44.6

ViT-Small

Random Init - 84M 1024× 1024 43.2 62.2 47.2 38.0 59.3 40.7
Supervised ImageNet-1k 84M 1024× 1024 48.2 68.1 51.8 41.7 65.0 44.7
MoCoV3 ImageNet-1k 84M 1024× 1024 47.6 67.5 51.7 41.6 64.3 44.4

DINO ImageNet-1k 84M 1024× 1024 48.2 67.6 52.4 42.3 64.9 44.9

ViT-Base

Random Init - 155M 1024× 1024 46.0 65.0 50.7 40.1 62.3 43.1
Supervised ImageNet-1k 155M 1024× 1024 49.4 69.3 53.5 42.9 66.1 46.2
MoCoV3 ImageNet-1k 155M 1024× 1024 49.7 69.4 53.9 43.2 66.6 46.5

MAE ImageNet-1k 155M 1024× 1024 51.3 70.3 55.9 44.5 67.7 48.1
DINO ImageNet-1k 155M 1024× 1024 49.5 69.0 53.7 42.8 66.1 46.0
CLIP LAION-2B 155M 1024× 1024 50.0 69.3 54.4 43.3 66.3 46.6

SwinV2-Tiny
Random Init - 86M 1333× 800 47.0 65.3 51.2 40.8 62.7 44.1
Supervised ImageNet-1k 86M 1333× 800 50.2 69.1 54.6 43.4 66.3 46.9

MiDaS MiDaS 86M 1333× 800 50.2 69.3 54.5 43.5 66.4 47.0

SwinV2-Base-w8 Random Init - 145M 1333× 800 48.1 66.6 52.3 41.5 64.1 44.7
Supervised ImageNet-1k 145M 1333× 800 52.4 71.0 57.1 45.2 68.6 49.1

SwinV2-Base-w24 Supervised ImageNet-21k-1k 145M 1333× 800 52.9 71.4 57.5 45.7 69.0 49.6
MiDaS MiDaS 145M 1333× 800 52.7 71.4 57.2 45.7 69.0 49.7

ConvNeXt-Tiny Random Init - 86M 1333× 800 47.5 65.5 51.7 41.2 63.0 44.3
Supervised ImageNet-1k 86M 1333× 800 49.9 68.4 54.3 43.2 66.0 46.8

ConvNeXt-Base
Random Init - 146M 1333× 800 48.3 66.4 52.7 41.9 63.8 45.3
Supervised ImageNet-1k 146M 1333× 800 51.7 70.2 56.0 44.6 67.7 48.3
Supervised ImageNet-21k 146M 1333× 800 52.9 71.7 57.3 45.8 69.2 49.9

Stable Diffusion
Random Init - 442M 1333× 800 37.1 51.4 40.1 31.9 43.7 31.2

Stable Diffusion LAION-2B 442M 1333× 800 43.4 59.1 46.3 38.1 56.9 40.2

Table 13: Object detection and instance segmentation using Cascade Mask-RCNN on LVIS v1.
Backbone Method Pretrain Data Params Input Size APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

SwinV2-Tiny Supervised ImageNet-1k 86M 1333× 800 33.0 46.3 35.3 29.9 44.5 31.9
MiDaS MiDaS 86M 1333× 800 32.6 45.7 34.9 29.6 43.9 32.0

SwinV2-Base-w8 Supervised ImageNet-1k 145M 1333× 800 35.7 48.7 38.0 32.0 47.0 34.4

ConvNeXt-Tiny Supervised ImageNet-1k 86M 1333× 800 33.2 46.1 35.4 29.9 44.3 32.2

ConvNeXt-Base Supervised ImageNet-1k 146M 1333× 800 35.8 48.8 38.0 32.0 46.9 34.5

OOD Generalization. We include results for OOD generalization for image classification in Table 14
and for object detection in Table 15.

Table 14: Top-1 OOD classification accuracy (%).
Backbone Method Pretrain Data Test Dataset Train Dataset Test Dataset

ImageNet-A ImageNet-S ImageNet-R ImageNet-V2 VisDA (real)

ResNet-50

Rand Init - - - - - VisDA (syn) 22.07
Supervised ImageNet-1k 10.03 29.63 40.25 68.75 VisDA (syn) 47.77

VicReg ImageNet-1k 10.29 28.63 39.98 67.56 VisDA (syn) 44.19
CLIP LAION-2B 15.53 30.10 42.44 69 VisDA (syn) 21.98
DINO ImageNet-1k 10.13 28.38 39.74 67.55 VisDA (syn) -

ResNet-101 Rand Init - - - - - VisDA (syn) 21.81
Supervised ImageNet-1k 19.04 34.73 45.10 70.88 VisDA (syn) 56.56

ViT-Base

Rand Init - - - - - VisDA (syn) 22.16
Supervised ImageNet-1k 14.85 27.99 38.02 66.45 VisDA (syn) 63.57
Supervised ImageNet-21k-1k 43.24 43.21 56.79 74.01 VisDA (syn) 65.62
MoCoV3 ImageNet-1k 32.57 37.33 34.85 72.71 VisDA (syn) 57.21

MAE ImageNet-1k 36.2 34.75 48.77 73.47 VisDA (syn) 48.90
DINO ImageNet-1k 35.32 36.52 49.15 72.71 VisDA (syn) 59.96
CLIP LAION-2B 46.59 63.33 50.17 75.39 VisDA (syn) 46.05

SwinV2-Tiny MiDaS MiDaS 30.87 29.41 41.26 71.27 VisDA (syn) 61.62

SwinV2-Base Supervised ImageNet-21k-1k 45.97 37.00 49.69 74.42 VisDA (syn) 68.84
MiDaS MiDaS 63.05 48.77 63.12 77.06 VisDA (syn) 68.66

ConvNeXt-Base Supervised ImageNet-1k 41.92 37.29 51.07 74.09 VisDA (syn) 71.12
Supervised ImageNet-21k 60.8 48.92 62.53 76.96 VisDA (syn) 74.96
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Table 15: OOD object detection on Sim10k→Cityscapes. Out-of-distribution generalization
across backbones for object detection (Cascade-RCNN) models trained on Sim10k and evaluated on
Cityscapes to detect instances of “car”. (Frozen) column corresponds to settings where the backbone
has been frozen.

Backbone Method Pretrain Data mAP@50 mAP@50 (Frozen)

ResNet-50

Random Init − 30.6 −
Supervised ImageNet-1k 46.5 52.4

VicReg ImageNet-1k 44.4 49.8
DINO ImageNet-1k 50.0 52.2

ResNet-101 Random Init − 25.2 −
Supervised ImageNet-1k 46.9 52.6

ViT-Small

Random Init − 8.7 −
Supervised ImageNet-1k 33.7 15.9
MoCoV3 ImageNet-1k 32.8 19.4

DINO ImageNet-1k 43.0 31.3

ViT-Base

Random Init − 10.3 −
Supervised ImageNet-1k 38.2 24.6
MoCoV3 ImageNet-1k 36.7 27.9

MAE ImageNet-1k 44.2 32.3
DINO ImageNet-1k 41.7 35.1
CLIP LAION-2B 38.1 9.7

SwinV2-Tiny
Random Init − 40.9 −
Supervised ImageNet-1k 48.0 48.2

MiDaS MiDaS 49.5 45.5

SwinV2-Base-w8 Random Init − 38.0 −
Supervised ImageNet-1k 51.1 49.3

SwinV2-Base-w24 Supervised ImageNet-21k-1k 51.0 50.2
MiDaS MiDas 52.5 50.3

ConvNeXt-Tiny Random Init − 36.2 −
Supervised ImageNet-1k 54.5 50.3

ConvNeXt-Base
Random Init − 25.5 −
Supervised ImageNet-1k 55.5 52.1
Supervised ImageNet-21k 52.4 53.9

Retrieval. We present the mAP, MRR and Recall@5 values for various backbones across different
datasets in Table 16, Table 17, and Table 18, respectively.

Analysis. In Table 20, we compare the performance of backbones pretrained with SSL (including
CLIP) and supervised learning on ImageNet-1k and ImageNet-21k. We pick the top-3 backbones in
each category and calculate the mean z-scores for all the tasks.

Adversarial robustness. In Table 19, we show adversarial robustness on the ImageNet test set
against an untargeted PGD adversarial attack ϵ with ℓ∞ constraints of 1

255 and 2
255 . For attack

hyperparameters, we use 20 steps and step size ϵ
5 .

E Assets and Licenses

The assets used in this work can be categorized as – Code Repositories, Backbones and Dependencies
(licenses for datasets are included in Appendix B.3).
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Table 16: MAP scores for image retrieval experiments.
Backbone Method Pretrain Data CUB iNat Obj INSTRE GLM rOxf rPar CopyD

ConvNext-Base Supervised ImageNet-1k 20.55 5.53 11.42 52.13 12.71 26.73 55.84 79.32
Supervised ImageNet-21k-1k 62.51 19.43 19.57 69.4 21.34 42.42 73.33 86.18

ConvNext-Small Supervised ImageNet-1k 23.96 5.66 10.35 49.33 12.6 28.1 56.03 77.86
Supervised ImageNet-21k-1k 61.09 17.06 17.12 62.79 19.53 42.19 71.03 83.56

ConvNext-XLarge Supervised ImageNet-21k-1k 65.31 21.98 21.37 69.28 21.67 45.33 74.76 86.81

ResNet-101 CLIP OpenAI 21.75 4.50 5.4 56.71 15.35 23.93 52.1 79.07
Supervised ImageNet-1k 22.86 5.52 8.9 47.37 13.83 31.27 58.51 78.52

ResNet-50 CLIP OpenAI 15.37 3.45 3.81 48.10 14.20 24.09 52.14 79.61
Supervised ImageNet-1k 18.75 4.28 5.31 41.59 11.98 25.59 52.37 79.78

ResNet-50 VicReg ImageNet-1k 8.84 3.15 1.82 42.45 13.76 31.71 58.24 82.48

ResNet-50x64 CLIP OpenAI 42.30 10.02 15.11 85.38 26.91 41.93 70.27 91.36

SwinV2-Base MiDaS MiDaS 10.44 3.84 1.93 24.91 11.52 29.76 56.34 84.03
Supervised ImageNet-21k-1k 57.57 17.95 17.81 66.87 20.33 44.35 71.28 87.57

SwinV2-Base-w16 Supervised ImageNet-21k-1k 58.77 19.93 18.6 69.48 20.97 44.91 71.7 88.2

SwinV2-Large-w16 Supervised ImageNet-21k-1k 57.55 17.74 16.36 71 21.64 44.26 75.58 88.59

SwinV2-Tiny MiDaS MiDaS 10.44 3.84 1.93 24.91 11.52 29.76 56.34 84.03

SwinV2-Tiny Supervised ImageNet-1k 22.91 5.71 6.94 54.31 13.76 27.35 56.29 82.93
Supervised ImageNet-1k 22.91 5.71 6.94 54.31 13.76 27.35 56.29 82.93

ViT-Base CLIP LAION-2B 40.27 8.17 12.98 81.13 23.83 44.84 73.62 88.79
MAE ImageNet-1k 1.26 0.22 0.43 4.86 1.43 5.19 11.12 48.12

ViT-Base MoCoV3 ImageNet-1k 12.97 4.16 2.29 40.53 12.11 30.25 51.6 84.75
Supervised ImageNet-1k 17.09 3.81 4.59 39.75 9.64 21.97 50.03 77.7

ViT-Base Supervised ImageNet-21k-1k 52.18 11.99 7.56 46.58 14.3 30.96 59.82 83.65
DINO ImageNet-1k 22.21 7.43 4.57 53.01 15.35 37.03 62.22 86.18

ViT-Large CLIP LAION-2B 47.77 9.62 12.87 80.29 25.45 39.19 70 90.32
MAE ImageNet-1k 2.53 0.84 0.53 12.24 3.78 13.26 24.92 70.34

ViT-Large Supervised ImageNet-21k-1k 62.44 18.19 16 55.18 18.49 37.68 67.07 87.04

Vit-Small MoCoV3 ImageNet-1k 12.99 3.7 1.86 35.28 11.39 24.83 50.24 82.67
Supervised ImageNet-1k 19.44 4.05 4.61 40.45 10.51 21.69 49.08 79.54

Vit-Small Supervised ImageNet-21k-1k 49.6 10.22 6.34 48.17 14.37 31.24 61.5 81.92
DINO ImageNet-1k 31.38 7.35 3.99 52.64 14.79 37.98 61.01 85.3

Code Repositories. We provide supporting code for all our experiments here. For image classification
experiments, we build on top of the timm library [100]8, the original MAE repo9 and the medical
dataset pretrain repo [103]10. timm is distributed under Apache 2.0 License and MAE under the
Attribution-NonCommercial 4.0 International License. For object detection, instance segmentation,
and OOD detection experiments, we build on top of the MMDetection framework [9]11. MMDetection
is distributed under Apache License 2.0.

Backbones. We use publicily available pretrained backbones. The full list is provided in Appendix B.

Dependencies. Key dependencies for all our experiments include pytorch, timm, HuggingFace
utilities and MMCV. Please see our repo README for a comprehensive list of all dependencies to
reproduce the experiments.

F Observations about Hyperparameters

For hyperparameter tuning, we find that the learning rate strategy is highly method- and dataset-
dependent. For example, on ImageNet classification, the best learning rate we tried for CLIP was 1e-4
while the best learning rate for MAE was 1e-3, which is similar to the best learning fate for training
from scratch. We speculate that this learning rate sensitivity occurs because different pretraining
algorithms lead to parameter vectors of very different magnitudes. For image classification, a shorter

8https://github.com/huggingface/pytorch-image-models
9https://github.com/facebookresearch/mae

10https://github.com/lambert-x/Medical_MAE
11https://github.com/open-mmlab/mmdetection
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Table 17: MRR scores for image retrieval experiments.
Backbone Method Pretrain Data CUB iNat Obj INSTRE GLM rOxf rPar CopyD

ConvNext-Base Supervised ImageNet-1k 0.63 0.15 0.38 0.88 0.37 0.63 0.97 0.87
Supervised ImageNet-21k-1k 0.9 0.41 0.52 0.94 0.53 0.84 0.99 0.92

ConvNext-Small Supervised ImageNet-1k 0.66 0.16 0.38 0.87 0.36 0.68 0.97 0.86
Supervised ImageNet-21k-1k 0.9 0.38 0.49 0.92 0.49 0.85 0.98 0.9

ConvNext-XLarge Supervised ImageNet-21k-1k 0.9 0.43 0.53 0.93 0.52 0.87 0.99 0.92

ResNet-101 CLIP OpenAI 0.67 0.15 0.31 0.93 0.44 0.65 0.97 0.86
Supervised ImageNet-1k 0.66 0.16 0.35 0.86 0.4 0.67 0.97 0.86

ResNet-50
CLIP OpenAI 0.59 0.12 0.24 0.88 0.41 0.67 0.97 0.86

Supervised ImageNet-1k 0.6 0.13 0.28 0.84 0.37 0.65 0.97 0.87
VicReg ImageNet-1k 0.45 0.11 0.18 0.86 0.42 0.8 0.97 0.89

ResNet-50x64 CLIP OpenAI 0.83 0.27 0.53 0.99 0.60 0.85 0.99 0.95

SwinV2-Base MiDaS MiDaS 0.54 0.13 0.17 0.70 0.36 0.72 0.97 0.90

SwinV2-Base-w16 Supervised ImageNet-21k-1k 0.89 0.4 0.51 0.93 0.51 0.87 0.99 0.92

SwinV2-Base-w24 Supervised ImageNet-21k-1k 0.89 0.43 0.51 0.94 0.52 0.87 0.99 0.93

SwinV2-Large-w16 Supervised ImageNet-21k-1k 0.88 0.39 0.47 0.94 0.52 0.84 0.98 0.93

SwinV2-Large-w24 Supervised ImageNet-21k-1k 0.88 0.42 0.49 0.94 0.52 0.84 0.98 0.94

SwinV2-Tiny MiDaS MiDaS 0.51 0.09 0.16 0.64 0.35 0.58 0.96 0.88
Supervised ImageNet-1k 0.68 0.17 0.32 0.9 0.4 0.67 0.99 0.89

ViT-Base

CLIP LAION-2B 0.82 0.23 0.46 0.98 0.55 0.87 0.97 0.93
MAE ImageNet-1k 0.14 0.01 0.04 0.34 0.07 0.33 0.81 0.61

MoCoV3 ImageNet-1k 0.57 0.13 0.2 0.84 0.38 0.78 0.95 0.91
Supervised ImageNet-1k 0.56 0.12 0.23 0.84 0.3 0.56 0.95 0.86
Supervised ImageNet-21k-1k 0.85 0.29 0.33 0.88 0.41 0.74 0.96 0.9

DINO ImageNet-1k 0.72 0.21 0.29 0.91 0.43 0.85 0.99 0.91

ViT-Large
MAE ImageNet-1k 0.24 0.04 0.05 0.56 0.16 0.53 0.92 0.81
CLIP LAION-2B 0.85 0.26 0.47 0.98 0.58 0.82 0.97 0.94

Supervised ImageNet-21k-1k 0.88 0.38 0.47 0.9 0.47 0.83 0.97 0.92

ViT-Small

MoCoV3 ImageNet-1k 0.57 0.12 0.18 0.82 0.36 0.7 0.97 0.89
Supervised ImageNet-1k 0.61 0.13 0.25 0.85 0.32 0.61 0.95 0.87
Supervised ImageNet-21k-1k 0.84 0.27 0.3 0.88 0.43 0.74 0.96 0.88

DINO ImageNet-1k 0.79 0.21 0.27 0.9 0.42 0.87 0.99 0.9

training period is enough for finetuning, where we only train the model for 100 epochs which is 1/3
as many epochs as we use for training from scratch. Also on smaller datasets, such as Flowers-102
and aircraft datasets, finetuning obtains much higher accuracy compared to training from scratch.
In contrast, finetuning does not save quite as many epochs for detection and segmentation where
detection systems contain lots of new parameters that are randomly initialized for downstream
training.
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Table 18: Recall@5 scores for image retrieval experiments.
Backbone Method Pretrain Data CUB iNat Obj INSTRE GLM rOxf rPar CopyD

ConvNext-Base Supervised ImageNet-1k 0.045 0.069 0.03 0.097 0.099 0.087 0.026 0.854
Supervised ImageNet-21k-1k 0.085 0.221 0.046 0.111 0.163 0.174 0.027 0.902

ConvNext-Small Supervised ImageNet-1k 0.05 0.069 0.029 0.094 0.099 0.092 0.026 0.851
Supervised ImageNet-21k-1k 0.084 0.196 0.042 0.106 0.151 0.169 0.027 0.888

ConvNext-XLarge Supervised ImageNet-21k-1k 0.086 0.247 0.048 0.111 0.164 0.172 0.027 0.903

ResNet-101 CLIP OpenAI 0.05 0.06 0.02 0.106 0.117 0.082 0.026 0.848
Supervised ImageNet-1k 0.049 0.07 0.026 0.092 0.107 0.085 0.026 0.857

ResNet-50
CLIP OpenAI 0.04 0.046 0.015 0.097 0.107 0.092 0.026 0.852

Supervised ImageNet-1k 0.043 0.056 0.018 0.089 0.099 0.084 0.026 0.836
VicReg ImageNet-1k 0.026 0.042 0.009 0.09 0.116 0.106 0.027 0.868

ResNet-50x64 CLIP OpenAI 0.073 0.124 0.044 0.122 0.191 0.181 0.027 0.948

SwinV2-Base MiDaS MiDaS 0.032 0.051 0.008 0.063 0.095 0.113 0.027 0.890

SwinV2-Base-w16 Supervised ImageNet-21k-1k 0.083 0.207 0.043 0.109 0.154 0.178 0.027 0.917

SwinV2-Base-w24 Supervised ImageNet-21k-1k 0.084 0.226 0.045 0.111 0.158 0.177 0.027 0.923

SwinV2-Large-w16 Supervised ImageNet-21k-1k 0.082 0.204 0.04 0.112 0.16 0.167 0.027 0.93

SwinV2-Large-w24 Supervised ImageNet-21k-1k 0.083 0.223 0.041 0.113 0.161 0.17 0.027 0.931

SwinV2-Tiny MiDaS MiDaS 0.031 0.034 0.008 0.055 0.095 0.059 0.026 0.849
Supervised ImageNet-1k 0.052 0.072 0.021 0.101 0.114 0.096 0.027 0.868

ViT-Base

CLIP LAION-2B 0.071 0.104 0.037 0.12 0.172 0.175 0.027 0.92
MAE ImageNet-1k 0.005 0.003 0.001 0.02 0.012 0.02 0.015 0.542

MoCoV3 ImageNet-1k 0.036 0.055 0.01 0.088 0.1 0.114 0.026 0.887
Supervised ImageNet-1k 0.039 0.049 0.015 0.088 0.078 0.053 0.025 0.82
Supervised ImageNet-21k-1k 0.077 0.146 0.024 0.094 0.111 0.088 0.026 0.883

DINO ImageNet-1k 0.055 0.093 0.018 0.102 0.125 0.158 0.027 0.894

ViT-Large
CLIP LAION-2B 0.077 0.122 0.038 0.12 0.183 0.127 0.027 0.934
MAE ImageNet-1k 0.01 0.012 0.002 0.042 0.036 0.038 0.023 0.753

Supervised ImageNet-21k-1k 0.082 0.207 0.04 0.099 0.141 0.15 0.027 0.9

Vit-Small

MoCoV3 ImageNet-1k 0.037 0.05 0.009 0.082 0.097 0.094 0.026 0.877
Supervised ImageNet-1k 0.044 0.053 0.016 0.088 0.085 0.062 0.025 0.843
Supervised ImageNet-21k-1k 0.076 0.126 0.021 0.097 0.118 0.097 0.026 0.869

DINO ImageNet-1k 0.065 0.093 0.016 0.101 0.123 0.16 0.027 0.888

Table 19: Top-1 classification accuracy (%) for ImageNet against adversarial attacks with ℓ∞
constraint radii 1/255 and 2/255.

Backbone Method Pretrain Data Clean ϵ = 1/255 ϵ = 2/255 Z-scores

ResNet-50

Supervised ImageNet-1k 80.38 28.79 13.25 -0.99
VicReg ImageNet-1k 78.77 36.60 22.01 -0.26
CLIP LAION-2B 80.55 32.78 18.55 0.58
DINO ImageNet-1k 79.08 35.80 20.75 -0.35

ResNet-101 Supervised ImageNet-1k 81.93 44.23 32.43 0.53

ViT-Small

Supervised ImageNet-1k 78.84 21.21 6.42 -1.62
Supervised ImageNet-21k 81.39 16.50 3.83 -1.94
MoCoV3 ImageNet-1k 79.65 48.62 32.16 0.71

DINO ImageNet-1k 81.33 47.87 30.04 0.57

ViT-Base

Supervised ImageNet-1k 79.15 27.08 9.54 -1.23
Supervised ImageNet-21k 84.53 23.04 6.92 -1.52
MoCoV3 ImageNet-1k 82.85 55.44 39.49 1.32

MAE ImageNet-1k 83.41 50.85 31.69 0.77
DINO ImageNet-1k 83.40 53.59 36.61 1.11
CLIP LAION-2B 85.19 47.91 28.35 0.50

SwinV2-Tiny Supervised ImageNet-1k 81.82 40.91 23.15 -0.03
MiDaS MiDaS 82.55 41.44 25.20 0.08

ConvNeXt-Tiny Supervised ImageNet-1k 82.10 49.74 31.42 0.72

ConvNeXt-Base Supervised ImageNet-1k 83.88 55.31 37.19 1.21
Supervised ImageNet-21k 85.87 53.78 34.05 1.00
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Table 20: Z-scores for best-performing SSL and supervised learning backbones. Mean z-scores
for each task averaged across the 3 top performing backbones dividing models into self (weakly-
)-supervised learning (SSL) on ImageNet-1k, supervised learning on ImageNet-1k (Sup-1k), and
ImageNet-21k (Sup-21k).

Task SSL Sup-1k Sup-21k

Cls 0.573 0.527 0.936
Det 0.298 0.743 1.076
Seg 0.314 0.717 1.071
Ret 0.489 -0.079 0.708

(OOD) Cls 0.419 0.287 1.271
(OOD) Det 0.414 0.923 0.853
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